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Abstract—Distributed energy resources (DERs), such as solar
photovoltaic (PV) panels, are essential to modern energy systems,
providing resilience and producing clean, local energy. However,
their long-term performance is vulnerable to environmental
factors, often leading to undetected issues due to the complexity
of systematic monitoring. To address this, we propose a work-in-
progress approach leveraging stochastic modeling to analyse and
verify system requirements. This approach enables a rigorous
evaluation of performance under varying weather conditions, as
shown in our preliminary results, representing a significant step
forward in managing renewable energy resources effectively.

Index Terms—distributed energy resources, solar photovoltaic
panels, energy system, quantitative verification

I. INTRODUCTION

Renewable distributed energy resources (DER), such as
solar energy systems, are crucial in the global initiative against
climate change [1]. However, despite their robustness, these
systems are sensitive to various factors that can gradually de-
grade their long-term performance and eventually compromise
energy security [2]. These impacts often remain unnoticed
during the system’s normal operation, as they are challenging
to monitor and quantify systematically.

For instance, weather conditions are well-known factors
that significantly influence solar system performance, such as
cloudy conditions or rain [3]. Owing to advancements in solar
technology, their short-term impact on the stability of power
grid is minimal, as a sudden drop in solar panel performance
can now be effectively managed by using pre-reserved power
(e.g. energy stored in batteries when solar production exceeds
demand). Although current systems handle short-term fluctua-
tions well, the long-term impacts of these weather conditions
remain less predictable. This unpredictability arises from a
variety of uncertain factors and stochastic processes, such as
unpredictable rainy days or the sporadic movement of clouds
over the solar panels. This inherent stochasticity complicates
the assessment of long-term solar panel performance.

In this paper, we focus on applying a well-established
formal method, commonly used in analysing stochastic be-
haviours of computer software, to model and analyse the long-
term impact of weather on solar systems; and aim to demon-
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strate the enhancement of our understanding and predictive
capabilities regarding the long-term effects of weather on solar
system performance.

The main contributions of our paper are:
• Modelling the stochastic influence of weather on the long-

term performance of DERs using a stochastic model;
• Presenting a formal method for analysing this model,

thereby enhancing the predictability and management of
long-term impacts;

• Demonstrating the application of this analysis to assess
the long-term impact of weather on a simulated solar
energy system.

The rest of the paper is structured as follows: Section II
reviews related work. Section III discusses the challenges and
context motivating our research, emphasising the impact of
weather variability on solar PV system reliability and the
current methods’ limitations. Section IV introduces distributed
energy resources and stochastic model checking, with essential
terminology for our approach. Section V outlines our method
in four concise steps. Section VI demonstrates the method’s
application and presents preliminary results and Section VII
summarises our findings and contributions.

II. RELATED WORK

Several existing solutions in the power system domain lever-
age formal verification methods to ensure system reliability
and efficiency. These approaches range from verifying indi-
vidual components to addressing broader system interactions
under varying conditions.

The approaches in [4] and [5] both address the reliability
and efficiency of renewable energy systems in different con-
texts. The former focuses on stand-alone solar PV systems,
using formal methods based on model checking to validate
the operation of system components like solar panels. While
this ensures component reliability, it does not account for
weather impacts on energy production or address weather
variability. Similarly, the latter discusses the reliability and
efficiency of an Energy Router (ER)-based system within
the energy internet framework for green cities. It employs
Continuous-Time Markov Chains (CTMCs) to model system
architecture and Markov Decision Processes (MDPs) to cap-
ture electricity trading behaviours, with probabilistic model
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checking ensuring reliability and communication properties.
However, like the former, this approach does not address the
resilience of the power system to weather-induced variability,
particularly regarding the sensitivity of Distributed Energy
Resources (DERs), nor does it consider long-term impacts.

The authors in [6] address system resilience in power
grids via formal verification of transactive energy controls.
They identify challenges in upgrading traditional distribution
systems to support transactive energy and employ TLA+ to
formally verify a laminar coordination framework within a
Functionally Defined Invariant Architecture. Although this
approach effectively uses TLA+ for formal verification of
deterministic behaviours, it does not consider stochasticity.
Without incorporating probabilistic models, this solution lacks
the ability to model and analyse uncertainties such as variable
weather conditions affecting DER performance.

The approach in [7] uses formal analysis to compute reach-
able sets and assess the stability of power networks under
deterministic behaviours and various disturbances. However,
this method does not account for the stochasticity inherent in
real-world power systems, such as the variability in weather
conditions that can affect DER performance. Similarly, the
research in [8] models the reliability and stability of energy-
management systems under adverse weather conditions and
varying loads using Timed Automata, verified through the
UPPAAL modeling tool. While this framework effectively en-
sures stability under deterministic conditions, it also falls short
by not considering probabilistic behaviours or uncertainties,
thereby limiting its ability to fully evaluate the impact of
adverse weather on DERs.

In summary, while various formal verification methods have
been proposed for different aspects of power systems, our
approach stands out by focusing on the stochastic behaviour of
DERs under varying weather conditions. Using probabilistic
models to dynamically assess system resilience and reliabil-
ity offers a holistic and adaptable framework for managing
uncertainties in power systems reliant on renewable energy.
Our approach captures and addresses the uncertainties and
long-term effects of adverse weather on DER performance,
enhancing overall system reliability and adaptability.

III. MOTIVATING EXAMPLE

Figure 1 shows a simplified representation of solar PV
panels installed on the roof of a residential building. This
scenario features a single household that relies on solar power
to meet its energy requirements. A Battery Energy Storage
System (BESS) acts as a critical storage device, capturing
excess energy when production exceeds demand and releasing
it when the opposite occurs. This system plays a vital role in
balancing power flows, enhancing grid stability, and facilitat-
ing the integration of renewable energy. When the solar panels
and battery cannot meet the power needs, the system connects
to the grid to purchase additional energy.

To enable widespread deployment of such systems, they
must have minimal impact on grid stability. However, the
power generated by solar panels can vary significantly, as
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Fig. 1: Energy system model

they are highly sensitive to weather conditions such as air
temperature and solar irradiance. To mitigate immediate fluc-
tuations, current energy management practices deploy batteries
as temporary storage solutions, balancing energy supply for a
few hours up to a few days. This short-term management is
supported by tools such as weather forecasting [9], [10], pre-
dictions of energy generation and consumption [11], [12], and
sophisticated real-time monitoring and control systems [13].

However, these methods are inadequate for predicting or
ensuring long-term performance and reliability. With climate
change inducing more frequent extreme and unpredictable
weather patterns, such as extended rainy seasons followed
by long periods of intense sunshine, existing battery systems
often fall short. They may manage the intermittent fluctuations
of energy supply and demand adequately but struggle with
prolonged deviations in weather. This results in potential
stability issues for the grid during extended adverse conditions.
Therefore, it becomes imperative to develop a new approach
that incorporates stochastic modelling to better manage these
challenges and ensure grid stability.

IV. BACKGROUND

Distributed energy resources [14], such as solar PV pan-
els, are vital to modern energy systems, providing clean,
renewable, and locally generated power. These decentralised,
modular technologies provide flexibility and enhance power
system resilience by being deployed near the point of use.
Despite their advantages, solar panels are extremely sensitive
to environmental factors such as temperature and solar irradi-
ance, which significantly influence their efficiency.

The efficiency of solar panels decreases with rising tem-
peratures, resulting in higher thermal losses and diminished
output [15]. This sensitivity is quantified by the temperature
coefficient, which indicates the reduction in energy production
for each degree Celsius increase above 25°C. Additionally,
solar efficiency is greatly affected by solar irradiance, which
varies with weather conditions like cloud cover, rain, snow,
and fog. Both temperature and solar irradiance are crucial for
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Fig. 2: High-level diagram of the approach

calculating the power output of a PV module, as illustrated by
the following equation [16]:

PPV = WPV ·fPV ·
(

GT

GSTC

)
· (1− αp(Tc − TC,STC)) (1)

where PPV is the power output of the PV module (kW), WPV

is the peak power output of the PV module (kW), fPV is
the PVs derating factor (%), GT is the solar irradiance on
the PV module in the current hour (kW/m²), GSTC is the
solar irradiance under standard test conditions (1 kW/m² at
25 ◦C), αp is the power temperature coefficient, Tc is PV’s
panel temperature (◦C) and TC,STC is the PV cell temperature
under standard conditions (◦C).

Temperature fluctuations, particularly during heatwaves, can
accelerate the degradation of PV cells, reducing their lifespan
and efficiency over time. The unpredictable nature of these ef-
fects poses challenges in maintaining consistent energy output
and system reliability, highlighting the necessity for a robust
approach to manage these uncertainties.

Stochastic model checking (also known as probabilistic
model checking) [17] is a formal verification technique used
to analyse systems that exhibit probabilistic behaviour. It ex-
tends traditional model checking by incorporating probabilistic
models (e.g., Markov chains) to evaluate the likelihood of
events within a system. This approach is particularly useful
for systems where uncertainty and randomness are significant,
such as in network protocols, biological processes, and relia-
bility engineering [18], [19]. Stochastic model checking uses
algorithms to verify whether a system satisfies specified quan-
titative properties, such as probabilities, expected values, and
reward measures, enabling the assessment of both performance
and dependability under uncertainty [20].

A common model used in stochastic model checking is the
Discrete-Time Markov Chain (DTMC) [21]. DTMCs represent
systems undergoing transitions from one state to another at
discrete time steps, with each transition occurring according to
a specified probability. Probabilistic Computation Tree Logic
(PCTL) [22] is a temporal logic used to define properties of

probabilistic models like DTMCs. It extends Computation Tree
Logic (CTL) by incorporating probabilistic operators, enabling
the expression of quantitative properties. For instance, PCTL
can specify the probability that a certain condition will even-
tually hold or that it will remain true for a given number of
steps. This makes PCTL a powerful tool for formally verifying
that probabilistic systems meet desired specifications, such as
performance guarantees and reliability criteria.

Stochastic model checking is particularly suited for address-
ing the problem of long-term impacts of weather on DERs
such as solar PV panels. By capturing and analysing the
inherent stochasticity of weather conditions, stochastic model
checking can explore all possible scenarios and quantify the
likelihood of different outcomes. Through this method, we can
better understand and predict the cumulative effects of weather
variability, ultimately enhancing the reliability and resilience
of the system. For more information regarding the formal
definition of DTMCs and PCTL, we refer the reader to the
following sources [17], [23].

V. APPROACH

We outline our systematic approach for analysing the
resilience of DERs against adverse weather conditions in
Figure 2, comprising the following four key steps:

1. Data acquisition: This initial step involves collecting
essential weather data, such as air temperature and solar
irradiance, known to significantly impact system performance.
While these parameters are the primary focus of this work, we
acknowledge that other factors, such as air pollution, may also
affect solar output. However, in this study, we focus solely
on available historical weather data, with seasonal variations
implicitly captured through the patterns in solar irradiance and
temperature. The collected data is then used to simulate the
system’s behaviour under varying conditions, facilitating an
in-depth analysis of performance impacts.

2. Stochastic system formalisation: We create a formal model
to capture the uncertainties and variability inherent in the
system’s behaviour. For this purpose, we use a DTMC to
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Fig. 3: Daily energy demand (shaded area), total PV produc-
tion (solid line), and energy purchased (dashed line) illustrate
how PV production meets demand and when grid energy
purchases are necessary.

encapsulate the variability of weather affecting the solar panel
system. DTMCs are particularly well-suited for our analysis
because they align with the discrete intervals at which weather
data is typically collected, allowing us to effectively model
system behaviour over time. While other models, such as
CTMCs and MDPs, also exist, they are more appropriate for
continuous processes (CTMCs) or introduce additional com-
plexity related to decision-making under uncertainty (MDPs).
The validity of the model is confirmed by domain experts.

3. Requirement formalisation: This step precisely defines
and verifies the system’s desired performance metrics and
properties under varying conditions. Using PCTL, we for-
malise requirements ranging from basic correctness to com-
plex quantitative measures, such as:

• Natural language: The system should have at least 0.8
probability of reaching the desired state under specified
conditions.

• PCTL: P≥0.8[F (desired state)]. Where F denotes that
the system will eventually reach the desired state, and
with a probability greater or equal to 0.8 (P≥0.8).

4. Model checking process We employ the probabilistic
model checker PRISM [24] to validate our system model
against the formalised requirements. PRISM performs a thor-
ough state-space exploration to verify the system’s compliance
with the specified properties under various scenarios. This
rigorous evaluation assesses the system’s long-term resilience
and identifies areas for potential improvement, ensuring ro-
bust performance across diverse conditions. It is important
to note that our approach does not mandate the use of a
specific probabilistic model checker; alternatives like Storm
(https://www.stormchecker.org/) could also be considered.

The above steps provide a comprehensive framework for as-
sessing the impact of weather variability on DERs, enhancing
our ability to predict system behaviour and ensuring sustained
resilience and performance.

VI. PRELIMINARY EVALUATION

To evaluate our approach, we implemented a Matlab sim-
ulation of the system described in Section III using MILP
optimisation [25]. The simulation ensures that load demand is
met at every instant with minimal operational cost, guarantee-
ing reliable and affordable power supply to the end-user.

In step 1, we used one-year data from London in 2022,
sourced from Open-Meteo [26]. We chose this period due to
the UK’s rare heatwave, with temperatures reaching 40°C, to
analyse its impact on solar panel performance and the energy
system. The data includes hourly air temperature and solar
irradiance, integrated into our simulation to estimate energy
generation, battery interactions, and grid transactions. We also
included one-year demand data for a London house to compare
production with demand. Adverse weather was defined as
temperatures of 25°C or above, focusing on heatwaves rather
than other conditions like extreme cold or heavy rainfall.

Figure 3 depicts the daily energy demand and energy gener-
ated by PV solar panels throughout the year. As shown, solar
generation peaks during the summer months, while winter
months see the least power production due to the variation
in solar irradiance. The surplus state occurs when energy
generation exceeds demand, whereas during the request state
energy is purchased from the grid to meet the load demand.

In step 2, we synthesised a DTMC, as shown in Figure 4,
to represent our simplified power system’s behaviour. We
began by identifying its primary operational states, focusing
on solar panel performance under normal and adverse weather
conditions, and meticulously examined the transitions between
them. This DTMC model was achieved after multiple rounds
of refinement, incorporating feedback from domain experts
and additional system observations. Our observations revealed
that solar energy generation could either exceed or fall short of
demand. Based on this, we defined two system states: surplus
and request. In the surplus state, excess energy after meeting
demand is used to either charge the battery or sell to the
grid. Conversely, in the request state, when PV generation is
insufficient, the system either discharges the battery (if energy
is stored) or purchases energy from the grid.

To determine the transition probabilities, we analysed hourly
data from the Matlab simulation. By examining the frequency
of state transitions, we calculated the probabilities of moving
between states. This analysis ensured our DTMC accurately
reflects the stochastic nature of the power system’s behaviour
under varying weather conditions. Unexpectedly, we observed
higher probabilities of transitioning to a surplus state during
adverse weather (0.85) compared to normal weather (0.37),
as shown in Figure 4. This was due to increased solar PV
production during summer, despite higher degradation rates.
While this degradation is not addressed in our current work,
it is a key observation for future research.

Step 3 involved selecting system properties for preliminary
evaluation, expressed in both natural language and PCTL,
as shown in Table I. In step 4, we verified these properties
through probabilistic model checking, assessing system re-
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Fig. 4: Derived DTMC from our simplified energy system model

quirements and identifying any violations. For our analysis, we
varied the probabilities of normal and adverse weather within
the range of [0, 1] in 0.1 increments. The results, illustrating
how these probabilities impact system performance, are pre-
sented in Figure 5. Note that only the probability of normal
weather (p normal) is shown in the graphs, as the probability
of adverse weather is simply 1 − p normal, making the
inclusion of p adverse counter-intuitive.

In the first graph, we observe the probability values for
the property P = ? [ F state = buy from grid ] as the
probabilities of normal and adverse weather change. This helps
us determine the likelihood of buying energy from the grid
based on weather conditions. The graph shows that normal
weather correlates with a higher likelihood of buying from the
grid, while adverse weather decreases this likelihood. In our
DTMC model (Figure 4), we see that higher probabilities of
adverse weather increase the likelihood of reaching the upper
part of the model (0.85 vs. 0.15), corresponding to higher
energy generation. This observation is useful for understanding
how weather changes can lead to higher costs, as energy
is more frequently purchased from the grid during normal
weather when generation is lower.

The second graph illustrates a different outcome. As the
probability of normal weather increases, the probability of
the property P = ? [ state < request U state = end ]
decreases. This property reflects the likelihood of reaching
the end state without requesting energy, i.e., without visiting
the states in the model’s bottom branch (see Figure 4). In
simpler terms, it indicates reaching the surplus state and then
transitioning to charge battery, sell to grid, or both before
the end state. In the DTMC model, higher probabilities of
normal weather increase the likelihood of reaching the bottom
part of the model (0.63 vs. 0.37), thereby decreasing the
probability of satisfying this property. This observation is
crucial for planning ahead to balance revenue with cost.

The property P > 0.8 [ F state = surplus ] evaluates to
a boolean condition and is satisfied only for normal weather
probabilities of 0 or 0.1. This indicates that the probability
of reaching the surplus state is below 0.8 for higher normal
weather probabilities. In the DTMC model (Figure 4), reaching
the surplus state is more likely under adverse weather (0.85)

than normal weather (0.37). The 0.8 threshold ensures that the
system remains in a surplus state for over 80% of the time,
thereby minimising energy purchase costs. This value is used
in the case study to evaluate system performance under varying
weather conditions and can be adjusted to meet specific system
requirements and guide design decisions.

Our preliminary evaluation using probabilistic model check-
ing highlights the impact of varying weather conditions on
DER performance. These findings emphasise the importance
of considering weather variability when assessing the long-
term resilience and performance of DER systems. For ex-
ample, if the probability of buying energy from the grid is
high and the budget is limited, one could either increase the
budget or invest in additional solar panels or wind turbines.
Understanding the impact of weather on solar panels enables
proactive measures. During adverse weather, like heatwaves,
surplus energy is more likely, but so is performance degra-
dation. Adaptive measures, such as cooling PV panels, can
mitigate this. Incorporating degradation rates into the proba-
bility model accounts for solar PV wear and tear under adverse
conditions. Conversely, during normal weather, lower energy
production requires preparation to purchase additional energy.
Predicting how adverse weather will affect energy production
over time is crucial for informed decision-making and system
optimisation, enhancing resilience.

VII. CONCLUSION

In this work, we introduced an approach that leverages
stochastic modeling and analysis to evaluate the long-term
performance and resilience of DERs under adverse weather
conditions. By incorporating DTMCs and PCTL, we offer a
rigorous framework for assessing the probabilistic impacts of
weather variability on solar PV systems. This approach facil-
itates a comprehensive understanding of cumulative effects,
crucial for optimising system performance and making in-
formed decisions. Our preliminary evaluation using the PRISM
model checker demonstrates that this method effectively pro-
vides insights into long-term system performance trends.

Future work will extend our methodology to include
adaptive mechanisms that dynamically respond to changing
weather conditions, further enhancing power system resilience.
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TABLE I: Energy system properties expressed in both natural language and PCTL, where P is the probabilistic operator, ?
is the condition evaluation operator, < is a relational operator, = is an equality operator, F stands for eventually (future), U
means until, and state refers to a specific status of the system at a given point in the probabilistic model.

Property description PCTL
What is the probability of buying energy from the grid? P = ? [ F state = buy from grid ]
Is the probability of eventually reaching the surplus state greater than 0.8? P > 0.8 [ F state = surplus ]
What is the probability of eventually reaching the end state without requesting energy? P = ? [ state < request U state = end ]

(a) P = ? [ F state = buy from grid ]

(b) P = ? [ state < request U state = end ]

Fig. 5: Output of PRISM’s property verification while varying
the normal weather probability from 0 to 1 in 0.1 steps. The
graphs show how the probabilities of normal weather and
adverse weather (1− p normal) affect the two properties of
interest. Property (a) demonstrates a high probability of buying
from the grid as the likelihood of normal weather increases.
Property (b) shows that the probability of not requesting
additional energy (e.g., via battery discharge or grid purchase)
decreases with increasing normal weather probability.

We also plan to incorporate cost-effectiveness analyses, eval-
uating optimal grid interactions and battery usage within
budgetary constraints. Additionally, we aim to apply our
approach to other DERs, such as wind turbines, for a more
comprehensive assessment of renewable energy systems.
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