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1 Introduction

The infrared limit of gauge and gravity theories has allowed for the discovery of deep
connections between the soft limits of scattering amplitudes, asymptotic symmetries, and
the memory effect, organised in the so-called IR triangle [2]. This has lead to insights which
have allowed for the development of a conjectured holographic principle for asymptotically
flat spacetimes.1

In this article we will be focusing specifically on the relation between soft theorems
and asymptotic symmetries. The former, first discovered many years ago [5, 6], govern the
behaviour of scattering amplitudes in the limit where one or more of the particles have a
vanishingly small energy. The latter are local symmetries that survive in the limit where we go
to the null boundary of spacetime (I). Then, unlike for standard gauge transformations, we
can construct charges, which, via the Ward identities, provide proofs for the aforementioned
soft theorems. This relies on constructing a well-defined phase space at I, containing the
free data of the theory, and on which symmetries act canonically. The above can be set up
perturbatively, via an expansion in the small energy parameter. At leading order, where an
elegant universal factorisation rule arises, the result has by now been established [7–9], with
progress to certain sub-leading orders in both gravity and gauge theories [8, 10–28].

In a brief Letter [1], working in Yang-Mills (YM) theory, we proposed a mechanism
for extending the canonical phase space to accommodate the construction of asymptotic
symmetries and charges required for establishing the soft theorems at arbitrary sub-leading
orders.2 The proposal relies on a modification of the Stueckelberg procedure [31], originally
introduced to restore broken gauge symmetry. This extends our phase space with a new
Goldstone-type field, which transforms under the sub-leading asymptotic symmetries. We
additionally put forward a set of recursion relation for the e.o.m., valid at any order in the
radial expansion, which feed into recursion relations for the charges at all orders.

In this longer article, we will expand on the proposal in [1], and present some new results
that follow from our prescription. Firstly we will give further details on the extended phase
space construction, and prove that it leads to appropriate charges, satisfying the expected
charge algebra. We consider a very broad set-up here, allowing for the presence of field-
dependent parameters with very general polyhomogeneous fall-offs in the radial expansion.
We also made no assumptions at this stage about the fall-off in the coordinate dual to the
energy (u in Bondi coordinates), which means it can be applied in principle to loop-level
soft theorems as well (see e.g. [32–39]).

We give explicit all-order expressions for the symmetry transformations of the extended
phase space Goldstone-like Stueckelberg field, which enter the computation of the subn-
charges. Interestingly, these turn out to be controlled by the Bernoulli numbers, which arise
from the perturbative expansion of (an operator version of) the characteristic power series
generating the so-called Todd polynomial [40].

The general construction is independent of gauge and coordinate choice, as well as the
choice of hypersurface on which the initial data is defined. We choose to illustrate it here

1See reviews [3, 4] and references within.
2See also [29] and [30], where this has been achieved in the simplified set-ups of massless QED and self-dual

theories in light-cone gauge, respectively.
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by working in Bondi coordinates (u, r, z, z̄) around I+, and we look at two different gauge
conditions, namely light-cone and radial gauge. In these two contexts, we explicitly derive
recursion relations at all orders in the expansion in r, thus formally justifying the choice
of free data in the radiative phase space. We additionally study the expansion in the u

coordinate, which, via a Fourier transform, is related to the energy expansion relevant for
subn-leading soft theorems.

Our procedure allows us to give an elegant construction for the charges at null infinity,
valid at any subn-leading order. We render these charges finite on I+, by extending the
renormalization procedure from [41] to all orders. From here, one can then construct finite
charges at the corner I+

− (see e.g. [29, 42]). We find that the charges can be neatly organised in
a radial expansion, which closely follows the expansion in the new Goldstone field3 introduced
via the Stueckelberg trick. We establish the existence of a closed sub-algebra of charges
at each order in the perturbative expansion, thus showing how a robust truncation of the
procedure can be established at any desired order for practical calculations related to soft
theorems. We also match with known results from the literature at level n = 0 ([7]) and
n = 1 ([12]). Moreover, the charges themselves turn out to satisfy recursions that allow us to
construct any order from previous orders (first noted in [12] for leading and sub-leading), and
also straightforwardly match the abelian hierarchy of subn-leading charges [46]. The iterative
approach to the construction of the charges has the advantage that we only use equations
of motion and the phase space formalism, and we do not need to make any direct reference
to the scattering language. We establish the correspondence with the usual expressions
for the sub-leading charge coming from the Ward identities, showing how it can be indeed
carried out at all orders.

In the context of Ward identities the sub-leading charges generally contain universal
and non-universal terms. Interestingly, we can also have quasi-universal contributions to
the sub-leading soft charge when looking at higher derivative interactions between the
gauge vector in QED and a scalar [47, 48]. We extend the derivation of the quasi-universal
contributions to the sub-leading charge in Yang-Mills for an interaction of the form ϕtr(F 2),
using the dressing procedure in our framework. This example illustrates the applicability
of our procedure to different theories.

One of the more intriguing discoveries of the celestial holography program has been
the presence of certain infinite dimensional algebras in sectors of Yang-Mills and gravity
(where it is called the w1+∞ algebra, first defined by [49] and connected to gravity in [50],
see also [51–63] for further work and deformations). The quantization of these algebras
(known as W1+∞, [64]) is expected to be a quantum symmetry of the S-matrix, and it is
interesting that one can trace its origin to classical symmetries and their charge algebra (see
e.g. [50] for YM and [24, 65] for gravity). We find that a subset of our recursion relations
encompasses the sectors displaying these symmetries.

The article is organised as follows. In section 2 we give details of the general phase space
calculation. In section 3, working in Bondi coordinates around null infinity we give the e.o.m.
at all orders in r, and the proofs of the recursion relations in both light-cone and radial gauge.
The construction of the necessary charges and their recursion relations at all orders is given

3See e.g. [43–45] for some other works where Goldstone modes arise at null infinity.
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in section 4. In section 5 the charge algebra valid at any sub-leading order is constructed and
shown to close order by order. In section 6, we show the link between the recursive formulas
in section 3 and the charges constructed in section 4, as well as showing that our results for
the leading and sub-leading charges agree with previous proposals from the literature [7, 12]
and the full abelian case [29, 46]. In section 7 we identify, via the recursion relations, the
subsectors of our theory that carry the infinite symmetry algebras along the lines of the
discussion in [43]. In section 8, we discuss the quasi-universal contributions to the charges
from higher order derivative interactions, using our prescription in a particular example for
the case of sub-leading Yang-Mills (following the QED example given in [48]). In section 9 we
provide an outlook of the results, and propose future explorations. The appendices contain
detailed computations, useful formulae and discussions that complement the main text. In
appendix A, we give details of calculations pertaining to the general extended phase space
and we collect some useful formulae. In appendix B, we provide proofs for the derivation
of the equations of motion and Bianchi identities at arbitrary order in the radial expansion,
which were used in finding the recursive formulae of section 3. In appendix C, we turn to the
so-called flat Bondi coordinates, which differ from the standard Bondi through the vanishing
of the guu component of the metric, as well as the celestial sphere being mapped into the
complex plane C2 via the stereographic projection. We see that our procedure continues to
hold, and find simplified recursion relations in these coordinates. In appendix D we provide an
explicit derivation of the charges via the limit in t → +∞, showing that the renormalization
procedure can be applied. Finally, in appendix E we show how our general large gauge
parameters can be chosen to coincide with the particular generators of charges coming from
the usual derivation of the soft theorems from the Ward identity.

2 Extended phase space in arbitrary gauge and coordinates

We begin by reviewing the general procedure introduced in [1]. The starting point is YM
theory with the standard equation of motion

Eν ≡ DµFµν = 0 (2.1)

where
Fµν = ∂µAν − ∂νAµ − i[Aµ,Aν ] (2.2)

The gauge fields transform in the usual way:

A′
µ = eiΛAµe−iΛ + ieiΛ∂µe−iΛ. (2.3)

and we assume that Aµ satisfies some gauge condition

G(Aµ) = 0 (2.4)

We will restrict to the residual gauge symmetries preserving the condition above, as is standard
when studying asymptotic symmetries. For now we do not need to specify the coordinates.
For explicit examples later on, we will work in some appropriately chosen coordinates (these

– 4 –



J
H
E
P
1
2
(
2
0
2
4
)
0
6
8

could be e.g. Bondi, flat Bondi, or even light-cone coordinates). We find it convenient to
adopt the following notation for the coordinates:

xµ = (r, y⃗), (2.5)

where r is the expansion parameter, and y⃗ are the coordinates of the hypersurface on which
we define our free data.4

We consider a very general expansion for our gauge field, in terms of polyhomogeneous
functions

Aµ =
∑
n,k

A(−n;k)
µ (y⃗) logkr

rn
, (2.6)

where n and k are chosen such that limr→∞
logkr
rn = O(1). In practice, this means that we

only allow terms with n ≥ 0, and k is unconstrained, except for n = 0, where we only allow a
contribution from k = 0. We remark that upon summing all orders in the above, one could
of course use the Taylor series for the log, and ultimately have an expression of the form∑∞

n=0 B
(−n)
µ (y⃗) 1

rn . However, in practice we will stop at a finite order in n and k, in which case
the log terms become necessary (see e.g. [12] in Lorenz gauge). Certain gauge choices have the
benefit of avoiding the log terms, as we will see in section 2.2, where we work in axial gauge.

Then the phase space is described by

Γ0 =
{
A0 satisfying (2.1) and (2.4)

}
(2.7)

where A0 comprises the necessary free data which determines the radiative fields to all orders
in r, via the equations of motion and Bianchi identities.

In section 3, working in Bondi coordinates, we give expressions for the equations of
motion and Bianchi identities at all orders in r. Then, for both radial and light-cone gauge,
we give recursion relations valid at all orders in the perturbation parameter, proving that the
fields in the bulk can be entirely reconstructed from the boundary data at null infinity.

The large gauge transformations responsible for the leading order soft theorems are
characterised by a parameter λ ≡ Λ(0)(y⃗), subject to a constraint coming from the gauge
condition (2.4):

G(DµΛ(0)(y⃗)) = 0 , (2.8)

thus preserving Γ0.
We now wish to construct an extended phase space, able to accommodate additional

large gauge transformations with a fall-off of the form5

Λ+(x) =
∑
n,k

rnlogkr Λ(n;k)(y⃗) , (2.9)

where n and k are chosen such that rnlogkr diverges in the limit r → ∞. In [12] this was
achieved at first order in the radial expansion in YM in Lorenz gauge, working in Bondi

4Most commonly, in Bondi coordinates, we have r = r and y⃗ = (u, z, z̄) describing I+. However, the
procedure applies in other coordinates as well.

5Note that small gauge transformations, i.e. those which vanish in the limit r → ∞, have been set to 0 for
simplicity, since they do not contribute to the soft theorems.

– 5 –



J
H
E
P
1
2
(
2
0
2
4
)
0
6
8

coordinates. In [30], a construction was given to all orders, for the self-dual YM theory,
working in light-cone gauge. Here we will show that the construction extends to full YM
theory, for n = ∞, with an arbitrary gauge and coordinate choice.

First we note that in some cases one need to generalise (2.9) to a field-dependent
parameter,6 and we consider here the most general situation:

Λ̆+ = Λ̆+(Aµ(x),Λ+(x)) =
∑
n,k

rnlogkr f (n;k)(A(0;0)
µ (y⃗), . . . ,Λ(0;1)(y⃗), . . .) , (2.10)

where n and k are such that rnlogkr diverges as r → ∞. Here Aµ(x) is expanded as in (2.6),
and the Λ+(x) expansion is given in (2.9). Later in the article, we will specialise to cases
where Λ̆+ is independent of the fields, which will simplify calculations considerably. However,
for now we continue with the most general solution as described in (2.10).

The next step is to define an extended phase space capable of accommodating a gauge
transformation with a parameter given by (2.10). These transformations obviously violate
the fall-off (2.6). We can interpret these violations as a form of symmetry breaking, which
leads us to using a modified Stueckelberg trick in the construction of our phase space. The
Stueckelberg procedure7 is usually employed when a gauge symmetry is broken e.g. due
to the presence of mass. It allows us to reinstate the symmetry, by promoting the local
transformation parameter to a new field, which transforms non-linearly. We will adapt it
to our situation by defining the object:

Ψ̆ = Ψ̆(Aµ(x),Ψ(x)) =
∑
n,k

rnlogkr f (n;k)(A(0;0)
µ (y⃗), . . . ,Ψ(0;1)(y⃗), . . .) (2.11)

with
Ψ(x) =

∑
n,k

rnlogkr Ψ(n;k)(y⃗). (2.12)

with n, k as in (2.10) and where Ψ̆ has the same functional dependence on (Aµ,Ψ) as Λ̆+
does on (Aµ,Λ+). Equivalently, Ψ̆ is obtained from Λ̆+ by applying the replacement rule

Λ+(x) → Ψ(x), (2.13)

We are now ready to define our extended phase space as:

Γext
∞ := Γ0 × {Ψ(x) as defined in (2.12)} (2.14)

where Γ0 is the original phase space defined in (2.7). We will see that the object Ψ̆ plays a
crucial role in our construction. In order to proceed with the construction of charges on our
extended phase space, we must first determine the transformation properties of our new field Ψ.
We generalise the procedure employed in [12, 30] and start by defining the extended gauge field

Ãµ = eiΨ̆Aµe−iΨ̆ + ieiΨ̆∂µe−iΨ̆ (2.15)
6This might arise because we are imposing further constraints on the transformation. For example, requiring

that they preserve Lorenz gauge can lead to field-dependent transformation parameters, see [12].
7Initially introduced in the context of electromagnetism [31], also extended to (super)gravity [66–68].
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This mimics a gauge-transformed gauge field, with the parameter replaced by our new field,
which is a hallmark of the Stueckelberg procedure. We require that it satisfies the following
consistency condition:

δΛ̆Ãµ = D̃µΛ̆ (2.16)

where
Λ̆ = Λ(0) + Λ̆+ (2.17)

and D̃µ is the gauge-covariant derivative w.r.t. Ãµ. In the above, Λ(0) is the standard
(leading order) large gauge parameter. Equation (2.16) is tantamount to saying that the
extended field transforms as a gauge field in the extended space. Note that when writing
the actual transformation, we are working only to linear order in the parameter, as this will
be sufficient for the construction of the charges. This is in contrast with the Stueckelberg
step (2.15), where all orders are necessary. The consistency condition essentially states that
the additional fields on the boundary do not correspond to new fields in the bulk, but rather
are coming from pieces of the bulk field which were discarded when assuming the fall-off
in (2.6). Finally, as is standard in the Stueckelberg procedure, the transformation of the
original field Aµ is unchanged.

Following a calculation similar to that in [30] (see appendix A for details), we rewrite
the l.h.s. of (2.16) as

δΛ̆Ãµ = eiΨ̆
{

δΛ̆Aµ + Dµ

[
e−iΨ̆O−iΨ̆(δΛ̆Ψ̆)eiΨ̆

]}
e−iΨ̆ (2.18)

where we have used that

δeX = eXOX(δX) (2.19)

with
OX := 1− e−adX

adX
. (2.20)

The above is defined via its series expansion

OX =
∞∑

k=0

(−1)k

(k + 1)!(adX)k , (2.21)

such that

O−iΨ̆(δΛ̆Ψ̆) =
∞∑

k=0

(−1)k

(k + 1)!(ad−iΨ̆)
k(δΛ̆Ψ̆)

= δΛ̆Ψ̆ + i

2[Ψ̆, δΛ̆Ψ̆]− 1
6[Ψ̆, [Ψ̆, δΛ̆Ψ̆]]− i

24[Ψ̆, [Ψ̆, [Ψ̆, δΛ̆Ψ̆]]] + . . . .

(2.22)

The r.h.s. of (2.16) becomes

D̃µΛ̆ = eiΨ̆Dµ(e−iΨ̆Λ̆eiΨ̆)e−iΨ̆ (2.23)

Then, plugging (2.18) and (2.23) into (2.16) we obtain:

δΛ̆Aµ + Dµ

[
e−iΨ̆O−iΨ̆(δΛ̆Ψ̆)eiΨ̆

]
= Dµ

(
e−iΨ̆Λ̆eiΨ̆

)
(2.24)

– 7 –
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Let us now focus on one of the components of the equation above, call this w. In any gauge,
we can choose a w such at A

(0;0)
w ̸= 0. Then we have

δΛ̆A(−n;k)
w :=

(
DwΛ̆

)(−n;k)
= δn,0δk,0∂wΛ(0) − i[A(−n;k)

w ,Λ(0)] , (2.25)

where we have imposed that only the leading order gauge parameter Λ(0) contributes (the
sub-leading gauge parameters in (2.9) will only appear in the transformation of Ψ, and we
recall that we are ignoring the small gauge transformations). Making use of the above, we
can rearrange (2.24) into

O−iΨ̆(δΛ̆Ψ̆) = Λ̆− eiΨ̆Λ(0)e−iΨ̆ (2.26)

This can be solved to any order in r by inverting O−iΨ:

δΛ̆Ψ̆ = O−1
−iΨ̆(Λ̆− eiΨ̆Λ(0)e−iΨ̆) (2.27)

We will make use of the formal expansion(
1− e−X

X

)−1

=
∞∑

m=0

B+
mXm

m! (2.28)

where B+
m are the Bernoulli numbers

B+
0 = 1, B+

1 = 1
2 , B+

2 = 1
6 , . . . (2.29)

Using this in (2.27) we find:8

δ
[m]
Λ̆

Ψ̆ = B+
m

m! (ad−iΨ̆)
m
[
Λ̆ + (−1 + 2δm,1)Λ(0)

]
(2.30)

where δ
[m]
Λ̆

Ψ̆ denotes the variation of Ψ̆ at order m in Ψ̆. The next step is to extract the
transformation of Ψ from the above. This will of course depend on the exact form of Ψ̆ as a
function of Ψ and Aµ, so it will be done case by case, depending on the gauge choice (2.4).
Nevertheless, we can proceed in the general case, as it is the Ψ̆ that will appear in the
construction of the charges, and so it is its transformation that will be relevant for computing
the charge algebra. Before continuing with the charge algebra, we pause to make some
remarks about the transformation of the Stueckelberg fields. Firstly, we note that, at 0th
order in the field, it transforms via a shift

δ
[0]
Λ̆
Ψ̆ = Λ̆− Λ(0) = Λ̆+ (2.31)

so they have an interpretation as Goldstone modes for the symmetry breaking in the bulk.
Secondly, recall that

B2k+1 = 0, for k > 0 (2.32)
8The proof is completely analogous to the one in appendix A3 of [30].
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i.e. only even powers of the fields will contribute to the transformation (2.30) beyond m = 1.
We leave the interpretation of this observation for future work.

Finally, there is a close relation between the Bernoulli numbers and the Riemann
ζ-function

ζ(m) = (−1)
m
2 +1

2
B+

m(2π)m

m! , (2.33)

for m even and larger than 1. Then we can alternatively write (2.30), for m > 1, as

δ
[m]
Λ̆

Ψ̆ = 2(−1)
m
2 +1ζ(m)

(2π)m
(ad−iΨ̆)

m
[
Λ̆ + (−1 + 2δm,1)Λ(0)

]
. (2.34)

2.1 Charge algebra

The charge, computed via the covariant space formalism,9 can be expressed as a two-
dimensional integral, over a hypersurface B2

Q̃Λ̆ =
∫
B2

tr(Λ̆F̃µν)dSµν , (2.35)

where F̃µν is constructed from Ãµ, and takes the form

F̃µν ≡ ∂µÃν − ∂νÃµ − i[Ãµ, Ãν ] = eiΨ̆Fµνe−iΨ̆ (2.36)

Let xB and yB the coordinates on B2, then we have

dSµν = dxBdyB
√

gBmµnν (2.37)

where gB is the induced metric on B2 and nµ,mµ are unit vectors orthogonal to B2. We
can now define the charge density

q̃Λ̆ = tr
(√

gBΛ̆F̃mn

)(0)
(2.38)

where we have denoted

F̃mn = F̃µνmµnν (2.39)

In terms of the original field strength, the charge density is

q̃Λ̆ = tr
(√

gBΛ̆eiΨ̆Fmne−iΨ̆
)(0)

= tr
(√

gBe−iΨ̆Λ̆eiΨ̆Fmn

)(0) (2.40)

We now want to check the charge algebra

{q̃Λ̆1
, q̃Λ̆2

}∗ =
1
2

[
δΛ̆1

q̃Λ̆2
+ q̃

δΛ̆1
Λ̆2

− (1 ↔ 2)
]

(2.41)

9More details on the computation of charges are given in section 4.
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Note that we are using a modified bracket [12, 69–72], as Λ̆ can be field dependent in general.
Explicitly we then have:

{q̃Λ̆1
, q̃Λ̆2

}∗ =
1
2

[
tr
(√

gB

(
δΛ̆1

e−iΨ̆
)
Λ̆2eiΨ̆Fmn

)(0)
+ 2 tr

(√
gBe−iΨ̆

(
δΛ̆1

Λ̆2
)

eiΨ̆Fmn

)(0)

+ tr
(√

gBe−iΨ̆Λ̆2
(
δΛ̆1

eiΨ̆
)
Fmn

)(0)
+ tr

(√
gBe−iΨ̆Λ̆2eiΨ̆δΛ̆1

Fmn

)(0)
]

− (1 ↔ 2) (2.42)

Using (2.19) and (2.20), we have

δΛ̆1
e−iΨ̆ = −ie−iΨ̆O−iΨ̆

(
δΛ̆1

Ψ̆
)

= −ie−iΨ̆
(
Λ̆1 − eiΨ̆Λ(0)

1 e−iΨ̆
)

= −ie−iΨ̆Λ̆1 + iΛ(0)
1 e−iΨ̆

(2.43)

where to get to the second line we used (2.26). Similarly, using (A.2), we write

δΛ̆1
eiΨ̆ = iO−iΨ̆

(
δΛ̆1

Ψ̆
)

eiΨ̆

= i
(
Λ̆1 − eiΨ̆Λ(0)

1 e−iΨ̆
)

eiΨ̆

= iΛ̆1eiΨ̆ − ieiΨ̆Λ(0)
1

(2.44)

To compute the final term in (2.40) we use (2.25) to write

δΛ̆1
Fmn = −i[Fmn,Λ(0)

1 ] (2.45)

remembering that we have set the small gauge transformations to vanish. Finally, plug-
ging (2.43), (2.44), and (2.45) into (2.42), we get

{q̃Λ̆1
, q̃Λ̆2

}∗ = q̃[Λ̆1,Λ̆2]∗ (2.46)

as required, where the deformed bracket is as expected for field dependent parameters [12, 69–
72]:

[Λ̆1, Λ̆2]∗ = −i[Λ̆1, Λ̆2] + δΛ̆1
Λ̆2 − δΛ̆2

Λ̆1 (2.47)

2.2 Case study: Bondi coordinates in axial gauge

Let us make the previous section more concrete, by looking at a specific example of coordinates,
namely the Bondi coordinates (u, r, z, z̄) around I+, with line element

ds2 = −du2 − 2dudr + 2r2γdzdz̄ (2.48)

where
γ = 2

(1 + zz̄)2 . (2.49)

Let us choose an axial gauge, i.e.

G(Aµ) = aµAµ ≡ 0 , (2.50)
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where aµ is some constant vector. Different choices of aµ give different gauges of interest for
various applications. Later in the article we will work in the light-cone, and radial gauges
respectively. For now we proceed with a general aµ. In this gauge, the expansion of the
gauge fields (2.6) simplifies to

Aµ =
∞∑

n=0

A
(−n)
µ (u, z, z̄)

rn
, (2.51)

i.e. the log terms are no longer present. The radiative phase space will be as in (2.7).
The leading order large gauge transformations are constrained by the gauge choice, and
explicitly we have:

aµDµΛ(0) = aµ∂µΛ(0) ≡ 0 , (2.52)

where in the first equality we made use of (2.50). We see that the only constraint on the gauge
parameter is that it does not depend on the linear combination of coordinates aµxµ. We are
now looking to construct an extended phase space, able to accommodate a gauge parameter

Λ+(x) =
∞∑

n=1
rnΛ(n)(u, z, z̄) , (2.53)

where we highlight the absence of the logarithmic terms, reflecting the absence of these
terms in the expansion of Aµ above. At this stage, one could choose to impose the gauge
fixing condition on the new terms, i.e.

aµ∂µΛ+(x) = 0 (2.54)

though we emphasize that this is not required by our procedure. In either case, the upshot
is that we do not need a field-dependent parameter in this case. Thus (2.10) simplifies
significantly, and we have

Λ̆+(x) = Λ+(x) (2.55)

We are now ready to construct our Stueckelberg field, which is simply

Ψ̆(x) = Ψ(x) =
∞∑

k=1
rkΨ(k)(u, z, z̄) (2.56)

The extended gauge field will be as in (2.15). Upon applying the consistency condition (2.16),
and following the steps in the previous section, we now explicitly obtain the transformation
rule for the Stueckelberg field

δΛΨ = O−1
−iΨ(Λ− eiΨΛ(0)e−iΨ) (2.57)

with O as in (2.20). Working at order m in Ψ, this can be written in terms of the Bernoulli
numbers (2.29) as

δ
[m]
Λ Ψ = B+

m

m! (ad−iΨ)m
[
Λ + (−1 + 2δm,1)Λ(0)

]
(2.58)
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Let us write the first few orders explicitly. At [m] = 0 we have

δ
[0]
Λ Ψ = Λ− Λ(0) = Λ+ (2.59)

as expected for a Stuckelberg-type field. At linear order in Ψ we have

δ
[1]
Λ Ψ = − i

2[Ψ,Λ + Λ(0)] , (2.60)

while at second order the transformation becomes

δ
[2]
Λ Ψ = − 1

12[Ψ, [Ψ,Λ− Λ(0)]] . (2.61)

As we mentioned in the previous section, all odd orders beyond m = 1 will vanish

δ
[2k+1]
Λ Ψ = 0, k ≥ 1 (2.62)

The results above are exact in the coordinates, so in general we can expand them to any
order in r. We remark that we have(

δ
[m]
Λ Ψ

)(n)
= 0 for n < m , (2.63)

due to the fact that Ψ starts at linear order in r.
For future use, let us also introduce the notation

j

δ :=
j∑

k=0
δ[k] (2.64)

which gives the variation up to order j in the Stueckelberg field.
In Bondi coordinates, the charge will be defined on the celestial sphere at I+

− , via

Q̃Λ =
∫

S2
tr(ΛF̃ru)r2γdzdz̄ , (2.65)

with
F̃ru = eiΨFrue−iΨ (2.66)

We can now define the charge aspect as

q̃Λ = tr(Λr2F̃ru)(0)

= tr(e−iΨΛeiΨFru)(−2)

= tr
[(

ead−iΨΛ
)
Fru

](−2)
(2.67)

The charge algebra now becomes

{q̃Λ1 , q̃Λ2}∗ =
1
2 [δΛ1 q̃Λ2 − (1 ↔ 2)]

= −iq̃[Λ1,Λ2]

(2.68)

as needed. This is of course simpler than the expression in section 2.1, because we no longer
have field-dependent parameters. See section 4 for a more detailed discussion of the charge
construction and algebra at various orders.
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The gauge choice will play an important role in our proof of the recursion relations for
the equations of motion and charges at all orders, in the following sections. We will focus
on two particular gauge choices. One is the light-cone gauge

aµ = (1, 0, 0, 0) ⇒ Au = 0 (2.69)

together with a constraint to ensure radiative solutions

A(0)
r = A(−1)

r = 0 . (2.70)

At this stage, one may choose to impose (2.54), which results in10

Λ+ = Λ+(r, z, z̄), ⇒ Ψ = Ψ(r, z, z̄) (2.71)

though as we mentioned above this is not needed for our procedure, and we can simply
work with a general

Λ+ = Λ+(u, r, z, z̄), ⇒ Ψ = Ψ(u, r, z, z̄) (2.72)

The other gauge choice is the radial gauge, defined by

Ar = 0 (2.73)

where we additionally impose the usual constraint at I+

A(0)
u = 0 . (2.74)

3 Equations of motion and recursion relations at all orders

In this section we study in detail the properties of the radiative phase space, first providing
the YM e.o.m. to all orders in the radial expansion in Bondi coordinates. Working in
two different gauge choices, namely light-cone gauge and radial gauge, we give recursion
relations that allow us to construct the fields to all orders. The equations in this section,
together with all the expressions in appendix B and appendix C, can be checked explicitly
to arbitrarily high order using the Mathematica package developed by one of the authors,
which will be presented in [73].

We work with the Bondi coordinates (u, r, z, z̄) defined in (2.48) and (2.49). We want
to study Yang-Mills theory at I+, which in Bondi coordinates is obtained by taking the
limit r → ∞ and it is parametrized by (u, z, z̄). We will use the radial coordinate as the
variable for the power expansions.11

Let M := R1,3 be the smooth manifold considered with coordinates defined (2.48)
and (2.49). The components of a generic (k, l)-tensor T on M can be expanded in a r-power
series near I+ as:

T µ1...µk
ν1...νl(u, r, z, z̄) =

∑
n∈Z

T (−n)µ1...µk
ν1...νl(u, z, z̄)
rn

, (3.1)

10See [30] for an example of this in self-dual YM.
11We use Mathematica to compute most of the calculations regarding the expansions and manipulations

with coefficients.

– 13 –



J
H
E
P
1
2
(
2
0
2
4
)
0
6
8

where each component T µ1...µk
ν1...νl(u, r, z, z̄) is a C∞ function on M that can be written

as a power series expansion in 1/r. We are interested in the subset C∞
r (M) of functions

with finite limit when r → +∞, defined as follows:12

C∞
r (M) := {f ∈ C∞(M) | f(u, r, z, z̄) =

∑
n∈Z

r−nf (−n)(u, z, z̄), f (−n)(u, z, z̄) = 0 ∀n < 0}

(3.2)
Therefore, given f ∈ C∞

r (M), the limit when r → +∞ is simply given by the smooth
function f (0), which can be thought of as taking values in I+. We also assume that f (n) ∈
C∞(I+) for each n ∈ Z.

3.1 YM e.o.m. in Bondi coordinates

The YM equations of motion are given by the vanishing of the following tensor,

Eµ := DνFνµ = ∇νFνµ − i[Aν ,Fνµ]. (3.3)

The vanishing of Eµ implies in particular that Eµ ∈ C∞
r (M) in (3.2), when expressed in

Bondi coordinates (u, r, z, z̄). Then, one can compute the components of Eµ at each order
1/rn, with n ∈ N. Let

Eµ =
∑
n∈N

r−nE(−n)
µ (u, z, z̄) (3.4)

denote the r power expansion. A complete derivation of the following equations can be found
in appendix B. Here, we present the result for each E

(−n)
µ ,

E(−n)
µ = −∂uF (−n)

rµ + δ̃ρ
µ(n − 1)(F (1−n)

uρ − F (1−n)
rρ ) + 2∂(z(γ−1F

(2−n)
z̄)µ )− 2δ̄ρ

µ(∂(zγ−1)F (2−n)
z̄)ρ

+ i
n∑

k=0

(
2[A(k−n)

(u , F
(−k)
r)µ ]− [A(k−n)

r , F (−k)
rµ ]− 2γ−1[A(k−n)

(z , F
(2−k)
z̄)µ ]

)
, (3.5)

where,

δ̄ν
µ := diag(1, 1, 0, 0), (3.6)

δ̃ν
µ(n) := nδν

µ − 2δ̄ν
µ. (3.7)

More explicitly, each of the components of E
(−n)
µ is given by

E(−n)
u = ∂uF (−n)

ur + (n − 3)F (1−n)
ur + 2γ−1∂(zF

(2−n)
z̄)u (3.8)

+ i
n∑

k=0

(
[A(k−n)

r − A(k−n)
u , F (−k)

ur ]− 2γ−1[A(k−n)
(z , F

(2−k)
z̄)u ]

)
,

E(−n)
r = (n − 3)F (1−n)

ur + 2γ−1∂(zF
(2−n)
z̄)r (3.9)

+ i
n∑

k=0

(
[A(k−n)

r , F (−k)
ur ]− 2γ−1[A(k−n)

(z , F
(2−k)
z̄)r ]

)
,

12Note that in the sum in (3.2) we let n assume negative values and we kill all the coefficients f (−n)(u, z, z̄)
with n < 0. The reason why we do not define C∞

r (M) by summing only on n ∈ N is that we want to construct
a projector P−n that acts on C∞

r (M) with both positive and negative values of n (see (B.1)), so that equations
like (B.2)–(B.4) are well defined. Thus, we want the set (3.2) to take into account all n ∈ Z.
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E(−n)
z = −∂uF (−n)

rz + (n − 1)(F (1−n)
uz − F (1−n)

rz )− ∂z(γ−1F
(2−n)
zz̄ ) (3.10)

+ i
n∑

k=0

(
2[A(k−n)

(u , F
(−k)
r)z ]− [A(k−n)

r , F (−k)
rz ] + γ−1[A(k−n)

z , F
(2−k)
zz̄ ]

)
,

E
(−n)
z̄ = −∂uF

(−n)
rz̄ + (n − 1)(F (1−n)

uz̄ − F
(1−n)
rz̄ ) + ∂z̄(γ−1F

(2−n)
zz̄ ) (3.11)

+ i
n∑

k=0

(
2[A(k−n)

(u , F
(−k)
r)z̄ ]− [A(k−n)

r , F
(−k)
rz̄ ]− γ−1[A(k−n)

z̄ , F
(2−k)
zz̄ ]

)
.

In the following, we study these equations for two particular gauge choices, light-cone
and radial gauges. First, we have to define a subset of solutions, given by certain fall-offs
compatible with radiative fields. Then, we compute the equations of motion (E

(−n)
µ = 0),

and finally we deduce a recursive formula that allows to compute the components of the
field strength up to functions on the sphere S2 with coordinates (z, z̄), i.e., the celestial
sphere. Schematically, one has

F (−n)
ur = G[∂−1

u , γ, ∂z, ∂z̄, A(0)
z , A

(0)
z̄ , F (−n+1)

ur , . . . , F (−2)
ur ], (3.12)

where ∂−1
u f(u, z, z̄) :=

∫ u
−∞ f(ũ, z, z̄)dũ and G is a functional that contains the differential

operators ∂−1
u , ∂z, ∂z̄ and depends on the field strength via F

(−n+1)
ur , . . . , F

(−2)
ur .

3.2 Light-cone gauge

Our first case study is the light-cone gauge. This gauge is characterised by the vanishing
of the u-component of the gauge vector,

Au = 0. (3.13)

As we mentioned above, we are interested in a subset of solutions that are radiative. This
can be achieved by taking the following conditions on the r-component of Aµ,

A(0)
r = A(−1)

r = 0. (3.14)

From (3.13) and (3.14) we get the following conditions on Fµν ,

F (−n)
ur = F (−n)

rz = F
(−n)
rz̄ = 0 for n = 0, 1. (3.15)

Equations (3.8)–(3.11) simplify to the following set of identities,

E(−n)
u = ∂uF (−n)

ur + (n − 3)F (1−n)
ur + 2γ−1∂(zF

(2−n)
z̄)u (3.16)

+ i
n−2∑
k=0

(
[A(k−n)

r , F (−k)
ur ]− 2γ−1[A(2+k−n)

(z , F
(−k)
z̄)u ]

)
, n ≥ 2

E(−n)
r = (n − 3)F (1−n)

ur + 2γ−1∂(zF
(2−n)
z̄)r (3.17)

+ i
n−2∑
k=2

(
[A(k−n)

r , F (−k)
ur ]− 2γ−1[A(2+k−n)

(z , F
(−k)
z̄)r ]

)
, n ≥ 4

E(−n)
z = −∂uF (−n)

rz + (n − 1)(F (1−n)
uz − F (1−n)

rz )− ∂z(γ−1F
(2−n)
zz̄ ) (3.18)

+ i
n−2∑
k=0

(
[A(k−n)

r , F (−k)
uz − F (−k)

rz ] + γ−1[A(2+k−n)
z , F

(−k)
zz̄ ]

)
, n ≥ 2
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E
(−n)
z̄ = −∂uF

(−n)
rz̄ + (n − 1)(F (1−n)

uz̄ − F
(1−n)
rz̄ ) + ∂z̄(γ−1F

(2−n)
zz̄ ) (3.19)

+ i
n−2∑
k=0

(
[A(k−n)

r , F
(−k)
uz̄ − F

(−k)
rz̄ ]− γ−1[A(2+k−n)

z̄ , F
(−k)
zz̄ ]

)
, n ≥ 2

3.2.1 Recursive formula for the gauge vector

In what follows we prove that given the initial data

A(0)
z (u, z, z̄), A

(0)
z̄ (u, z, z̄) , (3.20)

and families of functions on the sphere

{A(−n,0)
z , A

(−n,0)
z̄ , A(−n−2,0)

r ∈ C∞(S2)}n≥1 , (3.21)

where T (−n,k) denotes the coefficient of uk

rn in a formal expansion of the tensor T in r and
u, it is possible to find the solution of the equation of motion at arbitrary order in the
1/r-expansion. In particular, we present a recursive formula that allows us to compute A

(−n)
µ

for all n ∈ N, thus providing the explicit expression of the solution of the e.o.m. at each order.
First of all, we write explicitly the definition of the field strength tensor in light-cone

gauge (3.13) and with fall-off (3.14) at a given order n:

F (−n)
ur = ∂uA(−n)

r , n ≥ 2 (3.22)

F (−n)
uz = ∂uA(−n)

z , n ≥ 2 (3.23)

F (−n)
rz = (1− n)A(1−n)

z − ∂zA(−n)
r − i

n−2∑
k=0

[A(k−n)
r , A(−k)

z ], n ≥ 2 (3.24)

F
(−n)
zz̄ = 2∂[zA

(−n)
z̄] − i

n∑
k=0

[A(k−n)
z , A

(−k)
z̄ ], n ≥ 2 , (3.25)

where F
(−n)
uz̄ and F

(−n)
rz̄ are completely analogous to (3.23) and (3.24), respectively. Recall

that F
(−n)
ur = F

(−n)
rz = 0 for n = 0, 1. From the above equations we notice that

F (−n)
uµ depends on A(−n)

µ for µ = r, z, z̄, (3.26)

F (−n)
rz depends on {A(−k)

r }k≤n, {A(−k)
z }k<n, (3.27)

F
(−n)
zz̄ depends on {A(−k)

z , A
(−k)
z̄ }k≤n. (3.28)

Suppose we know {A
(−k)
z (u, z, z̄), A

(−k)
z̄ (u, z, z̄), A

(−k−2)
r (u, z, z̄)}k<n for some arbitrary

n ∈ N; we want to find {A
(−n)
z (u, z, z̄), A

(−n)
z̄ (u, z, z̄), A

(−n−2)
r (u, z, z̄)}. Although it is useful

to express the recursion step as above, we emphasize that A
(−2)
r is not part of the initial

data, but can be obtained from (3.20) and (3.21).
Indeed, A

(−2)
r can be obtained from (3.22) and (3.16) with n = 2:

∂uF (−2)
ur = 2γ−1∂(zF

(0)
u|z̄) + 2iγ−1[A(0)

(z , F
(0)
z̄)u], (3.29)

=⇒ A(−2)
r = 2γ−1∂−1

u

(
∂(zA

(0)
z̄) + i∂−1

u [∂uA
(0)
(z , A

(0)
z̄) ]
)

, (3.30)
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where in the second line we used (3.23) and the symbol ∂−1
u =

∫
du defined previously. For

n ≥ 3 we use (3.22) and (3.17) to find:

A(−n)
r = 1

2− n
∂−1

u

[
2γ−1∂(zF

(1−n)
z̄)r + i

n−1∑
k=2

(
[A(k−n−1)

r , F (−k)
ur ]− 2γ−1[A(1+k−n)

(z , F
(−k)
z̄)r ]

)]
(3.31)

By observing the equations above and recalling (3.26)–(3.27) we notice that, in general:

A(−n)
r depends on A(−n+1)

r , {A(−k)
µ }k≤n−2 and A(−n,0)

r (3.32)

Therefore, we conclude that knowing {A
(−k)
µ }k<n is sufficient to determine A

(−n)
r via equa-

tions (3.30) and (3.31). Each function {A
(−n,0)
r }n≥2 is the constant of integration of the

operator ∂−1
u .

Now, we solve for A
(−n)
z . At leading order, that is, for n = 0, the z and z̄ components of

the gauge field constitute the initial data, so we consider n ≥ 1. From (3.24) we have:

A(−n)
z = − 1

n

(
∂zA(−n−1)

r − i
n+1∑
k=2

[A(k−n−1)
z , A(−k)

r ] + F (−n−1)
rz

)
. (3.33)

However, thanks to (3.27) we know that, in general, F
(−n−1)
rz does depend on A

(−n)
z .

Hence, we need an explicit expression for it, which is provided by the z component (3.18)
of the e.o.m.

F (−n−1)
rz = nA(−n)

z − ∂−1
u

[
nF (−n)

rz + ∂z(γ−1F
(1−n)
zz̄ )

− i
n−1∑
k=0

(
[A(k−n−1)

r , ∂uA(−k)
z − F (−k)

rz ] + γ−1[A(1+k−n)
z , F

(−k)
zz̄ ]

) ]
.

(3.34)

Putting (3.33) and (3.34) together we obtain (for n ≥ 1):

A(−n)
z = 1

2n

{
− ∂zA(−n−1)

r + i
n+1∑
k=2

[A(k−n−1)
z , A(−k)

r ]

+ ∂−1
u

[
nF (−n)

rz + ∂z(γ−1F
(1−n)
zz̄ )

− i
n−1∑
k=0

(
[A(k−n−1)

r , ∂uA(−k)
z − F (−k)

rz ] + γ−1[A(1+k−n)
z , F

(−k)
zz̄ ]

) ]}
.

(3.35)

The above equation together with the (3.14), (3.27), (3.28) and (3.32) imply that:

A(−n)
z depends on A(−n−1)

r , A(−n)
r , {A(−k)

µ }k<n. (3.36)

For instance, A
(−1)
z depends just on the initial data:

A(−1)
z = −1

2
(
∂zA(−2)

r − i[A(0)
z , A(−2)

r ]
)

+ 1
2∂−1

u

(
∂z(γ−1F

(0)
zz̄ )− i[A(−2)

r , ∂uA(0)
z ]− iγ−1[A(0)

z , F
(0)
zz̄ ]

)
.

(3.37)
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Figure 1. The solid arrows indicate which A
(−k)
r , A

(−k)
z enter the recursion formula for A

(−n)
r ,

while the dotted arrows indicate which A
(−k)
r and A

(−k)
z enter the recursion formula for A

(−n)
z . The

component A
(−n)
z̄ is not drawn, since the same result as for A

(−n)
z is valid.

Observe that since we start with the fall-offs (3.14), the inductive step is indeed satisfied.
In other words, the solution for A

(−n)
z is completely determined by A

(−n−1)
r , A

(−n)
r , {A

(−k)
µ }k<n

and the functions on the sphere {A
(−n,0)
z (z, z̄)}. Note that it is also possible to find A

(−n)
z

by integrating F
(−n)
uz , which in turn can be obtained through the Bianchi identity (B.12),

achieving the same result.
In figure 1, the relation between the indices is schematically depicted.
To conclude, the above procedure allows us to compute the solution to the e.o.m. A

(−n)
µ

at an arbitrary order n ∈ N of the large r-expansion, by recursively constructing A
(−k)
µ for

k = 0, . . . , n, starting from the initial data A
(0)
z and A

(0)
z̄ . Our recursive relation can be

written in a more compact way as follows:

A(−2)
r = 2γ−1∂−2

u

(
D(z|∂uA|z̄)

)(0)
(3.38)

A(−n)
r = 1

2− n
∂−1

u

[
2γ−1

(
D(zFz̄)r

)(1−n)
+ i ([Ar, ∂uAr])(−n−1)

]
, n ≥ 3 (3.39)

A(−n)
z = − 1

2n

{
(DzAr)(−n−1) − ∂−1

u

(
nF (−n)

rz + (Dz(γ−1Fzz̄))(1−n) (3.40)

− i([Ar, ∂uAz −Frz])(−n−1))}, n ≥ 1

Recursive formula for F (−n)
ur . As will be seen in section 4, the ru component of the field

strength plays a crucial role in the construction of the charges. Thus it is useful to give a
recursive formula for the different coefficients of the r-expansion of F

(−n)
ur , with n ≥ 2.

Consider {F
(−n,0)
ur ∈ C∞(S2)}n≥0, a family of functions on the sphere, then, by (3.16),

we can obtain F−n
ur in terms of F

(−n,0)
ur and {F−k

ur }k<n, by using the ∂−1
u operator.

It immediately follows from (3.16) that

F (−n)
ur = ∂−1

u

(
(3− n)F (−n+1)

ur − 2γ−1∂(zF
(−n+2)
z̄)u

− i
n−2∑
k=0

(
[A(k−n)

r , F (−k)
ur ]− 2γ−1[A(2+k−n)

(z , F
(−k)
z̄)u ]

))
.

(3.41)

The constant of integration for the operator ∂−1
u is given by F

(−n,0)
ur , which we can introduce
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by fixing the lower limit in the anti-derivative as −∞,

F (−n)
ur (u, z, z̄) = F (−n,0)

ur (z, z̄) +
∫ u

−∞
du

(
(3− n)F (−n+1)

ur − 2γ−1∂(zF
(−n+2)
z̄)u

− i
n−2∑
k=0

(
[A(k−n)

r , F (−k)
ur ]− 2γ−1[A(2+k−n)

(z , F
(−k)
z̄)u ]

))
.

(3.42)

3.2.2 Decays on null infinity in the radiative phase space

As it is well known in the subn-theorems literature (see for example [46, 74, 75], the u-
behaviour of the fields translates as derivatives via a Fourier transform in u. Let us assume
that we are working at tree-level. This implies that the decay of the u-derivative of the initial
data (∂uA

(0)
z ) is faster than any polynomial in u.

Let F(A(0)
z )(ω, z, z̄) be the time-Fourier transform of Az(u, z, z̄). Then, the ω → 0

expansion of the tree-level amplitude (see [74, 75]) implies the following fall off in ω for the
radiative free data for the gauge vector,

F(A(0)
z )(ω, x̂) = ω−1F(A(0)

z )−1(x̂) + F(A(0)
z )0(x̂) + ωF(A(0)

z )1(x̂) + . . . , (3.43)

where the upper index outside the bracket indicates the order in the ω-expansion. Undoing
the Fourier transform, Az(u, z, z̄) behaves like

A(0)
z (u, x̂) = θ(u)A(θ)

z (x̂) + δ(u)A(δ)
z (x̂) + δ′(u)A(δ′)

z (x̂) + . . . , (3.44)

with θ a step function. Thus, the u → ±∞ falloffs for the null infinity free data are as follows

A(0)
z (u, x̂) u→±∞= A(0,0)±

z (x̂) + o(u−∞), (3.45)

where o(u−∞) is a remainder that goes to zero faster than any power of 1/u.
In what follows we compute the u-behaviour of the functions A

(−n)
r , A

(−n)
z and F

(−n)
ru as

u → −∞. Let us start with the following boundary conditions on the field strength at I+
+ ,

lim
u→+∞

F (−2)
ru (u, z, z̄) = 0, lim

u→+∞
F (−2)

rz (u, z, z̄) = 0, lim
u→+∞

F
(−2)
rz̄ (u, z, z̄) = 0, (3.46)

which arise due to the absence of massive colored fields. The standard u → −∞ fall-off
for the radiative data A

(0)
z is the following,

A(0)
z (u, z, z̄) = A(0,0)

z (z, z̄) + o(u−∞). (3.47)

This translates to F
(−2)
ru via (3.30) as follows

F (−2)
ru (u, z, z̄) = F (−2,0)

ru (z, z̄) + o(u−∞). (3.48)

We can write

∂uF (−2)
ru = 2γ−1∂(zF

(0)
z̄)u − 2iγ−1[A(0)

(z , F
(0)
z̄)u] =: 2γ−1D

(0)
(z F

(0)
z̄)u, (3.49)

where D
(0)
z := ∂z − i[A(0)

z , ·]. Using the results in the previous subsections, we will show
here how the integration from A

(0)
z (u, z, z̄) can be carried out to all the coefficients (with

the corresponding constants of integration as functions on the sphere).
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First, observe that A
(−2)
r = O(u), since ∂uA

(−2)
r + F

(−2)
ru = 0. Then, if A

(−2,0)
r is the

finite value of the limit

lim
u→−∞

A(−2)
r + uF (−2,0)

ru = A(−2,0)
r (z, z̄), (3.50)

where the second term on the l.h.s. above has the role of substracting the linear dependence
in u, then

A(−2)
r (u, z, z̄) = −uF (−2,0)

ru (z, z̄) + A(−2,0)
r (z, z̄) + o(u−∞). (3.51)

This is consistent with (3.30). Next, the equation for A
(−1)
z is given by (3.37),

A(−1)
z = 1

2u
(
∂zF (−2,0)

ru − i[A(0,0)
z , F (−2,0)

ru ] + ∂z(γ−1F
(0,0)
zz̄ )− iγ−1[A(0,0)

z , F
(0,0)
zz̄ ]

)
(3.52)

− 1
2
(
∂zA(−2,0)

r − i[A(0,0)
z , A(−2,0)

r ]
)
+ A(−1,0)

z + o(u−∞).

Observe that A
(−1)
z contains up to linear terms in u. The coefficients F

(0)
zu , F

(−1)
zu and

F
(−2)
zr are found directly

F (0)
zu = −∂uA(0)

z = o(u−∞), F (−1)
zu = −∂uA(−1)

z = O(1), (3.53)

F (−2)
zr = ∂zA(−2)

r − A(−1)
z − i[A(0)

z , A(−2)
r ] = O(u). (3.54)

The second equation is consistent with the definition of A
(−1)
z via (3.33),

∂uF (−2)
rz = ∂uA(−1)

z − F (−n)
rz + ∂z(γ−1F

(0)
zz̄ )− i

(
[A(−2)

r , ∂uA(0)
z − F (0)

rz ] + γ−1[A(0)
z , F

(0)
zz̄ ]

)
.

(3.55)
From (3.42) we have

F (−3)
ur = −∂−1

u

(
2γ−1D

(0)
(z F

(−1)
z̄)u − 2iγ−1[A(−1)

(z , F
(0)
z̄)u]

)
(3.56)

From equations (3.53) and (3.56), we deduce that F
(−3)
ru is O(u). Indeed, the first and

third terms within the brackets are O(1) in u, while the second term contains a product of a
linear term and ∂uA

(0)
z , which is o(u−∞); therefore, after integration, the second term is O(1).

Then, we can proceed in an analogous way, since now we have A
(−3)
r = O(u2). Therefore,

inductively from (3.31), (3.35) and (3.42) we have that each F
(−n−2)
ru will be O(un).

3.3 Radial gauge

Next we study the radial gauge, characterized by

Ar = 0 , (3.57)

and let us consider the fall-off

A(0)
u = 0 , (3.58)

which further specifies the gauge. Thus, this choice implies the following identities:

F (−n)
ur = F (−n)

rz = F
(−n)
rz̄ = 0 for n = 0, 1. (3.59)
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Equations (3.8)–(3.11) result in

E(−n)
u = ∂uF (−n)

ur + (n − 3)F (1−n)
ur + 2γ−1∂(zF

(2−n)
z̄)u (3.60)

− i
n−1∑
k=0

[A(k−n)
u , F (−k)

ur ]− 2iγ−1
n−2∑
k=0

[A(2+k−n)
(z , F

(−k)
z̄)u ], n ≥ 2

E(−n)
r = (n − 3)F (1−n)

ur + 2γ−1∂(zF
(2−n)
z̄)r − 2iγ−1

n−2∑
k=2

[A(2+k−n)
(z , F

(−k)
z̄)r ], n ≥ 4 (3.61)

E(−n)
z = −∂uF (−n)

rz + (n − 1)(F (1−n)
uz − F (1−n)

rz )− ∂z(γ−1F
(2−n)
zz̄ ) (3.62)

+ i
n−1∑
k=0

[A(k−n)
u , F (−k)

rz ] + iγ−1
n−2∑
k=0

[A(2+k−n)
z , F

(−k)
zz̄ ], n ≥ 2

E
(−n)
z̄ = −∂uF

(−n)
rz̄ + (n − 1)(F (1−n)

uz̄ − F
(1−n)
rz̄ ) + ∂z̄(γ−1F

(2−n)
zz̄ ) (3.63)

+ i
n−1∑
k=0

[A(k−n)
u , F

(−k)
rz̄ ]− iγ−1

n−2∑
k=0

[A(2+k−n)
z̄ , F

(−k)
zz̄ ], n ≥ 2 .

Observe the almost symmetric behaviour of r and u with respect to the previous case
(eq. (3.16)–(3.19)), although there are differences which we will see below.

3.3.1 Recursive formula for the gauge vector

As in the previous section, we will prove that given the initial data A
(0)
z (u, z, z̄), A

(0)
z̄ (u, z, z̄)

and {A
(−n,0)
z , A

(−n,0)
z̄ , A

(−n−1,0)
u }n≥1, it is possible to find the solution of the equation of

motion at arbitrary order in the 1/r-expansion. We present recursive formulas (similar
to (3.31), (3.35)) that allow us to compute A

(−n)
µ for all n ≥ 1, thus providing the explicit

expression of the e.o.m. solution at each order.
First of all, it is useful to write explicitly the definition of the field strength tensor in

radial gauge. From (3.57) and (3.58), at a given order n we have

F (−n)
ur = (n − 1)A(1−n)

u , n ≥ 2, (3.64)

F (−n)
uz = 2∂[uA

(−n)
z] − i

n−1∑
k=0

[A(k−n)
u , A(−k)

z ] = ∂uA(−n)
z − (DzAu)(−n), (3.65)

F (−n)
rz = (1− n)A(1−n)

z , n ≥ 2, (3.66)

F
(−n)
zz̄ = 2∂[zA

(−n)
z̄] − i

n∑
k=0

[A(k−n)
z , A

(−k)
z̄ ]. (3.67)

Recall that F
(−n)
ur = F

(−n)
rz = 0 for n = 0, 1. From the above equations we notice that:

F (−n)
rµ depends on A(1−n)

µ , (n ≥ 2), (3.68)

F (−n)
uz depends on {A(−k)

u , A(−k)
z }k≤n, (3.69)

F
(−n)
zz̄ depends on {A(−k)

z , A
(−k)
z̄ }k≤n. (3.70)

Suppose we know {A
(−k)
z (u, z, z̄), A

(−k)
z̄ (u, z, z̄), A

(−k−1)
u (u, z, z̄)}k<n for some arbitrary

n ∈ N; we want to find {A
(−n)
z (u, z, z̄), A

(−n)
z̄ (u, z, z̄), A

(−n−2)
r (u, z, z̄)}. First, we solve for
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the u component of the gauge field. At leading order we know that A
(0)
u vanishes. A

(−1)
u

can be obtained from (3.60) and (3.64) with n = 2:

∂uF (−2)
ur = −2γ−1∂(zF

(0)
z̄)u + 2iγ−1[A(0)

(z , F
(0)
z̄)u], (3.71)

=⇒ A(−1)
u = 2γ−1

(
∂(zA

(0)
z̄) + i∂−1

u [∂uA
(0)
(z , A

(0)
z̄) ]
)

, (3.72)

where in the second line we used F
(0)
uz = ∂uA

(0)
z . For n ≥ 2 we make use of (3.61), (3.64)

and (3.66) to find

A(−n)
u = −2γ−1

n

(
∂(zA

(1−n)
z̄) +

n−1∑
k=1

ik

1− n
[A(1+k−n)

(z , A
(−k)
z̄) ]

)
. (3.73)

We notice that, in general:

A(−n)
u depends on {A(−k)

z , A
(−k)
z̄ }k<n and A(−n,0)

u . (3.74)

Therefore, we conclude that knowing {A
(−k)
z , A

(−k)
z̄ }k<n and the functions on the sphere

{A
(−n,0)
u } is sufficient to determine A

(−n)
u via equations (3.72) and (3.73).

Now, we look at the A
(−n)
z coefficients. At leading order, the z and z̄ components of the

gauge field constitute the initial data. For n ≥ 1 we have A
(−n)
z = −n−1F

(−n−1)
rz , from (3.66).

However, thanks to (3.69) we know that, in general, F
(−n−1)
rz does depend on A

(−n)
z . Hence, we

need an explicit expression for it, which is provided by the z component (3.62) of the e.o.m.,

F (−n−1)
rz = nA(−n)

z − ∂−1
u

(
n∂zA(−n)

u + nF (−n)
rz + ∂z(γ−1F

(1−n)
zz̄ ) (3.75)

− in
n∑

k=1
[A(k−n)

z , A(−k)
u ]− i

n∑
k=0

[A(k−n−1)
u , F (−k)

rz ]− iγ−1
n−1∑
k=0

[A(1+k−n)
z , F

(−k)
zz̄ ]

)
.

After some algebra we obtain, for n ≥ 1:

A(−n)
z = 1

2∂−1
u

(
(1− n)A(1−n)

z + ∂z

(
A(−n)

u + 1
n

γ−1F
(1−n)
zz̄

)
− i

n

n∑
k=1

[A(k−n)
z , (2n − k)A(−k)

u + γ−1F
(1−k)
zz̄ ]

)
.

(3.76)

The above equation together with (3.70) and (3.74) imply that,

A(−n)
z depends on A(−n)

u , {A(−k)
z , A

(−k)
z̄ , A(−k)

u }k<n and A(−n,0)
z . (3.77)

As an example, A
(−1)
z depends just on the initial data and on A

(−1)
u :

A(−1)
z = 1

2∂−1
u

(
∂zA(−1)

u + ∂z(γ−1F
(0)
zz̄ )− i[A(0)

z , A(−1)
u + γ−1F

(0)
zz̄ ]

)
(3.78)

In other words, the solution for A
(−n)
z is completely determined by our initial hypothesis and

by the above solution for A
(−n)
u . As in the light-cone gauge, it is also possible to compute

A
(−n)
z by integrating F

(−n)
uz , which in turn can be obtained through the Bianchi identity (B.16).

This shows that the results are consistent with the algebraic structure of the theory. Figure 2
shows the relation between the coefficients in the radial expansion.
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Figure 2. The solid arrows indicate which A
(−k)
u , A

(−k)
z enter the recursion formula for A

(−n)
u ,

while the dotted arrows indicate which A
(−k)
u and A

(−k)
z enter the recursion formula for A

(−n)
z . The

component A
(−n)
z̄ is not drawn, since the same result as for A

(−n)
z is valid.

Recursive formula for F (−n)
ur . we can immediately write a recursive formula for the

u − rcomponent of the field strength, by virtue of (3.64),

F (−2)
ur = −2γ−1∂−1

u

(
D(zFz̄)u

)(0)
(3.79)

F (−n)
ur = 2γ−1

2− n

(
D(zFz̄)r

)(1−n)
, n ≥ 3 (3.80)

Explicitly:

F (−2)
ur = 2γ−1

(
∂(zA

(0)
z̄) + i∂−1

u [∂uA
(0)
(z , A

(0)
z̄) ]
)

(3.81)

F (−n)
ur = −2γ−1

(
∂(zA

(2−n)
z̄) +

n−2∑
k=1

ik

2− n
[A(2+k−n)

(z , A
(−k)
z̄) ]

)
, n ≥ 3 (3.82)

Formula for F
(−n)
rz for n ≥ 2:

F (−n)
rz = 1

2∂−1
u

(
F (1−n)

rz − ∂z(F (−n)
ur + γ−1F

(2−n)
zz̄ )

+ i
n∑

k=2

[
A(k−n)

z ,
2n − k − 1

k − 1 F (−k)
ur + γ−1F

(2−k)
zz̄

]) (3.83)

3.3.2 Decays on null infinity in the radiative phase space

As in the light-cone gauge, the standard u → −∞ fall-offs for the radiative data A
(0)
z ,

A(0)
z (u, z, z̄) = A(0,0)

z (z, z̄) + o(u−∞), (3.84)

which also translates into the six components of Fµν as is shown in table 1.
We can organise the three non-vanishing components of Aµ by their u-decay,

A(0)
z , A

(0)
z̄ = O(1), A(−1)

u = O(1), (3.85)

A(−1)
z , A

(−1)
z̄ = O(u), A(−2)

u = O(u), (3.86)

A(−2)
z , A

(−2)
z̄ = O(u2), A(−3)

u = O(u2), . . .

which also translates into the six components of Fµν as is shown in the following table,
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o(u−∞) F
(0)
uz F

(0)
uz̄

O(1) F
(−1)
uz F

(−1)
uz̄ F

(−2)
ru F

(0)
zz̄

O(u) F
(−2)
uz F

(−2)
uz̄ F

(−3)
ru F

(−1)
zz̄ F

(−2)
rz F

(−2)
rz̄

O(u2) F
(−3)
uz F

(−3)
uz̄ F

(−4)
ru F

(−2)
zz̄ F

(−3)
rz F

(−3)
rz̄

· · ·

O(un) F
(−n−1)
uz F

(−n−1)
uz̄ F

(−n−2)
ru F

(−n)
zz̄ F

(−n−1)
rz F

(−n−1)
rz̄

Table 1. Order in u for each coefficient in the expansion of Fµν .

4 Charges

In this section we compute the charges that arise when renormalizing the symplectic form,
obtaining finite expressions at the corner I+

− . In the extended phase space presented in (2.14),
the local gauge transformations are parametrized by a g-valued function Λ, giving the usual
infinitesimal variation, (2.16). Since we are working with field-independent variations, (2.15)
can be rewritten as

Ãµ = eiΨAµe−iΨ + ieiΨ∂µe−iΨ, (4.1)

and the strength tensor is given by,

F̃µν = eiΨFµνe−iΨ. (4.2)

The bulk action is

S[Ãµ] =
∫

D
tr
(
F̃µνF̃µν

)
dvol, (4.3)

where D is some region with its boundary ∂D := Σt0 ∪ Σt1 ∪ H, consisting in two Cauchy
surfaces along Minkowski and a time-like hypersurface H at spatial infinity (see figure 3).

We remark that the Lagrangian (4.3), constructed from Ãµ of (2.15), takes the same
form as the YM Lagrangian constructed from Aµ. This can be seen immediately from the
fact that Ãµ has the functional form of a gauge transformation, with the parameter replaced
by our new field Ψ̆, as is characteristic of the Stueckelberg procedure.13 In order to compute
the relevant charges though, it is crucial to take the field Ãµ as our fundamental field in
the covariant phase space formalism.

From (4.3), one can then compute the bulk symplectic form straightforwardly,

Ωbulk[δ1, δ2] = −
∫

Σ
tr
(
δ1F̃µν ∧ δ2Ãν

)
dSµ − (1 ↔ 2), (4.4)

for some Cauchy surface Σ in Minkowski space. The symplectic form can be used to obtain the
canonical charges associated with the infinitesimal symmetries (2.16), by means of the relation

Ωbulk[δΛ, δ] = δQ̃Λ, (4.5)
13The traditional form of the Stueckelberg trick is applied to an action where a gauge symmetry is broken in

the Lagrangian, whereas in our case it manifests as a breaking of the asymptotic symmetries once the fall-offs
have been imposed, and is thus not visible in the bulk action.
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Figure 3. Cauchy Surfaces Σt0 ,Σt1 , with t0 < t1, and constant u ray. H is located at spatial infinity
and collapsed to a point after compactification. The sets (topologically spheres) in the intersection of
the hypersurfaces with {u = u0} correspond to the celestial sphere in the limit t → +∞ with u fixed.

giving the following result:

Q̃Λ =
∫

Σ
∂νtr(ΛF̃µν)dSµ. (4.6)

We stress that this charge is computed within the bulk. As it stands, the expression
for the charge is a total derivative, which implies that

Q̃Λ =
∫

S2
tr(ΛF̃µν)dSµν , (4.7)

where we are using that ∂Σ = i0 ≃ S2, with i0 denoting spatial infinity. We can identify ∂Σ
with I+

− using Bondi coordinates. Indeed, when working in these coordinates, the symplectic
form at null infinity I+ is found by taking Σ to be the hypersurface {t = r + u = constant},
and taking the limit t → +∞ at fixed u. In that way, I+ is parametrized by the null
coordinate u. Therefore, by taking the limit r → +∞, while maintaining u fixed, we have
Σ → I and ∂Σ → I+

− (see figure 3). The conservation of the charges from I−
+ to I+

− is showed
via the antipodal mapping at I+

− (cf. [7]). This antipodal map can be directly translated to Ψ.
Indeed, if we defined Ψ+ and Ψ− for the retarded and advanced coordinates respectively, then

Ψ+(x̂) = Ψ−(−x̂), (4.8)

where x̂ are the stereographic projection from the complex plane to the Riemann sphere. Thus,
on the celestial sphere (i.e., I+

− ), the charge is the limit r → +∞ and u → −∞ in the quantity

Q̃Λ =
∫

S2
tr(ΛF̃ru)r2γdzdz̄. (4.9)

Of course, this expression can diverge, and in general, a renormalization procedure has to
be carried out to give meaning to the expression (see [29, 42]).

Assuming the renormalization procedure has been carried out (as is the case for
Maxwell, [29, 42]), we will focus on the finite term in (4.9). Abusing notation, we will
call such a finite part charge and denote it also by Q̃Λ. We will have the expansion in r, and
the expansion in Ψ and Λ+. A careful counting of the orders of each field will indeed show
that the first few orders in our result are consistent with previous works in the literature.
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4.1 Charges in the light-cone gauge

Let us start by computing each order in r of r2F̃ru.14 Note that we can re-write F̃µν as

F̃µν = eiΨFµνe−iΨ

= eadiΨFµν

= Fµν + eadiΨ − 1
adiΨ

[iΨ,Fµν ]

= Fµν + 1− eadiΨ

ad−iΨ
[iΨ,Fµν ]

= Fµν +O−iΨ[iΨ,Fµν ]

(4.10)

where to get to the last line we used (2.20). Then we have(
r2F̃ru

)(−i)
= F (−2−i)

ru + (O−iΨ ([iΨ,Fru]))(−2−i) . (4.11)

Explicitly, the first three coefficients are(
r2F̃ru

)(0)
= F (−2)

ru + [iΨ(1), F (−3)
ru ] + 1

2[iΨ
(1), [iΨ(1), F (−4)

ru ]] + [iΨ(2), F (−4)
ru ] + . . . ,(

r2F̃ru

)(−1)
= F (−3)

ru + [iΨ(1), F (−4)
ru ] + 1

2[iΨ
(1), [iΨ(1), F (−5)

ru ]] + [iΨ(2), F (−5)
ru ] + . . . ,(

r2F̃ru

)(−2)
= F (−4)

ru + [iΨ(1), F (−5)
ru ] + 1

2[iΨ
(1), [iΨ(1), F (−6)

ru ]] + [iΨ(2), F (−6)
ru ] + . . . ,

Since we take Λ(r, z, z̄) =
∑+∞

k=0 rkΛ(k)(z, z̄), the finite term in the charge is given by,

Q̃Λ =
∫

S2
tr
(∑

l=0
Λ(l)

(
r2F̃ru

)(−l)
)

dSS2 , (4.12)

where dSS2 = γdzdz̄. Then, in terms of expansion (4.11), it is,

Q̃Λ =
∫

S2
tr
(∑

l=0
Λ(l)

(
F (−2−l)

ru + [iΨ(1), F (−3−l)
ru ]

+1
2[iΨ

(1), [iΨ(1), F (−4−l)
ru ]] + [iΨ(2), F (−4−l)

ru ] + . . .

))
dSS2 . (4.13)

For each l ≥ 0, consider the extended charge density associated to Λ(l), defined as

q̃Λ(l) := tr
(
Λ(l)

(
F (−2−l)

ru + [iΨ(1), F (−3−l)
ru ]

+ 1
2[iΨ

(1), [iΨ(1), F (−4−l)
ru ]] + [iΨ(2), F (−4−l)

ru ] + . . .

))
, (4.14)

and the corresponding charge is denoted by

Q̃Λ(l) :=
∫

S2
q̃Λ(l)dSS2 , (4.15)

14Recall that the r2 comes from the volume element in dS2 in standard Bondi coordinates.
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while the total charge is given by

Q̃Λ =
∫

S2

+∞∑
l=0

q̃Λ(l)dS2. (4.16)

Observe that q̃Λ(l) is linear in both Λ(l) and the coefficients F
(−2−i−l)
ru , for i ≥ 0. The

approximation up to j-th order in Ψ to q̃Λ(l) is defined as
j
qΛ(l) := tr

(
Λ(l)

(
F (−2−l)

ru + [iΨ(1), F (−3−l)
ru ] + . . . + ord

(j)
iΨ [F (−2−j−l)

ru ]
))

, (4.17)

where we have introduced the operator

ord
(j)
iΨ =

j∑
k=1

1
k!

∑
i1+...+ik=j

adiΨ(i1)(. . . (adiΨ(ik)) . . .)[·]

=
(
eadiψ − 1

)(j)
[·] ,

(4.18)

i.e. ord(j)
iΨ denotes nested commutators of iΨ which add up to O(rj).

We can re-write the charge j
qΛ(l) by observing that ord

(j)
Ψ is symmetric in i1, . . . , ik and

using iteratively the identity

tr(A[B, C]) = tr([−B, A]C), (4.19)

as follows,
j
qΛ(l) := tr

(
F (−2−l)

ru Λ(l) − [iΨ(1),Λ(l)]F (−3−l)
ru + . . . + ord

(j)
−iΨ[Λ

(l)]F (−2−j−l)
ru

)
. (4.20)

Similarly, we define the j-th approximation to the charge Q̃Λ(l) as
j

QΛ(l) =
∫

S2

j
qΛ(l)dSS2 (4.21)

In what follows we will define a hierarchy of subn-charges, labeled by j + l ≥ 0 in the set
of charge densities sequences {{j

qΛ(l)}l≥0}j≥0, such that at each cut-off in the expansion of
Ψ we have a closed charge algebra, that approximates q̃Λ(l) . Each algebra will correspond
to the radiative, linear, quadratic, . . . , approximations.

4.2 Leading charges from zeroth order in fields

We start with the zeroth order in the hierarchy, given by only one charge, {0
qΛ(0)}. It

corresponds to the usual charge derived from the radiative data [2, 7]. It can be written
simply as

0
qΛ(0) = tr

(
Λ(0)F (−2)

ru

)
. (4.22)

This is an infinite dimensional space of charges, parametrized by Λ(0).15 The definition
is geometrically consistent with imposing the vanishing of terms containing Ψ or any of
the coefficients in Λ+, eq. (2.53). In other words, this corresponds to a vanishing of the
rest of the charge aspect approximations,

0
qΛ(l) = 0 ∀l ≥ 1. (4.23)

15Recall that Λ(0) is a g-valued function on the sphere, for the Lie algebra g of the Lie group G.
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4.3 Sub-leading charge from up to linear order in fields

In the first truncation of the hierarchy that contains the sub-leading charge, we only consider
linear terms in Ψ or Λ0 for the leading charge and the linear in Λ+ and Ψ-independent
terms for the sub-leading.

Again, this is consistent with imposing Λ(l) = 0 for all l ≥ 2 and taking only linear
variations of the field Ψ. Then,

1
qΛ(0) = tr

(
Λ(0)

(
F (−2)

ru + [iΨ(1), F (−3)
ru ]

))
, (4.24)

0
qΛ(1) = tr

(
Λ(1)F (−3)

ru

)
. (4.25)

We remark that this linear approximation in Ψ and Λ+ is equivalent to the linearization [12]

Ãµ = Aµ + DµΨ. (4.26)

Observe also that the functional dependence of 0
qΛ(1) on F (−3)

ru is the same as the leading
charge 0

qΛ(0) on F (−2)
ru . Thus, we can write the charge 1

qΛ(0) in the following way,

1
qΛ(0) = 0

qΛ(0) − 0
q[iΨ,Λ(0)](1) . (4.27)

thanks to identity tr(A[B, C]) = −tr([B, A]C). In (4.27), we have used the notation

[iΨ,Λ(m)](n) ≡ [iΨ(n−m),Λ(m)] (4.28)

The first term in (4.27) is in the zeroth order charge algebra, while the second one is a
sub-leading contribution from the first order charge algebra. Notice that we can keep track
of which algebra we are referring to with the charge j

qΛ(l) by computing j + l.
These results can be connected with those in [12], in view of the recursion formulas found

in section 3. The details are provided in section 6.

4.4 Sub-sub leading charge from up to second order in fields

For the expressions in this subsection, we have up to quadratic terms in Ψ, and Λ(2)
+ . The

charge aspects are

2
qΛ(0) = tr

(
Λ(0)

(
F (−2)

ru + [iΨ(1), F (−3)
ru ] + 1

2[iΨ
(1), [iΨ(1), F (−4)

ru ]] + [iΨ(2), F (−4)
ru ]

))
, (4.29)

1
qΛ(1) = tr

(
Λ(1)

(
F (−3)

ru + [iΨ(1), F (−4)
ru ]

))
, (4.30)

0
qΛ(2) = tr

(
Λ(2)F (−4)

ru

)
. (4.31)

In defining the above charge aspects, we took the same approach as in the sub-leading
case by considering a cut-off in the r-expansion of the fields, i.e.,

Λ(n) = Ψ(n) = 0, ∀n ≥ 3, (4.32)
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which gives our candidate for the sub2-leading charge. We can write a recursive expression
of the charges in terms of the previous ones,

2
qΛ(0) = 1

qΛ(0) − 0
q[iΨ,Λ(0)](2) + 0

q 1
2 [iΨ,[iΨ,Λ(0)]](2) , (4.33)

1
qΛ(1) = 0

qΛ(1) − 0
q[iΨ,Λ(1)](2) , (4.34)

where observe that, as before, we are using the convention that j
qΛ(l) is in the level j + l

of the hierarchy, for some LGT Λ.

4.5 Subn-leading charges from the truncation up to n−th order in the fields

In view of the previous examples, given n > 2, the charge aspects are defined recursively
as follows,

0
qΛ(n) = tr

(
Λ(n)F (−2−n)

ru

)
, (4.35)

1
qΛ(n−1) = 0

qΛ(n−1) + 0
q[−iΨ,Λ(n−1)](n) , (4.36)

. . .

n−1
q Λ(1) = n−2

q Λ(1) +
n−1∑
k=1

0
q( 1

k! adk−iΨ(Λ(1)))(n) , (4.37)

n
qΛ(0) = n−1

q Λ(0) +
n∑

k=1

0
q( 1

k! adk−iΨ(Λ(0)))(n) , (4.38)

where, in order to be able to display the charges separately, we are identifying, by abuse
of notation, that Λ(n) is the large gauge transformation whose only coefficient is at rn and
its value is Λ(n). For an arbitrary large gauge transformation Λ, the total charge is given
by the sum, cf. (4.16).

This way of writing the charges comes from a dressing of the large gauge symmetry param-
eter by the Stueckelberg field, which can be seen directly from the charge expression (4.6) as

tr
(
ΛeiΨFrue−iΨ

)
= tr

(
e−iΨΛeiΨFru

)
= tr

(
ead−iΨΛFru

)
. (4.39)

Now, trivially, we have that for any 0 ≤ j ≤ n,

n−j
q Λ(j) = 0

qΛ(j) + 0
q[−iΨ,Λ(j)](j+1) + . . . +

n−j∑
k=1

0
q( 1

k! adk−iΨ(Λ(j)))(n) . (4.40)

Observe that we can rewrite the charges in terms of the exponential operator, simply
by working up to its combined n-th order in (Ψ,Λ), for 1 ≤ j ≤ n,

0
qΛ(n) = tr

(
Λ(n)F (−2−n)

ru

)
(4.41)

n−j
q Λ(j) = 0

q[ead−iΨ (Λ(j))]{n} , (4.42)

where the superscript {n} in [ead−iΨ(Λ(j))]{n} denotes that we are considering the expression
only up to the n-th order in combinations of Ψ and Λ(j) (recall that Λ(j) has order j, fixed).
Of course, this is consistent with (4.9), and is a compact expression that contains all the
information up to n-th order.
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5 Charge algebra at each level

In this section, we present the closure of each charge algebra in the hierarchy presented in
the previous section. At each level of the hierarchy, we show that the charges act canonically,
and the phase space has a natural structure. It is a non-trivial check since it has to be
deduced from the definitions of each phase space.

We are assuming we are working in a field-independent frame for the large gauge
transformations (i.e., δΛ1Λ2 = 0). Otherwise, a simple generalization can be carried by
exchanging the bracket by a modified bracket (2.47).

Fixing n > 0, the first question we have to address is how
n−j

Q Λ(j) acts on the extended
phase space, in particular on Ψ, for some function on the sphere Λ(j) that generates a Large
Gauge Transformation of order j in the r-expansion. Now, by inspection of (4.42), we
see that the expression involves the coefficients Ψ(1), . . . ,Ψ(n−j) of the Stueckelberg field.
Therefore, its action on the phase space must involve only those fields. Moreover, for the
action to be canonical,

Ω{n}[{
n−j

Q Λ(j) , ·}, δ] = δ
n−j

Q Λ(j) , (5.1)

where Ω{n} is the symplectic form at I+ (i.e., the renormalized version of (4.4)) up to n-th
order in Ψ. Therefore, since we are allowing for up to (n − j)-th order in Ψ, then the action

of the variation associated to {
n−j

Q Λ(j) , ·} on the coefficients of the Stueckelberg field Ψ is
given by the (n − j)-approximation of the variation by Λ(l),

{
n−j

Q Λ(j) , ·}[Ψ] =
n−j

δ Λ(j) [Ψ], (5.2)

where recall that
j

δ :=
∑j

k=0 δ[k], as defined in section 2.2. Observe that this is a minimal
requirement for equation (5.1) to hold consistently with (4.5).

In figure 4 we show schematically the organization of the hierarchy of charges.
In what follows, we consider only charge densities (the same results hold for the integrated

charge).

5.1 Zeroth order charge algebra

Recall that in the radiative phase space, we have Ψ ≡ 0, and therefore the action of a large
gauge transformation Λ is simply

δΛA(0)
z = D(0)

z Λ(0). (5.3)

Due to the cut-off of the order in Ψ, observe that the action of the charge on the
symplectic space is given by the identity,

{0
qΛ(0) , ·} =

0
δΛ(0) . (5.4)

Here, again, we are identifying the large gauge transformation Λ with only one coefficient at
r0 with its value, Λ(0), in order to ease the notation. Then, it is straightforward to prove
that the zeroth-order charge algebra is closed,

{0
qΛ(0)

1
,

0
qΛ(0)

2
} = 0

q−i[Λ1,Λ2](0) . (5.5)
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Figure 4. Diagram showing the organization of the subalgebras of charges. Along the horizontal axis,
we increase in the power of r involved in Ψ, while the vertical axis indicates the subn−leading charges.
In circles, the first subn−leading charge for each n. The curled brackets indicate the recursion (4.42).

Let us denote this algebra as p0, generated by all possible 0
qΛ(0) , with Λ(0) : S2 → R.

5.2 First order charge algebra

Recall that by abuse of notation we are denoting Λ(n) as the large gauge transformation
whose only coefficient is at rn and its value is Λ(n).

We have the identities,

{0
qΛ(1) , ·} = δ

[0]
Λ(1) , (5.6)

{1
qΛ(0) , ·} =

1
δΛ(0) = δ

[0]
Λ(0) + δ

[1]
Λ(0) (5.7)

First, we compute the bracket for the radiative subalgebra,

{1
qΛ(0)

1
,

1
qΛ(0)

2
} =

1
δΛ(0)

1
tr
(
Λ(0)

2 F (−2)
ru − [iΨ(1),Λ(0)

2 ]F (−3)
ru

)
= tr

(
Λ(0)

2 δ
[1]
Λ(0)

1
F (−2)

ru − [i
1
δΛ(0)

1
Ψ(1),Λ(0)

2 ]F (−3)
ru − [iΨ(1),Λ(0)

2 ]
1
δΛ(0)

1
F (−3)

ru

)
= tr

(
Λ(0)

2 [iΛ(0)
1 , F (−2)

ru ] + i[i[Ψ(1),Λ(0)
1 ],Λ(0)

2 ]F (−3)
ru

−[iΨ(1),Λ(0)
2 ][iΛ(0)

1 , F (−3)
ru ]

)
,

where in the first line we used (4.24), and in the last line we used that Λ(0)
1 has only the zeroth-

order coefficient in the r-expansion, simplifying (2.30). Then, using identity (A.5), we have,

{1
qΛ(0)

1
,

1
qΛ(0)

2
} = tr

(
−i[Λ(0)

1 ,Λ(0)
2 ]F (−2)

ru + [iΨ(1), i[Λ(0)
1 ,Λ(0)

2 ]]F (−3)
ru

)
,

= 1
q−i[Λ(0)

1 ,Λ(0)
2 ].

The previous step can be written in a clear form by observing that

[Λ(0)
1 ,Λ(0)

2 ] = [Λ1,Λ2](0). (5.8)
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Next, we compute the mixed Poisson bracket between leading and sub-leading charges,

{0
qΛ(1)

1
,

1
qΛ(0)

2
} =

0
δΛ(1)

1
tr
(
Λ(0)

2 F (−2)
ru − [iΨ(1),Λ(0)

2 ]F (−3)
ru

)
= tr

(
Λ(0)

2
0
δΛ(1)

1
F (−2)

ru − [i
0
δΛ(1)

1
Ψ(1),Λ(0)

2 ]F (−3)
ru − [iΨ(1),Λ(0)

2 ]
0
δΛ(1)

1
F (−3)

ru

)
= tr

(
−i[Λ(1)

1 ,Λ(0)
2 ]F (−3)

ru

)
= 0

q−i[Λ(1)
1 ,Λ(0)

2 ] =
0
q−i[Λ1,Λ2](1) .

(5.9)

To get from the second to the third line we use that in general δΛ+F
(−2−k)
ru = 0 and the

variation (2.59).
Similarly, we do a consistency check for the anti-symmetric bracket,

{1
qΛ(0)

2
,

0
qΛ(1)

1
} =

1
δΛ(0)

2
tr
(
Λ(1)

1 F (−3)
ru

)
,

= tr
(
−iΛ(1)

1 [F (−3)
ru ,Λ(0)

2 ]
)

,

= 0
q−i[Λ2,Λ1](1) . (5.10)

Finally, the sub-leading/sub-leading components of the Poisson bracket vanish,

{0
qΛ(1)

1
,

0
qΛ(1)

2
} = δ

[0]
Λ(1)

1
Tr
(
Λ(1)

2 F (−3)
ru

)
= 0, (5.11)

since
0
δΛ(1)

1
acting on Λ(1)

2 vanishes, as well as on F
(−3)
ru .

Summarizing,

{1
qΛ(0)

1
,

1
qΛ(0)

2
} = 1

q−i[Λ(0)
1 ,Λ(0)

2 ], (5.12)

{0
qΛ(1)

1
,

1
qΛ(0)

2
} = −{1

qΛ(0)
2

,
0
qΛ(1)

1
} = 0

q−i[Λ1,Λ2](1) (5.13)

{0
qΛ(1)

1
,

0
qΛ(1)

2
} = 0. (5.14)

Therefore, we have a first order Poisson algebra, which we will denote by p1, generated
by functions Λ(0),Λ(1) : S2 → R. Observe that p0 ⊂ p1.

5.3 General case

In this subsection, we are using the following standard identities,

[A, [B, C]] = [[A, B], C] + [B, [A, C]], (5.15)

tr ([A, adA1(. . . (adAn(B)) . . .)]) = tr
(

adA1(. . . adAn([A, B]) . . .)

+
n∑

k=1
adA1(. . . ad[A,Ak](. . . adAn(B)) . . .).

)
(5.16)
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5.3.1 Brackets with leading charge

First, we compute the brackets with the leading charge n
qΛ(0) . The action of δΛ(0) on F

(l)
ru is

δΛ(0)F (l)
ru = i[Λ(0), F (l)

ru ], (5.17)

while its action on Ψ is (cf. (2.30)),
n
δΛ(0)Ψ = i[Λ(0),Ψ]. (5.18)

Then,
n
δΛ(0)

1

n−j
q Λ(j)

2
=

n
δΛ(0)

1

0
q[ead−iΨ (Λ(j)

2 )]{n}

=
n
δΛ(0)

1

0
qΛ(j)

2
+ 0

q[−iΨ,Λ(j)
2 ](j+1) + . . . +

n−j∑
k=1

0
q(

1
k! adk−iΨ(Λ(j)

2 )
)(n)


= 0

q−i[Λ(0)
1 ,Λ(j)]

2
+ 0

q[−iΨ,−i[Λ(0)
1 ,Λ(j)]

2 ](j+1) + . . . +
n−j∑
k=1

0
q(

1
k! adk−iΨ(−i[Λ(0)

1 ,Λ(j)
2 ])
)(n) ,

(5.19)

where we use repeatedly (5.16).
Then,

n
δΛ(0)

1

n−j
q Λ(j)

2
= n−j

q −i[Λ(0)
1 ,Λ(j)

2 ]. (5.20)

5.3.2 Bracket with sub-leading charge

Next, we compute the brackets with the sub-leading charge, n−1
q Λ(1) . In this case, we have

n−1
δ Λ(1)

1

n−j
q Λ(j)

2
=

n−1
δ Λ(1)

1

0
qΛ(j)

2
+ 0

q[−iΨ,Λ(j)
2 ](j+1) + . . . +

n−j∑
k=1

0
q(

1
k! adk−iΨ(Λ(j)

2 )
)(n)

 (5.21)

Since δΛ+Fru = 0, the first term vanishes. In particular,
n−1
δ Λ(1)

1

0
qΛ(n)

2
= 0, (5.22)

which is consistent with the cut-off at order n in Ψ. For the second term, we have,
n−1
δ Λ(1)

1

0
q[−iΨ,Λ(j)

2 ](j+1) =
n−1
δ Λ(1)

1

0
q[−iΨ(1),Λ(j)

2 ]

= 0
q−i[Λ(1)

1 ,Λ(j)
2 ]. (5.23)

As a intermediate step, we show the third term,
n−1
δ Λ(1)

1

0
q[−iΨ,Λ(j)

2 ](j+2)+ 1
2 [−iΨ,[−iΨ,Λ(j)

2 ]](j+2) =
n−1
δ Λ(1)

1

0
q[−iΨ(2),Λ(j)

2 ]+ 1
2 [−iΨ(1),[−iΨ(1),Λ(j)

2 ]]

= 0
q[

− i
2 [−iΨ(1),Λ(1)

1 ],Λ(j)
2

]
+ 1

2 [−iΛ(1)
1 ,[−iΨ(1),Λ(j)

2 ]]

+ 0
q 1

2 [−iΨ(1),[−iΛ(1)
1 ,Λ(j)

2 ]]

= 0
q[−iΨ(1),−i[Λ(1)

1 ,Λ(j)
2 ]].
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In general, we have that each Ψ(1), . . . ,Ψ(n) transforms accordingly to,

Ψ(1) 7→ Λ(1)
1 ,

Ψ(2) 7→ − i

2[Ψ
(1),Λ(1)

1 ],

Ψ(3) 7→ − i

2[Ψ
(2),Λ(1)

1 ]− 1
12[Ψ

(1), [Ψ(1),Λ(1)
1 ]],

. . . ,

and therefore each term in (5.21) moves on to the left (using (5.16) and Bianchi iden-
tity). Then:

n−1
δ Λ(1)

1

n−j
q Λ(j)

2
=


n−j−1

q −i[Λ(1)
1 ,Λ(j)

2 ] if j < n

0 if j = n
. (5.24)

5.3.3 General expression

As it was already discussed above, in the general case the action of n−k
q Λ(k) on the phase space is

{n−k
q Λ(k) , ·} =

n−k
δ Λ(k) . (5.25)

Consider the bracket with n−j
q Λ(j)

2
, for some 0 ≤ j ≤ n,

n−k
δ Λ(k)

1

n−j
q Λ(j)

2
=

n−k
δ Λ(k)

1

0
qΛ(j)

2
+ 0

q[−iΨ,Λ(j)
2 ](j+1) + . . . +

n−j∑
k=1

0
q(

1
k! adk−iΨ(Λ(j)

2 )
)(n)

 (5.26)

By the identities in section 2, each Ψ(1), . . . ,Ψ(n) transforms under
n−k
δ Λ(k)

1
accordingly to

Ψ(1) 7→ 0, (5.27)

Ψ(2) 7→ 0, (5.28)
. . .

Ψ(k) 7→ Λ(k)
1 , (5.29)

Ψ(k+1) 7→ − i

2[Ψ
(1),Λ(k)

1 ], (5.30)

Ψ(k+2) 7→ − i

2[Ψ
(2),Λ(k)

1 ]− 1
12[Ψ

(1), [Ψ(1),Λ(k)
1 ]], (5.31)

. . . ,

and therefore each term in (5.26) moves to the left k steps. Then, we arrive at the following
result, for 0 ≤ j, k ≤ n

{n−k
q Λ(k)

1
,

n−j
q Λ(j)

2
} =


n−k−j

q −i[Λ(k),Λ(j)] if j + k ≤ n

0 otherwise
. (5.32)

With this result, we have a closed Poisson algebra pn such that the action of the charges
is canonical and we have the following chain

p0 ⊂ . . . ⊂ pn−1 ⊂ pn. (5.33)
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6 Charges as corner terms — comparison with previous results

In this brief section, we are connecting the recursive formulas in section 3 with the charges
constructed in section 4. We show that subsets of our charges match with previous results. In
particular, we can match our n = 1 level with the one in the literature for sub-leading charges in
Yang-Mills [12, 76], and the complete hierarchy of charges for the abelian case [29, 46, 74, 75].

We first provide the usual corner interpretation for the leading charge. By the fall-offs
in section 3.2.2, F

(−2)
ru (u, z, z̄) = F

(−2)
ru + 0(u−∞), we have that,

0
QΛ(0) =

∫
S2

0
qΛ(0)dSS2 =

∫
S2

tr
(
Λ(0)F (−2)

ru

)
dSS2

=
∫

S2
tr
(
Λ(0)F (−2,0)

ru

)
dSS2 . (6.1)

This is the standard leading charge (cf. [7]).
Next, we compare the results for the sub-leading charge with the ones obtained in [12].

We rewrite equations (4.24) as follow,

0
qΛ(1) = tr

(
Λ(1)F (−3)

ru

)
, (6.2)

1
qΛ(0) = 0

qΛ(0) + 0
q[−iΨ(1),Λ(0)]. (6.3)

In the prescription given in [12], Ψ(1) acts as the generator of the linear extension for
the radiative phase space,

Γext
1 := {Ãµ = Aµ + DµΨ(1), Aµ ∈ Γrad, Ψ(1) ∈ C∞(S2)}, (6.4)

where Γrad is the radiative phase space. Observe that the leading charge, (6.3), has the same
expression as in equation (4.21) in [12], by restoring the coefficients i in the reference. For
the sub-leading charge, we have to use the recursive relations for F

(−3)
ru .

Let denote D−
z := ∂z − i[A(0,0)

z , ·], which is the covariant derivative with respect to the
u → −∞ limit in A

(0)
z . Then, A

(−1)
z can be written as (cf. (3.52)),

A(−1)
z = A(−1,0)

z − 1
2D−

z A(−2,0)
r + 1

2uD−
z (F (−2,0)

ru + γ−1F
(0,0)
zz̄ ) + o(u−∞). (6.5)

From here, a direct computation gives,

F (−1)
uz = 1

2D−
z (F (−2,0)

ru + γ−1F
(0,0)
zz̄ ) + o(u−∞), (6.6)

and analogous for F
(−1)
uz̄ . From (3.56), we have,

∂uF (−3)
ru = γ−1D−

(zD−
z̄)(F

(−2,0)
ru + γ−1F

(0,0)
zz̄ ) + o(u−∞). (6.7)

This is exactly the integrated (modulus the weight u) quantity in equation (4.17) in [12],
where the authors use the integrated version of the charges, along I+. To relate the integrated
charges with the ones here, one should impose the boundary conditions

F (−2)
ru (u, z, z̄), F

(0)
zz̄ (u, z, z̄) ∼ o(u−∞), as u → +∞, (6.8)

– 35 –



J
H
E
P
1
2
(
2
0
2
4
)
0
6
8

and integrate by parts using ∂−1
u (u∂uX) = uX − ∂−1

u X. Therefore, we arrive at the same
result for the sub-leading charge.

As an interesting corollary of our construction, observe that for the abelian case we can
immediately see the coefficients of the field Ψ as the Goldstone modes associated to the
sub-leading charges, by constructing a symplectic form which satisfies (5.1) and such that the
modes {Ψ(i)}i≥1 live on the boundary I+

− . In accordance with [29], for a fixed n ≥ 0 we have to
evaluate the abelian version of (4.4) at null infinity and after a renormalization in both r and u,

Ωn(δ1, δ2) = Ωrad(δ1, δ2) +
n∑

i=1

∫
S2

δ1F (−2−i,0)
ru ∧ δ2Ψ(i)γdzdz̄, (6.9)

where Ωrad(δ1, δ2) =
∫
I+ δ1∂uA(z ∧ δ2Az̄)dudzdz̄ is the usual radiative phase space sym-

plectic form. Of course, the analogue of this symplectic form in Yang-Mills theory also
implies (5.1), but F

(−2−i,0)
ru and Ψ(i) are no longer canonical conjugates (due to the action

of the variations on Ψ).

7 Relations with infinite-dimensional algebras

In [43], a subset of the charge aspects of YM theory were shown, up to quadratic order
in the creation and annihilation operators, to satisfy the infinite dimensional YM version
of the w1+∞ algebra [50] [

Sp,a
m (z̄), Sq,b

n (z̄)
]
= −i fab

cS
p+q−1,c
m+n (z̄) (7.1)

where 1−p ≤ m ≤ p−1, p, q are half-integers with p, q > 1, and m+p ∈ Z (similarly for (q, n)).
Crucial to find (7.1) were the recursion relations for the charge aspects. Working in flat

Bondi coordinates for simplicity (see appendix C), and in radial gauge with

Ar = 0, and A(0)
u = 0, (7.2)

these relations can be written as:16

∂uRs = ∂zRs−1 − i[A(0)
z ,Rs−1] = D(0)

z Rs−1 (7.3)

where Rs are spin charge aspects, the first few given explicitly by:

R−1 = F
(0)
z̄u , R0 = 1

2

(
F (−2)

ru + F
(0)
z̄z

)
, R1 = F (−2)

rz (7.4)

The generators in (7.1) are constructed, after a renormalisation procedure, by smearing the
charge aspects with a Lie algebra valued function on the sphere.17

First, observe that we can consider F
(0)
uz as a lowest weight field on the sphere, since

its limit when u → −∞ vanishes, see table 1. The next weight corresponds to O(1), and
this is indeed the u fall-off of F

(−2)
ru and F

(0)
z̄z . Finally F

(−2)
rz will be quadratic in u, as

detailed in table 1.18

16The difference in sign is due to converting to our conventions for the commutator.
17See [43] for details.
18The fall-off in u is the same in both standard Bondi and flat Bondi coordinates.
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We note that the recursions above arise as a special case of the recursion relations we
give in appendix C. At s = 0, we have, from (7.3) and (7.4):

∂uF (−2)
ru + ∂uF

(0)
z̄z = 2

(
∂zF

(0)
z̄u − i[A(0)

z , F
(0)
z̄u ]

)
(7.5)

This follows from our relation (C.30), can be rearranged in the form of (7.5) as below:

∂uF (−2)
ur = 2

(
∂(z∂uA

(0)
z̄) − i[A(0)

(z , ∂uA
(0)
z̄) ]
)

= 2
(
∂zF

(0)
uz̄ − i[A(0)

z , F
(0)
uz̄ ]

)
− ∂uF

(0)
zz̄

(7.6)

At s = 1 we have

∂uF (−2)
rz = 1

2

(
∂zF (−2)

ru + ∂zF
(0)
z̄z − i[A(0)

z , F (−2)
ru + F

(0)
z̄z ]

)
(7.7)

This immediately follows from our equation (C.31) with n = 2

2∂uF (−2)
rz = −∂z(F (−2)

ur + F
(0)
zz̄ ) + i[A(0)

z , F (−2)
ur + F

(0)
zz̄ ] . (7.8)

Higher orders are then reached via repeatedly acting with the operator ∂−1
u ·D(0)

z , see (7.3).
We remark that this tower of charges, which are linear in the anti-holomorphic component
A

(0)
z̄ and of arbitrary order in the holomorphic components A

(0)
z are closely related to a

self-dual subsector of the theory. One could of course also construct the anti-holomorphic
tower, by exchanging z and z̄

R̄−1 = F (0)
zu , R̄0 = 1

2

(
F (−2)

ru + F
(0)
zz̄

)
, R̄1 = F

(−2)
rz̄ (7.9)

and postulating the recursion relation

∂uR̄s = ∂z̄R̄s−1 − i[A(0)
z̄ , R̄s−1] = D

(0)
z̄ R̄s−1 (7.10)

Again, the first two steps will follow from our (C.30) and the conjugate of (C.31), with all
higher orders following from the action of Dz̄. Of course this (anti-self-dual) subsector will
also possess a copy of the infinite-dimensional symmetry algebra. If would be interesting to
see whether the commutation of charges between the towers could belong to some deformation
of these infinite algebras. We note that similar considerations apply for the gravity theory,
see [24].

8 Applications to higher derivative interactions

In this section we present the sub-leading expression when a term containing higher order
derivatives of the vector field is present in the Lagrangian. The discussion of this type of
interactions follows from the work of Elvang and Jones [47], and is motivated by the study
of loop corrections arising from massive particles.

It is shown in [47] that a small set of effective (local) operators can modify the soft
photon and graviton theorems. This introduces quasi-universal terms, in the sense that
the soft factors are described in terms of a small set of theory-dependent spin-shifting
operators, with a theory-independent kinematic factor. The connection with the asymptotic
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symmetries was studied by Laddha and Mitra [48], where they extend the known equivalence
between asymptotic symmetries and sub-leading soft photon theorem to the family of effective
operators found in [47].

A divergent gauge parameter is used in [48] to derive both the universal and quasi-
universal terms of [47]. Here we extend the phase space in order to accommodate the
symmetry transformation associated with this parameter. As a straightforward exercise,
we also present the modifications to the charge from the quasi-universal parts in the sub-
leading soft gluon theorem using our prescription for deriving the charges. Starting with the
lagrangian from [47, 48], we use our prescription to dress all the fields

L[Ã, ϕ̃, . . .] = −1
4tr

(
F̃µνF̃µν

)
+ Lm

kin[ϕ̃, . . .] + Lint[Ã, ϕ̃, . . .], (8.1)

where ϕ̃ are the dressed matter fields with suppressed indices. The dressing of the matter
fields is done in analogous way as in (4.1), i.e. we do a finite gauge transformation on ϕ

and promote the parameter to our Stueckelberg field Ψ, resulting in the new field ϕ̃. As an
example, for a field in the adjoint representation we have

ϕ 7→ ϕ̃ = eiΨϕe−iΨ. (8.2)

The kinematic terms Lm
kin depend only on the matter fields, and the interaction between

the gauge field and the matter fields is given by

Lint[Ã, ϕ̃, . . .] = −tr
(
ÃµJm

µ [Ã, ϕ̃]
)
+ LHO

int [Ã, ϕ̃, . . .], (8.3)

where LHO
int denotes the higher order derivative interaction part. The complete list of possible

effective field operators that can enter this term is given in [47]. The extended phase space
that we are considering is (2.14) times the particular phase space coming from the matter
fields in Lm

kin,

Γext
∞ × Γmatter. (8.4)

By taking the variation of the action and computing the Euler-Lagrange equations, we
have the general form

D̃µF̃µν + D̃µGµν [Ã, ϕ̃] = Jm
ν [Ã, ϕ̃], (8.5)

where D̃µ is the Ãµ associated gauge derivative and Gµν [Ã, ϕ̃] is the term resulting from
varying LHO

int .
The symplectic potential for a Cauchy slice Σt is given by

Θ[δ] =
∫

Σt
tr
(
(F̃µν + Gµν [Ã, ϕ̃])δÃν

)
dSµ +Θm[δ], (8.6)

where Θm is the symplectic potential from the matter sector. The symplectic form is

Ω[δ, δ′] =
∫

Σt
tr
(
δ(F̃µν + Gµν [Ã, ϕ̃]) ∧ δ′Ãν

)
dSµ +Ωm[δ, δ′], (8.7)
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with Ωm coming from Θm. Given an arbitrary gauge transformation δΛ, its associated charge
is computed via the equation, cf. (4.5),

δQ̃Λ = Ω[δΛ, δ]. (8.8)

In general, the δ-integrability of the previous equation is not guaranteed [77], since the
specific form of G[Ã, ϕ̃] depends on the particular effective operator on LHO

int . For simplicity,
we consider the case

Lm
kin = −1

2∂µϕ∂µϕ, LHO
int = −1

4ϕtr
(
F̃µνF̃µν

)
, (8.9)

where the scalar field ϕ is in the trivial representation (i.e., ϕ̃ = ϕ), which could correspond, for
example, to a first order effective action of a dilaton coupled to Yang-Mills (see e.g. [78, 79]).
Then, we have a simple expression for Gµν ,

Gµν [Ã, ϕ] = ϕF̃µν , (8.10)

and also for Θm[δ],

Θm[δ] =
∫

Σt
∂µϕδϕdSµ. (8.11)

Now, we can use the equations of motion to compute the charge, δ-integrate its expression,
and obtain

Q̃Λ =
∫

Σt
∂νtr

(
Λ(F̃µν + Gµν [Ã, ϕ])

)
dSµ. (8.12)

Then we have the same expression as in (4.9) plus a term which represents the contribution
from the higher order derivatives,

Q̃new
Λ =

∫
Σt

∂νtr
(
ΛGµν [Ã, ϕ]

)
dSµ. (8.13)

We want to re-obtain the sub-leading corrections, for which we need to consider variations
with Λ(1) ̸= 0 and Λ(l) = 0 for l ≥ 2, see [48]. Correspondingly, we have to take the linear
extension of the phase space with Ψ(1) ̸= 0 and Ψ(l) = 0 for l ≥ 2. The extension allows
us to interpret the Λ(1) as the parameter of a genuine symmetry transformation, realised
canonically on Ψ(1), and acting as

δΛ(0)Ψ(1) = −i[Ψ(1),Λ(0)], δΛ(1)Ψ(1) = Λ(1). (8.14)

The radiative fall-off for the scalar field is ϕ = 1
r ϕ(−1) + o(r−1), and therefore the first terms

in the expansion for Gru are

Gru = 1
r2 ϕ(−1)F̃ (−1)

ru + 1
r3

(
ϕ(−1)F̃ (−2)

ru + ϕ(−2)F̃ (−1)
ru

)
+ o(r−3). (8.15)

We have two contributions to the new sub-leading charge, from Λ(0) and Λ(1). Since F̃ (−1)
ru

is already linear in Ψ(1), for the Λ(1) contribution those terms are discarded. Then, upon
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renormalization, we are left with

Qnew
Λ(1) =

∫
I

tr
(
Λ(1)∂u(ϕ(−1)F (−2)

ru )
)

dS2, (8.16)

Qnew
Λ(0) =

∫
I

∂utr
(
Λ(0)ϕ(−1)[iΨ(1), F (−2)

ru ]
)

dS2, (8.17)

where we use that Λ(1) is independent of u. We can identify the first term above as the
contribution to the soft theorem from the higher order derivative effective operators found
in [48] in electrodynamics, but written in Yang-Mills theory. The explicit map from our
expression to that in [48] is via the equations of motion. The second term above corresponds
to a new contribution to the sub-leading charge for Yang-Mills coming from our extended
phase space.

We note that effective actions with higher derivative terms also arise when considering
loops of the gluon itself, and these were studied in the simplified context of SDYM in [80–82].
It would be interesting to apply our formalism to their work. We leave this for future study.

9 Conclusions

Expanding on our proposal in [1], we have shown how the phase space at null infinity can
be enlarged in order to accommodate subn-leading charges, associated to the soft theorems
for Yang-Mills theory. The procedure is independent of gauge and coordinate choices, and
we have allowed for a very general fall-off in the expansion coordinate, thus making our
procedure potentially applicable to both tree- and loop-level effects.

We also provided expressions for the equations of motion for Yang-Mills theory in the
r-expansion, order by order, in standard Bondi coordinates. As an example, we gave the
explicit equations in both radial and light-cone gauges using the usual radiative fall-offs
compatible with tree-level. In both cases, we showed the existence of a recursive relation
for the sub-leading coefficients to all orders in the r-expansion for the field strength and the
gauge vector in terms of the leading component, which establishes the usual convention of
taking A

(0)
z (u, z, z̄) as free initial data. Of course, it is not clear whether it is possible to

obtain such recursive formulas for other gauge choices. We leave this question for future work.
We generalized the Stueckelberg procedure19 from our previous construction in the

context of self-dual Yang-Mills (SDYM) [30] to full Yang-Mills. The Stueckelberg trick has
previously been employed in seemingly very different contexts, but the unifying principle
is the presence of a local broken symmetry, though in our case this is subtly related to the
radial expansion at null infinity. In particular, the Goldstone-like modes that constitute
the expansion of the Stueckelberg field naturally serve as the indicators of the power in the
radial expansion, since they serve as the target of the action of over-leading large gauge
transformations acting on the whole phase space. This, in turn, allowed us to construct an
extended phase space that contains a clear hierarchy of subspaces. The tangent subspaces
(where variations live) are determined by the successive terms in the perturbative expansion
of the characteristic power series generating the so-called Todd polynomial. An interesting

19See e.g. [31, 67, 68, 83].
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insight here is that the canonical action of the charges within the hierarchy (5.2) is controlled
by the Bernoulli numbers Bn. Since B2k+1 are vanishing for k > 0, it appears that the
canonical action in higher levels is controlled by the even subn-leading charges. We will
explore this further in future work.

The charges are related to the r-expansion of the field strength (we assume renormalization,
cf. ([29]), and can be computed directly. The charge algebra is closed for each phase space.
Using the recursion formulas derived in section 3, we compared the formulas of the sub-leading
charge with those in the literature [12, 76]. The charges can also be constructed via an
algebraically simple recursive relation.

Several interesting future lines of work emerge from our results. On the one hand, the
relation between over-leading large gauge transformations and the symplectic structure of
the phase space could shed light on the symmetries of the theories, and therefore provide a
deep understanding of the classical starting point for a possible quantization of the theory. A
natural question is whether this extends to gravity, where work at the first few sub-leading
orders already exists in some contexts (e.g., [12, 22, 84, 85]), see also results in the Newman-
Penrose formalism [24]. Our construction is particularly well-suited for gravity, via the finite
action of a “Stueckelberg” diffeomorphism ξ acting on the metric g,

ğ = eLξg. (9.1)

We expect this extension to be more involved than the Yang-Mills case, due to the non-
linearities in both ξ and g in the definitions of the gravitational charges.

In [30], the self-dual sector of gravity was considered at all sub-leading orders, and a
simple double copy dictionary was constructed from Yang-Mills to gravity, for the extended
radiative phase space, and the tower of symmetries. A natural question prompted by our
results here is whether this can be extended to the full YM and gravitational theories.20

On the other hand, understanding the symmetries that govern the properties of the
S-matrix is crucial for establishing the conjectured holographic principle for asymptotically
flat spacetimes (e.g., [3, 4] and references therein). Recently, studies in some sub-sectors
of gravity (e.g. [65]) and in the celestial holography program (e.g. [50, 91]) have shown the
presence of infinite dimensional algebras, known as w1+∞ algebras. It would be interesting
to see how these fit in the extended gravity case via our proposal. In this direction, from a
geometric point of view and on more speculative grounds, it would be interesting to explore
the connection between the action of large diffeomorphisms and the universal corner algebra
diff(S2) × gl(2,R) × R2 [92]. In particular, a possible extended graded algebraic structure
with the subalgebra diff(S2) × gl(2,R) as base level could determine the emergence of the
w1+∞ algebra in a clear geometric picture.

In the context of scattering amplitudes, the next step is to directly apply the ideas in
this article to the calculation of subn-leading soft theorems at loop level [32–38, 93, 94], via
the Ward identities. If we only consider loops arising from massive matter particles, these
can be encoded in higher derivative terms appearing in the effective action [47]. These lead
to quasi-universal corrections to the sub-leading soft theorem. In QED, these corrections
were shown to arise from the Ward identity of an over-leading gauge parameter [48]. We

20For some previous work on double copy relations at null infinity, see also [86–90].
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extended this analysis to Yang-Mills, and also provided the extended phase space on which
the symmetry responsible for these corrections acts canonically.

Of course, a more interesting question involves considering loops of the gauge fields
themselves. A simplified set-up which holds promise as a starting point for going to arbitrary
orders in the soft expansion is the self-dual sector. This also has the benefit of being one-loop
exact, for both Yang-Mills and gravity [82, 95–98], and it preserves the infinite dimensional
algebras above at loop-level [99–102]. A promising direction here could be to use the results
of [82], which give a quantum corrected action encoding the effective vertices after loop
integration. This is based on the earlier observation in [80, 81] that the contribution of
diagrams with gluons in the loops in SDYM can be cancelled by the tree-level contribution
arising from the addition of an axion interaction; interestingly, the interaction term is of
the form we studied in section 8.

More generally, the study of loop effects from asymptotic symmetries requires the
introduction of a formalism for massive particles (see e.g. [37]), based on hyperbolic coordinates
(namely Euclidean AdS3) allowing us to approach future/past timelike infinity i±. We remark
that the general procedure in section 2, by virtue of being coordinate and gauge independent,
should be straightforwardly adaptable to massive particles. Finally, for gravity and QED, the
leading order (logarithmic) loop correction turns out to be controlled by the same asymptotic
symmetry parameter as the sub-leading tree level correction [32, 36, 37], which has the
potential to simplify the extension of our construction to loop corrections.
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A Extended phase space formulae

Equation (2.18):

δΛ̆Ãµ = δΛ̆(e
iΨ̆Aµe−iΨ̆ + ieiΨ̆∂µe−iΨ̆)

= δΛ̆(e
−XAµeX + ie−X∂µeX)

= −OX(δΛ̆X)e−XAµeX + e−X(δΛ̆Aµ)eX + e−XAµeXOX(δΛ̆X)

− iOX(δΛ̆X)e−X∂µeX + ie−X∂µ

[
eXOX(δΛ̆X)

]
= e−X{δΛ̆Aµ +AµeXOX(δΛ̆X)e−X − eXOX(δΛ̆X)e−XAµ

+ ieXOX(δΛ̆X)∂µe−X + i∂µ

[
eXOX(δΛ̆X)

]
e−X}eX

= eiΨ̆
{

δΛ̆Aµ + Dµ

[
e−iΨ̆O−iΨ̆(δΛ̆Ψ̆)eiΨ̆

]}
e−iΨ̆ ,

(A.1)
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where in the second line we defined X := −iΨ̆ and we used

δe−X = −OX(δX)e−X (A.2)
e−X∂µeX = −(∂µe−X)eX . (A.3)

Equation (2.23):

D̃µΛ̆ = ∂µΛ̆− i[Ãµ, Λ̆]

= ∂µΛ̆− i[eiΨ̆Aµe−iΨ̆ + ieiΨ̆∂µe−iΨ̆, Λ̆]

= eiΨ̆∂µ(e−iΨ̆Λ̆eiΨ̆)e−iΨ̆ − ieiΨ̆[Aµ, e−iΨ̆Λ̆eiΨ̆]e−iΨ̆

= eiΨ̆Dµ(e−iΨ̆Λ̆eiΨ̆)e−iΨ̆ .

(A.4)

Next, we provide some of the formulae which are used throughout the text. The proof
of each identity is straightforward. First, the usual trace identities,

tr (A[B, C]) = tr ([A, B]C) , (A.5)

tr
(
Aadk

B(C)
)
= (−1)ktr

(
adk

B(A)C
)

. (A.6)

Next, we provide a few representations for the operator G when evaluated at Aµ, i.e.,
GΨ̆(Aµ).

GΨ̆(Aµ) = eiΨ̆Aµe−iΨ̆ + ieiΨ̆∂µe−iΨ̆

= Aµ − DµiΨ̆ + 1
2[DµiΨ̆, iΨ̆]− 1

3! [[DµiΨ̆, iΨ̆], iΨ̆] + . . .

= Aµ +
+∞∑
k=1

1
k!adk−1

iΨ̆ (DµiΨ̆)

= Aµ +O−iΨ̆(DµiΨ̆) . (A.7)

B YM e.o.m. in radial expansion

In order to study T at a generic order n in the 1/r-expansion, it is useful to introduce
the following map:

P−n : C∞
r (M) −→ C∞

r (M)

f 7−→ r−nf (−n) (B.1)

It is easy to see that P−m ◦ P−n(f) = δmnP−n(f), for all m, n ∈ Z and for all f ∈ C∞
r (M),

meaning that the map P−n is a projector. Moreover, as a consequence of the definition of the
set C∞

r (M), we have that P−n(f) = 0 for all n < 0, which is consistent with equation (3.1).

Lemma 1. ∀m, n ∈ N and ∀f, g ∈ C∞
r (M) the following identities hold:

P−n(r−mf) = r−mPm−n(f) (B.2)
P−n(∂rf) = ∂rP1−n(f) (B.3)

P−n(fg) =
∑
k∈N

Pk−n(f)P−k(g) (B.4)
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Proof.

P−n(r−mf) = P−n

∑
k∈Z

r−m−kf (−k) = r−nf (m−n) = r−mPm−n(f) (B.5)

P−n(∂rf) = P−n

∑
k∈Z

(−k)r−k−1f (−k) = (1− n)r−nf (1−n) = ∂rP1−n(f) (B.6)

P−n(fg) = P−n

∑
k,l∈Z

r−k−lf (−k)g(−l) = r−n
∑
k∈N

f (k−n)g(−k) =
∑
k∈N

Pk−n(f)P−k(g) (B.7)

Using this lemma, one can prove equation (3.5):

Proof. From (3.3):

Eµ = gνρDρFνµ

= −2D(uFr)µ + DrFrµ + 2r−2γ−1D(zFz̄)µ

= 2
(
−∂(uFr)µ + Γρ

urFρµ + Γρ
µ(uFr)ρ + i[A(u,Fr)µ]

)
+ ∂rFrµ − Γρ

rrFρµ − Γρ
rµFrρ − i[Ar,Frµ]

+ 2r−2γ−1
(
∂(zFz̄)µ − Γρ

zz̄Fρµ − Γρ
µ(zFz̄)ρ − i[A(z,Fz̄)µ]

)
= −2

(
∂(uFr)µ − i[A(u,Fr)µ]

)
+ r−1(Fuzδzµ + Fuz̄δz̄µ)

+ ∂rFrµ − r−1(Frzδzµ + Frz̄δz̄µ)− i[Ar,Frµ]
+ 2r−2γ−1{∂(zFz̄)µ − rγ(Fuµ −Frµ)− r−1F(zz̄)δrµ − i[A(z,Fz̄)µ]}
+ r−1(Fuz −Frz)δzµ + r−1(Fuz̄ −Frz̄)δz̄µ + (rγ)−2(∂zγδzµ − ∂z̄γδz̄µ)Fzz̄

= −2
(
∂(uFr)µ − i[A(u,Fr)µ]

)
+ ∂rFrµ − i[Ar,Frµ]− 2r−1Fur(δuµ + δrµ)

+ 2r−2γ−1
(
∂(zFz̄)µ − i[A(z,Fz̄)µ]

)
+ (rγ)−2(∂zγδzµ − ∂z̄γδz̄µ)Fzz̄ (B.8)

Thus, ∀n ∈ N:

E(−n)
µ = rnP−n(Eµ)

= rn
{
−∂uP−n(Frµ)− ∂rP1−n(Fuµ −Frµ) + iP−n(2[A(u,Fr)µ]− [Ar,Frµ])

}
− 2rn−1P1−n(Fur)(δuµ + δrµ) + 2rn−2γ−1

{
∂(zP2−n(Fz̄)µ)− iP2−n([A(z,Fz̄)µ])

}
+ rn−2γ−2(∂zγδzµ − ∂z̄γδz̄µ)P2−n(Fzz̄)

= −∂uF (−n)
rµ + (n − 1)(F (1−n)

uµ − F (1−n)
rµ )− 2F (1−n)

ur (δuµ + δrµ)

+ 2γ−1∂(zF
(2−n)
z̄)µ + γ−2(∂zγδzµ − ∂z̄γδz̄µ)F (2−n)

zz̄

+ i
n∑

k=0

(
2[A(k−n)

(u , F
(−k)
r)µ ]− [A(k−n)

r , F (−k)
rµ ]

)
− 2iγ−1 ∑

k∈N
[A(2+k−n)

(z , F
(−k)
z̄)µ ]

= −∂uF (−n)
rµ + δ̃ρ

µ(n)F (1−n)
uρ − δ̃ρ

µ(n)F (1−n)
rρ

+ 2γ−1∂(zF
(2−n)
z̄)µ + γ−2(∂zγδzµ − ∂z̄γδz̄µ)F (2−n)

zz̄

+ i
n∑

k=0

(
2[A(k−n)

(u , F
(−k)
r)µ ]− [A(k−n)

r , F (−k)
rµ ]− 2γ−1[A(k−n)

(z , F
(2−k)
z̄)µ ]

)
(B.9)
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with δ̃ν
µ(n) as in (3.7).

B.1 Bianchi identities

For the recursive formulas it is useful to have explicitly written Bianchi identities for certain
gauge and fall-offs conditions (for example, (3.13) and (3.14). We can think of Bianchi
identities as the vanishing of a (0, 3)−tensor,

Bµνρ := DµFνρ+ ⟲ = 0 , (B.10)

where ⟲ indicates a cyclic permutation of the indices. Then, by defining the r-expansion
of Bµνρ as

Bµνρ =
∑
n∈N

r−nB(−n)
µνρ , (B.11)

we can directly compute Bianchi identities in light-cone gauge at a given order n ∈ N:

B(−n)
urz = ∂uF (−n)

rz + (n − 1)F (1−n)
uz + ∂zF (−n)

ur (B.12)

+ i
n−2∑
k=0

[A(k−n)
r , F (−k)

uz ]− i
n∑

k=2
[A(k−n)

z , F (−k)
ur ], n ≥ 2

B
(−n)
urz̄ = ∂uF

(−n)
rz̄ + (n − 1)F (1−n)

uz̄ + ∂z̄F (−n)
ur (B.13)

+ i
n−2∑
k=0

[A(k−n)
r , F

(−k)
uz̄ ]− i

n∑
k=2

[A(k−n)
z̄ , F (−k)

ur ], n ≥ 2

B
(−n)
uzz̄ = ∂uF

(−n)
zz̄ − ∂zF

(−n)
uz̄ + ∂z̄F (−n)

uz − 2i
n∑

k=0
[A(k−n)

[z , F
(−k)
z̄]u ] (B.14)

B
(−n)
rzz̄ = (1− n)F (1−n)

zz̄ − ∂zF
(−n)
rz̄ + ∂z̄F (−n)

rz (B.15)

− i
n−2∑
k=0

[A(k−n)
r , F

(−k)
zz̄ ]− 2i

n∑
k=2

[A(k−n)
[z , F

(−k)
z̄]r ], n ≥ 2

Bianchi identities in radial gauge at a given order n ∈ N:

B(−n)
urz = ∂uF (−n)

rz + (n − 1)F (1−n)
uz + ∂zF (−n)

ur (B.16)

− i
n−1∑
k=0

[A(k−n)
u , F (−k)

rz ]− i
n∑

k=2
[A(k−n)

z , F (−k)
ur ], n ≥ 2

B
(−n)
urz̄ = ∂uF

(−n)
rz̄ + (n − 1)F (1−n)

uz̄ + ∂z̄F (−n)
ur (B.17)

− i
n−1∑
k=0

[A(k−n)
u , F

(−k)
rz̄ ]− i

n∑
k=2

[A(k−n)
z̄ , F (−k)

ur ], n ≥ 2

B
(−n)
uzz̄ = ∂uF

(−n)
zz̄ − ∂zF

(−n)
uz̄ + ∂z̄F (−n)

uz (B.18)

− i
n−1∑
k=0

[A(k−n)
u , F

(−k)
zz̄ ]− 2i

n∑
k=0

[A(k−n)
[z , F

(−k)
z̄]u ]

B
(−n)
rzz̄ = (1− n)F (1−n)

zz̄ − ∂zF
(−n)
rz̄ + ∂z̄F (−n)

rz − 2i
n∑

k=2
[A(k−n)

[z , F
(−k)
z̄]r ], n ≥ 2 (B.19)
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C YM e.o.m. and recursive relations in flat Bondi coordinates

Metric:
ds2 = −2dudr + 2r2dzdz̄ (C.1)

Equations of motion:

Eµ := DνFνµ = ∇νFνµ − i[Aν ,Fνµ] ∈ C∞
r (M) (C.2)

The YM equations of motion in flat Bondi at order 1/rn, with n ∈ N, are:

E(−n)
µ = −∂uF (−n)

rµ + δ̃ρ
µ(n − 1)F (1−n)

uρ + 2∂(zF
(2−n)
z̄)µ

+ 2i
n∑

k=0

(
[A(k−n)

(u , F
(−k)
r)µ ]− [A(k−n)

(z , F
(2−k)
z̄)µ ]

)
,

(C.3)

where δ̃ν
µ(n) is defined in (3.7).

Proof. From (3.3):

Eµ = gνρDρFνµ

= −2D(uFr)µ + 2r−2D(zFz̄)µ

= 2
(
−∂(uFr)µ + Γρ

urFρµ + Γρ
µ(uFr)ρ + i[A(u,Fr)µ]

)
+ 2r−2

(
∂(zFz̄)µ − Γρ

zz̄Fρµ − Γρ
µ(zFz̄)ρ − i[A(z,Fz̄)µ]

)
= 2

{
−∂(uFr)µ + r−1/2(Fuzδzµ + Fuz̄δz̄µ) + i[A(u,Fr)µ]

}
+ 2r−2

{
∂(zFz̄)µ − rFuµ − r−1F(zz̄)δrµ − r/2(Fzuδzµ + Fz̄uδz̄µ)− i[A(z,Fz̄)µ]

}
= −2

(
∂(uFr)µ − i[A(u,Fr)µ]

)
− 2r−1Furδrµ + 2r−2

(
∂(zFz̄)µ − i[A(z,Fz̄)µ]

)
(C.4)

Thus, ∀n ∈ N:

E(−n)
µ = rnP−n(Eµ) (C.5)

= −rn
{

∂uP−n(Frµ) + ∂rP1−n(Fuµ)− 2iP−n([A(u,Fr)µ])
}

(C.6)

− 2rn−1P1−n(Fur)δrµ + 2rn−2
{

∂(zP2−n(Fz̄)µ)− iP2−n([A(z,Fz̄)µ])
}

= −∂uF (−n)
rµ + (n − 1)F (1−n)

uµ − 2F (1−n)
ur δrµ + 2∂(zF

(2−n)
z̄)µ (C.7)

+ 2i
n∑

k=0
[A(k−n)

(u , F
(−k)
r)µ ]− 2i

∑
k∈N

[A(2+k−n)
(z , F

(−k)
z̄)µ ]

= −∂uF (−n)
rµ + (n − 3)F (1−n)

ur δrµ + (n − 1)F (1−n)
uz δzµ + (n − 1)F (1−n)

uz̄ δz̄µ (C.8)

+ 2∂(zF
(2−n)
z̄)µ + 2i

n∑
k=0

(
[A(k−n)

(u , F
(−k)
r)µ ]− [A(k−n)

(z , F
(2−k)
z̄)µ ]

)
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The components are:

E(−n)
u = ∂uF (−n)

ur + 2∂(zF
(2−n)
z̄)u − i

n∑
k=0

(
[A(k−n)

u , F (−k)
ur ] + 2[A(k−n)

(z , F
(2−k)
z̄)u ]

)
(C.9)

E(−n)
r = (n − 3)F (1−n)

ur + 2∂(zF
(2−n)
z̄)r + i

n∑
k=0

(
[A(k−n)

r , F (−k)
ur ]− 2[A(k−n)

(z , F
(2−k)
z̄)r ]

)
(C.10)

E(−n)
z = −∂uF (−n)

rz + (n − 1)F (1−n)
uz − ∂zF

(2−n)
zz̄

+ i
n∑

k=0

(
2[A(k−n)

(u , F
(−k)
r)z ] + [A(k−n)

z , F
(2−k)
zz̄ ]

)
(C.11)

E
(−n)
z̄ = −∂uF

(−n)
rz̄ + (n − 1)F (1−n)

uz̄ + ∂z̄F
(2−n)
zz̄

+ i
n∑

k=0

(
2[A(k−n)

(u , F
(−k)
r)z̄ ]− [A(k−n)

z̄ , F
(2−k)
zz̄ ]

)
(C.12)

The first three orders are:

E(0)
µ = −∂uF (0)

rµ + 2i[A(0)
(u , F

(0)
r)µ] (C.13)

E(−1)
µ = −∂uF (−1)

rµ − 2F (0)
ur δrµ + 2i

(
[A(−1)

(u , F
(0)
r)µ] + [A(0)

(u , F
(−1)
r)µ ]

)
(C.14)

E(−2)
µ = −∂uF (−2)

rµ + δ̃ρ
µ(1)F (−1)

uρ + 2∂(zF
(0)
z̄)µ − 2i[A(0)

(z , F
(0)
z̄)µ] + 2i

2∑
k=0

[A(k−n)
(u , F

(−k)
r)µ ] (C.15)

C.1 Light-cone gauge

E.o.m. in light-cone gauge (3.13) with fall-off (3.14):

E(−n)
u = ∂uF (−n)

ur + 2∂(zF
(2−n)
z̄)u − 2i

n−2∑
k=0

[A(2+k−n)
(z , F

(−k)
z̄)u ], n ≥ 2 (C.16)

E(−n)
r = (n − 3)F (1−n)

ur + 2∂(zF
(2−n)
z̄)r (C.17)

+ i
n−2∑
k=2

(
[A(k−n)

r , F (−k)
ur ]− 2[A(2+k−n)

(z , F
(−k)
z̄)r ]

)
, n ≥ 4

E(−n)
z = −∂uF (−n)

rz + (n − 1)F (1−n)
uz − ∂zF

(2−n)
zz̄ (C.18)

+ i
n−2∑
k=0

(
[A(k−n)

r , F (−k)
uz ] + [A(2+k−n)

z , F
(−k)
zz̄ ]

)
, n ≥ 2

E
(−n)
z̄ = −∂uF

(−n)
rz̄ + (n − 1)F (1−n)

uz̄ + ∂z̄F
(2−n)
zz̄ (C.19)

+ i
n−2∑
k=0

(
[A(k−n)

r , F
(−k)
uz̄ ]− [A(2+k−n)

z̄ , F
(−k)
zz̄ ]

)
, n ≥ 2.

Recursive formula for the gauge vector in Light-cone gauge. Starting from the
equations above, it is possible to find recursive formulas for A

(−n)
µ by following the very

same steps described in paragraph 3.2.1. Since the comments and considerations presented
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there still hold, we simply list the results:

A(−2)
r = 2∂−1

u

(
∂(zA

(0)
z̄) + i∂−1

u [∂uA
(0)
(z , A

(0)
z̄) ]
)

(C.20)

A(−n)
r = 1

2− n
∂−1

u

[
2∂(zF

(1−n)
z̄)r + i

n−1∑
k=2

(
[A(k−n−1)

r , F (−k)
ur ]− 2[A(1+k−n)

(z , F
(−k)
z̄)r ]

)]
, n ≥ 3

(C.21)

A(−n)
z = 1

2n

{
− ∂zA(−n−1)

r + i
n+1∑
k=2

[A(k−n−1)
z , A(−k)

r ] (C.22)

+ ∂−1
u

[
∂zF

(1−n)
zz̄ − i

n−1∑
k=0

(
[A(k−n−1)

r , ∂uA(−k)
z ] + [A(1+k−n)

z , F
(−k)
zz̄ ]

) ]}
, n ≥ 1

that, in a more compact form, read

A(−2)
r = −2∂−2

u

(
D(zFz̄)u

)(0)
(C.23)

A(−n)
r = 1

2− n
∂−1

u

[
2
(
D(zFz̄)r

)(1−n)
+ i ([Ar, ∂uAr])(−n−1)

]
, n ≥ 3 (C.24)

A(−n)
z = − 1

2n

{
(DzAr)(−n−1) − ∂−1

u

(
(DzFzz̄)(1−n) − i([Ar, ∂uAz])(−n−1))}, n ≥ 1.

(C.25)

C.2 Radial gauge

E.o.m. in radial gauge (3.57) with fall-off (3.58):

E(−n)
u = ∂uF (−n)

ur + 2∂(zF
(2−n)
z̄)u (C.26)

− i
n−1∑
k=0

[A(k−n)
u , F (−k)

ur ]− 2i
n−2∑
k=0

[A(2+k−n)
(z , F

(−k)
z̄)u ], n ≥ 2

E(−n)
r = (n − 3)F (1−n)

ur + 2∂(zF
(2−n)
z̄)r − 2i

n−2∑
k=2

[A(2+k−n)
(z , F

(−k)
z̄)r ], n ≥ 4 (C.27)

E(−n)
z = −∂uF (−n)

rz + (n − 1)F (1−n)
uz − ∂zF

(2−n)
zz̄ (C.28)

+ i
n−1∑
k=0

[A(k−n)
u , F (−k)

rz ] + i
n−2∑
k=0

[A(2+k−n)
z , F

(−k)
zz̄ ], n ≥ 2

E
(−n)
z̄ = −∂uF

(−n)
rz̄ + (n − 1)F (1−n)

uz̄ + ∂z̄F
(2−n)
zz̄ (C.29)

+ i
n−1∑
k=0

[A(k−n)
u , F

(−k)
rz̄ ]− i

n−2∑
k=0

[A(2+k−n)
z̄ , F

(−k)
zz̄ ], n ≥ 2.

Recursive formula for the gauge vector in radial gauge. Following the same line
of reasoning of paragraph 3.3.1 we obtain

A(−1)
u = 2∂(zA

(0)
z̄) + 2i∂−1

u [∂uA
(0)
(z , A

(0)
z̄) ]

A(−n)
u = − 2

n

(
∂(zA

(1−n)
z̄) +

n−1∑
k=1

ik

1− n
[A(1+k−n)

(z , A
(−k)
z̄) ]

)
, n ≥ 2

A(−n)
z = 1

2∂−1
u

(
∂zA(−n)

u + 1
n

∂zF
(1−n)
zz̄ − i

n

n∑
k=1

[A(k−n)
z , (2n − k)A(−k)

u + F
(1−k)
zz̄ ]

)
, n ≥ 1.
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Some recursive formulas for the field strength are

F (−2)
ur =2

(
∂(zA

(0)
z̄) +i∂−1

u [∂uA
(0)
(z ,A

(0)
z̄) ]
)

(C.30)

F (−n)
ur =−2

(
∂(zA

(2−n)
z̄) +

n−2∑
k=1

ik

2−n
[A(2+k−n)

(z ,A
(−k)
z̄) ]

)
, n≥ 3

F (−n)
rz =−1

2∂−1
u

(
∂z(F (−n)

ur +F
(2−n)
zz̄ )−i

n∑
k=2

[
A(k−n)

z ,
2n−k−1

k−1 F (−k)
ur +F

(2−k)
zz̄

])
, n≥ 2.

(C.31)

The first two equations above can be recast in the more compact form

F (−2)
ur = −2∂−1

u

(
D(zFz̄)u

)(0)
(C.32)

F (−n)
ur = 2

2− n

(
D(zFz̄)r

)(1−n)
, n ≥ 3. (C.33)

Finally, it is easy to prove that

F (−n)
uz = 1

n

[
(DuFrz)(−n−1) + (DzFzz̄)(1−n)

]
. (C.34)

D Subn-leading charge I+ limit

In this appendix, we will explicitly show how the charges defined on a spatial Cauchy slice
can be “pushed” to I+ as depicted in figure 3, via the limiting procedure t → +∞ at fixed
u and a renormalization on t.

Start with the charge defined in the standard way,

ρ̃λ = −∂µtr
(√

gλF tµ
)

= −∂µtr (√gλ (Frµ + Fuµ))

= tr
{

γ
[
∂r(r2λFur)− ∂u(r2λFur)

]
+ r2∂z(γλF z

u ) + r2∂z̄(γλF z̄
u )
}

,

(D.1)

where λ is the large gauge parameter. We will derive the relation between λ and our Λ
(see e.g. (2.53)) below.

The last two terms will drop out when integrating over the sphere. Let us then normalise
by a factor of γ and define our density as

ρ = tr
[
∂r(r2λFur)− ∂u(r2λFur)

]
(D.2)

Assume a tree-level type fall-off for λ and Fur:

λ(r, u, z, z̄) =
n∑

k=0
rkλ(k)(u, z, z̄) , Fur =

∞∑
m=0

F
(−2−m)
ur (u, z, z̄)

r2+m
(D.3)

then, keeping only the positive powers of r in ρ, we have

ρ = tr

∂r

 n∑
k≥m≥0

λ(k)F (−2−m)
ur rk−m

− ∂u

 n∑
k≥m≥0

λ(k)F (−2−m)
ur rk−m


= tr

n∑
k≥m≥0

(k − m)λ(k)F (−2−m)
ur rk−m−1 − tr

n∑
k≥m≥0

∂u

(
λ(k)F (−2−m)

ur

)
rk−m

(D.4)
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Now we recall that r = t − u. We plug this into the above, and take the limit t → ∞,
keeping u fixed.

We discard the terms divergent in t, as they correspond to subk-leading theorems, for
k < n (by virtue of Lemma 2, see section D.1). These terms can be written as contributing
to the symplectic potential as total variations of the Lagrangian or a partial divergence
(∂ifi over spatial indexes). These types of terms were shown to be renormalizable, see
e.g. [29, 42]. Thus, we are left with

ρfinite = tr
n∑

k≥m≥0
(k − m)λ(k)F (−2−m)

ur (−1)k−m−1uk−m−1

− tr
n∑

k≥m≥0
∂u

(
λ(k)F (−2−m)

ur

)
(−1)k−muk−m

= ∂utr

 n∑
k≥m≥0

λ(k)F (−2−m)
ur (−1)k−m−1uk−m


= ∂utr

(
n∑

m=0

(
n∑

k=m

λ(k)(−1)k−m−1uk−m

)
F (−2−m)

ur

)
(D.5)

Then we take our charge density constructed in section 4 and write it as a charge density
on I+, keeping only the 0th order in the Stueckelberg fields:

0
qI+ = ∂utr

(
n∑

m=0
Λ(m)F (−2−m)

ru

)
(D.6)

Then we can match the above via

Λ(m) =
n∑

k=m

λ(k)(−1)k−muk−m (D.7)

At sub-leading order (i.e. n = 1), we then have

Λ(0) = λ(0) − uλ(1), Λ(1) = λ(1) (D.8)

The above gives the explicit relation between our definition of the large gauge parameter,
and that in [41], working to first sub-leading order.

D.1 t-divergent terms in the charge

Lemma 2. Let ρ be the charge (D.2) with gauge parameter λ and field strength Fur as
in (D.3). Moreover, assume λ(k) ∝ un−k for all k ∈ {0, . . . , n}. Then, for each integer
s ∈ {0, . . . , n}, the coefficient of ts in the divergent part of limt→∞ ρ is equal to the finite part
of the charge in a sub(n−s)-leading theorem.

Proof. In order to prove this result, it is useful to introduce some notation: we add the
superscript [n] to the charge in (D.2) and to the gauge parameter in (D.3), to show explicitly
that they refer to a subn-theorem:

ρ[n] = ∂rtr(r2λ[n]Fur)− ∂utr(r2λ[n]Fur) , λ[n] =
n∑

k=0
rkλ[n](k) . (D.9)
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By assumption, the coefficients λ[n](k) in the expansion of λ[n] have the form

λ[n](k)(u, z, z̄) = fn,k(z, z̄)un−k , (D.10)

where fn,k are arbitrary functions on the sphere. From equation (D.4) and r = t−u it follows
that

ρ[n] = −∂utr
n∑

m=0

n∑
k=m

λ[n](k)F (−2−m)
ur (t − u)k−m

= ∂utr
n∑

m=0

n∑
k=m

fn,k(z, z̄)F (−2−m)
ur

k−m∑
s=0

(
k − m

s

)
(−1)k−m−s−1 tsun−m−s

= ∂utr
n∑

s=0

n−s∑
m=0

n∑
k=m+s

(−1)k−m−s−1
(

k − m

s

)
fn,k(z, z̄)F (−2−m)

ur tsun−m−s ,

(D.11)

where
(k−m

s

)
is the binomial coefficient.21 In the last step, we make use of

n∑
m=0

n∑
k=m

k−m∑
s=0

(
k − m

s

)
αn,s,m,k =

n∑
m,s=0

n∑
k=m

(
k − m

s

)
αn,s,m,k

=
n∑

m,s=0

n∑
k=m+s

(
k − m

s

)
αn,s,m,k =

n∑
s=0

n−s∑
m=0

n∑
k=m+s

(
k − m

s

)
αn,s,m,k ,

(D.12)

which is true for any arbitrary function αn,s,m,k. At this point, it is convenient to define the
following objects:

ρ[n]
s (u, z, z̄) := ∂utr

n−s∑
m=0

f̃n,s,m(z, z̄)F (−2−m)
ur un−m−s (D.13)

f̃n,s,m(z, z̄) :=
n∑

k=m+s

(−1)k−m−s−1
(

k − m

s

)
fn,k(z, z̄) for m + s ≤ n , (D.14)

so that the charge ρ[n] can be written as

ρ[n] =
n∑

s=0
tsρ[n]

s = ρ
[n]
0︸︷︷︸

finite

+
n∑

s=1
tsρ[n]

s︸ ︷︷ ︸
divergent

. (D.15)

When taking the limit t → ∞, the expression above diverge, except for the term with
s = 0, that corresponds to (D.5). Looking at the expression (D.13) for the coefficient of the
ts-divergent term, we can see that it has the same u-expansion as the finite term in the charge
of a sub(n−s)-leading theorem, which is

ρ
[n−s]
0 (u, z, z̄) = ∂utr

n−s∑
m=0

f̃n−s,0,m(z, z̄)F (−2−m)
ur un−m−s . (D.16)

21In general, the binomial coefficient
(
n
k

)
is well defined only for n ≥ k. Here, we extend its definition as

follows: (
n

k

)
:=

{
n!

k!(n−k)! n ≥ k

0 n < k
.
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In particular, given ρ[n], it is always possible to find a choice of the gauge parameter λ[n−s]

for the sub(n−s)-leading theorem such that ρ
[n]
s = ρ

[n−s]
0 . Indeed, (D.13) and (D.16) coincide

if f̃n−s,0,m = f̃n,s,m for all m = 0, . . . , n − s. Using the definition (D.14), and after some
algebra, one can show that this condition corresponds to

n∑
k=m+s

(−1)k−m−s

[
fn−s,k−s −

(
k − m

s

)
fn,k

]
= 0 , ∀m ∈ {0, . . . , n − s} , (D.17)

which is a system of n − s + 1 equations. Solving it recursively for fn−s,k−s we obtain

fn−s,n−s = fn,n

fn−s,n−s−j = fn,n−j +
n∑

k=n−j+1
(−1)k+j−n−1

[
fn−s,k−s −

(
k + s + j − n

s

)
fn,k

]
,

(D.18)

with j ∈ {1, . . . , n − s}. Thus, choosing a gauge parameter λ[n−s] whose expansion is given
by functions fn−s,k as in (D.18) gives ρ

[n]
s = ρ

[n−s]
0 .

E Sub-leading charges from the Ward identity perspective

In this section we derive the explicit form of the gauge transformation Λ under the hypothesis
that its associated charge matches a Ward identity-type expression.

More specifically, we assume that the charge splits into two contributions, a soft part
that is linear in both A

(0)
z and A

(0)
z̄ and a hard part with quadratic and higher terms in

A
(0)
z and A

(0)
z̄ . In particular, the modes should correspond to a vanishing energy limiting

process of a soft gluon,

lim
ω→0

∫
dueiuωF (0)

uz →
∫

duF (0)
uz . (E.1)

We impose radial gauge on the gauge field, but recall that we do not restrict the over-
leading gauge parameters, as they only act on the Stueckelberg fields (see section 2 for
more details).

E.1 Leading order charge

As a warm up, we first re-derive the u dependence of the large gauge transformation
corresponding to the leading charge. Let us start with a general parameter, Λ = Λ(0)(u, z, z̄).

QΣ[Λ] =
1
e2

∫
∂Σ

tr(Λ ∗ F )(0) = 1
e2

∫
∂Σ

dz2tr (√gΛFru)(0)

= 1
e2

∫
∂Σ

dz2tr
(
γΛ(0)F (−2)

ru

)
= 1

e2

∫
I+

dudz2∂utr
(
γΛ(0)F (−2)

ru

)
= 1

e2

∫
I+

dudz2γtr
(
∂uΛ(0)F (−2)

ru

)
+ 1

e2

∫
I+

dudz2γtr
(
Λ(0)∂uF (−2)

ru

) (E.2)

From the e.o.m. (3.60) at order n = 2 we obtain

F (−2)
ru = 2γ−1

∫ u

−∞
dũ
(
∂(zF

(0)
z̄)u − i[A(0)

(z , F
(0)
z̄)u]

)
, (E.3)
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so that

QΣ[Λ] =
2
e2

∫
I+

dudz2tr
[
∂uΛ(0)

∫ u

−∞
dũ
(
∂(zF

(0)
z̄)u − i[A(0)

(z , F
(0)
z̄)u]

)]
+ 2

e2

∫
I+

dudz2tr
[
Λ(0)

(
∂(zF

(0)
z̄)u − i[A(0)

(z , F
(0)
z̄)u]

)]
.

(E.4)

The top line in the previous equation does not have the right form corresponding to the
insertion of a standard soft mode. Therefore, we need to set ∂uΛ(0) = 0, so

QΣ[Λ] = − 2
e2

∫
I+

dudz2tr
[
∂(zΛ(0)F

(0)
z̄)u + iΛ(0)[A(0)

(z , F
(0)
z̄)u]

]
. (E.5)

E.2 Sub-leading charge

Next, we write Λ = rΛ(1)(u, z, z̄) + Λ(0)(u, z, z̄), and we want to obtain the expression for
Λ(0) in terms of Λ(1).

The sub-leading charge is

Qsub
Σ [Λ]= 1

e2

∫
∂Σ

dz2 tr
(
r2γΛFru

)(0)
= 1

e2

∫
∂Σ

dz2γtr
(
Λ(0)F (−2)

ru +Λ(1)F (−3)
ru

)
= 1

e2

∫
I+

dudz2γtr
(
∂uΛ(0)F (−2)

ru +Λ(0)∂uF (−2)
ru +∂uΛ(1)F (−3)

ru +Λ(1)∂uF (−3)
ru

)
.

(E.6)

The first two terms in the last line have been already studied for the leading order charge. In
order to rewrite the other two terms, consider e.o.m. (3.60) with n = 3:

∂uF (−3)
ru = 2γ−1∂(zF

(−1)
z̄)u − i[A(−1)

u , F (−2)
ur ]− 2iγ−1

1∑
k=0

[A(k−1)
(z , F

(−k)
z̄)u ] . (E.7)

Now, subtract Bianchi identity (B.16) from e.o.m. (3.62) with n = 2, to find

F (−1)
uz = 1

2∂z

(
γ−1F

(0)
zz̄ + F (−2)

ru

)
− i

2[A
(0)
z , γ−1F

(0)
zz̄ + F (−2)

ru ] ; (E.8)

similarly, subtract (B.17) from (3.63) with n = 2, obtaining

F
(−1)
uz̄ = −1

2∂z̄

(
γ−1F

(0)
zz̄ − F (−2)

ru

)
+ i

2[A
(0)
z̄ , γ−1F

(0)
zz̄ − F (−2)

ru ] . (E.9)

Use equations (E.8) and (E.9) to rewrite (E.7) as

∂uF (−3)
ru = −γ−1∂z∂z̄F (−2)

ru + nl , (E.10)

where we defined

nl : = −iγ−1
(
∂[z[A

(0)
z̄] , γ−1F

(0)
zz̄ ]− ∂(z[A

(0)
z̄) , F (−2)

ru ] + γ[A(−1)
u , F (−2)

ur ]

+ 2
1∑

k=0
[A(k−1)

(z , F
(−k)
z̄)u ]

)
;

(E.11)

then we obtain:

F (−3)
ru = −γ−1

∫ u

−∞
dũ
(
∂z∂z̄F (−2)

ru + nl
)

. (E.12)
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At this point, the sub-leading charge is

Qsub
Σ [Λ] = 1

e2

∫
I+

dudz2tr
[
−∂uΛ(1)

∫ u

−∞
dũ
(
∂z∂z̄F (−2)

ru + nl
)

+ γ∂uΛ(0)F (−2)
ru + γΛ(0)∂uF (−2)

ru − Λ(1)
(
∂z∂z̄F (−2)

ru + nl
)]

.

(E.13)

The term in the first line, when written in terms of F
(0)
uz and F

(0)
uz̄ , is of the form∫+∞

−∞ du
∫ u
−∞ dũ

∫ ũ
−∞ d˜̃u (recall equation (E.3) in the computation of the leading charge above),

which as in the previous subsection, does not correspond to a standard soft gluon insertion.
The only way to make it vanish is to impose the condition

∂uΛ(1) = 0 . (E.14)

We are now left with

Qsub
Σ [Λ] = 1

e2

∫
I+

dudz2tr
[(

γ∂uΛ(0) − ∂z∂z̄Λ(1)
)

F (−2)
ru + γΛ(0)∂uF (−2)

ru − Λ(1)nl
]

, (E.15)

where the first term is of the form
∫+∞
−∞ du

∫ u
−∞ dũ, so again is of the wrong form, and we

require it to vanish, thus arriving at

∂uΛ(0) = γ−1∂z∂z̄Λ(1) . (E.16)

Solving the previous equation, using condition (E.14), we finally conclude thatΛ(1) = µ(z, z̄)
Λ(0) = λ(z, z̄) + uγ−1∂z∂z̄µ(z, z̄) = λ(z, z̄) + u

2∆µ(z, z̄)
, (E.17)

where λ(z, z̄) is a constant of integration from (E.16). This parameter contributes to the
leading charge and therefore we discard it for the sub-leading charge.

Finally, using (E.3) again, we write the sub-leading charge as

Qsub
Σ [Λ] = 1

e2

∫
I+

dudz2tr
(
2Λ(0)∂(zF

(0)
z̄)u − 2iΛ(0)[A(0)

(z , F
(0)
z̄)u]− Λ(1)nl

)
. (E.18)

Via this procedure we obtain a simple form of the sub-leading charges, avoiding the intricacies
that follow from gauge fixing the gauge parameters, in particular the field dependence that
can arise in certain gauges (e.g. Lorentz gauge).
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