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Abstract—Efficient scheduling of the sources within a com-
munity is essential to reduce the electricity-related cost as well
as the carbon emissions from the community. A novel energy
management strategy for community grids is introduced in this
research, leveraging peer-to-peer trading and the multi-objective
optimisation of the cost and carbon emissions in scheduling the
diverse energy sources and battery storage systems within the
community. The grid, photovoltaic farms, Combined Heat and
Power plants, and battery energy storage are considered in this
paper, and our approach, underpinned by real-life data analysis,
is used to find effective schedules for each source. The model
is implemented on MATLAB and solved using the YALMIP
optimisation toolbox to obtain optimal scheduling of the sources.
An operation cost savings of up to 62.5% is achieved in a
range of scenarios, highlighting the importance of optimal source
scheduling in smart grids.

Index Terms—Energy Management System, Multi-objective
Optimisation, Pareto Optimisation, Smart grid

NOMENCLATURE

At Duration of time instance t.

ncup  Efficiency of the CHP plant.

Teh Charging efficiency of the BES.

Tdis Discharging efficiency of the BES.

C Total cost objective for the community (£)

Cpggs(t) Cost associated with BES at time t (£).

Cprgs(t) Cost associated with the BES at time ¢ (£).

Ccpp(t) Cost of electricity generation through the CHP plant
at time t (£).

Corip(t) Cost of electricity taken from the grid at time ¢ (£).

Cnc(t) Real-time price of natural gas at time ¢ (£/m?).

Cop cup(t) Additional operational cost due to maintenance of
the CHP plant at time ¢ (£/kWh).

Cpop(t) Cost associated with the P2P trading at time ¢ (£).

Cpy(t) Cost of electricity generation through PV at time ¢

®).

Real-time grid price for energy purchase at time ¢

(£/kWh).

C; pgs(t) Additional operational cost for the BES at time ¢

(£/h).

Discounted P2P price for energy trading at time ¢

(£/kWh).

Gy(1)

Ci(t)
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FEBES min> 2BES max Minimum and maximum energy stored in
BES (kWh).
Eggs(t) Energy stored in the BES at time ¢ (kWh).

FF Fill Factor.

k Charging flag indicator (1, if charging; 0, otherwise).
ki Current temperature coefficient (A/°C).

ky Voltage temperature coefficient (V/°C).

LHVyg Lower heating value of natural gas (J/kg).

Neotar Total number of PV modules.

Pcyp min, Penp max Minimum and maximum power output of
the CHP plant (kW).

Pcyp(t) Power output of the CHP plant at time ¢ (kW).

PGRID max Maximum power purchased from the grid (kW).

Psrip(t) Power purchased from the grid at time ¢ (kKW).

P max Maximum power input to BES (kW).

P,(t) Power input to the BES at time ¢ (kW).

Pioaa(t) Total load power at time ¢t (kW).

Pout max Maximum power output from BES (kW).

P,y (t) Power output of the BES at time ¢ (kW).

Peop(t) Power traded peer-to-peer at time ¢ (kW).

Pry mins Ppv max Minimum and maximum energy output from
PV (kW).

Ppy(t) Solar power output per hour (kWh).

R Carbon emissions from the CHP plant (g CO2).

Rgrip(t) Carbon emissions from the grid at time ¢ (g
CO2e/kWh).

Ry cyp Carbon emissions from the CHP plant per kWh of
energy production (g CO2e/kWh).

R, crip(t) Grid carbon intensity at time ¢ (g CO2e/kWh).

s(t)  Solar irradiance at time ¢ (W/m?).

T Total time period under consideration.

t Specific time instance within the period 7.

T Ambient temperature of PV module (°C).

Tor Nominal operating cell temperature of PV module
©0).

Venp(t) Volumetric consumption of natural gas for CHP at
time ¢ (m®).

Vmep, Impp PV module voltage (V) and current (A) at maxi-
mum power point, respectively.

Voc, Isc Open circuit voltage (V) and short circuit current (A)
of a PV module.

wy,we Weighting factors for operational cost and carbon
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emissions minimization objectives, respectively.

I. INTRODUCTION

N the face of rising global energy demands, its associated

carbon emissions, and the urgent need for sustainable
practices, the role of efficient energy management systems has
never been more critical. Nations such as the UK, Germany,
and many others have signed pledges to reduce their respective
carbon emissions to net zero by 2050 or sooner [1], [2]. This
has led to a surge in research on ways to mitigate these
emissions to enable the nations achieve their Net-Zero targets.

The power generation sector accounts for about 40% of
the carbon emissions in the world in 2020 [3]; hence, a
reduction in carbon emissions from this sector would lead
to a substantial reduction in the world’s carbon emissions.
One prominent method in the mitigation of wasteful power
generation is the implementation of smart grids [4]. This
involves the utilisation of Energy Management Systems (EMS)
to monitor and schedule the loads and sources in residential
and industrial environments to drastically reduce the wasteful
generation and usage of energy and enable more intelligent
energy utilisation and scheduling [5]. This also opens up
avenues for the bidirectional energy flow and can even reduce
the arbitrage in the grid’s carbon intensity and prices due to
the intermittency of renewable sources in the grid [5]. The
utilisation of smart grids can also lead to a reduction in grid
carbon intensity, as seen in a study of the benefits of smart
grid implementation in China [6].

Smart grids have to optimise between many different objec-
tives and operational constraints set by the users and operators
of the grid during their operation, such as carbon intensity
reduction [6], cost reduction, stability constraints [7], renew-
able integration, and fault detection and resolution capabilities
[8]. Some of these objectives can be contradictory to each
other, such as in the renewable integration scenario where
excess renewable power generation can reduce the reliability
of the grid [7] and also lead to the overvoltage condition in
some scenarios [9]. These scenarios require the use of multi-
objective optimisation methods to balance the different objec-
tives and select effective grid operation algorithms to allow
optimal performance within the grid’s operational constraints.

Extensive research has also taken place in the area of multi-
objective optimisation and its utilisation in smart grids and
EMS. It involves the use of algorithms to optimise two or
more conflicting objectives. It encompasses methodologies
that identify optimal solutions for complex problems. These
solutions are found on the Pareto front, representing a set
of non-dominated solutions in the objective space [10]. A
non-dominated solution is one where no objective can be
improved without worsening at least one other objective. A
weighted utility function can be applied to select the most
appropriate solution from this set, to reflect the decision-
maker’s preferences from the range of optimal solutions [11].

Peer-to-peer (P2P) trading is of significant importance in
the future of energy networks and smart grids with multidirec-
tional energy flow. P2P trading allows the trading of electricity

between different users, typically during peak demand, and can
help reduce the need for reserve generation capacity in the grid
due to spikes in demand during peak times [12]. P2P trading
has been shown to reduce the energy cost for prosumers in a
wide range of scenarios while benefiting the grid through the
reduction of peak demand [13] and reserve requirement [14].

Despite extensive research into the implementation of multi-
objective optimisation within smart grids and P2P trading in-
dividually, there remains a lack of comprehensive studies that
combine multi-objective optimisation of the user’s objectives
with the dynamics of P2P energy trading. Also, little has been
done in the space of utilising the sources in the community to
support the grid during times of higher grid carbon intensity.
The grid carbon intensity is a measure of the amount of carbon
emission per kWh of grid energy (gC02/kWh) and varies
throughout the day, reflecting the carbon emissions of the
sources employed in the generation of electricity [15]. This
work introduces the joint consideration of the minimisation
of the operational cost and carbon emission objectives in
the smart grid of the community through the implementation
of P2P trading. This is crucially important as smart grid
technologies enable the bidirectional flow of energy from the
wider grid network to the community-wide grid as well as
between the prosumers in a community. Hence, it is essential
to analyse the effective scheduling of the sources and energy
storage in the community to optimally achieve its aims.

The main contributions from this work can be summarised
as follows:

1) A Multi-objective optimisation of a community-wide
EMS is proposed. The key objectives are operational
cost minimisation and carbon emissions reduction in the
community’s grid.

2) P2P energy trading is jointly considered during the
optimisation process. A simple and effective P2P energy
pricing model is implemented in this work to address
the grid overvoltage problem whilst allowing economical
energy trading to take place.

II. SYSTEM MODELLING

The community-wide load considered in this paper consists
of the aggregated hourly load in a residential setting. The
primary energy source in this setting includes the grid, PV
farm and the CHP plant in the community. The BES can also
act as a source at appropriate times decided by the EMS. The
community model can be seen in Fig. 1.

A. Solar Energy Sources

The solar energy source is utilised in this residential model.
The available solar power is determined based on the irradi-
ance in the area and the number of panels in the home [16],
[17]. The power output from the PV per hour is derived using:

va(t) = Nyotar X F'F x V(t) X I(LL), Vit € [1,T] (1)

where
FF = (VmppIwer)/(VocIsc) )
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Fig. 1. Structure of Community Grid.

V(t) = Voc — kvTc(t) 3)
I(t) = s(t) Isc + ki (Tc(t) — 25)] 4)
Te(t) = Ta + s(t) (Tor - 20)/0.8 (5)

B. CHP Energy Source

The CHP plant, which consists of a microturbine, is used
as a source of electricity and heat. The volumetric gas con-
sumption is expressed as [18]:

VCHp(t) = (PCHP (t)At)/(T}CHPLHVNG), Vit € [1, T] (6)

The cost of running the CHP plant depends on the price of
the feedstock, natural gas, and the operational cost of running
the plant. It is calculated using

Cenp(t) = Cng(t)Venr(t) + Cop cup(t) Penp(t) At,
Vie [LT] (7)
C. Battery Energy Source (BES)

The BES is used to store excess generation from the sources.
The charging and discharging cycle of the battery is governed
by the EMS to allow the maximisation of the user’s goals. The
energy stored in the BES, Fggg is modelled using [18]

(1 - k) 0111( )At/ndls+
kEnenPn(t)At, YVt € [1,T] (8)

Eggs(t) = EBES(t - 1) -

The cost of running the BES was calculated using the
equation below

Cres(t) =Cp(2)

The charging and discharging cycle of the battery is man-
aged by the EMS scheduling algorithm to meet the specific
needs of the prosumers based on their requirement for cost

_Pin(t)At + C: BES (t)At, Vt € [1, T] 9)

or carbon emissions savings. The charging and discharging
constraints and conditions are discussed in the constraints
section.

III. OPTIMISATION PROBLEM FORMULATION
A. Objective Function

The objectives of the EMS involve reducing the cost of
electricity usage for the community and the reduction of
carbon emissions associated with energy use. These objectives
are sometimes contradictory and warrant a multi-objective
approach to meet the community’s needs.

The EMS solves a combination of both objectives, which
involves minimising the energy cost and carbon emissions due
to the community’s energy use. The combined objective can
be written as:

F=wC+wR (10)

The cost objective aims to reduce the cost of purchasing
and utilising energy. This also includes the use of P2P energy
trading and source scheduling to reduce the total cost of
energy utilisation in the community. The different electricity
sources have various generation costs, some of which are
variable, such as the real-time price of electricity purchased
from the grid, which is published on a day-ahead basis. It is,
therefore, essential for the EMS to utilise this information for
the optimal scheduling of different sources and P2P trading
intervals for optimal source utilisation and cost minimisation.
This is modelled using the following equations:

C=> (Ccm(t)

) + Cpy(t) + Cormp (t)+

=1
Cges(t) — Cpop(t)) (11)

where
Carip(t) = Cp(t) Porip (t) At (12)
Coan() = Cu(t) Prap () At (13)

The carbon emissions objective aims to reduce carbon
emissions due to the utilisation of energy sources connected to
the home, such as the grid, PV, and the BES. Each source has
a different carbon intensity which depends on the feedstock
used by the source in electricity production. Crucially, the
carbon intensity of the grid fluctuates significantly interday and
between days due to the intermittency of the renewable sources
connected to the grid. The emission factors for the different
sources, including the grid’s carbon intensity, are found using
the live tracker of the UK’s carbon emission per source [15].
The carbon emissions for each day were calculated in the
model using the following equation:

R= Z Rerip(t) + Renp(t)) (14)
=1
where
Rerip(t) = Ru crin(t) Porip () At (15)
Renp(t) = Ry cupPenp(t) At (16)



This objective can also enable the reduction of the grid’s
carbon emissions, as it would incentivise the utilisation of
lower polluting sources and stored energy in the BES within
the community during times of elevated grid carbon intensity.
This, if adopted at scale, would also lead to a decrease in
grid carbon intensity as the reduction in energy demand on
the grid during times of higher grid carbon intensity enables
lower utilisation of higher polluting sources within the grid.

B. Model Constraints

Specific constraints are placed in the optimisation algorithm
to ensure a feasible solution to the EMS scheduling multi-
objective problem is achieved. Some of the constraints added
to the model can be seen below:

1) Power Balance Constraint:: The power balance con-
straint ensures that the energy supply always meets the demand
at all points in time.

Peyp(t) + Pov(t) + Porip(t) + Pou(t)

= -Pload(t) + Rn(t)v Vit € [17T] (17)

2) Power Output Constraints: The power output constraint
ensures the schedule adopted by the EMS is feasible for all the
sources in the community, and their minimum and maximum
supply limits are not violated. The following constraints ensure
the optimal operation of the EMS.

Penp min < Peup(t) < Pewp max, VE € [1,T) (18)
Py min < Ppv(t) < Poy max, Vt € [1,T] (19)
Porip(t) < Porip maxs Vt € [1,T] (20)

3) BES Constraints: These constraints ensure the optimal
operation of the BES and dictate the maximum operating
parameters of the BES, such as the maximum discharge
and charging rate. They also ensure that the battery is not
being charged and discharged in the same interval, which can
degrade the battery’s lifetime.

Pin(t) Pow(t) =0, Vt € [1,T] (21)

0 < Pa(t) < Pomax, V¢ € [1,7] (22)

0 < Poul(t) < Pout max, Vt € [1,7] (23)
EBEs min < Epgs(t) < Epes max, Vt € [L,T]  (24)

IV. ENERGY TRADING

Energy trading is implemented based on a P2P trading
schedule and real-time pricing. To facilitate energy trading, a
novel strategy involving a combination of source and energy
trading optimisation is proposed. This ensures the EMS utilises
complementary community energy management and energy
trading strategies.

The strategy also involves sharing real-time network infor-
mation between the prosumers in the grid and the Distribution
System Operator (DSO). This is to prevent the overvoltage
problem common during energy trading scenarios, especially
during times of lower demand in the grid. The pricing strategy

Algorithm 1 Enhanced Energy Trading Algorithm

: Initialize system parameters and conditions.

: Communicate with DSO for voltage and bus data.

: Collect data of supply, demand, and grid conditions.

: Set trading conditions based on goals and constraints.

: Perform optimization to maximize objectives within regulatory and sta-
bility limits.

6: while conditions for energy trading are met do

7: Check DSO data to ensure voltage is within limits.

8 if DSO allows trading then

[ R N O S

9: Compute trade volume from Eggs, Ppy, and Pyem (t).
10: Determine best trading action to meet objectives.

11: Perform trade on the market.

12: else

13: Delay trading to maintain voltage and grid stability.
14: end if

15: Monitor system for changes in storage, demand, or grid.

16: Adjust trading strategy based on new data.
17: end while

TABLE I
ELECTRICITY PRICING TIMEFRAMES AND DISCOUNTS

Timeframe Discount Applied  Pricing Threshold
Peak 6% 85% - 100%
Intermediate 15% 70% - 85%
Off-peak 20% 0% - 70%

applies varying discounts to the real-time grid prices based
on peak, intermediate, and off-peak times (see Table I). This
discount to the real-time price can be viewed as the maximum
energy trading price between the different parties participating
during that time interval. The energy trading scenerio is
summarized in Algorithm 1.

V. RESULTS AND DISCUSSION
A. Input Data

This paper uses actual real-time pricing and the grid carbon
intensity in the UK on different days as the simulation environ-
ment. The values of all the parameters used in the simulation
can be seen in Table II.

The sources considered in this paper include the grid, PV
farms, CHP plants, and the BES. The CHP plants, PV farms,
and BES are managed within the community to provide energy
to the community’s residents. The effective scheduling of these
sources is determined by the community’s energy management
system deployed in this paper to ensure the community’s aims
are achieved.

The loads considered in the model consist of the aggregated
loads of 100 user profiles based on IEEE load data [19].
This ensures compatibility with a home energy management
system model for individual residents in the community, in
which the daily load profiles of the residents are shared
with the community-level Energy Management System for
effective scheduling of the sources within the community. This
enables the community’s EMS to focus on the optimisation
of the sources and BES to achieve the objectives of the
community. The electricity prices are based on the real-time
price of electricity for a specific day in the UK. The real-time
grid carbon intensity data is also utilised to minimise carbon
emissions. The model is implemented in MATLAB, and the
YALMIP toolbox [20] is used to simulate and optimise the
scheduling of the sources.



TABLE II
PARAMETERS FOR SOLAR POWER, CHP, AND BES

Solar Power Parameters

VMppi 310V IMPP: 8.40 A
Voci 378V Iscl 8.95 A
Niolar: 250 units Chpy: 0.0096 £/kWh

CHP Parameters

CCHpZ 0.0017 £/kWh
Ry cup: 394 gCO2/kWh

T)CHP: 0.85
Cng: 0.0273 £/m3
PGRID min: 0 kW

BES Parameters

CBES3 0.0014 £/kWh
EBES min - 0 kWh
P max: 30 kW

Tch, Ndis: 0.9
Eprs o 300 kWh
W

in min*

B. Optimisation Result Discussion

The optimisation is performed to identify effective schedul-
ing cycles that maximise the objectives for the three scenarios
considered:

o Case 1 - Minimisation of community’s carbon emission
e Case 2 - Combination of both objectives in a multi-
objective problem

In Case 1, the focus is on the minimisation of operational
costs. The BES is charged during times of lower real-time
grid prices and higher PV energy generation, as seen in
Figs. 2c and 2b, coinciding with periods of lower community
loads and electricity prices. The energy storage facilitates
the use of the stored energy during elevated grid real-time
price periods and enables P2P trading at suitable intervals.
Fig. 2a demonstrates the discharging cycle of the BES and
the P2P trading schedule for the community. Discharging the
BES during high grid price periods reduces grid utilisation,
thus decreasing the community’s energy costs. This allows for
revenue generation from P2P trading of excess power stored
in the BES, benefiting both the grid and the community by
facilitating easier energy demand forecasting due to the peak
shaving achieved using the BES. High CHP plant utilisation
also occurs in this scenario, attributed to its lower operational
cost per unit of energy compared to the grid. This approach
is also beneficial for contingency planning. The lowest total
cost is achieved here, with a total cost of £37.30 and carbon
emission of 423.93kg CO,. This represents a 62.5% cost
reduction and a 178% increase in carbon emissions compared
to the grid-only baseline, due to the higher P2P trading and
BES scheduling as seen in Fig. 3b.

Case 2 adopts a multi-objective approach that combines
cost and carbon emission minimisation. The BES charging and
discharging schedule is depicted in Fig. 2c. The BES charges
during periods of low grid prices and lower grid carbon
intensity, enabling discharging during times of higher grid
prices and carbon intensity as seen in Fig. 2b. Primarily, energy
is sourced from the grid early in the morning, coinciding with
low carbon intensity and grid prices, as shown in Fig. 2a.
Notably, there is no power purchase during the interlude, even
at lower grid prices, until the evening, when the higher load
necessitates increased grid power purchases despite the higher
carbon intensity. The energy purchased from the grid is lower
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Fig. 2. Energy schedule of (a) sources; (b) load; and (c) BES.

due to the discharging of the BES during this period. The P2P
trading schedule in this scenario is shorter than in Case 1 as the
scheduling needs to satisfy both cost and emission reduction
objectives, as seen in Fig. 2a. Economically, this scenario
achieves an operational cost of £47.86, which is a 47.8% cost
reduction compared to the grid-only implementation. However,
the operational cost is 28% higher than that of Case 1. This
significant cost increase is a result of the higher grid utilisation
during periods of elevated grid prices, as seen in Fig. 3b.
Carbon emissions of 289.06 kg CO5, as shown in Table III,
are 106% and 177% higher than the grid-only implementation
and Case 1, respectively.

A Pareto front plot of the other solutions to the optimisation
problem can be seen in Fig 4

VI. CONCLUSION

This paper presents a novel combination of multi-objective
optimisation of operational cost and carbon emission, coupled
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with P2P energy trading strategies in a community smart grid.
A simple and effective P2P pricing strategy has also been
implemented. Different sources, such as the grid, CHP plants,
PV farms, and BES, have been integrated into the system
alongside the aggregate load of the consumers in the commu-
nity. The optimisation algorithm is implemented, and effective
schedules for each source are found for two scenarios: cost
minimisation and a multi-objective combination of cost and
carbon emissions reduction. Both scenarios resulted in lower
costs than purchasing from the grid, with up to 62.5% cost
saving in the cost minimisation scenario. Careful selection of
optimisation parameters is crucial to reflect community needs
accurately. Future research could focus on integrating the
home energy management systems of the consumers connected
to the community’s EMS.
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TABLE III
CoOST AND CARBON EMISSIONS FOR DIFFERENT SCENARIOS

Scenario Cost (£) CO2 Emission (kg)

Case 1 37.30 42393

Case 2 47.86 289.06

Grid-Only (No Intervention) 91.67 152.54
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