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ABSTRACT

The novel view synthesis from a limited set of images is a sig-
nificant research focus. Traditional NeRF methods, relying
mainly on color supervision, struggle with accurate scene ge-
ometry reconstruction when faced with sparse input images,
leading to suboptimal rendering. We propose a Few-shot
NeRF Based on Scene Information Distribution(Sid-NeRF)
to address this by integrating geometric and color supervision,
enhancing the model’s understanding of scene geometry. We
also implement a data selector during training to identify and
utilize the most accurate geometric data, thus improving train-
ing efficiency. Additionally, a residual module is introduced
to counteract any optimization biases from the selector. Our
method was tested on three datasets and showed excellent
performance in various environments with limited images.
Notably, compared to other novel view synthesis methods
based on fewer views, our method does not require any prior
knowledge and thus does not incur additional computational
and storage costs.

Index Terms— Novel view synthesis, Limited input im-
ages, Without prior knowledge

1. INTRODUCTION
Neural rendering, exemplified by Neural Radiance Fields
(NeRF [1, 2]), utilizes neural networks to learn scene rep-
resentations, encoding scene volume density and color, en-
abling high-quality novel view synthesis from input images.
Its versatility has led to applications in various fields, in-
cluding complex environments, dynamic scenes, and editable
NeRF. However, NeRF struggles when input images are
scarce, limiting perspective coverage and detail capture and
diminishing its novel view synthesis performance.

In order to improve the quality of novel view synthesis for
NeRF with limited input images, several studies [3, 4] have
introduced prior knowledge. By introducing prior knowl-
edge, the model’s learning and understanding ability of the
scene can be enhanced by providing the model with addi-
tional viewpoint, geometry and depth information. However,
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Fig. 1: Our approach introduces geometric supervision based
on the scene information distribution, which complements the
traditional NeRF color-based supervision and shows superior
rendering quality in input-limited environments, as demon-
strated in the comparison.
this approach introduces additional computational resource
consumption and storage resource consumption. Specifi-
cally, large pre-trained models with prior knowledge increase
storage requirements, while model tuning increases computa-
tional requirements, thus affecting the practical implementa-
tion and scalability of the model.

In this study, we propose Few-shot NeRF Based on Scene
Information Distribution(Sid-NeRF) to enhance the novel
view synthesis quality of NeRF in scenarios with insufficient
input images without incurring additional storage or compu-
tational resource costs. The original NeRF model primarily
relies on color information for supervision. Our approach
extends this by incorporating geometric information into the
supervision process. Specifically, this geometric supervision
is based on the distribution of scene information. We adopt
ray entropy as a scene information distribution constraint.
Ray entropy is a metric to assess the uncertainty of opacity
distribution across sampling points along a ray’s path. In sim-
ple environments, scene information exists mainly near the
surfaces of non-transparent objects. In this case, the opacity
distribution of the sampling points should be concentrated
near the surface of the non-transparent objects, when the ray
entropy is low. Thus, by minimizing ray entropy during the
training process, we can more effectively direct the network’s
focus to areas that most significantly contribute to the final
image. This optimization is particularly effective in sim-
ple environmental conditions, where the scene’s geometry
is more pronounced, making the opacity distribution of the
sampling points more concentrated can be an excellent way
to learn the geometric details of the scene.

However, in more complex environments, characterized
by multiple materials, varying lighting, or intricate geome-



tries, the distribution of scene information becomes more dis-
persed. In such scenarios, solely relying on ray entropy min-
imization is insufficient. To enhance the model’s ability to
learn scene information in complex environments, we intro-
duce KL divergence of depth difference and weight. Because
there is a correlation between the depth difference distribution
and the weight distribution even in complex environments,
to this end, we introduce additional supervisory elements:
the depth difference distribution and the weight distribution.
Since part of the data introduced for geometric supervision is
obtained during the training process, we implement a selec-
tor mechanism to evaluate and utilize data with higher preci-
sion during the training process. Additionally, recognizing
that this selector might introduce an optimization bias, we
incorporate a residual module to mitigate this effect. This
integrated approach aims to refine the training and rendering
capabilities of NeRF to ensure high-quality output even under
conditions of insufficient input images, without increasing the
demand on storage and computational resources.

In summary, our contributions are three-fold:
• Geometric Supervision: We integrate geometric in-

formation into NeRF’s training, focusing on the opac-
ity distribution at sampling points. This enhances the
model’s attention to key areas, improving novel view
synthesis quality, especially in simpler scenes.

• Complex Environment adaptation: To address the
limitations of ray entropy in complex environments,
we introduce depth difference and weight distribution
as additional supervisory factors to help models accu-
rately capture and render scene details in environments
with varying materials, lighting, and geometries.

• Selective Optimization with Residual Module: The
depth difference and weight distribution we introduce
are obtained during training, therefore, we use a selec-
tor to filter the data in which the accuracy is higher.
And we introduce the residual module to address the
problem of optimization bias caused by the selector.

2. RELATED WORK
Novel View Synthesis. Novel view synthesis, a pivotal tech-
nique in computer vision[5, 6, 7, 8, 9], leverages generative
models and Neural Radiance Fields (NeRF) to generate un-
seen perspectives of a scene by intricately modeling its 3D
structure. It has progressed from geometry-based methods
[10, 11] to depth map techniques [12] and light field ap-
proaches [13]. The advent of deep learning, especially with
Neural Radiance Fields (NeRF), marked a significant shift.
NeRF has pioneered innovations in novel view synthesis,
enhancing realism and detail in diverse scenarios with its
advanced deep learning capabilities.
NeRF For Few Images. In scenarios where obtaining diverse
images is challenging, the lack of extensive viewpoint data
hampers the model’s ability to learn surface details compre-
hensively, especially in zero-shot and few-shot learning con-
texts [14, 15, 16, 17]. To mitigate these limitations, several

works have turned to utilizing spatial structure information,
such as depth or 3D point clouds, to enhance the training
and inference processes. Notably, [18] employs depth infor-
mation prior to supervise NeRF training, thereby improving
both training efficiency and rendering quality in environ-
ments with fewer viewpoints. In a similar vein, [19] lever-
ages point-based 3D data as a prior, specifically to bolster
NeRF’s performance in complex scenes. Collectively, these
papers collectively demonstrate the efficacy of using varied
types of prior information (depth data and 3D point clouds) to
optimize NeRF models in environments constrained by lim-
ited data. Additionally, [20] introduces multi-view geometric
constraints and a depth consistency loss to enhance rendering
results without relying on prior information. [21, 22] employ
neural networks for depth estimation, using this as prior infor-
mation to guide the sampling process and supervise training.
[23] takes a different approach, optimizing single-view NeRF
synthesis by incorporating a general image prior from 2D dif-
fusion models and linguistic guidance from visual-language
models. This methodology not only bolsters multi-view con-
tent consistency but also further refines NeRF’s 3D geometry
through estimated depth maps, thus enhancing novel view
synthesis quality and demonstrating wide applicability across
various scenarios. These methods highlight a spectrum of re-
liance on the accuracy of prior information and the associated
computational resources.
Our Method. In contrast to existing techniques, our method
introduces geometric supervision based on the distribution
of scene information, augmenting the traditional color-
supervised NeRF. Notably, our approach does not require
any prior knowledge to achieve high-quality novel view syn-
thesis with insufficient input images, thus effectively avoiding
the consumption of additional computational and storage re-
sources that may be caused by introducing prior knowledge.

3. METHODOLOGY
Our method is mainly focused on the study of improving the
novel view synthesis effect in the case of an insufficient num-
ber of input images. By combining color supervision with
geometric supervision in the case of an insufficient number of
input images, our method is able to achieve high-quality novel
view synthesis without introducing any prior knowledge. This
section focuses on the overall architecture of our method.

3.1. Original NeRF
NeRF uses a neural network to learn scene information, fa-
cilitating 3D scene rendering from various viewpoints. It in-
puts 3D coordinates (x,y,z) and view direction (θ, ϕ) to output
color (r,g,b) and density σ. The color computation process is
as follows:

Ĉ(r) =
N∑
i=1

Ti(1− exp(−σiδi))ci,

Ti = exp(−
i−1∑
j=1

σjδj),

(1)



where σi indicates density, δi represents the distance between
adjacent sampling points, ci is the emitted color, r indicates a
ray, Ĉ(r) shows the expected color.

Fig. 2: NeRF’s limitations with insufficient input images re-
sult in incomplete viewpoints, geometric discontinuities, and
reduced novel view synthesis quality.

3.2. Motivation
NeRF struggles with few input images, impacting its 3D
scene understanding. Limited data leads to imprecise geom-
etry and lighting details, affecting novel view synthesis, as
shown in Fig. 2. Adding geometric supervision improves
accuracy, especially with limited views, enhancing NeRF’s
ability to generate reliable novel views.

3.3. The Pipeline of Our Method
Ray entropy in Scene Modeling. In simple environments,
important scene information resides primarily on opaque
object surfaces. To optimize data acquisition, we employ
’ray entropy’ [24] to guide sampling towards these critical
regions. Ray entropy quantifies opacity distribution at sam-
pling points, directing sampling to enhance model learning
on opaque surfaces. The formula for ray entropy is presented
below:

p(ri) =
αi∑
j αj

=
1− exp(−σiδi)∑
j 1− exp(−σjδj)

, (2)

H(r) = −
N∑
i=1

p(ri)logp(ri), (3)

where H(r) denotes ray entropy, p(ri) represents ray density,
σi denotes density, and δi indicates the distance between ad-
jacent samples. Opacity distribution α and ray entropy H(r)
are inversely related: a dispersed α yields higher H(r), and
a focused α results in lower H(r). Minimizing ray entropy
promotes concentrated opacity distribution, leading to denser
sampling points. The pertinent loss term for this process is
outlined below:

Lentropy = min(H(r)), (4)

Depth difference and weight. In simple environments, mod-
els should focus on opaque object surfaces, while in com-
plex scenes, comprehensive scene information is crucial. We
guide models by aligning depth difference with weight distri-
butions to ensure even sampling across the scene and equal
value given to each sample. This balance prevents bias to-
wards specific scene areas. The computation is detailed in the
formula below:

W = T (1− exp(−σδ)),

D(r) =
N∑
i=1

WiZi,
(5)

where W denotes the weight, D(r) denotes the pixel depth,
and Z denotes the sampling point depth. Z − D(r) denotes
the depth difference. We employ KL divergence as a metric
for comparing depth difference and weight similarity. Conse-
quently, we use KL divergence between these distributions as
a loss term:

LKL = DKL(w||d), (6)

where w represents weight, and d represents depth difference.
A higher KL divergence indicates greater distribution dispar-
ity, while a lower value indicates less disparity.
Using a selector to filter the data. Depth information and
weight information are computed during the training process,
and we need to evaluate the accuracy of their data, selecting
the more accurate of them for use and discarding the less ac-
curate of them. Therefore, we introduce a selector for data
filtering. The formula is shown below:

Err(r) = Cgt(r)− Cpd(r), (7)

selector =

{
0 Err(r) > threshold

1 Err(r) < threshold
, (8)

where Cpd(r) and Cgt(r) represent predicted and ground
truth colors, while Err(r) quantifies their difference. Err(r)
evaluates pixel depth prediction accuracy and consistency
with depth difference and weight distributions. We use a
threshold to improve model optimization: Err(r) above it im-
plies low accuracy and data exclusion, while Err(r) below it
signifies high accuracy and data retention.
Residual module. Since the selector we use acts directly on
the loss term, this may cause an optimization bias that focuses
the model on optimizing the loss term filtered by the selector
for the poor distribution of depth difference and weight. To
this end, we introduce a residual module to mitigate this prob-
lem. The introduction of a residual module improves the over-
all model optimization, mitigating the impact of optimization
bias on performance.
Loss function. The loss function consists of supervision of
color, ray entropy, and supervision of KL divergence between



Fig. 3: Our method involves adding the residual module and using color, ray entropy, and KL divergence of depth difference
and weight as supervision. Color supervision is for color accuracy, while ray entropy and KL divergence of depth difference
and weight provide geometric supervision. We also utilize a selector to filter the KL divergence of depth difference and weight.

the depth difference and weight. The loss function of our
method is shown below:

Ltotal = Lrgb + Lentropy + S ∗ LKL, (9)

Here S indicates selector, LKL is filtered by the selector.
Overall framework. Our method, illustrated in Fig. 3,
comprises color supervision Lrgb and geometric supervision
(Lentropy, S∗LKL), along with a residual module to mitigate
optimization bias. It effectively achieves high-quality novel
view synthesis in NeRF, requiring no prior knowledge and
incurring no additional computational or storage overhead,
even with limited inputs.

4. EXPERIMENTS

In this section, we evaluate our method’s performance across
various datasets. And then focus on analyzing the impact of
each module of our method and assessing our method’s resis-
tance to overfitting.
Baseline. We use InfoNeRF [24] as our backbone, and com-
pare our method with baseline InfoNeRF and multiple state-
of-the-art(SOTA) methods: PixelNeRF [25] and DietNeRF
[4].
Dataset and metric. We assess our method on NeRF llff (real
world foreground scenes), NeRF synthetic (synthetic images),
and NeRF real 360 (varied perspectives scenes in real world),
using four images per dataset for training. Evaluation met-
rics include PSNR (for pixel differences), SSIM (structural
disparities), and LPIPS (perceptual discrepancies). Higher
PSNR and SSIM values, and lower LPIPS values, indicate
better performance.

4.1. Main Results
NeRF synthetic. We compared our method with NeRF, Pix-
elNeRF, DietNeRF, and InfoNeRF, all trained with four im-
ages on the NeRF synthetic dataset. Table 2 presents quanti-
tative results, highlighting our method’s superior performance
in PSNR, SSIM, and LPIPS metrics. Table 1 provides detailed
results for eight different scenes, demonstrating our method’s
superiority across all scenes. In terms of qualitative results
(see Fig. 4), our method outperforms baseline InfoNeRF in
both RGB and depth images.

Fig. 4: These figures compare rendering results for the NeRF
synthetic dataset across baseline InfoNeRF, with our ap-
proach outperforming baseline InfoNeRF.

NeRF llff. We compared our method with NeRF and base-
line InfoNeRF on the NeRF llff dataset, which contains real-
world images with complex environmental factors. All meth-
ods were trained with four images. Fig. 5 displays qual-
itative results, showcasing our method’s superior rendering
compared to others. Table 3 presents quantitative results, indi-
cating our method’s better performance in PSNR, SSIM, and
LPIPS metrics in the NeRF llff dataset, demonstrating its ef-
fectiveness in complex environmental scenes.



Methods Lego Chair Drums Ficus Hotdog Materials Mic Ship avg

NeRF, 100views 32.54 33.00 25.01 30.13 36.18 29.62 32.91 28.65 31.01

PixelNeRF* [25] 15.14±0.75 18.87±1.38 15.10±0.63 16.60±0.70 19.37±1.78 12.31±1.02 16.35±0.97 14.96±0.75 16.09±0.78
NeRF [1] 15.61±4.53 18.57±1.64 12.50±0.98 16.37±2.24 19.64±2.26 15.65±4.16 14.78±2.37 14.30±4.04 15.93±1.06

DietNeRF [4] 17.13±4.77 19.37±3.12 13.74±1.55 15.76±3.56 18.24±5.28 15.00±5.18 17.71±1.55 11.51±4.27 16.06±1.13
InfoNeRF [24] 18.92±0.51 20.06±1.11 14.33±0.62 19.41±0.07 21.30±2.31 18.34±0.88 18.55±1.71 18.27±0.71 18.65±0.18

Our-method 19.62±0.22 21.52±0.54 14.47±0.54 20.14±0.16 22.60±0.29 18.96±0.14 18.28±1.96 17.06±0.85 19.08±0.59

Table 1: The table shows the PSNR value of different methods in 8 different scenes of the NeRF synthetic dataset. And it can
be observed that our method has better performance than other methods. The asterisk (*) indicates the model is pretrained on
an external training dataset with dense input views and fine-tuned on this dataset with 4 input views.(comparative data of other
methods referenced from [24]).

Methods PSNR↑ SSIM↑ LPIPS↓
NeRF, 100views 31.01 0.947 0.081

PixelNeRF* [25] 16.09±0.78 0.738±0.012 0.390±0.030
NeRF [1] 15.93±1.06 0.780±0.014 0.320±0.049

DietNeRF [4] 16.06±1.13 0.793±0.019 0.306±0.050
InfoNeRF [24] 18.65±0.18 0.811±0.008 0.230±0.008

Our-method 19.08±0.59 0.818±0.006 0.214±0.016

Table 2: The table lists average PSNR, SSIM, and LPIPS
values for different methods tested on NeRF synthetic dataset
(comparative data of other methods referenced from [24]).

Fig. 5: These figures compare the rendering results of our
method with NeRF and baseline InfoNeRF on NeRF llff
dataset, demonstrating our method’s superior performance.

Methods PSNR↑ SSIM↑ LPIPS↓
NeRF [1] 18.74 0.569 0.282

InfoNeRF [24] 16.35 0.446 0.437
Our-method 18.87 0.582 0.263

Table 3: The table shows average PSNR, SSIM, and LPIPS
values for different methods on NeRF llff dataset, highlight-
ing our method’s superior performance.

NeRF real 360. In contrast to NeRF synthetic and NeRF llff
datasets, NeRF real 360 dataset contains 360-degree scene
images with intricate details and environmental factors. We
compared our method with baseline InfoNeRF on this dataset,
using four training images. Table 5 in the appendix shows our
method’s superior PSNR, SSIM, and LPIPS metrics, confirm-
ing its effectiveness in complex environments.

4.2. Analysis
Method LKL S RM PSNR ↑ SSIM ↑ LPIPS ↓
Baseline 18.65±0.18 0.811±0.008 0.230±0.008
Our-method w/o S +RM ✓ 19.06±0.42 0.815±0.004 0.223±0.011
Our-method w/o RM ✓ ✓ 19.07±0.44 0.817±0.005 0.212±0.013
Our-method ✓ ✓ ✓ 19.08±0.59 0.818±0.006 0.214±0.016

Table 4: The table compares our method’s module perfor-
mance on NeRF synthetic dataset (S indicates selector, RM
indicates residual module).

Fig. 6: The figures compare PSNR for baseline InfoNeRF and
our method on NeRF llff’s fern and horns, demonstrating our
method’s better overfitting prevention compared to InfoNeRF.

Module Impact Analysis. Table 4 shows the results of ab-
lation experiments of our method on NeRF synthetic dataset.
The experimental results show that the KL divergence of
depth difference and weight greatly improves the model per-
formance compared to the baseline. Moreover, the combined
use of the selector and residual module results in a synergistic
effect, not just additive, leading to a marked increase in our
method’s overall efficiency and accuracy.
Overfitting Assessment. Our analysis highlights the over-
fitting issue in baseline InfoNeRF. Fig. 6 show that baseline
InfoNeRF peaks at 10000 iterations for the ‘fern’ dataset and
5000 for ‘horns’, but then performance declines, indicating
overfitting. In contrast, our method consistently performs
well throughout training, as seen in the same figure. This
consistency demonstrates our method’s robustness and supe-
rior generalization ability compared to baseline InfoNeRF,
particularly in its resistance to overfitting challenges.



5. CONCLUSION
This paper introduces Sid-NeRF, a few-shot novel view
synthesis method based on scene information distribution.
Specifically, Sid-NeRF combines color and geometric su-
pervision, using a selector during training for data accuracy
and a residual module to counteract optimization bias. Ef-
ficient in generating high-quality views from limited inputs,
Sid-NeRF performs well in various settings from synthetic to
real-world scenes, adeptly managing challenges like lighting
and obstructions. Sid-NeRF does not rely on any prior knowl-
edge and therefore does not cause additional consumption of
storage and computational resources, increasing its utility in
various applications of novel view synthesis.
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