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1 Introduction

Skyrmions are topological solitons in three-dimensional Euclidean space, with a topological
charge N that is identified with baryon number [1]. As there are no explicit exact solutions
for Skyrmions, they must be studied using either numerical field theory computations or some
other form of approximation for the Skyrme field. An approximation that is applicable for
coincident Skyrmions is the rational map approximation [2]. This yields a good description
of the minimal energy Skyrmion of charge N , by specifying the angular dependence of the
Skyrme field via a degree N rational map between Riemann spheres. This is combined with
a real radial profile function, f(r), whose dependence on the distance r from the centre of
the Skyrmion can be calculated numerically by solving an ordinary differential equation. The
rational map generated Skyrmion typically has an energy that is only a few percent above that
of the true minimal energy Skyrmion obtained from field theory computations. The major
disadvantage of the rational map approximation is that it cannot describe the deformation
of the minimal energy charge N Skyrmion into N well-separated single Skyrmions. It is
important to be able to model such a process in order to study both Skyrmion scattering
and the quantization of Skyrmions beyond the rigid body approximation.

The Atiyah-Manton construction [3] approximates Skyrmions by the holonomy of SU(2)
Yang-Mills instantons in four-dimensional Euclidean space. The method to obtain a Skyrme
field in three-dimensional space, with topological charge N , is to calculate the holonomy along
lines parallel to the extra dimension of a charge N instanton. The 8N -dimensional moduli
space of instantons generates a family of Skyrme fields that includes a good approximation to
the minimal energy charge N Skyrmion, together with parameters that allow this Skyrmion
to be deformed into a collection of well separated single Skyrmions, and more complicated
cluster decompositions.

The main drawback of the Atiyah-Manton approach is that the holonomy can only be
calculated explicitly for the case of a spherically symmetric hedgehog Skyrme field, and in all
other cases the holonomy must be computed numerically. Such numerical computations [4, 5]
reveal that the typical error in the Atiyah-Manton approximation is less than two percent, when
compared to field theory computations. The reason that the Atiyah-Manton approximation
works so well is that Yang-Mills instanton holonomies produce exact solutions of an extended
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BPS Skyrme model, in which the Skyrme field is coupled to an infinite tower of vector
mesons [6]. The Skyrme model is recovered from a truncation of this BPS Skyrme model by
neglecting the vector mesons, explaining the accuracy of the Atiyah-Manton approximation
in terms of the truncation of an exact correspondence.

The Yang-Mills instantons required as input for the Atiyah-Manton approximation can
be obtained using the ADHM construction [7]. This provides a correspondence between
the moduli space of instantons and the moduli space of certain quaternionic matrices,
known as ADHM data, that satisfy a nonlinear algebraic constraint. Given ADHM data,
the gauge potential of the Yang-Mills instanton can be calculated explicitly using only
linear algebra.

Recently, a new approximation has been introduced [8] that provides explicit Skyrme
fields directly from the ADHM data using only linear algebra, rather than computing the
holonomy of the associated instanton. It is a Skyrmion analogue of the ADHM construction
for instantons, although it provides approximations rather than exact solutions. The error is
typically similar to that of the rational map approximation, so of the order of a few percent.
Skyrme fields obtained using this new approximation will be referred to as ADHM Skyrmions.
The terminology ADHM Skyrmions [5] has previously been used differently to refer to Skyrme
fields generated using the Atiyah-Manton approximation, because the instantons required as
input to compute the holonomy in the Atiyah-Manton approximation can be specified by
their ADHM data. The two different meanings of the term ADHM Skyrmions are related,
in that the new approximation was derived by performing an ultra-discretization of the line
along which the instanton holonomy is calculated, replacing the interior points of the line by
just three lattice points to turn a numerical scheme into a simple analytic formula [8]. The
reason that such an extreme discretization works is that the ADHM construction involves
an induced connection, and this implies a novel cancellation of the lattice spacing in the
discretized version of the differential equation that defines the instanton holonomy.

In principle, all instantons can be obtained using the ADHM construction, but in practice
the most general ADHM data cannot be obtained explicitly, because there is no general
explicit solution for the nonlinear algebraic constraint for all N . A subset of charge N

instantons can be obtained using the JNR ansatz [9], which takes as input the free data of
N + 1 distinct points in R4, each with an associated positive real weight. This free data
can be used to obtain corresponding explicit ADHM data, but the JNR ansatz provides a
more direct route to obtain the Yang-Mills gauge potential, via the logarithmic derivative
of a harmonic function with poles at the points specified by the free data. For N = 1
and N = 2 all instantons are of JNR type, but for N > 2 they constitute a (5N + 7)-
dimensional submanifold of the 8N -dimensional moduli space. The missing moduli, that
grow in number like 3N for large N , may be viewed as independent SU(2) orientations
for each instanton.

The analogy with instantons suggests that from the ADHM construction of Skyrmions
there should be a more direct formula for the Skyrme field for a class of JNR Skyrmions
that are a subset of ADHM Skyrmions. The purpose of the present paper is to provide this
formula for the Skyrme field in terms of the free data of poles and weights.
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Method N = 1 N = 2 N = 3
Field theory 1.232 2.358 3.438

Atiyah-Manton 1.243 2.384 3.488
Rational maps 1.232 2.416 3.552

JNR 1.236 2.418 3.554

Table 1. The energies for minimal energy Skyrmions with charges N = 1, 2, 3, obtained using
numerical field theory computations and different approximate methods.

2 JNR Skyrmions

A Skyrme field U(x) : R3 7→ SU(2) is a smooth map that satisfies the boundary condition
U → 1 as |x| → ∞. It has an associated topological charge, N ∈ Z = π3(SU(2)), given
by the formula

N =
∫ 1

24π2 εijkTr(RiRkRj) d3x, (2.1)

where Ri = ∂iU U
−1 are the su(2)-valued right currents for i = 1, 2, 3.

In suitable units, the static Skyrme energy is

E = 1
12π2

∫
−Tr

{1
2R

2
i +

1
16[Ri, Rj ]2

}
d3x, (2.2)

and obeys the Faddeev-Bogomolny energy bound [10], which states that E ≥ |N |. This
bound cannot be attained for N ̸= 0. The Skyrmions with minimal energies can be obtained
from numerical field theory computations [11], and the resulting energies are presented in
table 1 for the first few values of N . For comparison, the energies of the approximations
mentioned in the previous section are also provided.

In the following it will often be convenient to identify a point in R3 with a pure quaternion,
x = ix1 + jx2 + kx3, a point in R4 with a quaternion, X = x4 + x, and the SU(2)-valued
Skyrme field with a unit quaternion.

The JNR ansatz [9] for charge N instantons gives a simple formula for the Yang-Mills
gauge potential in terms of the harmonic function

Ψ =
N∑

i=0

λ2
i

|X − ai|2
. (2.3)

Here the N + 1 poles, ai, are distinct points in R4 (or equivalently quaternions) and λi are
the positive real weights. A noteworthy feature is that the number of poles is greater than
the number of instantons. In the limit λ0 = |a0| → ∞, the JNR form (2.3) simplifies to

Ψ = 1 +
N∑

i=1

λ2
i

|X − ai|2
, (2.4)

which is known as the ’t Hooft form, where the number of poles is now equal to the number
of instantons. The interpretation of the 5N moduli in the ’t Hooft form is that the poles
give the positions of the instantons and the weights provide their sizes.
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The main result in this paper is the following formula for a charge N Skyrme field, given
the same JNR data that appears in (2.3),

U = ψ(−µ)ψ(µ)
|ψ(−µ)ψ(µ)| , (2.5)

where

ψ(µ) =
∣∣∣∣ N∑

i=0

λ2
i (x−ai)
|x−ai|2

∣∣∣∣2 N∑
j=0

λ2
j

|x−aj +µ|2
+

N∑
i,j,k=0

µλ2
iλ

2
jλ

2
k(ai−aj)(x−ai)(āi− āk)

|x−ai+µ|2|x−aj +µ|2|x−ai|2|x−ak|2
.

(2.6)
In the above µ is a positive real parameter that can be optimized to minimize the energy
of the Skyrme field for fixed JNR data. Note that ψ is a quaternionic-valued function on
R3, with argument x that is suppressed for clarity, whereas Ψ is a real-valued function on
R4, with argument X. However, for a given µ, both functions contain the same parameters
and have similar pole structures.

The formula (2.6) for JNR Skyrmions will be derived in section 3, from the ADHM
construction of Skyrme fields introduced in [8]. As all ADHM data is equivalent to JNR
data for N = 1 and N = 2, all the examples presented in [8] can be reproduced using (2.6).
The details will be provided for some illustrative cases. The advantage of the JNR approach
over the ADHM construction is that it is provides a direct formula for the Skyrme field that
applies to free data and avoids the requirement to invert an N ×N matrix. The disadvantage
is that it provides a smaller family of Skyrme fields for N > 2. The first significant Skyrme
field that is inside the ADHM family but lies outside the JNR family is an approximation
to the minimal energy N = 4 Skyrmion with cubic symmetry.

Note that there is an equivalence relation ∼ on ψ(µ), because it may be multiplied by
any real quantity without changing the associated Skyrme field U obtained from (2.5). Using
this equivalence the ’t Hooft form can be obtained by taking the limit a0 = λ0 → ∞, giving

ψ(µ) ∼ ψ(µ)/λ2
0 → 1 +

N∑
i=1

λ2
i (x− ai)(x̄− āi + µ)
|x− ai|2|x− ai + µ|2

. (2.7)

More generally, if the limit is taken as |a0| = λ0 → ∞, then the same Skyrme field is
obtained but with an isospin rotation, corresponding to replacing U with q Uq̄, where q is
the unit quaternion q = a0/|a0|.

The analysis of the ’t Hooft form is simplified by taking all the poles to be pure quaternions,
āi = −ai for i = 1, . . . , N . This is a rather natural restriction for Skyrmions in R3, as the
poles can then be identified with the positions of the Skyrmions, in a similar way to the
identification of instanton positions in R4. In the case of pure quaternion poles the ’t Hooft
form has the obvious symmetry ψ(µ) = ψ(−µ), because |x− ai + µ|2 = |x− ai|2 + µ2, and
therefore the expression (2.5) simplifies to

U =
(
ψ(−µ)
|ψ(−µ)|

)2
. (2.8)

This formula provides a Skyrme field that is a rational function of the Cartesian coordinates,
whereas (2.5) only implies an algebraic function in general.
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Taking ψ(µ) given by the ’t Hooft form (2.7), it is clear that ψ(µ) → 1 as |x| → ∞, hence
the required boundary condition that U → 1 is satisfied. By definition, the positions of the
Skyrmions are the points in space where U = −1. For pure quaternion poles (2.8) shows
that U = −1 corresponds to ψ(−µ) being a pure quaternion. As the real part of (2.7) is
positive these positions are independent of µ and correspond to the locations of the poles ai

of ψ(µ), because ψ(µ)/|ψ(µ)| tends to a pure quaternion as any of the poles are approached.
This agrees with the fact that the topological charge N can also be obtained by counting
the number of preimages of U = −1.

Returning now to the JNR case, the restriction to pure quaternion poles āi = −ai for
all i = 0, . . . , N , is again natural, and is often the situation of most interest for obtaining
low energy Skyrme fields. The following analysis applies to this restricted case of pure
quaternion poles. Introducing a notation for each of the two terms in (2.6), by writing
ψ(µ) = R(µ) + I(µ), it is clear that the real function

R(µ) =
∣∣∣∣ N∑

i=0

λ2
i (x− ai)
|x− ai|2

∣∣∣∣2 N∑
j=0

λ2
j

|x− aj + µ|2
, (2.9)

is now an even function of µ. It is also clear that the quaternionic-valued function

I(µ) =
N∑

i,j,k=0

µλ2
iλ

2
jλ

2
k(ai − aj)(x− ai)(āi − āk)

|x− ai + µ|2|x− aj + µ|2|x− ai|2|x− ak|2
, (2.10)

is an odd function of µ. To show that I(µ) is a pure quaternion it is convenient to introduce
the notation yi = x − ai = −ȳi. The real part of I(µ) may be written as

Re I(µ) = Re
N∑

i,j,k=0

µλ2
iλ

2
jλ

2
k(yi − yj)yi(ȳi − ȳk)

|yi + µ|2|yi|2|yj + µ|2|yk|2
(2.11)

= Re
N∑

i,j,k=0

µλ2
iλ

2
jλ

2
kyjyiȳk

|yi + µ|2|yi|2|yj + µ|2|yk|2
(2.12)

= Re
N∑

i,j,k=0

µλ2
iλ

2
jλ

2
k(|yk|2 + µ2)|yj |2yjyiȳk

|yi + µ|2|yi|2|yj + µ|2|yj |2|yk + µ|2|yk|2
(2.13)

= Re
N∑

i,j,k=0

µ3λ2
iλ

2
jλ

2
k|yj |2yjyiȳk

|yi + µ|2|yi|2|yj + µ|2|yj |2|yk + µ|2|yk|2
= 0, (2.14)

where (2.14) is obtained from (2.13) after applying a relabelling that swaps j and k in the
term proportional to |yk|2|yj |2yjyiȳk = −|yk|2|yj |2ykyiȳj . The final expression (2.14) vanishes
after applying a relabelling that swaps i and k, because yiȳk + ykȳi is real.

Taken together, the results that R(µ) = R(−µ) = R(µ) and I(µ) = −I(−µ) = −I(µ),
shows that the symmetry property, ψ(µ) = ψ(−µ), is also satisfied in the JNR case, for pure
quaternion poles. Therefore the simplified formula (2.8) producing a rational Skyrme field
again applies. However, the poles ai of (2.6) no longer correspond to the positions of the
Skyrmions, because both R(µ) and I(µ) have poles at ai, so ψ(µ)/|ψ(µ)| does not tend to a
pure quaternion as any of the poles are approached. Of course, this must be the situation
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because there are N +1 poles and the number of preimages of U = −1 cannot exceed N . The
Skyrmion positions are given by the vanishing of R(−µ). These positions are independent
of µ and are given by the zeros of ζ, defined to be

ζ =
N∑

i=0

λ2
i (x− ai)
|x− ai|2

. (2.15)

In the regime that one weight, say λj , is much larger than all the others, λj ≫ λi, for all
i ̸= j, formula (2.15) shows that the Skyrmion positions are close to the N poles ai with
i ̸= j, associated with the other weights.

To obtain an N = 1 Skyrmion as a JNR Skyrmion, set λ0 = λ1 = 1 and a0 = −a1 = q,
to fix the position at the origin, with q a pure quaternion. This gives

ζ = (x− q)x̄(x+ q)
|x− q|2|x+ q|2

, (2.16)

which indeed vanishes if and only if x = 0. Using the JNR formula (2.6) yields

ψ(µ) ∼ |x|2(|x|2 + |q|2 + µ2) + µqxq̄. (2.17)

Setting |q| = µ2 = 2, the Skyrme field obtained by substituting (2.17) into (2.8) is

U = r6 + 12r4 + 36r2 − 32− 2
√
2(r2 + 6)qxq̄

(r2 + 8) (r2 + 2)2 , (2.18)

where r = |x| is the distance from the origin. This reproduces the hedgehog Skyrme field
from the ADHM construction [8], with the energy given in table 1, and an isospin orientation
determined by the unit quaternion q/|q|, that specifies the direction of the line through
the two poles. This formula is also valid for real q, so setting q = 2 gives a hedgehog field
in standard orientation.

The ADHM generated N = 2 axially symmetric Skyrme field [8], with the energy given
in table 1, is reproduced in JNR form by taking µ = 2 and unit weights with poles on the
vertices of an equilateral triangle

a0 = 2i, a1 = −i+
√
3j, a2 = −i−

√
3j. (2.19)

There is axial symmetry, rather than just triangular symmetry, because rotating the triangle
simply produces an isospin rotation. ζ vanishes at the origin, the position of the Skyrmion,
because the poles have equal magnitude and their sum vanishes.

The minimal energy N = 3 Skyrmion has tetrahedral symmetry. It is approximated by a
JNR Skyrmion with µ = 2 and unit weights with poles on the vertices of a regular tetrahedron

a0 = 5
4(i+ j + k), a1 = 5

4(−i− j + k), a2 = 5
4(−i+ j − k), a3 = 5

4(i− j − k). (2.20)

The energy is presented in table 1 and is again very close to that of the rational map
approximation.

Having discussed several illustrative examples of JNR Skyrmions, it is now time to turn
to the derivation of the main formula (2.6).
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3 JNR from ADHM

ADHM data consists of a matrix

M̂ =
(
L

M

)
, (3.1)

where L is a row of N quaternions and M is a symmetric N × N matrix of quaternions.
ADHM data must satisfy the condition that the N ×N matrix M̂ †M̂ is real and non-singular,
where † denotes the quaternionic conjugate transpose.

For notational convenience, in the following the full dependence on X = x+ x4 will be
suppressed, with only the x4 dependence written explicitly as a functional argument, with
the x dependence left implicit. The ADHM operator is

∆(x4) =
(

L

M − 1NX

)
, (3.2)

where 1N denotes the N ×N identity matrix. A requirement of the ADHM construction is
that ∆(x4)†∆(x4) is a real non-singular matrix. Defining the (N + 1)× (N + 1) quaternionic
projector matrix

Q(x4) = 1N+1 −∆(x4)
(
∆(x4)†∆(x4)

)−1
∆(x4)†, (3.3)

the ADHM Skyrme field is given by [8]

U = et
1Q(−µ)Q(0)Q(µ)e1

|et
1Q(−µ)Q(0)Q(µ)e1|

, (3.4)

where e1 is the (N+1)-component column vector with first entry equal to 1 and all other entries
equal to 0. As in the previous section, µ is a positive real parameter that can be optimized
to minimize the energy of the Skyrme field. This parameter appears in the derivation of (3.4)
via the discretization of the line parameterized by x4, where the interior points of this line are
replaced by the three points x4 = ±µ, 0 in a lattice formulation of the instanton holonomy.

To restrict to JNR data, the operator ∆(x4) is taken to be

∆(x4) = S Γ(x4)V, (3.5)

with

Γ(x4) =



λ1(a0 −X) λ2(a0 −X) · · · λN (a0 −X)
λ0(a1 −X)

λ0(a2 −X)
. . .

λ0(aN −X)


, (3.6)

where S ∈ O(N + 1) and V ∈ GL(N,R) are matrices that satisfy

S



λ1 λ2 · · · λN

λ0
λ0

. . .
λ0


V =



0 0 · · · 0
1
1

. . .
1


, (3.7)
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with explicit formulae for their entries given in [12]. Labelling the entries of S as Sij with
i, j = 0, . . . , N , the only values that will be required in the following are

S0i =
λiσi√∑N

j=0 λ
2
j

, where σi =

 1 if i = 0
−1 if i ̸= 0.

(3.8)

Substituting (3.5) into (3.3), and the result into (3.4) gives

U = et
1SP (−µ)P (0)P (µ)Ste1

|et
1SP (−µ)P (0)P (µ)Ste1|

, (3.9)

where

P (x4) = 1N+1 − Γ(x4)
(
Γ(x4)†Γ(x4)

)−1
Γ(x4)†. (3.10)

The simple form of (3.6) allows the entries of P to be calculated to be

Pij(x4) =
λiλjσiσj(X − ai)(X − aj)

|X − ai|2|X − aj |2
∑N

k=0 λ
2
k/|X − ak|2

∼ λiλjσiσj(X − ai)(X − aj)
|X − ai|2|X − aj |2

, (3.11)

where ∼ exploits the equivalence relation that P may be multiplied by any positive real
quantity without changing the associated Skyrme field U obtained from (3.9).

Using (3.11) the numerator in (3.9) becomes

et
1SP (−µ)P (0)P (µ)Ste1

=
N∑

i,j,k,l=0

λiλℓλ
2
jλ

2
kσiσlS0iS0ℓ(x−ai−µ)(x−aj −µ)(x−aj)(x−ak)(x−ak +µ)(x−aℓ+µ)
|x−ai−µ|2|x−aj −µ|2|x−aj |2|x−ak|2|x−ak +µ|2|x−aℓ+µ|2

∼
N∑

i,j,k,l=0

λ2
iλ

2
jλ

2
kλ

2
ℓ (x−ai−µ)(x−aj −µ)(x−aj)(x−ak)(x−ak +µ)(x−aℓ+µ)

|x−ai−µ|2|x−aj −µ|2|x−aj |2|x−ak|2|x−ak +µ|2|x−aℓ+µ|2
, (3.12)

where the final line follows after using (3.8). Factorizing this expression yields (2.5) with

ψ(µ) =
N∑

i,j=0

λ2
iλ

2
j (x− ai + µ)(x− aj + µ)(x− aj)

|x− ai + µ|2|x− aj + µ|2|x− aj |2
. (3.13)

This is not the expression given in (2.6), and in particular it does not have the reality
properties exploited in section 2. However, note that the formula (2.5) relating ψ(µ) and U

not only allows for the equivalence relation that ψ(µ) may be multiplied by any real quantity,
but also allows ψ(µ) ∼ ψ(µ)χ, where χ is any quaternionic quantity that is independent
of µ. Exploiting this equivalence with

χ =
N∑

k=0

λ2
k(x− ak)
|x− ak|2

, (3.14)

gives

ψ(µ) =
N∑

i,j,k=0

λ2
iλ

2
jλ

2
k(x− aj + µ+ aj − ai)(x− aj + µ)(x− aj)(x− ak)
|x− ai + µ|2|x− aj + µ|2|x− aj |2|x− ak|2

=
N∑

i,j,k=0

λ2
iλ

2
jλ

2
k(x− aj)(x− ak)

|x− ai + µ|2|x− aj |2|x− ak|2
+
λ2

iλ
2
jλ

2
k(aj − ai)(x− aj + µ)(x− aj)(x− ak)

|x− ai + µ|2|x− aj + µ|2|x− aj |2|x− ak|2

= R(µ) + J (µ), (3.15)
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where the first term has been recognized as the real term R(µ) defined in (2.9), and the
second term has been defined to be

J (µ) =
N∑

i,j,k=0

λ2
iλ

2
jλ

2
k(aj − ai)(x− aj + µ)(x− aj)(x− ak)

|x− ai + µ|2|x− aj + µ|2|x− aj |2|x− ak|2
. (3.16)

It now remains to show that J (µ) is equal to I(µ), defined in (2.10). The linear dependence
on µ of the numerator in (3.16) prompts the splitting of J (µ) into two terms

J (µ) =
N∑

i,j,k=0

λ2
iλ

2
jλ

2
k(aj −ai)(x−ak)

|x−ai+µ|2|x−aj +µ|2|x−ak|2
+
µλ2

iλ
2
jλ

2
k(aj −ai)(x−aj)(x−aj +aj −ak)

|x−ai+µ|2|x−aj +µ|2|x−aj |2|x−ak|2
.

(3.17)
The first term vanishes because the summand is antisymmetric under the exchange of i
and j, therefore

J (µ) =
N∑

i,j,k=0

µλ2
iλ

2
jλ

2
k(aj −ai)

|x−ai+µ|2|x−aj +µ|2|x−ak|2
+

µλ2
iλ

2
jλ

2
k(aj −ai)(x−aj)(āj − āk)

|x−ai+µ|2|x−aj +µ|2|x−aj |2|x−ak|2
.

(3.18)
Again the first term vanishes because the summand is antisymmetric under the exchange
of i and j. The remaining term is recognized as the expression (2.10) for I(µ), after a
relabelling of the indices that swaps i and j. This completes the derivation of the JNR
Skyrmion formula (2.6).

4 Outlook

JNR Skyrmions, and more generally ADHM Skyrmions, have an algebraic decay that is
appropriate for the Skyrme model with massless pions. However, Skyrmions in models with
massive pions decay exponentially. It would be interesting to find a modification of either
the JNR or ADHM construction that is appropriate for massive pions. The structure of
the ’t Hooft form (2.7), as a sum of poles giving the positions of the Skyrmions, suggests
that a first step is to write the hedgehog Skyrmion,

U = cos f(r)− x̂ sin f(r), (4.1)

in a similar form. Here x̂ = x/|x| and f(r) is the radial profile function of the Skyrmion, a
function of r = |x|, which could be the numerically calculated function in a model of either
massless or massive pions. It is easy to check that (4.1) can be rewritten as U = ϕ2/|ϕ|2, where

ϕ = 1− x̂ sin f(r)
1 + cos f(r) (4.2)

has similarities to the N = 1 ’t Hooft form (2.7). Note that f(r) → 0 as r → ∞, so ϕ → 1
and the boundary condition U → 1 is satisfied. Furthermore, f(r) → π as r → 0, so ϕ

has a pole at the origin and ϕ/|ϕ| tends to a pure quaternion as the pole is approached,
giving U = −1 at r = 0. This way of writing the hedgehog Skyrmion therefore shares the
qualitative features of the N = 1 ’t Hooft Skyrmion but allows the decay to be controlled
by specifying a profile function.
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There is an obvious generalization of (4.2) to N > 1 by adding more poles. Using the
same notation as earlier, yi = xi − ai, with pure quaternion poles, set

ϕ = 1−
N∑

i=1

qiŷiq̄i sin f(|yi|)
1 + cos f(|yi|)

, (4.3)

where the unit quaternions qi have been introduced to allow independent isospin rotations
for each of the Skyrmions. This is a new way to obtain a Skyrme field for a superposition
of well-separated Skyrmions.

The standard method to obtain the Skyrme field of a pair of well-separated Skyrmions
is to use the product ansatz U = U1U2, where U1 and U2 are the hedgehog fields of single
Skyrmions with well-separated positions. The problem with this ansatz is that U1U2 ̸= U2U1,
so it breaks the symmetry of a true superposition. The symmetrized product ansatz [13] was
introduced to restore this symmetry. It is given by U = (U1U2 + U2U1)/|U1U2 + U2U1|, but
only produces a smooth charge two Skyrme field for sufficiently large separations, because
the denominator can vanish otherwise.

The superposition formula (4.3) is a new way to preserve the symmetry, as the fundamental
operation is the addition of quaternions, rather than multiplication. It generates a smooth
charge N Skyrme field for any set of distinct poles. However, in common with both the product
ansatz and its symmetrized version, the superposition only provides a good approximation to
a low energy Skyrme field for well-separated Skyrmions. Numerical investigations of a pair of
Skyrmions, in an isospin orientation that produces the most attractive channel, reveal that
the energy as a function of separation using (4.3) lies between that of the product ansatz and
the symmetrized product ansatz. The energy is close to that of the symmetrized product
ansatz, and is therefore a reasonable alternative, with a slight advantage that the positions
of the Skyrmions are given precisely by the poles, whereas the Skyrmion positions from
the symmetrized product ansatz are only close to the positions of the individual Skyrmions
used as input.

The superposition formula (4.3) was motivated by the ’t Hooft form (2.7), which does
not provide a good description of low energy Skyrmions as they merge. It is therefore not
surprising that it is only applicable for well-separated Skyrmions. It would be useful to find
a similar superposition formula based on the JNR form (2.6), which should then be able to
describe Skyrmions for all separations in any Skyrme model, including massive pions, given
the relevant profile function. This is currently under investigation.

In the quantization of Skyrmions the Finkelstein-Rubinstein constraints [14] play a vital
role. These state that under a closed loop in the configuration space of charge N Skyrme
fields the wavefunction should acquire a minus sign if and only if the loop is non-contractible.
Recently, elegant formulae have been derived [15] to determine whether loops described by
ADHM data or rational maps are contractible. For JNR Skyrmions with poles of equal
weight, a simple way to generate a closed loop is to permute the poles. It can be shown that
this loop is contractible if and only if the permutation is even [16]. The simplest example is
for the N = 1 JNR Skyrmion described earlier, where a path that rotates the poles a0 and
a1 around a circle through an angle π results in the odd permutation that swaps a0 and a1.
This is the non-contractible loop that rotates the Skyrmion through an angle 2π and the
change of sign of the wavefunction quantizes the Skyrmion as a fermion.
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Taking the N = 2 ’t Hooft form with equal weights λ1 = λ2 = 2 and the two poles
a1 = −a2 = q, where q is a pure quaternion with |q| ≫ 1, gives a pair of well-separated charge
one Skyrmions. The path that rotates the poles a1 and a2 around a circle through an angle
π yields the odd permutation that swaps a1 and a2. This is the non-contractible loop that
exchanges the pair of Skyrmions, in agreement with the spin-statistics theorem.

An example of a more complicated non-contractible loop discussed in [15], in terms of
both ADHM data and rational maps, is the deformation of the tetrahedral N = 3 Skyrmion
via an axially symmetric charge three Skyrmion. As a JNR Skyrmion with equal weights
this can be described by the path t ∈ [0, 1] with

a0 = 5
4((i+ j) cos(πt/2) + (i− j) sin(πt/2) + k(1− 2t)),

a1 = 5
4(−(i+ j) cos(πt/2)− (i− j) sin(πt/2) + k(1− 2t)),

a2 = 5
4(−(i− j) cos(πt/2) + (i+ j) sin(πt/2)− k(1− 2t)),

a3 = 5
4((i− j) cos(πt/2)− (i+ j) sin(πt/2)− k(1− 2t)). (4.4)

The path begins at t = 0 as the tetrahedral JNR data (2.20). At the midpoint of the path,
t = 1/2, the four poles are on the vertices of a square, giving an axially symmetric Skyrme
field. The JNR data at the end of the path, t = 1, is obtained from the JNR data at the
start of the path by applying the odd permutation 3201 = (02)(01)(03), confirming that
the loop is non-contractible.

5 Conclusion

By making use of a recently introduced ADHM construction for Skyrme fields [8], a direct
formula for JNR Skyrme fields has been derived. The formula simplifies if all the JNR
poles are taken to lie in R3 and produces Skyrme fields that are rational functions of the
Cartesian coordinates. The positions of the Skyrmions are given by the vanishing of a
simple sum of poles. JNR Skyrmions provide good approximations to a range of low charge
Skyrmions, with errors in the energies of the order of a few percent, which is comparable
to the rational map approximation.

Motivated by the qualitative features of the JNR Skyrmion formula in the ’t Hooft limit, a
new superposition formula has been presented that is applicable to well-separated Skyrmions
and respects the symmetry that is broken by the standard product ansatz. There is hope that
future work may provide a similar formula that is inspired by the general JNR case, rather
than the ’t Hooft limit, so that the well-separated restriction can be removed. This would allow
the method to be applied to variants of the Skyrme model, including those with massive pions.

Data Availability Statement. This article has no associated data or the data will not
be deposited.

Code Availability Statement. This article has no associated code or the code will not
be deposited.
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