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ABSTRACT
Objectives  Increasing operational pressures on 
emergency departments (ED) make it imperative to quickly 
and accurately identify patients requiring urgent clinical 
intervention. The widespread adoption of electronic health 
records (EHR) makes rich feature patient data sets more 
readily available. These large data stores lend themselves 
to use in modern machine learning (ML) models. This 
paper investigates the use of transformer-based models to 
identify critical deterioration in unplanned ED admissions, 
using free-text fields, such as triage notes, and tabular 
data, including early warning scores (EWS).
Design  A retrospective ML study.
Setting  A large ED in a UK university teaching hospital.
Methods  We extracted rich feature sets of routine clinical 
data from the EHR and systematically measured the 
performance of tree- and transformer-based models for 
predicting patient mortality or admission to critical care 
within 24 hours of presentation to ED. We compared our 
proposed models to the National EWS (NEWS).
Results  Models were trained on 174 393 admission 
records. We found that models including free-text 
triage notes outperform structured tabular data models, 
achieving an average precision of 0.92, compared with 
0.75 for tree-based models and 0.12 for NEWS.
Conclusions  Our findings suggests that machine learning 
models using free-text data have the potential to improve 
clinical decision-making in the ED; our techniques 
significantly reduce alert rate while detecting most high-
risk patients missed by NEWS.

INTRODUCTION
Early recognition and intervention of deteri-
orating patients is vital to prevent avoidable 
hospital deaths.1 Track and trigger systems, 
such as early warning scores (EWS), were 
developed to meet this need, providing a 
single aggregated score from a patient’s 
vital signs. Score thresholds define recom-
mended response levels and urgency. EWS 
are used throughout a patient’s hospital 
admission pathway, from initial evaluation 

in the ambulance to emergency department 
(ED) triage, and subsequent monitoring on 
a ward.2 The UK’s Royal College of Physicians 
recommends the National Early Warning 
Score 2 (NEWS2),3 with aggregated scores of 
0–20 indicating risk of death, cardiac arrest 
or critical care admission. Higher scores carry 
recommendations for appropriate clinical 
responses, for example, scores ≥7 mandate 
urgent senior clinical review.

EWS, calculated from vital signs, are 
part of the comprehensive assessment for 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Increasing operational pressures on emergency 
departments (ED) make it imperative to quickly and 
accurately identify patients requiring urgent clinical 
intervention. Current track and trigger systems use 
relatively small amounts of parameters to identify 
physiologically unstable patients, but the wide-
spread adoption of electronic health records (EHR) 
means that richer patient details are now available. 
However, the utility of this data, particularly free-text 
triage note data, for the use of early warning scores 
was unclear.

WHAT THIS STUDY ADDS
	⇒ Our study shows that, when used with transformer-
based machine learning techniques, the rich patient 
data collected in EHR (including free-text triage 
notes) can significantly outperform the National 
Early Warning Score when predicting patient 
deterioration.

HOW THIS STUDY MIGHT AFFECT RESEARCH, PRACTICE 
OR POLICY

	⇒ Our work highlights the efficacy of machine learning 
for clinical decision support tools and the currently 
untapped information contained in free-text triage 
note data. Free-text data could be used in other ar-
eas of research to investigate whether similar im-
provements are possible.
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patients presented to an ED.3 While NEWS alone is not 
recommended as a triage tool, it is included in patient 
streaming guidance, for example, in identifying patients 
suitable for same day emergency care.4 Since the intro-
duction of manual early warning scores, such as NEWS, 
hospitals have reported a 20% reduction in mortality 
from sepsis and acute illness and a 50% reduction in 
in-hospital cardiac arrests.5 However, manual EWS only 
consider only a small number of parameters, have been 
shown to underperform in some patient groups and have 
low sensitivity (sensitivity NEWS: 0.12).6 7

Electronic health records (EHR) enable real-time 
detailed patient-level data collection, supporting 
machine learning development for patient care in areas 
such as admission, deterioration and mortality predic-
tion.8 Machine learning systems can analyse much more 
data compared with simple decision tools, such as NEWS. 
Examples range from shallow models, such as gradient 
boosted decision trees (GBDT) for predicting mortality,9 
to phenotyping,10 risk stratification8 and simple natural 
language analysis of presenting complaints to predict 
mortality or cardiac arrest.11

Unfortunately, the data collected, and its quality, varies 
significantly between EHR systems,12 hindering predic-
tive model generalisability.13 The rigid data requirements 
of many machine learning techniques are incompatible 
with the real-world challenges of non-standardised data 
collection.14 Additionally, concerns around the gener-
alisability, trustworthiness, safety and fairness must also 
be addressed before deployment in clinical settings.13 15 
Most research focuses on structured tabular data,16 that 
is, numerical and categorical data, neglecting routinely 
recorded unstructured text data such as emergency 
triage notes. ED triage notes, often the earliest text data 
captured for non-elective admissions, vary greatly in 
content, from brief descriptions to extensive accounts 
including symptoms, social context, vital signs and 
physical examination findings. The ubiquity of text 
data makes it a natural contender for inclusion in deep 
learning models.

We investigated using modern natural language 
processing to incorporate unstructured free-text triage 
notes into deep learning models for predicting immi-
nent clinical deterioration in emergency admissions. 
Previous studies used structured data only for this 
task.16 We systematically compare the performance of 
various feature sets (structured only, unstructured only, 
combined) and modelling techniques, including GBDTs 
and transformers.

Unstructured data hold significant promise for 
improved performance and generalisability across settings 
with differing data formats and treatment patterns.17 This 
study aims to discover useful information in this untapped 
resource and suggest future research avenues. Our exper-
iments are designed for real-world clinical applications, 
evaluating potential clinical utility through the lenses of 
explainability, bias, fairness, and privacy, to create a viable 
decision-support tool fitting clinical workflows. This study:

	► Develops and validates machine learning models for 
predicting the risk patient deterioration on a dataset 
consisting of 174 393 admission records and is the first 
study to explore the use of ED triage notes in machine 
learning models for patient risk stratification, moving 
beyond the traditional reliance on structured data.

	► Systematically compares the utility of increasingly rich 
feature sets for patient deterioration risk modelling to 
identify the most useful features and possible points 
of implementation in clinical pathways.

	► Asks whether our proposed techniques outperform 
the baseline risk assessments of NEWS and existing 
machine learning–based techniques.

	► Investigates the use of explainability techniques to 
understand the impact different features have on 
the model and discusses the effect this has on model 
transparency.

	► Investigates the bias of our techniques and compares 
this with NEWS.

METHODS
Setting
Salford Royal Hospital has over 100 000 ED attendances 
and approximately 40 000 unplanned admissions annu-
ally. The hospital has used an EHR system, Allscripts, 
since September 2013 that captures patient data in real 
time from arrival at the ED, until discharge from hospital.

Study design
A retrospective observational cohort study of routinely 
collected patient data from a single UK university 
teaching hospital. Three machine learning models were 
trained to predict critical deterioration within 24 hours of 
admittance to the ED: Light Gradient Boosted Machines 
(LightGBM),18 Bidirectional Encoder Representations 
from Transformers (BERT)19 and BioClinicalBERT.20 
TRIPOD+AI guidelines21 were followed for reporting.

Data collection and preparation
We extracted retrospective data from the EHR of all 
patients presenting to the ED between 1 April 2014 and 
30 December 2022. We restricted the dataset to patients 
aged ≥18 years with a documented NEWS who were either 
admitted to the acute medical unit or received ambu-
latory emergency care or same-day emergency care.4 
Planned admissions and day cases were excluded, as well 
as patients that received ward-based critical care inter-
ventions, such as invasive ventilation or cardiopulmonary 
resuscitation. Online supplemental table 1 describes all 
features collected by the system; not all are suitable for 
use in an early warning system, for example, ward util-
isation is unknown at the time of presentation. Online 
supplemental table 2 describes valid ranges for manually 
recorded features. Online supplemental section 1.1 and 
table 1 detail the subsets of features used in the modelling.

As our aim was to create a system to support triage in 
the ED, we only used admission data. Blood tests were 
only taken when clinically indicated. Comorbidity and 
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previous admission data were available for patients with 
prior admissions. Unstructured free-text data entered by 
the triage clinician was used.

To supplement recorded features, we constructed new 
features using recorded values, aiming to enhance the 
clinical information available; for example, the conver-
sion of raw International Classification of Diseases, Tenth 
Revision, three number codes to their English name, as 
the full-text description includes more information that 
can be used by language models. Online supplemental 
section 1.2 details all engineered/augmented features.

Data labelling
Our tracked outcome was a composite of in-hospital 
mortality and/or critical care admission within 24 hours 
of presentation to the ED, aligning with previous studies 
for direct comparisons.16 This outcome also directly aligns 
with the development of EWS, including NEWS2.3 22 
Specifically, our models predict patients at risk of expe-
riencing a critical event defined as admissions where: the 
discharge or end-of-episode record indicates the patient 
died in the hospital and the record’s timestamp is within 
24 hours of the admission timestamp or their service util-
isation indicates admission to critical care or provision 
of critical interventions on the ward and this occurred 
within 24 hours of the admission timestamp.

Missing data and data imputation
While previous studies have analysed the effect of impu-
tation of missing data,16 we focused on two machine 
learning modelling techniques (Machine Learning 
Models Section) that can handle missing data without 
imputation.

Machine learning models
We compared GBDT, which provide state-of-the-art 
results on tabular data,16 with transformers, which repre-
sent the current state-of-the-art in text-based modelling.19 
Despite fundamental architectural differences, both can 
be embedded in largely the same modelling workflow. 
Online supplemental figure 1 is our transformer-based 

modelling pipeline. We modify an earlier modelling pipe-
line16 to accommodate the novel features included in 
our dataset, as described in (online supplemental file 1, 
online supplemental section 1.3).

We focused our tree-based experiments on LightGBM 
decision trees,18 as they set the state-of-the-art on tabular 
data, often outperforming neural networks.10 16 Details 
on LightGBM training/validation are in online supple-
mental section 1.3.1.

We also experiment with two models using free-text data: 
BERT,19 trained on a general text corpus, and BioClinical-
BERT,20 further trained on Medical Information Mart for 
Intensive Care clinical notes.23 Online supplemental section 
1.3.2 outlines the training of transformer-based models.

Model evaluation
We partitioned samples chronologically 2:1 into training/
validation sets. Given the nature of the ED, some patients 
in the validation set may have prior admissions in the 
training set due to being repeat attendees.24 As such, we 
also evaluated on a version of the validation set with all 
repeat patients removed. Results reports set sizes and 
demographics.

Our task was significantly imbalanced, with only 5% of 
patients experiencing a critical event. Thus, we preferred 
evaluation metrics that were robust to class imbalances 
and had previously been used for healthcare machine 
learning models.16 Our main metric was average preci-
sion (AP), calculated as the area under precision-recall 
(PR) curve, which is better suited to imbalanced tasks 
than the receiver operating characteristic (ROC) curve,16 
although we include the latter for comparison. We also 
report the specificity of the model.

We avoided prescribing a specific decision threshold, 
as this requires additional clinical, operational and 
ethical considerations25; our chosen metrics measure 
discriminative skill agnostically of thresholds. However, 
we report F2 scores under a threshold of 0.5 to demon-
strate possible model performance. To assess the clin-
ical benefit of the model, we plot and analyse decision 

Table 1  Feature sets used throughout experimentation

Feature set Tabular features Text features

Core tabular Patient demographics; vital signs at admission
Subset of bloods at admission: haemoglobin, urea, sodium, potassium, creatinine; 
main diagnosis, readmission, admit method and admission specialty

None

Extended tabular Core tabular+admission blood tests
Waterlow score33

CFS score34

Charlson index

None

Triage notes Patient demographics Triage note, presenting 
complaint

Text embeddings Patient demographics, triage note embeddings, presenting complaint embeddings None

All text embeddings are computed from a pretrained BioClinicalBERT16 model. See Data Collection and Preparation for full descriptions of 
vitals and blood tests included.
CFS, Clinical Frailty Scale.
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curves.25 All metrics are fully explained in online supple-
mental section 1.4.

Model explainability
To address the lack of explainability of our chosen archi-
tectures, particularly transformers, we used SHapley 
Additive exPlanations (SHAP) to calculate feature impor-
tance. SHAP enables in-depth analysis of model behaviour 
and can uncover hidden bias and spurious correlations 
(see Section 3). Techniques used to compute SHAP are 
explained in online supplemental section 1.4.1.

Model bias
To evaluate our models’ ability to produce fair outcomes 
across patient subgroups, we examined any unintentional 
bias introduced during training. We assessed group-based 
fairness, that is, performance differences between demo-
graphic groups, and individual fairness, that is, treatment 
of patients with similar expected outcomes, using gener-
alised entropy index26 I, which encompasses both notions 
of fairness. Formulae for computing I are outlined in 
online supplemental section 1.4.2.

Ethics
Local ethical approval to use the data was provided by 
Salford Royal Hospital’s Research and Innovation Depart-
ment (21HIP13). Only non-identifiable, anonymised 
patient-level data collected in routine clinical practice are 
used, as its use does not breach confidentiality. Data were 
pseudonymised prior to release.

Patient and public involvement
As this was an initial study into using machine learning 
and free-text features to augment NEWS, no patient and 
public involvement was conducted.

RESULTS
Of 381 687 extracted records, 81 367 booked admissions, 
elective admissions, maternity and elective trauma cases 
were removed. 125 926 non-acute medical admissions 
were also removed, leaving 174 393 emergency admissions 
comprising 86 215 unique patients. Removing repeat 
patients in the unseen validation set excluded 11 237 
patients. Online supplemental figure 2 shows age and 
sex distributions. 90% of records are White British, 4.3% 
other White background and 5.7% are from other ethnic 
backgrounds. There was a high rate of missing data; 
patients with a missing NEWS score had lower mortality, 
were younger and had shorter stays.

Table  2 reports all performance metrics, and online 
supplemental table 3 reports performance metrics on 
the validation set with repeat patients removed, demon-
strating similar performance. Table 2 and online supple-
mental table 3 also compare performance metrics for 
NEWS on the same sets of records.

Figure 1 compares the AP and AUROC of all models. 
The relative stability of AUROC, juxtaposed with varying 
AP, is explained by the large class imbalance and moti-
vated our focus on AP as the main evaluation metric. 
Figure  1 shows BioClincialBERT models generally 

Table 2  Full table of results for all LightGBM, BERT and BioClinicalBERT models tested on the entire validation set

Model architecture Features Precision Recall AUROC F2 Specificity AP

LightGBM Core tabular 0.6755 0.1312 0.9043 0.1554 0.8188 0.3933

Extended tabular 0.8728 0.4279 0.9560 0.4764 0.9174 0.6995

Core tabular+text embeddings 0.8743 0.2829 0.9133 0.3271 0.9983 0.5272

Extended tabular+text embeddings 0.9273 0.4140 0.9619 0.4656 0.9975 0.7482

Text embeddings 0.8287 0.0430 0.7667 0.0531 0.9996 0.2465

BioClinicalBERT Core tabular 0.5925 0.8425 0.9309 0.7769 0.9754 0.8003

Extended tabular 0.4146 0.7426 0.9398 0.6412 0.9494 0.6569

Triage notes+demographics 0.1288 0.9136 0.9056 0.4189 0.7014 0.5545

Core tabular+triage notes 0.7539 0.9222 0.9791 0.8828 0.9814 0.9188

Extended tabular+triage notes 0.8741 0.9202 0.9665 0.9106 0.9936 0.9244

BERT Core tabular 0.2879 0.8962 0.8583 0.6300 0.8757 0.2548

Extended tabular 0.473 0.3446 0.8043 0.3664 0.9814 0.3090

Triage notes+demographics 0.2807 0.4756 0.7571 0.4176 0.9316 0.2226

Core tabular+triage notes 0.3742 0.9741 0.8060 0.2845 0.3191 0.4143

Extended tabular+triage notes 0.3891 0.9759 0.8241 0.3264 0.4408 0.4386

NEWS NEWS scores 0.2816 0.1206 0.6617 0.1361 0.9797 0.1239

For each metric, green highlights the best performing model, and red indicates models that perform worse than NEWS. Best viewed in colour.
AP, average precision; AUROC, area under receiver operating characteristic curve; LightGBM, Light Gradient Boosted Machines; NEWS, 
National Early Warning Score.
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outperformed tree-based models and increasing feature 
fidelity improved performance.

Figure 2a,b shows the mean daily alerts and numbers 
needed to evaluate as model sensitivity increases. 
Figure  2c,d shows ROC and PR curves for BioClinical-
BERT. Figure  3a compares feature importance of tree-
based against transformer-based models, showing the 
mean absolute feature importance over the validation 
set. Note that direct explainability comparison between 
architectures may not be valid due to the different feature 
attribution methods used.

In contrast, figure 3b is a random local interpretability 
example from the validation set for BioClinicalBERT 
(more samples in online supplemental figures 3–5). 
Figure 3b only summarises local explainability; visualising 
individual word importance is possible but omitted here 
to preserve patient confidentiality.

Figure  2e presents the generalised entropy index I2 
against sensitivity of BioClinicalBERT; lower I2 indicates 
lower levels of measured bias. Notably, all proposed 
models had lower I2 than NEWS, showing that our models 
produced less biased decisions.

Figure 2f reports the clinical benefit of our technique 
compared with NEWS; for any given decision threshold, 
the model with the highest net benefit has the theoreti-
cally highest clinical value.24 Figure 2f compares BioClini-
calBERT against three baseline treatment strategies, treat 
all (everyone receives acute care treatment), treat none 
and NEWS (acute care treatment is delivered based on 
NEWS).

DISCUSSION
This study has demonstrated the effectiveness of modern 
deep learning for clinical decision support. Evaluating 

Figure 1  Average precision (top) and AUROC (bottom) of models predicting critical events with different sets of features. AP, 
average precision; AUROC, area under receiver operating characteristic curve. LightGBM, Light Gradient Boosted Machines. 
NEWS2, National Early Warning Score 2.
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Figure 2  (a) Average number of daily alerts against model sensitivity. (b) Number needed to evaluate (right) against model 
sensitivity. (c) Receiver operating characteristic curves. (d) Precision-recall curves of BioClinicalBERT models. (e) Generalised 
entropy index (I2) versus sensitivity curves. (f) Decision (net benefit) curves for BioClinicalBERT models along with three 
reference strategies: treat all, treat none and NEWS. AP, average precision; AUC, area under curve; NEWS2, National Early 
Warning Score 2.AP, average precision; ROC, receiver operating characteristic.
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transformer-based techniques against classical methods 
showed free-text in EHR contains untapped predictive 
information that can augment decision support tools. 
Evaluating on temporal splits captured repeat attendees, 
reflecting clinical reality,23 though similar performance 
was demonstrated when removing repeat patients.

Model performance analysis and comparison
All machine learning models vastly outperformed NEWS, 
with models using free-text triage data outperforming 
those without (BioClinicalBERT tabular only AP, 0.80; 
with free text:,0.92). The best model, BioClinicalBERT 
with extended tabular+triage notes, outperformed NEWS 
across all performance metrics (eg, sensitivity 0.92 vs 0.13 
at specificity 0.99). Pretraining on relevant in-domain 
data was crucial; standard BERT greatly underperformed 
their medical terminology-orientated counterpart, 
BioClinicalBERT (AP: 0.31 vs 0.66 on the same features). 
We surmise that the standard BERT pretraining corpus 
does not reflect the specialist language used in this task, 
limiting its performance.

BioClinicalBERT’s substantial performance gains with 
text features supports triage notes containing underused 
information, likely capturing patients’ social context 
and diagnostic severity, which is difficult to represent 

in structured fields. Previous work supports the notion 
that clinical acumen, as captured in free-text comments, 
can help predict patient outcome. The Nurse Intuition 
Patient Deterioration Scale has greater AUROC than 
NEWS, while in combination with NEWS, it can enhance 
rapid response systems.27 Likewise, the Dutch-Early-Nurse-
Worry-Indicator-Score suggests that ‘worried’ nurses can 
identify deteriorating patients before their physiological 
vital parameters start to deteriorate.28 While our triage 
notes may not explicitly discuss prognosis or worry, there 
is clinical evidence justifying their inclusion.

The BioClinicalBERT model using only triage notes and 
demographics performed comparably to models built on 
tabular features and outperformed NEWS. This suggests 
it may be possible to embed a model at admission using 
the earliest available data, allowing early risk stratification 
before awaiting other clinical data.

Although BioClinicalBERT showed significantly 
improved discriminative ability over LightGBMs (see 
online supplemental table 4 for final LightGBM parame-
ters), the simpler LightGBM models require less compu-
tation and are more interpretable, so it may be more 
viable in clinical settings when performing similarly well 
to transformers. With only tabular data tree-based models 

Figure 3  (a) Mean absolute feature importance of LGBM (left) and BioClinicalBERT (right) models, both with and without 
free-text fields. Note that, as the feature attribution method used is different for both LGBMs and BioClinicalBERT, direct 
comparisons between the two techniques are not necessarily valid. (b) Explainability values for a random sample from the 
validation set. This patient was correctly predicted by a finetuned BioClinicalBERT model as high risk for a critical deterioration. 
Words in red ‘push’ the model towards predicting critical deterioration and vice versa for blue words. The full-text input and its 
associated explainability have been redacted to preserve patient anonymity. CFS, Clinical Frailty Scale; CRP, C-reactive protein; 
LightGBM, Light Gradient Boosted Machines; AE, Accident and Emergency; Obs, observations.
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matched transformer performance, suggesting trees may 
be preferred when lacking text data.

Alongside improved discriminative ability, our proposed 
methods demonstrably reduced alert rate compared 
with NEWS; BioClinicalBERT with triage notes reduced 
mean daily alerts (figure 2). Adding tabular data further 
reduced the alert rate and increased AUROC and AP, 
indicating fewer unnecessary alerts.

Explainability and bias analysis
Using SHAP,29 we showed that complex models can be 
explained to clinicians, although with high computa-
tional cost. Figure 3 reveals that, without free-text triage 
notes, BioClinicalBERT relied more on primary admis-
sion diagnoses, presenting complaint and admission 
specialities, suggesting that this information is encapsu-
lated within triage notes. Conversely, BioClinicalBERT 
incorporating triage notes placed greater importance on 
measured features (eg, vital signs); we hypothesise that 
this is because direct measurements cannot be inferred 
from triage notes. Interestingly, LightGBM models 
exhibited similar feature attributions regardless of free-
text inclusion, suggesting limited free-text utilisation. In 
contrast to global explanations, we demonstrated how 
local explainability can provide patient-specific explana-
tions to understand deterioration risk and guide patient 
management plan development.

Compared with NEWS, our models had lower I2 values 
across all sensitivity thresholds, indicating reduced bias. 
Generally, higher fidelity feature sets exhibited less bias 
than lower fidelity (figure  2e). However, this analysis is 
limited to our recorded protected characteristics. Future 
work should consider fine-grained data, such as socioeco-
nomic and community context, which are known predic-
tors of clinical risk,30 as language models can exhibit 
unfair bias.31

Implications for deployment in a clinical context
As acute care data collection is not standardised, we made 
as few assumptions about the data as possible.12

Together with the methods’ handling of missing data, 
this supports our models’ generalisability across EHR. We 
demonstrated that machine learning risk prediction can 
be easily applied across different feature sets, showing 
they can be deployed to different hospitals despite varying 
data collection standards/procedures. Without the rigid 
data requirements of existing techniques, our methods 
are easier to deploy across settings.

We intentionally avoided setting classification thresh-
olds, instead measuring discriminative skill; setting 
thresholds carries clinical, operational and ethical consid-
erations.25 All of our models can be tuned to balance false-
positive and false-negative outcomes based on healthcare 
provider/regulator preference. We see the adoption of 
machine learning models in clinical practice as decision 
support tools rather than decision-making tools. However, this 
must be appropriately balanced to combat alert fatigue.30 
Our analysis showed that this is possible, as all models 

achieved fewer average daily alerts (figure 2a) and higher 
clinical utility or net benefit (figure 2f) than NEWS at all 
but the highest sensitivities. If deployed to match NEWS 
sensitivity, we would raise fewer alerts while achieving the 
same level of care. For example, fixing BioClinicalBERT 
with all feature sets to a sensitivity of 0.32 (matching NEWS 
≥5) achieves a positive predictive value of 0.85 versus 0.18 
for NEWS. Alternatively, if the decision threshold is soft-
ened to match the alert rate of NEWS, BioClinicalBERT 
would identify cases that NEWS would miss.

Strengths and limitations
We believe this is the only large-scale evaluation of 
transformer-based models with free-text data as an EWS 
successor. We systematically examined how including free-
text features improves model performance (increasing 
AP from 0.66 to 0.92), highlighting these untapped 
features’ usefulness. Importantly, we demonstrated that 
free-text notes alone contained sufficient predictive infor-
mation to surpass existing EWS (AP ours, 0.92; AP NEWS, 
0.12). Using explainability techniques, we demonstrated 
how explanations can elucidate important patient-level 
features, potentially increasing trust in the model and 
guiding clinical conversations.

Computing the generalised entropy index (I2), we 
compared the bias levels of our techniques against NEWS, 
showing our models yielded fairer distributions of benefit. 
However, data availability limited analysis to age, ethnicity 
and biological sex. Future research should consider other 
sources of bias such as socioeconomic status and free-
text bias. Furthermore, our study contains data from a 
single site only. Data shift can affect the machine learning 
performance, and patient populations may vary signifi-
cantly between hospitals;13 therefore, a multisite evalua-
tion of our proposed techniques is warranted.

The use of free-text fields may differ between hospi-
tals and requires further investigation; nomenclature, 
processes and data collection will differ between hospi-
tals, possibly affecting model generalisability, neces-
sitating a multicentre study. There were high rates of 
missing data, though reasons for this varied. Some were 
clinically meaningful, that is, the measurement was not 
clinically relevant. In other cases, values may not have 
been entered into the EHR correctly, perhaps because of 
operational pressures. We deliberately used models that 
can handle missing data, believing these yield techniques 
that are more applicable to real-world settings and allows 
for heterogeneity in features collected between hospitals. 
However, future studies should investigate the effect of 
missing data on the modelling process.

This study only showed the feasibility of using ML as 
an alternative to existing EWS. Prospective studies of 
our techniques are required to assess the impact of our 
models in clinical practice. These studies should consider 
factors such as usability and patient outcomes compared 
with existing EWS, together with patient and public 
involvement.
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Comparisons with other studies
Previous machine learning models have been proposed 
as EWS replacements,32 but to our knowledge, ours is the 
first to include free-text data. Our LightGBM models using 
only tabular features achieved higher performance than 
similar studies16 (AP our model, 0.75; AP previous, 0.53), 
while our best transformer-based techniques vastly outper-
formed them (AP ours, 0.92,;AP previous, 0.53). Recent 
systematic literature reviews32 report that many studies 
fail to report suitable metrics for imbalanced classifica-
tion (eg, F1 or F2 score), instead reporting the AUROC 
metric which we demonstrated is unsuited to imbalanced 
data. Direct comparisons with previous studies are diffi-
cult due to obscured discriminative power, different test 
sets and varying critical event definitions.32 Notably, few 
prior studies have compared directly to existing EWS.16 32 
Unlike previous studies,32 we have demonstrated explain-
ability techniques and evaluated bias.

CONCLUSION
Through experimentation on a large, real-world dataset, 
we demonstrated the feasibility of natural language 
modelling for clinical decision-support tasks and uncov-
ered the untapped potential of unstructured free-
text data in EHR. We evaluated our techniques’ bias, 
showing they are fairer than NEWS, and demonstrated 
how model explainability can augment clinical conversa-
tions. Such models are promising candidates to support 
decision-making and reduce critical event risk, greatly 
outperforming NEWS. We hope this encourages future 
researchers to include unstructured data in their model-
ling and supports deploying machine learning-based 
early warning systems in hospital.
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