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Application of Outlier Detection Methods in Audit Data Analytics 

ABSTRACT 

Audit transaction anomalies can be viewed as outliers. Unsupervised learning methods of outlier 

detection do not require outcome labels and enable auditors to discover possible problems based 

on observed transaction patterns. This study develops a framework for using outlier detection 

methods in audit selection and evaluates the proposed framework on real-world revenue sub-ledger 

datasets. The results indicate that the proposed framework could facilitate the identification of 

relevant outlier detection algorithms and effectively select risky observations. 

I. MOTIVATION FOR APPLYING OUTLIER DETECTION METHODS 

"Outliers" refer to data points that significantly deviate from other observations, leading to the 

suspicion that they were generated by different mechanisms (Hawkins 1980). Methods for 

identifying outliers were proposed first in the 1980s (Denning 1987). Auditing anomalies can be 

viewed as outliers. Identifying transaction anomalies is challenging for auditors, particularly due 

to the emergence of big data and high transaction volume, which makes it extremely difficult to 

manually select the most anomalous transactions for examination.  

Recent decades have seen the development of advanced outlier detection techniques, which are 

now utilized in various domains such as finance, insurance claims, credit card fraud, healthcare 

services, loan processing, and network security (Thiprungsri and Vasarhelyi 2011; Malini and 

Pushpa 2017; van Capelleveen et al., 2016; Hodge and Austin 2004; Jabez and Muthukumar 2015). 

While these methods may be useful in various stages of audit engagements such as risk 

identification and assessment, this research focuses on their application in substantive testing. We 

argue that outlier detection methods can be a useful addition to audit data analytics (ADA) for 
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identifying higher-risk observations for subsequent examination. ADA can be applied through the 

discovery and analysis of patterns, identification of anomalies, and extraction of other useful 

information from data related to the audit subject matter (AICPA 2015) (see Appendix A for the 

definitions of analytical procedures in auditing standards). This research focuses on the application 

of unsupervised outlier detection methods for selecting transactions for manual examination.  

Based on how professional expertise and client knowledge are used, knowledge-based methods in 

transaction selection can be categorized as:  

§ Expert system type methods (see e.g., No, Lee, Huang, and Li 2019), in which experts 

formalize their professional expertise and client knowledge as risk filters that are used to 

evaluate observations. These filters incorporate various risk factors and need to be 

customized for different clients and scenarios. Ensuring the filters are effective requires in-

depth analysis and testing. As clients and risks evolve, the filters need updates, 

necessitating significant ongoing effort. 

§ Supervised learning methods (see e.g., Bao, Ke, Li, Yu, and Zhang 2020), which derive 

evaluations of current observations after training a machine learning model on a set of 

archival observations that have outcome labels indicating potential risk. Acquiring these 

labels can be very costly or even impossible since the size of the training dataset needs to 

be considerable. 

§ Unsupervised learning methods, such as outlier detection, identify observations that differ 

significantly from the overall dataset, without relying on any outcome labels. Outlier 

detection methods process observation attributes to generate outlier scores that rank 

observations by the likelihood of being abnormal (various methods are summarized in 

Table 2 in Appendix B). When employing outlier detection methods, auditors conduct 
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follow-up investigations of observations that have the highest outlier scores. Using these 

methods can significantly reduce the auditors’ burden of labeling a large set of transactions 

as risky or not risky (a comparison of supervised and unsupervised methods is summarized 

in Appendix D). It is also much less burdensome than creating a comprehensive set of risk 

filters. 

Due to the advantages of outlier detection methods outlined above, it is important to develop an 

ADA framework for utilizing these methods in audit selection. The development of such a 

framework is the objective of this paper. This framework is proposed to complement other ADA 

methodologies based on knowledge engineering and supervised learning in obtaining sufficient 

audit evidence.  

Different outlier detection methods calculate outlier scores based on different mathematical 

approaches to derive their models of observation regularity. It is possible that a particular approach 

may not be suitable for a particular dataset. Therefore, outlier detection results may be irrelevant 

with respect to specific audit objectives. To address this issue, we propose a two-stage framework 

that could identify meaningful and relevant suspicious transactions in a full population. In the 

initial run, it is determined which algorithms are “credible,” i.e., the most aligned with audit 

objectives. The determination of alignment is based on how well these algorithms identify the so-

called “obvious outliers,” i.e., a very small set of highly risky transactions chosen by the auditors. 

Then, in the second run, the selected credible algorithms are applied to the dataset with the obvious 

outliers removed, and the outlier scores are combined to determine the outliers to be selected for 

further examination. Notably, these selected outliers can potentially include important risky 

transactions not suspected by human auditors. The designed two-stage framework constructs a 

“weakly” supervised method (explained in Appendix E).  
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 This paper contributes to the ADA literature in three ways. 

§ To the best of our knowledge, this is the first research to propose and validate an outlier 

detection framework that incorporates the choice of credible algorithms and assists auditors 

in identifying non-obvious risky observations with minimal effort (compared with other 

ADA approaches). 

§ The proposed framework could mitigate the bias induced by algorithm selection. In 

contrast to previous research that relies on one or two outlier detection algorithms to 

identify risky observations (e.g., Thiprungsri and Vasarhelyi 2011), the framework 

considers an array of credible algorithms and ranks the anomalousness of observations 

using ensemble outlier scores. 

§ The proposed framework utilizes a credibility test to identify those outlier detection 

algorithms that are most consistent with auditors’ judgments. It can reduce the concern that 

the unsupervised nature of outlier detection algorithms may impair the outlier scores’ 

relevance to specific audit objectives.  

The remaining sections are organized as follows. Section II identifies the most prevalent outlier 

detection methods in the literature, illustrating their differences. Section III outlines the challenges 

of implementing outlier detection methods in audits. Using a procurement dataset, Section IV 

develops a design artifact, a framework for applying outlier detection methods in audits. Following 

Design Science research guidelines, Section V employs the case study method to evaluate the 

validity of the proposed framework on revenue sub-ledger datasets. Section VI summarizes the 

proposed framework and discusses research limitations. 

II. OVERVIEW OF POPULAR OUTLIER DETECTION METHODS 
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It is reasonable to expect that outlier detection methods successfully applied in various domains 

can be promising candidates for ADA applications. Thus, the development of a framework for 

using outlier detection methods in audit selection should start with analyzing outlier detection 

literature. To identify the most prevalent categories of outlier detection methods in the extant 

literature, we employed the software program Publish or Perish to find highly cited articles on 

outlier detection. General search terms included “outlier detection review,” “outlier detection 

survey,” “anomaly detection survey,” etc. The results from 2003 to 2022 identify 23 detailed 

outlier detection survey articles (Table 1 in Appendix B exhibits the summary of search results). 

Following an examination of these articles, we identified six major types of outlier detection 

methods: Statistics-based, Distance-based, Density-based, Clustering-based, Deep learning-based, 

and Ensemble-based. Table 2 in Appendix B describes the rationale and representative methods 

for each type, and how the various methods differ. 

It is important that these methods, in addition to generating binary classification outcomes (i.e., 

abnormal versus normal designation), provide users with outlier scores indicating the degree to 

which an algorithm considers the points to be outliers (Sejr and Schneider-Kamp 2021). Usually, 

the scores generated by these algorithms vary significantly. Figure 1 illustrates outlier scores 

calculated on the same Mall-Customer-Segmentation dataset using LOF, KNN, and HBOS 

algorithms. Often HBOS assigns higher outlier scores to data points located in central regions, 

whereas KNN and LOF usually consider data points positioned in boundary regions to be outliers. 

Therefore, caution should be exercised when choosing outlier detection methods.  

Most outlier detection methods are parameterized and thus not fully specified as algorithms 

without choosing parameter values. We refer to outlier detection methods with specified parameter 

values (e.g., 5NN) as outlier detection algorithms. 
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III. CHALLENGES 

Given the considerable effort demanded from auditors by expert systems and supervised learning 

type methods, this study focuses on the application of unsupervised methods to improve the 

selection of risky transactions for examination. Although outlier detection has the potential to 

identify higher-risk items, its application by auditors presents certain challenges. 

Algorithm Selection 

Bias in machine learning refers to a set of assumptions an algorithm makes about the properties of 

a dataset (Alpaydin 2020). The performance of an algorithm depends on how well its bias fits the 

actual data. Different algorithms are specialized for different characteristics of datasets (Zimek, 

Campello, and Sander 2014). Auditors face challenges in choosing the most suitable algorithm. 

For some methods, the results are greatly affected by parameters (Breunig, Kriegel, Ng, and Sander 

2000), making it difficult to decide which parameters yield the most useful results. 

Understandability 

In outlier detection, the mechanism of a method is described in both abstract concepts and concrete 

programmed functions. This formal knowledge does not equate to the understanding of the results 

if the method is complex. 

KNN, one of the simpler outlier detection methods, is used to illustrate this challenge. The 

mechanism of KNN is based on calculating the distance of observation to its k nearest neighbors 

(Ramaswamy, Rastogi, and K. Shim 2000) and identifying observations having a large distance as 

outliers. Although the mechanism is clearly defined, it is complicated to understand which 
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attributes contribute to observations being outliers, making it challenging for auditors to develop 

an appropriate response. 

Evaluation 

Direct evaluations of the results of outlier detection algorithms using cross-validation (explained 

in Appendix G) are usually impossible due to the lack of labels on observations to compare against.  

To verify the results of outlier detection algorithms, auditors need to conduct manual examinations 

of observations to establish their true nature. Outlier detection algorithms may produce two types 

of errors. False positive errors are those observations that the algorithm identifies as abnormal, but 

the auditors would not consider to be risky. False negative errors are observations that the 

algorithm identifies as normal, but the auditors would consider risky. It is usually impractical to 

calculate the total error rate of an algorithm since the costs associated with these errors can differ 

significantly. Outlier detection methods construct models of normalcy assuming that the vast 

majority of observations in the dataset are normal and the number of abnormal observations is 

proportionally small. Otherwise, it is inappropriate to use them. Given a small number of identified 

abnormal observations, it is feasible to evaluate their riskiness and thus determine the false positive 

errors. However, in larger datasets (which are not uncommon), it is not feasible to evaluate the 

riskiness of all observations that are categorized as normal. Therefore, it is not practical to 

determine the false negative errors. 

IV. FRAMEWORK 

We propose a framework (see Figure 2) for auditors to use outlier detection algorithms in 

identifying higher-risk observations for further examination. The framework incorporates data 
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preprocessing, algorithm selection, and execution of the outlier detection algorithms twice. The 

first execution is for selecting algorithms that auditors would deem credible concerning the audit 

objectives. The second execution uses these credible algorithms to construct an ensemble aimed 

at selecting riskier observations for further investigation. The details of the preprocessing steps of 

the framework are summarized in Appendix C. 

Algorithm Selection 

Selecting the appropriate outlier detection algorithm is often challenging. To define an algorithm, 

auditors need to specify the method and parameter values. The number and range of parameters 

differ for outlier detection methods. It is often difficult to know which parameter values are optimal 

for achieving the objectives. We recommend that auditors consider various outlier detection 

methods. For each method, different parameter values should be examined (e.g., Pillai, 

Raghuwanshi, and Gaikwad, 2020; Ramasamy, Kadry, and Lim, 2021). Data considerations for 

algorithm selection are briefly described in Table 4 of Appendix B. 

Obvious Outliers 

As an alternative to understanding the mechanics of outlier detection methods, auditors can 

evaluate the relevance of the results they produce. 

We propose a framework to establish the credibility of outlier detection algorithms by assessing 

their ability to identify what auditors would consider “obvious outliers.” These obvious outliers 

should be defined by auditors based on the audit objectives. To pinpoint obvious outliers, auditors 

might select a small subset of relevant attributes and choose items with extreme values in those 

attributes. However, many methods for identifying obvious outliers are possible. Further research 
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is needed on the optimal method of selecting obvious outliers. It is expected that credible 

algorithms will flag as abnormal those transactions that present risks relevant to the audit 

objectives.  

Additionally, the credibility of outlier detection algorithms can be evaluated based on their success 

in identifying those observations that have already been examined. This method of establishing 

credibility exploits the fact that various audit procedures may have been completed before 

employing outlier detection methods. Therefore, outcomes of already executed audit procedures 

may indicate a pattern of abnormal and normal observations. 

Evaluating Algorithm Results 

Computational procedures in outlier detection utilize every observation in the dataset to derive a 

model of normalcy and to evaluate how well an observation fits into that model by calculating its 

outlier score. This score will determine whether an observation is viewed as normal or abnormal. 

A way to make an equitable comparison of the results of outlier detection algorithms as well as 

conventional audit sampling approaches is to limit the number of selected (highest risk) 

observations to the same value.  

The best-performing outlier detection algorithms are the algorithms that generate the fewest 

number of false positives and the fewest number of false negatives. Since the number of highest 

risk observations (i.e., the selection size) is chosen to be the same for every outlier detection 

algorithm, it is possible to identify the best-performing algorithm based on the fewest false 

positives. This is the case because the minimum number of false positives implies the maximum 

number of true positives, and the maximum number of true positives implies the minimum number 

of false negatives since the sum of true positives and false negatives equals the number of risky 
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observations in the dataset. Accordingly, the concept of P@n (Craswell 2009) in information 

retrieval, where Precision at n is the proportion of the top-n ranked documents that are relevant, 

can be used as the metric for algorithm evaluation. If n is the selection size, then P@n is the 

percentage of verified risky items in the top n ranks of items based on their outlier scores: 

P@n = !
"
, 

where n is the number of top-ranked abnormal items and R is the number of true outliers among 

them (see Appendix F for more details). A comparison among different algorithms can be made 

based on their P@n. 

Initial Run 

The objective is to establish the credibility of outlier detection algorithms. Auditors can use outlier 

detection algorithms with various parameter settings for each method and select those algorithms 

that have better performance. The performance metric is the number of obvious outliers among the 

abnormal observations selected. Auditors can choose the minimum value of the performance 

metric as the credibility threshold for choosing credible algorithms based on the initial run. For 

example, if 100 is the selected size, 50 is the total number of obvious outliers, and 30 is the 

credibility threshold, any algorithm that successfully identifies 30 or more obvious outliers in its 

100 top-ranked observations would be credible. The initial run enables choosing those algorithms 

that exhibit similarity to auditors’ judgment in identifying the obvious outliers. Therefore, the 

chosen credible algorithms are expected to select abnormal observations in alignment with the 

audit objectives. This supports relying on the results of credible algorithms, though it may come 

at the cost of a reduced likelihood of detecting unknown abnormalities. It is possible that none or 
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multiple of the outlier detection algorithms may be credible. If none is credible, the auditors should 

not proceed with using outlier detection algorithms. 

Obvious Outliers Removal 

Next, the obvious outliers should be removed from the dataset before proceeding. Not removing 

the obvious outliers is potentially harmful as they increase the contamination rate1 of the dataset, 

biasing the constructed models of normalcy in the second run. Since the number of obvious outliers 

(provided by the auditors) is small, the difference between the results of the initial and the second 

run is likely to become less significant as the size of the dataset increases.  

Second Run 

The second run is to determine what other observations appear abnormal and require additional 

attention. All credible algorithms will be applied to the dataset (after removing the obvious 

outliers) to identify unknown outliers. With multiple credible algorithms, second-run results will 

likely differ by algorithm. Auditors can combine these results to make the selection decision (i.e., 

the selection decision is based on the results of an ensemble of credible algorithms). A simple 

approach to creating an ensemble (which is used herein) is to aggregate the outlier scores of all 

credible algorithms with equal weights (i.e., calculate the mean score). Another approach may be 

to aggregate the outlier scores of the credible algorithms separately for each outlier detection 

method and calculate the final score as the average of the methods. Regardless of the approach 

 
1 The contamination rate refers to the proportion of outliers to the total number of observations in the dataset. 
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taken, auditors need to choose the selection size and use the results of the ensemble to select 

observations for further investigation. 

V. EVALUATION 

This research follows the Design Science guidelines proposed by Hevner, March, Park, and Ram 

(2004). In this study, the proposed design artifact is the framework outlined in Section IV. As 

discussed by Hevner et al. (2004) and Simon (1996), the nature of the design process is an iterative 

Generate/Test Cycle. An artifact is designed to solve a problem. The performance of the newly 

created artifact is then tested. Feedback is gathered based on the test results, and is used to modify 

the artifact, leading to another round of generation and testing. The framework is first developed 

and refined using a procurement dataset (see Appendix H). Then, it is tested by applying it to other 

datasets. Under the Design Science Research Guideline 3 (design evaluation), we use a case study 

to investigate the proposed artifact and demonstrate its potential. 

A revenue sub-ledger dataset provided by practicing auditors is used for the framework evaluation 

(see Table 5 in Appendix H). Eight prevalent outlier detection methods (briefly described in Table 

3 of Appendix B) are used for the initial run on the preprocessed revenue dataset. Table 1 in 

Appendix B summarizes the parameter configurations utilized by each method (265 combinations 

of parameter settings considered). Prior to the initial run, the auditor-collaborator executed 

traditional audit procedures (e.g., to determine extreme values of fundamental attributes) and 

identified 48 obvious outliers. 

In the initial run, we choose 100 as the selection size and calculate Precision at 100, i.e. the number 

of obvious outliers identified by each algorithm. The MCD algorithms exhibited the maximum 
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degree of “similarity” to auditor judgment, with some parameter settings (e.g., support_fraction = 

0.55) identifying 21 obvious outliers in 100 top-ranked observations. HBOS algorithms with 

varying parameter configurations did not identify any obvious outliers, suggesting the outlier 

detection mechanism underlying this method is incompatible with auditor judgment on this dataset. 

Using a loose (stringent) credibility threshold of 9 (18), we choose 32 (3) outlier detection 

algorithms as exceeding the credibility threshold and apply them to the dataset after removing the 

obvious outliers.  

Based on the second run results, we compute the aggregation of normalized outlier scores 

generated by 32 (3) outlier detection algorithms exceeding the loose (stringent) credibility 

threshold, and rank observations based on their ensemble outlier scores. To evaluate the efficacy 

of credible algorithms in identifying non-obvious observation outliers, our auditor-collaborator 

examined the 25 top-ranked observations selected by both loose and stringent credible algorithm 

ensembles and concluded that both selections are consistent with the objectives of the audit 

procedures, and observations flagged by credible algorithms as outliers are indeed higher-risk 

observations that warrant further investigation. In both loose and stringent cases, four observations 

with a certain vendor “X” are always selected. The auditors concluded that these transactions may 

not be selected using traditional audit methods and that these transactions justify follow-up. The 

auditors viewed the stringent selection as more relevant, implying that more credible outlier 

detection algorithms generate more relevant selection. 

In addition to the evaluation described above that utilized archival data, we evaluated the proposed 

framework during an active audit engagement. We obtained a revenue dataset for the fiscal year 

ending in the fall of 2023 (see Table 5 in Appendix H). Our practitioner partners selected 32 

obvious outliers. Using a loose (stringent) credibility threshold of 9 (12), 33 (10) outlier detection 
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algorithms exceeding the credibility threshold were chosen and then applied to the dataset after 

removing the obvious outliers. The auditors tested the top 30 selections of each ensemble (with 20 

of them overlapping, the number of selected unique transactions was 40) during fieldwork. Out of 

these 40 transactions, one lacked any supporting documents, and four transactions did not have 

any corresponding payments at the time. After two weeks of follow-up investigation, the 

transaction without supporting documentation remained in this status and was found to be 

processed not in compliance with the business rules. One transaction remained without 

corresponding payments, even though the transaction occurred well before the end of the fiscal 

year. The auditors judged the discovery of the transaction without supporting documentation as an 

important and unusual finding for the client. In this engagement, the auditors also viewed the 

stringent selection as more effective than the loose selection method, further suggesting that more 

credible outlier detection algorithms generate more relevant selection. 

VI. CONCLUDING REMARKS 

This research develops a framework for the application of outlier detection techniques in audits. 

The proposed two-stage framework can facilitate the identification of relevant outlier detection 

algorithms and effectively identify risky observations. The framework offers a method to verify a 

model's credibility and detect outliers without significant data labeling effort. The evaluation case 

study demonstrates the success of the proposed framework in identifying transactions for follow-

up. This framework identifies outliers likely overlooked by other procedures. While Table 2 of 

Appendix B presents currently popular outlier detection methods, the proposed framework is 

designed to be capable of integrating any future outlier detection methods for improved 
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performance, as more refined methods become available. The proposed framework should be used 

together with other audit procedures, as it is intended to supplement, not replace them. 

This research has limitations. Auditors may not know which attributes are causing certain 

observations to be selected for further examination, which may impede the implementation of the 

framework in practice. Further, we rely on the obvious outliers identified by an auditor to establish 

the credibility of algorithms. Auditors may choose varying obvious outliers due to the judgmental 

nature of selection. Changing the obvious outliers may produce different credible algorithms, 

thereby affecting the selection of non-obvious outliers. Future research could explore ways of 

addressing these limitations and enhancing the proposed framework. 

REFERENCES 

Alpaydin, E. 2020. Introduction to machine learning. Cambridge, MA: MIT Press. 
Bao, Y., B. Ke, B. Li, Y. J. Yu, and J. Zhang. 2020. Detecting accounting fraud in publicly 

traded US firms using a machine learning approach. Journal of Accounting Research 58 
(1): 199-235. 

Breunig, M. M., H. P. Kriegel, R. T. Ng, and J. Sander. 2000. LOF: identifying density-based 
local outliers. In Proceedings of the 2000 ACM SIGMOD international conference on 
Management of data: 93-104. 

Craswell, N. 2009. Precision at N. Encyclopedia of Database Systems: 2127–2128. Available at: 
https://doi.org/10.1007/978-0-387-39940-9_484. 

Denning, D. E. 1987. An intrusion-detection model. IEEE observations on software engineering 
(2):222-232. 

Hawkins, D. M. 1980. Identification of outliers. Vol. 11: Springer. 
Hevner, A.R., S. T. March, J. Park, and S. Ram. 2004. Design Science in Information Systems 

Research. MIS Quarterly 28, no. 1: 75–105. Available at: 
https://doi.org/10.2307/25148625. 

Hodge, V., and J. Austin. 2004. A survey of outlier detection methodologies. Artificial 
intelligence review 22: 85-126. 

Jabez, J., and B. Muthukumar. 2015. Intrusion detection system (IDS): anomaly detection using 
outlier detection approach. Procedia Computer Science 48: 338-346. 

Malini, N., and M. Pushpa. 2017. Analysis on credit card fraud identification techniques based 
on KNN and outlier detection. Paper read at 3rd International Conference on Advances in 
Electrical, Electronics, Information, Communication and Bio-Informatics. Chennai, 
India: AEEEICB. 

https://doi.org/10.2307/25148625


17 
 

No, W. G., K. Lee, F. Huang, and Q. Li. 2019. Multidimensional audit data selection (MADS): 
A framework for using data analytics in the audit data selection process. Accounting 
Horizons 33(3): 127-140. 

Pillai, S. K., M. M. Raghuwanshi, and M. Gaikwad. 2020. Hyperparameter tuning and 
optimization in machine learning for species identification system. In Proceedings of 
International Conference on IoT Inclusive Life (ICIIL 2019), NITTTR Chandigarh, India, 
235-241. Springer Singapore.  

Ramaswamy, S., R. Rastogi, and K. Shim. 2000. Efficient algorithms for mining outliers from 
large data sets. Paper read at Proceedings of the 2000 ACM SIGMOD international 
conference on Management of data. Dallas, Tx: SIGMOD. 

Ramasamy, L. K., S. Kadry, and S. Lim. 2021. Selection of optimal hyper-parameter values of 
support vector machine for sentiment analysis tasks using nature-inspired optimization 
methods. Bulletin of Electrical Engineering and Informatics 10(1): 290-298.  

Sejr, J. H., and A. Schneider-Kamp. 2021. Explainable outlier detection: What, for Whom and 
Why? Machine Learning with Applications 6: 100-172. 

Simon, H. A. 1996. The Science of the Artificial (3rd ed.). Cambridge, Mass.: MIT Press. 
Thiprungsri, S., and M. A. Vasarhelyi. 2011. Cluster Analysis for Anomaly Detection in 

Accounting Data: An Audit Approach. International Journal of Digital Accounting 
Research 11. 

van Capelleveen, G. V., M. Poel, R. M. Mueller, D. Thornton, and J. van Hillegersberg. 2016. 
Outlier detection in healthcare fraud: A case study in the Medicaid dental domain. 
International Journal of Accounting Information Systems 21: 18-31. 

Zimek, A., R. J. Campello, and J. Sander. 2014. Ensembles for unsupervised outlier detection: 
challenges and research questions [Position Paper] Arthur. Acm Sigkdd Explorations 
Newsletter 15(1): 11-22.  

https://www.bing.com/ck/a?!&&p=d2b37e415dd0541bJmltdHM9MTY4MTI1NzYwMCZpZ3VpZD0wNjFmMjlkYS0wOTZmLTZhZGItMWFhNi0zOTIyMGQ2ZjY4MTMmaW5zaWQ9NTIzOQ&ptn=3&hsh=3&fclid=061f29da-096f-6adb-1aa6-39220d6f6813&psq=2000+ACM+SIGMOD+international+conference+on+Management+of+data.&u=a1aHR0cDovL3d3dzA5LnNpZ21vZC5vcmcvc2lnbW9kL2RibHAvZGIvY29uZi9zaWdtb2Qvc2lnbW9kMjAwMC5odG1s&ntb=1
https://www.bing.com/ck/a?!&&p=d2b37e415dd0541bJmltdHM9MTY4MTI1NzYwMCZpZ3VpZD0wNjFmMjlkYS0wOTZmLTZhZGItMWFhNi0zOTIyMGQ2ZjY4MTMmaW5zaWQ9NTIzOQ&ptn=3&hsh=3&fclid=061f29da-096f-6adb-1aa6-39220d6f6813&psq=2000+ACM+SIGMOD+international+conference+on+Management+of+data.&u=a1aHR0cDovL3d3dzA5LnNpZ21vZC5vcmcvc2lnbW9kL2RibHAvZGIvY29uZi9zaWdtb2Qvc2lnbW9kMjAwMC5odG1s&ntb=1


18 
 

Figure 1. Outlier scores calculated by HBOS, KNN and LOF based on Mall-Customer- 
Segmentation dataset23 

 

 

  

 
2 The Mall-Customer-Segmentation dataset (https://github.com/jeffrey125/Mall-Customer-Segmentation) contains 
information about customer profiles entering a Mall: customer age (Attribute 1), customer’s annual income 
(Attribute 2), and customer’s expenditure capability (Attribute 3). In this application, outlier detection methods can 
identify anomalous customer behaviors inconsistent with the regular ones.  
3 The color bar on the right side indicates that a dark red point denotes a greater outlier score (higher likelihood of 
being an outlier), whereas blue points identify normal observations. Different methods often generate different 
results identifying outliers.  
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Figure 2. Outlier detection audit application framework 
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APPENDIX 

Appendix A 

AU-C Section 520 (AICPA) defines analytical procedures as “Evaluations of financial information 

through analysis of plausible relationships among both financial and nonfinancial data. Analytical 

procedures also encompass such investigation, as is necessary, of identified fluctuations or 

relationships that are inconsistent with other relevant information or that differ from expected 

values by a significant amount.”4 

AS 2305 (PCAOB) defines analytical procedures as “… an important part of the audit process 

and consist of evaluations of financial information made by a study of plausible relationships 

among both financial and nonfinancial data. Analytical procedures range from simple 

comparisons to the use of complex models involving many relationships and elements of data. A 

basic premise underlying the application of analytical procedures is that plausible relationships 

among data may reasonably be expected to exist and continue in the absence of known conditions 

to the contrary.”5 

  

 
4 https://us.aicpa.org/content/dam/aicpa/research/standards/auditattest/downloadabledocuments/au-c-00520.pdf 
5 https://pcaobus.org/oversight/standards/auditing-standards/details/AS2305	

https://us.aicpa.org/content/dam/aicpa/research/standards/auditattest/downloadabledocuments/au-c-00520.pdf
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Appendix B 

Table 1. 23 Detailed outlier detection survey articles between 2003 and 20226 

 
6 The software tool Publish or Perish (https://harzing.com/resources/publish-or-perish) gathers and analyzes academic 
citations. It employs a variety of data sources to collect the raw citations, analyzes them, and then offers a wide range 
of citation metrics, such as the number of papers, total citations, and the h-index. 

Cites Authors Title Year 

12589 V Chandola, A Banerjee, V 
Kumar 

Anomaly detection: A survey 2009 

4416 V Hodge, J Austin A survey of outlier detection 
methodologies 

2004 

2042 A Patcha, JM Park An overview of anomaly detection 
techniques: Existing solutions and 
latest technological trends 

2007 

1938 M Markou, S Singh Novelty detection: a review—part 1: 
statistical approaches 

2003 

1652 MAF Pimentel, DA 
Clifton, L Clifton, L 
Tarassenko 

A review of novelty detection 2014 

1419 MH Bhuyan, DK 
Bhattacharyya… 

Network anomaly detection: methods, 
systems and tools 

2013 

1393 L Akoglu, H Tong, D 
Koutra 

Graph based anomaly detection and 
description: a survey 

2015 

1319 EWT Ngai, Y Hu, YH 
Wong, Y Chen, X Sun 

The application of data mining 
techniques in financial fraud 
detection: A classification framework 
and an academic review of literature 

2011 

1268 M Ahmed, AN Mahmood, 
J Hu 

A survey of network anomaly 
detection techniques 

2016 

1124 M Markou, S Singh Novelty detection: a review—part 2: 
neural network based approaches 

  
2003 

1103 C Phua, V Lee, K Smith, R 
Gayler 

A comprehensive survey of data 
mining-based fraud detection research 

2010 

1054 G Pang, C Shen, L Cao, 
AVD Hengel 

Deep learning for anomaly detection: 
A review 

2021 
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Table 2. Brief descriptions of popular outlier detection methods7 

Categories Representative Methods 

Method name Literature Rationale 

 
7 We do not provide detailed reviews of the methods but discuss instead the rationales of these methods and present 
an overall picture of popular outlier detection approaches. 

1042 M Gupta, J Gao, CC 
Aggarwal 

Outlier detection for temporal data: A 
survey 

2013 

999 Y Zhang, N Meratnia, P 
Havinga 

Outlier detection techniques for 
wireless sensor networks: A survey 

2010 

882 A Zimek, E Schubert, HP 
Kriegel 

A survey on unsupervised outlier 
detection in high‐dimensional 
numerical data 

2012 

712 V Chandola, A Banerjee, V 
Kumar 

Anomaly detection for discrete 
sequences: A survey 

2010 

572 Y Zhao, Z Nasrullah, Z Li Pyod: A python toolbox for scalable 
outlier detection 

2019 

463 L Ruff et al.  A unifying review of deep and 
shallow anomaly detection 

2021 

447 S Seo A review and comparison of methods 
for detecting outliers in univariate 
data sets 

2006 

433 R Domingues, M 
Filippone, P Michiardi, J 
Zouaoui 

A comparative evaluation of outlier 
detection algorithms: Experiments 
and analyses 

2018 

396 V Chandola, A Banerjee, V 
Kumar 

Outlier detection: A survey 2007 

325 H Wang, MJ Bah, M 
Hammad 

Progress in outlier detection 
techniques: A survey 

2019 

169 A Boukerche, L Zheng, O 
Alfandi  

Outlier detection: Methods, models, 
and classification 

2020 
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Statistics-
based 

Angle-based outlier 
detection (ABOD) 

Kriegel et al. (2008) ABOD presumes outliers 
are distant from the 
remaining points and have 
a small range of angles 
between pairs of points, 
whereas normal objects 
have a greater range. 

Histogram-based Outlier 
Score (HBOS) 

Goldstein and Dengel 
(2012) 

For HBOS, if numerous 
attribute values of a data 
point are out of the 
ordinary, it is likely an 
outlier. 

Principal component 
analysis (PCA) 

Shyu, Chen, 
Sarinnapakorn, and Chang. 
(2003) 

PCA reduces data 
dimensionality and the 
resultant principal 
components capture as 
much information as 
possible about regular 
points. Hence, a data point 
tends to be an outlier if 
there is a considerable gap 
between the original item 
and the one reconstructed 
using principal 
components. 

Minimum Covariance 
Determinant (MCD) 

Hardin and Rocke 2004 MCD finds a subset of 
points that are the least 
outlying. Then, a point is 
considered an outlier if its 
Mahalanobis distance to 
the least outlying points 
exceeds a specific 
threshold. 

Gaussian mixture model 
(GMM) 

Zhuang et al. (1996) By assuming points within 
a data set are generated 
from multiple Gaussian 
distributions, GMM 
identifies data points with 
low probability of 
belonging to dominant 
distributions as outliers. 
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Distance-
based 

K-nearest neighbor 
(KNN) 

Ramaswamy et al. (2000) For KNN, if a data point is 
geometrically farther 
away from its neighboring 
points than other points, it 
is likely to be an outlier. 

Density-
based 

Local outlier factor 
(LOF) 

Breunig et al. (2000) LOF identifies as outliers 
the data points with 
significantly lower local 
density than their 
neighbors. 

Clustering-
based 

Clustering-based Local 
Outlier Factor (CBLOF) 

He, Xu, and Deng. (2003) CBLOF initially clusters 
data points based on their 
feature similarities. Then, 
the points (1) located in 
small clusters that are 
geographically isolated, or 
(2) positioned in large 
clusters but far from 
centroids are considered 
outliers. 

Deep 
learning-
based 

Autoencoder (AE) Aggarwal (2017) AE contains three 
categories of successively 
connected layers: the input 
layer, the hidden layers, 
and the output layer. This 
technique reconstructs the 
input from the output as 
closely to the original 
input as possible. The data 
points with significant 
reconstruction errors are 
considered to be outliers. 

Ensemble-
based 

Isolation forest (IF) Liu, Ting, and Zhou. 
(2008) 

IF performs random splits 
on attribute values based 
on a single tree model to 
separate anomalous data 
points from normal ones. 
Eventually, anomalous 
predictions from multiple 
tree models are integrated 
to produce robust mining 
results. 
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Table 3. Parameter configurations utilized by outlier detection methods8 

Method Hyperparamer 1 Hyperparamer 2 Hyperparamer 3 Total 

HBOS n_histograms: [5, 10, 20, 30, 
40, 50, 75, 100] 

tolerance: [0.1, 0.2, 
0.3, 0.4, 0.5] 

N/A 40 

PCA n_components: [1, 2, 3, 4, 5, 
6, 7, 8, 9, 10, 11, 12, 13, 14, 
15, 16, 17, 18] 

N/A N/A 18 

MCD support_fraction: [0.5, 0.55 
,0.6, 0.65 ,0.7, 0.75 ,0.8, 
0.85, 0.9 ,0.95 ,1] 

N/A N/A 11 

KNN n_neighbors: [1, 5, 10, 15, 
20, 25, 50, 60, 70, 80, 90, 
100] 

method: [largest, mean, 
median] 

N/A 36 

LOF n_neighbors: [1, 5, 10, 15, 
20, 25, 50, 60, 70, 80, 90, 
100] 

distance: [Manhattan, 
euclidean, minkowski] 

N/A 36 

CBLOF n_clusters: [5, 8, 15, 20] alpha: [0.8, 0.9, 0.95] beta: [2, 4, 5] 34 

AE hidden_neurons: [64, 36, 18, 
8, 18, 36, 64], [36, 18, 9, 18, 
36], [24, 12, 6, 12, 24] 

Epochs: [50, 100, 200] N/A 9 

IF n_estimators: [10, 20, 30, 40, 
50, 75, 100, 150, 200] 

max_features: [0.1, 0.2, 
0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 
0.9] 

N/A 81 

Note: we completed the evaluation case study using version 1.0.9 of the Python PyOD package. 

Please check the package official document9  for the definitions of relevant hyperparameters. 

 
8 In evaluating the proposed outlier detection framework on the revenue dataset, the results of the initial run show 
that, with a loose credibility threshold fixed at nine, 32 outlier detection algorithms are selected (18 PCA algorithms 
with the number of components ranging from one to eighteen, five MCD algorithms with the support_fraction equal 
0.55, 0.6, 0.65, 0.85, and 0.9, as well as nine Autoencoder algorithms). With a stringent credibility threshold fixed at 
18, only three outlier detection algorithms passed the credibility test (three MCD methods with the support_fraction 
equal 0.55, 0.6, and 0.65). 
9 https://pyod.readthedocs.io/en/latest/ 
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Notably, aside from the essential hyperparameters listed in Table 3, all other parameters used by 

each method are set to their default values. 

Table 4. Data considerations in the algorithm selection process 

1 Algorithm performance varies with data sizes. Some algorithms are robust on large 
datasets, while others can be slow during execution. Auditors should select 
algorithms that are suitable for the size of data to be analyzed. 

2 High dimensionality can lead to high complexity, which can be problematic for 
certain methods. Therefore, auditors should consider the data dimensionality in 
selecting algorithms. 

3 Data distribution is usually not an issue for outlier detection methods. However, 
ABOD will not function on datasets containing duplicate observations. 

Appendix C. Preprocessing 

Observation data often needs to be converted to suitable formats in order to apply outlier 

detection algorithms. The conversion includes data cleaning, attribute engineering, data 

normalization, etc. (García, Luengo, and Herrera 2015). The three preprocessing steps are 

summarized in this part. 

Cleaning 

Raw data may contain irregularities such as missing values, which many outlier detection methods 

cannot handle. Accordingly, observations that contain missing values can be dropped, or the values 

filled in (García et al. 2015); attributes that contain multiple missing values can be ignored. 

Removal of certain attributes may artificially cause the appearance of duplicate observations, 

which some outlier detection methods (e.g., ABOD) cannot handle. An approach of dealing with 

duplicates by retaining a single representative of every subset of duplicate observations may not 
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be appropriate for outlier detection, because the prevalence of duplicates may be indicative of these 

observations being normal. 

Attribute Engineering 

Irrelevant, non-essential attributes or attributes that contain many missing values can be filtered 

out, leading to simpler, robust models (Alpaydin 2020). Auditors may construct new attributes to 

capture more focused information for a specific dataset (e.g., calculating the difference between 

the observation and bookkeeping dates can simplify the identification of backdating). Specific 

objectives should guide the auditors in engineering new attributes. 

Normalization 

Normalization can improve outlier detection performance (Campos et al. 2016). The aim is that 

all variables have the same spread and are comparable to each other. 

Appendix D. Unsupervised vs. Supervised Learning in ADA 

Supervised Learning 
Data A model is trained on a labeled dataset, e.g., labeled transactions 

indicating anomalies.  
Goal To label new transactions. 
Examples in ADA:  Classification (dividing risky and non-risky transactions) and 

regression (predicting a risk score). 
Unsupervised Learning 

Data A model is run on an unlabeled dataset, e.g., unlabeled transactions.  
Goal To discover patterns, relationships, or structures within the data. No 

“correct” label to guide the learning process. 
Examples in ADA:  Clustering (grouping similar transactions) and outlier detection 

(detecting abnormal transactions). 

Different from supervised learning, unsupervised learning does not utilize labeled data for 

training and validation. Instead, a model is constructed solely by applying a mathematical 
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algorithm to unlabeled data. As the data is not labeled, there is no way to execute a separate 

validation step to assess the performance of the model. Therefore, cross-validation, which is 

predominantly used in supervised learning to assess how well a model will generalize to new 

data, cannot be applied in unsupervised learning. 

Appendix E. “Weakly” Supervised Algorithm Selection 

We introduce the term “weakly” supervised to denote an approach based on unsupervised 

learning that utilizes an extremely small number of labeled observations for algorithm selection. 

This term is similar to the concept of incomplete supervision in the extant literature (Zhou 2018).  

The design employs auditors’ judgment on “obvious outliers” within transaction data. In 

practice, only very few transactions are labeled in this way. Though predominantly unsupervised, 

the incorporation of “obvious outliers” warrants the “weakly” supervised label for the proposed 

framework. Compared with the goals set in Appendix D, “weakly” supervised learning refers to 

the design wherein algorithms discover patterns, relationships, or structures within the data by 

leveraging a small set of labeled transactions. 

Appendix F. Precision at n 

Precision at n (P@n) is an evaluation metric used when only a limited number of observations can 

be examined. Specifically, n is chosen based on an assumption about the number of transactions 

that auditors will examine, and the number of risky transactions (i.e., true positives) among the 

top-n transactions is a measure of selection success. P@n is calculated as the percentage of risky 

transactions captured by an algorithm in its top-n transactions selected based on their outlier scores.  
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A given dataset of N transactions can be viewed as a disjoint union of L low risk transactions (true 

inliers) and H high risk transactions (true outliers), so that N = L + H. An outlier detection 

algorithm selects n transactions based on their outlier scores. As shown in Figure 3, this selection 

is a disjoint union of R true outliers (true positives) and Q true inliers (false positives), so that n = 

R + Q. The set of transactions that are not selected is also a disjoint union of P true outliers (false 

negatives) and T true inliers (true negatives). Note that P + R = H and Q + T = L. After the 

examination of the selected n transactions by the auditors, the counts R and Q will be determined. 

The counts P and T will remain unknown since those transactions that are not selected will not be 

examined. A selection is superior if it results in fewer false positives (Q) and fewer false negatives 

(P).  

It often happens in machine learning that decreasing false positives is associated with increasing 

false negatives, and vice versa. However, in the application of outlier detection algorithms 

discussed in this paper, the selection size n has to be the same for every algorithm. Since n = R + 

Q, minimizing false positives (Q) is equivalent to maximizing true positives (R). Since P + R = H, 

and H depends only on the given dataset, and therefore it is the same no matter what outlier 

detection algorithm is used, maximizing true positives (R) is equivalent to minimizing false 

negatives (P). Therefore, maximizing true positives results in minimizing both false positives and 

false negatives. Consequently, the algorithm with the highest P@n performs the best in identifying 

risky transactions in a given dataset. 

Figure 3. Venn diagram for P@n 
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Appendix G. Cross-validation 

Cross-validation is a resampling procedure used to evaluate the accuracy of supervised machine 

learning models when the amount of available labeled data is limited. A commonly used type of 

of cross-validation, k-fold cross-validation involves dividing a dataset into 'k' subsets (Alpaydin 

2020). The model is trained on 'k-1' of these folds and tested on the remaining one. This process 

is repeated 'k' times with a different fold used for testing each time, and the average over the k 

experiments is used as the estimate of accuracy.  

To employ supervised learning and cross-validation, the auditors have to classify each 

transaction as anomalous or not. However, in real-world scenarios, it is challenging for auditors 

to label a sufficiently large sample to construct a well-trained model. Therefore, supervised 

learning, and consequently, cross-validation is not commonly used in audit practice. 

Appendix H. Datasets Utilized in the Paper 
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Table 5. Datasets utilized in this paper 

Dataset Name Dataset 
Size  

Number of 
attributes 
after 
preprocessing 
and attribute 
engineering 

Number 
of 
obvious 
outliers 

Credibility Threshold Number of Credible Algorithms10 

Loose  Stringent  Loose Stringent 

Archival 
Procurement 

dataset 
56,487 

 
23 35 - - - - 

Archival revenue 
dataset 344,593 18 48 9 18 32 3 

Live engagement 
revenue dataset 36,490 14 32 9 12 33 10 

 

• The procurement dataset has 56,487 observations and contains a wide range of observation 

attributes, like vendor profile information, payment amount, and observation occurrence 

time.  

• The archival revenue dataset consists of 344,593 observations described by a broad 

spectrum of observation characteristics (e.g., date, dollar value, type, and customer profile 

information). Data preprocessing procedures are required to transform raw observation 

data into appropriate formats prior to applying outlier detection methods. Using 

engagement-specific knowledge obtained from a practicing auditor, some non-essential 

attributes are removed, and the attribute engineering technique is utilized to create 18 

attributes that capture the targeted dataset information. The final attribute set includes 

observation-type dummy variables, indicators of unusual vendor addresses, weekdays, etc. 

• The live engagement revenue dataset has 36,490 observations and similar attributes as the 

archival revenue dataset, so we applied similar preprocessing and attribute engineering 

procedures to it and created 14 attributes used in subsequent processing.  

 

 
10 The loose selection included Autoencoder, PCA, and MCD algorithms, while the stringent selection included 
MCD algorithms only.  
 



32 
 

References in the Appendix11 

Aggarwal, Charu C. 2017. An introduction to outlier analysis. Springer International Publishing.  
Ahmed, M., A. N. Mahmood, and J. Hu. 2016. A survey of network anomaly detection techniques. 

Journal of Network and Computer Applications 60: 19-31. 
Akoglu, L., H. Tong, and D. Koutra. 2015. Graph based anomaly detection and description: a survey. 

Data Mining and Knowledge Discovery 29: 626-688. 
Alpaydin, E. 2020. Introduction to machine learning. Cambridge, MA: MIT Press. 
Bao, Y., B. Ke, B. Li, Y. J. Yu, and J. Zhang. 2020. Detecting accounting fraud in publicly traded US 

firms using a machine learning approach. Journal of Accounting Research 58 (1): 199-235. 
Bhuyan, M. H., D. K. Bhattacharyya, and J. K. Kalita. 2013. Network anomaly detection: methods, 

systems and tools. IEEE Communications Surveys & Tutorials 16 (1): 303-336. 
Boukerche, A., L. Zheng, and O. Alfandi. 2020. Outlier detection: Methods, models, and classification. 

ACM Computing Surveys (CSUR) 53 (3): 1-37. 
Breunig, M. M., H. P. Kriegel, R. T. Ng, and J. Sander. 2000. LOF: identifying density-based local 

outliers. In Proceedings of the 2000 ACM SIGMOD international conference on Management of 
data: 93-104. 

Campos, G.O., A. Zimek, J. Sander, R. J. Campello, B. Micenková, E. Schubert, I. Assent, and M. E. 
Houle. 2016. On the evaluation of unsupervised outlier detection: measures, datasets, and an 
empirical study. Data mining and knowledge discovery 30: 891-927. 

Chandola, V., A. Banerjee, and V. Kumar. 2007. Outlier detection: A survey. ACM Computing Surveys 
14: 15. 

Chandola, V., A. Banerjee, and V. Kumar. 2009. Anomaly detection: A survey. ACM Computing Surveys 
(CSUR) 41 (3): 1-58. 

Chandola, V., A. Banerjee, and V. Kumar. 2010. Anomaly detection for discrete sequences: A survey. 
IEEE Transactions on Knowledge and Data Engineering 24 (5): 823-839. 

Domingues, R., M. Filippone, P. Michiardi, and J. Zouaoui. 2018. A comparative evaluation of outlier 
detection algorithms: Experiments and analyses. Pattern Recognition 74: 406-421. 

García, S., J. Luengo, and F. Herrera. 2015. Data preprocessing in data mining (Vol. 72, 59-139). Cham, 
Switzerland: Springer Press. 

Goldstein, M. and A. Dengel. 2012. Histogram-based outlier score (hbos): A fast unsupervised anomaly 
detection algorithm. KI-2012: poster and demo track, 1, 59-63. 

Gupta, M., J. Gao, C. C. Aggarwal, and J. Han. 2013. Outlier detection for temporal data: A survey. IEEE 
Transactions on Knowledge and Data Engineering 26 (9): 2250-2267. 

Hardin, J. and D. M. Rocke. 2004. Outlier detection in the multiple cluster setting using the minimum 
covariance determinant estimator. Computational Statistics & Data Analysis, 44(4), 625-638. 

He, Z., X. Xu, and S. Deng. 2003. Discovering cluster-based local outliers. Pattern recognition 
letters, 24(9-10), 1641-1650. 

Hodge, V., and J. Austin. 2004. A survey of outlier detection methodologies. Artificial Intelligence 
Review 22: 85-126. 

 
11 The references are based on the results in Google Scholar. The title and authorship sequence can be slightly 
different from Publish or Perish result in the table. 



33 
 

Kriegel, H. P., M. Schubert, and A. Zimek. 2008. Angle-based outlier detection in high-dimensional data. 
In Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and 
data mining (pp. 444-452). 

Liu, F. T., K. M. Ting, and Z. H. Zhou.2008. Isolation forest. In 2008 eighth ieee international conference 
on data mining (pp. 413-422). IEEE. 

Markou, M., and S. Singh. 2003. Novelty detection: a review—part 1: statistical approaches. Signal 
Processing 83 (12): 2481-2497. 

Markou, M., and S. Singh. 2003. Novelty detection: a review—part 2: neural network based approaches. 
Signal Processing 83 (12): 2499-2521. 

Ngai, E. W. T., Y. Hu, Y. H. Wong, Y. Chen, and X. Sun. 2011. The application of data mining 
techniques in financial fraud detection: A classification framework and an academic review of 
literature. Decision Support Systems 50 (3): 559-569. 

Pang, G., C. Shen, L. Cao, and A. Van Den Hengel. 2021. Deep learning for anomaly detection: A 
review. ACM Computing Surveys (CSUR) 54 (2): 1-38. 

Patcha, A., and J-M. Park. 2007. An overview of anomaly detection techniques: Existing solutions and 
latest technological trends. Computer Networks 51 (12): 3448-3470. 

Phua, C., V. Lee, K. Smith, and R. Gayler. 2010. A comprehensive survey of data mining-based fraud 
detection research. arXiv preprint arXiv:1009.6119. 

Pimentel, M. A. F., D. A. Clifton, L. Clifton, and L. Tarassenko. 2014. A review of novelty detection. 
Signal Processing 99: 215-249. 

Ramaswamy, S., R. Rastogi, and K. Shim. 2000. Efficient algorithms for mining outliers from large data 
sets. Paper read at Proceedings of the 2000 ACM SIGMOD international conference on 
Management of data. Dallas, Tx: SIGMOD. 

Ruff, L., J. R. Kauffmann, R. A. Vandermeulen, G. Montavon, W. Samek, M. Kloft, T. G. Dietterich, and 
K-R. Müller. 2021. A unifying review of deep and shallow anomaly detection. Proceedings of the 
IEEE 109 (5): 756-795. 

Seo, S. 2006. A review and comparison of methods for detecting outliers in univariate data sets. PhD 
diss., University of Pittsburgh. 

Shyu, M. L., S. C. Chen, K. Sarinnapakorn, and L. Chang. 2003. A novel anomaly detection scheme 
based on principal component classifier. In Proceedings of the IEEE foundations and new 
directions of data mining workshop (pp. 172-179). IEEE Press. 

Wang, H., M. J. Bah, and M. Hammad. 2019. Progress in outlier detection techniques: A survey. IEEE 
Access 7: 107964-108000. 

Zhang, Y., N. Meratnia, and P. Havinga. 2010. Outlier detection techniques for wireless sensor networks: 
A survey. IEEE Communications Surveys & Tutorials 12 (2): 159-170. 

Zhao, Y., Z. Nasrullah, and Z. Li. 2019. Pyod: A python toolbox for scalable outlier detection. arXiv 
preprint arXiv:1901.01588. 

Zhou, Zhi-Hua. 2018 A brief introduction to weakly supervised learning. National science review 5 (1): 
44-53. 

Zhuang, X., Y. Huang, K. Palaniappan, and Y. Zhao. 1996. Gaussian mixture density modeling, 
decomposition, and applications. IEEE Transactions on Image Processing 5 (9): 1293-1302. 

Zimek, A., E. Schubert, and H-P. Kriegel. 2012. A survey on unsupervised outlier detection in high‐
dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science 
Journal 5 (5): 363-387. 

https://www.bing.com/ck/a?!&&p=d2b37e415dd0541bJmltdHM9MTY4MTI1NzYwMCZpZ3VpZD0wNjFmMjlkYS0wOTZmLTZhZGItMWFhNi0zOTIyMGQ2ZjY4MTMmaW5zaWQ9NTIzOQ&ptn=3&hsh=3&fclid=061f29da-096f-6adb-1aa6-39220d6f6813&psq=2000+ACM+SIGMOD+international+conference+on+Management+of+data.&u=a1aHR0cDovL3d3dzA5LnNpZ21vZC5vcmcvc2lnbW9kL2RibHAvZGIvY29uZi9zaWdtb2Qvc2lnbW9kMjAwMC5odG1s&ntb=1
https://www.bing.com/ck/a?!&&p=d2b37e415dd0541bJmltdHM9MTY4MTI1NzYwMCZpZ3VpZD0wNjFmMjlkYS0wOTZmLTZhZGItMWFhNi0zOTIyMGQ2ZjY4MTMmaW5zaWQ9NTIzOQ&ptn=3&hsh=3&fclid=061f29da-096f-6adb-1aa6-39220d6f6813&psq=2000+ACM+SIGMOD+international+conference+on+Management+of+data.&u=a1aHR0cDovL3d3dzA5LnNpZ21vZC5vcmcvc2lnbW9kL2RibHAvZGIvY29uZi9zaWdtb2Qvc2lnbW9kMjAwMC5odG1s&ntb=1


Citation on deposit: Fulcer, K., Gu, H., Hu, H., 

Huang, Q., Kogan, A., Vasarhelyi, M., Wei, D., & 

Young, J. (in press). Application of Outlier 

Detection Methods in Audit Analytics. Accounting 

Horizons 

For final citation and metadata, visit Durham Research Online URL: 

https://durham-repository.worktribe.com/output/3202193  

Copyright statement: This accepted manuscript is licensed under the Creative 

Commons Attribution 4.0 licence. 

https://creativecommons.org/licenses/by/4.0/ 

https://durham-repository.worktribe.com/output/2873617

