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ABSTRACT
The Additive Voronoi Tessellations (AddiVortes) model is a multivariate regression model that uses Voronoi
tessellations to partition the covariate space in an additive ensemble model. Unlike other partition methods,
such as decision trees, this has the benefit of allowing the boundaries of the partitions to be non-orthogonal
and nonparallel to the covariate axes. The AddiVortes model uses a similar sum-of-tessellations approach
and a Bayesian backfitting MCMC algorithm to the BART model. We use regularization priors to limit the
strength of individual tessellations and accepts new models based on a likelihood. The performance of
the AddiVortes model is illustrated through testing on several datasets and comparing the performance to
other models along with a simulation study to verify some of the properties of the model. In many cases,
the AddiVortes model outperforms random forests, BART and other leading black-box regression models
when compared using a range of metrics. Supplementary materials for this article are available online.
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1. Introduction

Many methods aim to model a conditional expectation function
f that relates the continuous variable Y to some or all of p
(potential) covariates x = (x1, . . . , xp), such that

Y = f (x) + ε, ε ∼ N (0, σ 2),

under the assumption that the noise is mean zero and
homoscedastic. In this article, we model the systematic part
of this relationship using a sum of step-wise functions built
upon Voronoi tessellations. More specifically, we approximate
f (x) = E(Y|x), the mean of Y given x, by the sum of
many piecewise constant functions with boundaries defined
by Voronoi tessellations.

The use of Voronoi tessellations can be traced back to
Descartes in 1644, but the first noteworthy use was in Dirichlet
(1850) where two-dimensional and three-dimensional Voronoi
tessellations (Dirichlet diagrams) were used in his research
on quadratic forms. These tessellations were later named
after Georgy Voronoi, who extended them to the general n-
dimensional case in Voronoi (1908). Voronoi tessellations have
applications in many areas such as computer science (e.g.,
Musgrave, Kolb, and Mace 1989; Shewchuk 2002; Galceran
and Carreras 2013) and biology (for example, Bock et al. 2009;
Li et al. 2012). More recently, in Pope et al. (2021), Voronoi
tessellations were employed in a reversible-jump MCMC
(Monte Carlo Markov Chain) algorithm by modifying centers
to partition the covariate space and perform separate Gaussian
processes over different regions to model high dimensional non-
smooth functions.
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In this article, we use Voronoi tessellations as part of an
ensemble algorithm for naturally partitioning the covariate
space. An ensemble method is a kind of a “meta-algorithm” that
aggregates over several potentially weaker sub-models to pro-
duce one high-performing predictive model. These are powerful
methods because ensemble techniques can improve prediction
accuracy, handle complexity and offer interpretability. However,
these methods have high computational expense and require
careful tuning of the hyperparameters. Some popular ensemble
methods include bagging (Breiman 1996), boosting (Freund and
Schapire 1997) and random forests (Breiman 2001). Boosting
builds a sequence of trees where each tree corrects the errors
made by the previous ones, while bagging and random forests
use randomness to generate a large collection of individual trees
and average their predictions to make them more robust.

An additive approach is an ensemble technique that makes
predictions by summing the outputs of individual models. The
BART model, introduced by Chipman, George, and McCulloch
(2010), is an example of such a method, and is referred to as a
sum-of-trees model in the article. In the BART model, several
decision trees’ outputs are summed together to provide a predic-
tion and the advantage of this approach lies in its ability to cap-
ture both the main effects, nonlinearities and interaction effects
of the covariates. In Bayesian additive models, to prevent any
single model from exerting too much influence and to mitigate
over-fitting, regularization priors are employed. Regularization
priors limit the complexity of a single model. In the case of the
BART model, these priors are used to constrain the depth of each
decision tree, thereby reducing over-fitting.

In this article, we introduce the Additive Voronoi Tessellation
(AddiVortes) model. It is an ensemble method that models
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m (Voronoi) tessellations by using a reversible-jump MCMC
backfitting algorithm to iteratively update each tessellation. An
additive approach is used so each tessellation captures a fraction
of the overall prediction since the outputs of each are added
together to give the expected value of the dependent variable.
Regularization priors are used to reduce the likelihood of indi-
vidual tessellations having too many centers and dimensions and
thus reducing over-fitting.

To facilitate the use of the AddiVortes methods described in
this article, we have provided a repository on GitHub with all the
code to run the algorithm and produce all the figures in this arti-
cle. It is available at https://github.com/Adam-Stone2/AddiVortes.

The remainder of the article is organized as follows. In Sec-
tion 2, the fundamental concepts which AddiVortes is built
upon are outlined. In Section 3, a Bayesian backfitting MCMC
algorithm and methods for inference are described. In Sections 4
and 5, we illustrate the potential of AddiVortes through a diverse
range of examples, encompassing both simulated scenarios and
real-world data. Section 7 concludes the article with a discussion
and possible extensions to the AddiVortes algorithm.

2. Fundamentals of the AddiVortes Model

In general, a Voronoi tessellation partitions a metric space (S , d).
In this article, tessellations partition subsets of the covariate
space using the Euclidean distance. However, the algorithm can
be easily modified to accommodate other metrics. Given a set
of b distinct points M = {c1, c2, . . . , cb} in the metric space, a
Voronoi cell Vi, associated with the center ci, is defined as

Vi = {x ∈ S : d(x, ci) ≤ d(x, cj) for all j �= i}.

In other words, a point in the space is in a cell associated with
a center if it is closest in distance (with respect to the given
distance metric) to that center compared to the others.

For AddiVortes, each tessellation incorporates different
covariates as dimensions, that is if the jth tessellation includes
3 covariates then it is three-dimensional. Tessellations have
parameters μij ∈ R for each of the i = 1, . . ., bj cells in the
jth tessellation and this value is referred to as the output value
for all the samples contained within that cell. For instance, in
Figure 1, the tessellation includes the covariates x1 and x2 so is
two-dimensional and the points represent observations which
correspond to the output value for the cell they are in. The
set of all output values for the jth tessellation is denoted by
Mj = {μ1j, . . .μbjj}.

For ease of computation, like in Chipman, George, and
McCulloch (2010), we scale and transform the dependent
variable Y such that the minimum and maximum values of
ytrain are −0.5 and 0.5, respectively, that is min{ytrain} = −0.5
and max{ytrain} = 0.5. Similarly, to determine appropriate prior
distributions for the coordinates of the centers, we linearly scale
and shift the covariates so that their minimum and maximum
values of the training data are at −0.5 and 0.5, respectively.

2.1. Categorical Data

To allow nominal categorical data to be used in AddiVortes,
we convert categorical variables into numerical variables. There

Figure 1. Example of predictive modeling using a two-dimensional Voronoi tessel-
lation with centers at crosses, labeled with output values (μ1, . . . , μ8) associated
to the given cell. Samples are represented by points with their output value corre-
sponding to the cell they are in.

are several established methods to deal with categorical data,
and a review of different techniques can be found in Kosaraju,
Sankepally, and Mallikharjuna Rao (2023) where they applied
categorical encoding to a Heart Disease Prediction dataset. We
recommend two methods depending on the number of categor-
ical variables and categories within each variable.

If there are a small number of categories and a small number
of categorical variables, then we may use the one-hot method
to encode the categorical variables. This involves treating each
category as a new variable and assigning the sample a value
of one if the sample falls into that category and zero other-
wise. An obvious problem with the one-hot method is that if
there are many categories then the number of variables in the
model increases significantly. This will increase the uncertainty
in choosing the correct variables in the tessellations that are the
most influential on the outcome variable.

Alternatively, one can numerically encode the categories with
equal spacing and permutate the encoding when adding the
nominal covariate as a dimension to a tessellation, this allows
all class interactions to be considered.

2.2. Sum-of-Tessellations

Our sum-of-tessellations model consists of a predetermined
fixed number m of tessellations, a hyperparameter in our pro-
posed method. Tj denotes the structure of the jth tessellation,
that is, which covariates are dimensions in the tessellation and
the coordinates of the centers of the cells. The corresponding
values for each cell are given by Mj = {μ1j, . . . , μbjj}, where bj
is the number of cells in tessellation Tj. The output value for a
sample x of tessellation Tj is given by the function g(x|Tj, Mj). If
we consider the case in which the model consists of only a single
tessellation, then we have

Y = g(x|T1, M1) + ε, ε ∼ N (0, σ 2), (1)

where g(x|T1, M1) is the average of all the samples in the given
cell that x is in. In the AddiVortes model, an estimation of
E[Y|x, ytrain, Xtrain] is given by the sum of all the outputs of the

https://github.com/Adam-Stone2/AddiVortes
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tessellations that x corresponds too, that is

Y =
m∑

j=1
g(x|Tj, Mj) + ε, ε ∼ N (0, σ 2).

If m = 1, then this case is the same as Case 1, but, if m > 1,
then each tessellation captures a fraction of E[Y|x, ytrain, Xtrain].
In single-dimension tessellations, the μij represent main effects
since g(x|Tj, Mj) only depends on a single covariate but will
represent interaction effects when the tessellations are multi-
dimensional. Thus, AddiVortes can capture both the main
effects and interaction effects in the model. The other advantage
of using an additive approach is that we will be considering
several tessellations with smaller dimensions and centers and
there exists algorithms that efficiently find the associated centers
of samples for this case. We use the FNN: Fast Nearest Neighbor
Search Algorithms and Applications CRAN package from
Alina Beygelzimer et al. (2023) to implement our algorithm.

2.3. Regularization Priors

Priors are specified for the parameters of the sum-of-tessellations
model, specifically for (T1, M1), . . . , (Tm, Mm), and σ . These
priors are strategically chosen to favor less complex configu-
rations with fewer dimensions and cells. This regularization
controls the influence of individual tessellation effects, prevent-
ing any one of them from becoming dominant. Without these
regularization priors, complex tessellations with a large number
of dimensions and centers would cause over-fitting and limit
the advantages of the additive model in both approximation and
computation.

To simplify the implementation of AddiVortes, we propose
default specifications for the priors, which have proven effective
in numerous examples (as detailed in Sections 4 and 5). We
achieve this by reducing the prior formulation problem to a few
interpretable hyperparameters governing priors on Tj, Mj and
σ . Our recommended defaults are obtained by leveraging the
observed variation in Y to estimate reasonable hyperparameter
values. As an alternative strategy, one can specify a range of plau-
sible hyperparameter values using the considerations provided
and then use cross-validation to select the most suitable ones.
However, it is important to note that this approach will require
more computational resources that may not justify the improved
accuracy.

2.3.1. Prior Independence and Symmetry
The specification of the regularization priors is simplified if
we apply independence restrictions, similar to one found in
Chipman, George, and McCulloch (2010), such that,

π ((T1, M1) , . . . , (Tm, Mm) , σ) =
m∏

j=1

[
π(Tj, Mj)

]
π(σ)

=
m∏

j=1

[
π

(
Mj|Tj

)
π(Tj)

]
π(σ)

and

π(Mj|Tj) =
bj∏

i=1
π

(
μij|Tj

)
,

where μij ∈ Mj. Here, we have restricted the prior distributions
so that the tessellations are independent of each other and of
σ a priori and the output values in a given tessellation are also
independent of each other. Note, however, that the acceptance
probability of a new tessellation in the MCMC algorithm (as
described in Section 3) is dependent on the other tessellations
in the model and induces dependence a posteriori.

By imposing independence here, we greatly simplify the pro-
cess of defining prior distributions. Specifically, we only need to
specify forms for π(Tj), π(μij|Tj), and π(σ), rather than dealing
with complex joint distributions across all tessellations. This
simplification is further enhanced by using identical prior forms
for all tessellations’ structure π(Tj) and all parameters within
each tessellation π(μij|Tj).

In practice, we adopt similar prior distributions to the
ones proposed by Chipman et al. (1998) for the Bayesian
CART (Classification and Regression Trees) model. In the
subsequent subsections, we will observe that these prior forms
offer computational efficiency and are defined by a concise
set of interpretable hyperparameters, enhancing their practical
value.

2.3.2. Tj Prior
The prior for the tessellation structure Tj is specified by multiple
factors:

1. the number of covariates considered in Tj,
2. the number of centers in Tj,
3. the covariates that are included in Tj and
4. the coordinates of the centers.

We assign the probability of the number of covariates a
(shifted) binomial distribution, dj − 1 ∼ Binomial(p − 1, ω

p )

where dj is the number of covariates included in tessellation j,
and p is the total number of covariates. The probability density
for the number of centers in the model is a (shifted) Poisson
distribution bj−1 ∼ Poisson(λc), where bj is the number of cells
in tessellation Tj and λc is the rate parameter. The probability
that a covariate is chosen as a dimension in a tessellation follows
a (discrete) uniform distribution over the remaining covariates
that are not already in the tessellation.

For all tessellations, we assign the probability of the
coordinates of the centers a normal distribution: N (0, σ 2

c ).
We set the mean of the normal distribution as 0 as we have
performed a linear transformation to the covariates so that the
maximum and minimum values are at 0.5 and −0.5 and in
many cases the mean of the transformed covariates will be near
zero. Most centers, that will partition the data such that some
observations fall within the new cell created by the new center,
will have coordinates between −0.5 and 0.5, the maximum
and minimum values of the covariates after transformation.
Thus, we choose a value for σc so that the probability that the
majority of the centers have coordinates within the interval
(−0.5, 0.5), that is between the maximum and minimum values
of the observed covariate measurement. However, there are
cases that the coordinates of the centers will fall outside this
range, thus, the normal distribution is useful as it assigns a lower
probability for coordinates the higher the absolute value of the
coordinates.
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2.3.3. μij|Tj Prior
We handle the parameters μij using a conjugate normal
distribution N(μμ, σ 2

μ) similar to one used in Chipman, George,
and McCulloch (2010), which confers significant computational
advantages as we can easily marginalize μij. One of our
objectives is to estimate E[Y|x, ytrain, Xtrain], which equals
the sum of the output values over all tessellations. Since the
μij are independent and identically distributed, the induced
prior on E[Y|x, ytrain, Xtrain] follows a normal distribution
N(mμμ, mσ 2

μ).
To ensure that E[Y|x, ytrain, Xtrain] predominantly lies within

the observed range (ymin, ymax), where ymin and ymax represent
the minimum and maximum observed values of the output Y ,
we again choose appropriate hyperparameters. Specifically, we
set the hyperparameters such that mμμ − k

√
mσμ = −0.5 and

mμμ + k
√

mσμ = 0.5, where k is a preselected hyperparameter
determining the prior probability of E[Y|x, ytrain, Xtrain] being
within the interval (ymin, ymax).

Given the prior centered at 0 (μμ = 0), the prior distribution
for μij is expressed as

μij ∼ N(0, σ 2
μ), where σμ = 0.5

k
√

m
.

This prior encourages the tessellation parameters μij to
shrink toward zero, effectively constraining the influence of
individual tessellation components and keeping them relatively
small. As we increase k and/or the number of tessellation
components m, this prior becomes more restrictive, leading
to stronger shrinkage of the μij.

2.3.4. σ Prior
For σ , a conjugate prior is employed: a natural choice for this
prior is the inverse Chi-square distribution σ 2 ∝ νλ/χ2

ν .
To guide the calibration of hyperparameters ν and λ, a data-
informed approach is adopted where we assign a significant
probability to a range of credible σ values while maintaining a
balance between concentration and dispersion within the distri-
bution. The objective is to adjust the prior’s degrees of freedom ν

and scale parameter λ using a “rough data-based overestimate”
σ̂ of σ .

Two plausible choices for σ̂ are considered. The first is the
“naive” option, wherein σ̂ corresponds to the sample standard
deviation of the transformed training response values. The sec-
ond is the “linear model” choice, where σ̂ is based on the resid-
ual standard deviation from a least-squares linear regression
of scaled Y on the scaled X variables. Subsequently, a value
for ν within the range of 3–10 is selected to shape the prior
appropriately. Additionally, a suitable λ value is determined such
that the qth quantile of the prior on σ aligns with σ̂ , that is
Pr(σ < σ̂ ) = q. A suitable range for q is values between 0.7
and 0.99.

2.4. Choice of m

A fixed number of tessellations are used, and an iterative backfit-
ting algorithm is employed to cycle through these tessellations.
Determining an appropriate value for the number of tessella-
tions m presents a challenge. Two common strategies to address

this challenge are: (a) to treat m as an unknown parameter and
assign a prior to it and (b) to use cross-validation to select the
“best” value for m from a range of reasonable choices. However,
both of these strategies incur significant computational costs.
Typically, as illustrated in Section 5, increasing m from one
leads to considerable enhancements in predictive performance
until a point where it levels off. Beyond this point, for large m
values, performance slowly degrades, because each tessellation
contributes such a small fraction of the expected outcome and
there is uncertainty within each tessellation.

To avoid computational overhead, a practical approach is to
start with a default value of m = 200. In numerous scenarios,
this default value has demonstrated excellent predictive perfor-
mance and this is illustrated in Sections 4 and 5. However, other
considerations might come into play, particularly when using
AddiVortes for variable selection, where the choice of m could
be influenced by additional factors.

3. MCMC Backfitting Algorithm

The aim of AddiVortes is to extract the posterior distribution of
all unknown parameters in the sum-of-tessellations model,

π((T1, M1), . . . , (Tm, Mm), σ |y, X), (2)

by using the MCMC backfitting algorithm. Note to simplify
notation, in this chapter, we let y and X denote the training
data for the output variables and the covariates, respectively. The
Gibbs sampler involves m successive draws of (Tj, Mj) condi-
tionally on ({Tj′ , Mj′ }j �=j′ , σ , y, X) for j = 1, . . . , m, followed by
a draw of σ from its full conditional distribution. Hastie and
Tibshirani (2000) previously explored a similar application of
the Gibbs sampler for posterior sampling in additive and gen-
eralized additive models, with σ held fixed. They demonstrated
that this approach is a stochastic generalization of the backfitting
algorithm used in such models.

The draw of σ from the full conditional can simply be
achieved by sampling from an inverse gamma distribution,

π
(
σ 2|(T1, M1), . . . , (Tm, Mm), y, X

)
∝ π(y|(T1, M1), . . . , (Tm, Mm), σ 2)π(σ 2)

∝ IG

⎛
⎜⎜⎜⎜⎜⎝

ν + n
2

,
νλ +

n∑
i=1

(
yi −

m∑
j=1

g(xi|Tj, Mj)

)2

2

⎞
⎟⎟⎟⎟⎟⎠ .

It is more difficult to sequentially sample (Tj, Mj) | ({Tj′ ,
Mj′ }j �=j′ , σ , y) for all m tessellations. It is important to note that
the conditional probability π(Tj, Mj|{Tj′ , Mj′ }j �=j′ , σ , y) relies
solely on ({Tj′ , Mj′ }j �=j′ , y, X) through the expression

Rj = y −
∑
k�=j

g(x|Tk, Mk),

where Rj represents the n-vector of partial residuals derived
from a fitting process that excludes the jth tessellation. Thus, the
m draws of (Tj, Mj) given (T(j), M(j), σ , y, X) are equivalent to m
draws from

(Tj, Mj) | Rj, σ , (3)
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j = 1, . . . , m. Now, (3) is formally equivalent to the posterior of
the single tessellation model Rj = g(x; Tj, Mj)+ε where Rj plays
the role of the data y. Since we have used a conjugate prior for
Mj,

π(Tj|Rj, σ) ∝ π(Tj)
∫

π(Rj|Mj, Tj, σ)π(Mj|Tj, σ) dMj (4)

can be obtained in closed form up to a normalizing constant.
This allows us to carry out each draw from (4) in two successive
steps as

Tj|Rj, σ ,
Mj|Tj, Rj, σ .

(5)

The draw of Tj in (5) can be obtained using the Metropolis–
Hastings (MH) algorithm similar to the one proposed by Chip-
man et al. (1998). Six moves are suggested to propose a new
tessellation based on the current tessellation, each with its asso-
ciated proposal probability:

• adding/removing a center (0.2 each),
• adding/removing a covariate (0.2 each),
• swapping a covariate (0.1) or
• changing the position of a center (0.1).

To incorporate a new center, we simply sample coordinates
(from a normal distribution described in Section 2.3.2) for each
dimension in the tessellation. To eliminate a center, we uni-
formly sample one and remove it. Adding a dimension involves
uniformly selecting a new dimension from ones not in the tessel-
lation and sampling coordinates for each center, while removing
a dimension entails uniformly sampling a dimension in the tes-
sellation and deleting it by removing all its coordinates. Chang-
ing a center involves uniformly sampling one and sampling new
coordinates. Swapping a covariate requires uniformly sampling
a dimension to delete, then randomly selecting a covariate not in
the tessellation and sampling coordinates for the new dimension
for each center.

Note, adjustments to the acceptance probability need to be
made to take into account when certain moves cannot occur, for
example a center cannot be removed if there is only one center
in the tessellation. These adjustments are described in Appendix
B.

By integrating out Mj in (4), we avoid the complexities of
reversible jumps between continuous spaces of varying dimen-
sions Green (1995).

Subsequently, the draw of Mj in (5) involves independent
draws of μij from a normal distribution. The draw of Mj enables
the calculation of the subsequent residual Rj+1, which is essential
for the next draw of Tj.

We initiate the chain with m simple single-center one-
dimensional tessellations, and then we repeat iterations for a
burn-in period until satisfactory convergence is achieved. We
usually choose a relatively small burn-in period of 200 iterations
since convergence is fast, as illustrated in Section 5.

In Section 5, we see that the backfitting MCMC algorithm
performs well, even for challenging cases, and repeated use
of the algorithm yield similar results consistently. As the
results are consistent, we typically run one long chain with
AddiVortes instead of using multiple starts. The backfitting

MCMC algorithm for the sum-of-tessellations model shows
significant advantages in terms of mixing and flexibility, making
it a powerful tool for various complex modeling tasks.

3.1. Inference for the Model Parameters

The backfitting algorithm described in the previous section
is ergodic, producing a sequence of draws (T1, M1), . . . ,
(Tm, Mm), σ that converges (in distribution) to the posterior

π((T1, M1), . . . , (Tm, Mm), σ |y, X).

The corresponding sequence of sum-of-tessellations functions
is given by

f (·) =
m∑

j=1
g(·; T∗

j , M∗
j ) (6)

where (T∗
1 , M∗

1 ), . . . , (T∗
m, M∗

m) are the draws from the posterior.
This sequence of functions is thus converging to the posterior
distribution π(f |y) on the “true” function f (·). By running the
algorithm for a sufficient number of iterations after a suitable
burn-in period, we obtain a sample f ∗

1 , . . . , f ∗
K that can be treated

as an approximate, dependent sample of size K from π(f |y). To
estimate f (x), we can take the average or median of the posterior
samples.

A (1 −α)% posterior interval for f (x) is the interval between
the upper and lower α/2 quantiles but this a “Naive” approach
as it doesn’t consider the noise ε. Alternatively, “true” prediction
intervals which includes the affect of the noise ε and its estima-
tion error can be obtained by adding the noise to each posterior
sample for each observation and taking the upper and lower α/2
quantiles. These uncertainty intervals behave sensibly, widening
at x values far from the data.

In some cases, thinning may be appropriate. Thinning the
chain, explained in Owen (2017), is a technique used to reduce
auto-correlation in the samples by only retaining every kth sam-
ple from the sequence. This is done to ensure that the retained
samples are more independent of each other, which can improve
the accuracy of parameter estimates and the efficiency of the
algorithm.

4. Performance on Regression Datasets

We conducted a comprehensive comparison of the predictive
performance of AddiVortes against several competing algo-
rithms across a range of datasets obtained from Loh, Shih, and
Chaudhuri (2007). Due to availability of datasets we completed
our analysis on a a fraction of datasets listed and the ones used
are given in Table 1. These datasets exhibit varying sample sizes,
ranging from 96 to 4177, with each dataset comprising an output
variable and between 4 and 21 covariates. We applied the one-
hot encoding method to handle categorical covariates since all
the datasets we considered had fewer than five categories for all
covariates.

For each dataset, we created 20 independent train/test splits,
with 5/6 of the data allocated to the training set. Two versions
of AddiVortes were considered: AddiVortes-CV, where prior
hyperparameters (m, ν, q, k, σc, ω, λc) were chosen via 5-fold
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Algorithm 1: Bayesian backfitting MCMC for posterior inference in AddiVortes
Data: Training data (Xtrain, ytrain), AddiVortes hyperparameters (m, ν, q, k, σc, ω, λc)

1 Find λ ; // Using naive or linear method
2 for j = 1 to m do
3 Initialize tessellation Tj ; // Create m single center tessellations
4 Assign μ1j ; // μ1j = mean(ytrain)

5 for i = 1 to number of iterations do
6 Sample σ 2 ; // Sample from inverse gamma distribution
7 for j = 1 to m do
8 Compute residuals Rj ; // Rij = yi − ∑

k�=j
g(xi|Tk, Mk)

9 Propose new tessellation;
10 Accept or reject tessellation;
11 Sample μij ; // Sample from conjugate normal distribution

Table 1. A table showing the datasets used in our analysis.

Name n Name n Name n Name n Name n

Abalone 4177 Baskball 96 Boston 506 Edu 1400 Enroll 258
Fat 252 Hatco 100 Labor 2953 Medicare 4406 Mpg 392
Ozone 330 Price 159 Rate 144

cross-validation, and AddiVortes-default, using predetermined
hyperparameters based analysis on many simulated and real
world datasets, (m, ν, q, k, σc, ω, λc) = (200, 6, 0.85, 3, 0.8, 3, 25),
as detailed in the supplementary material. A burn-in of 200
iterations was chosen, demonstrating sufficient convergence in
many cases.

As competitors, we evaluated four black-box methods: ran-
dom forests (Breiman 2001, implemented as randomforest
in R), gradient boosting (Freund and Schapire 1997, imple-
mented as gbm in R), BART (Chipman, George, and McCulloch
2010, implemented as bart from the BayesTree R package) and
SoftBART (Linero and Yang 2018, implemented as SoftBart
in R). These models were selected for their robust multivariate
regression capabilities, interpretability and comparability.

All methods, except AddiVortes-default, underwent 5-fold
cross-validation to select hyperparameters and the considered
values for each method are provided in Table 2. In particular,
for AddiVortes-CV, we considered the following cross validation
ranges:

• k = 1, 3, reflecting moderate to heavy shrinkage for the μ

prior hyperparameter,
• σμ = 0.255, 0.8, considering low to high variation in the

coordinates of centers,
• λc = 5, 25, evaluating lower and higher number of centers

in each tessellation, and
• m = 50, 200, for the number of trees,

a total of 24 = 16 potential choices for (k, σμ, λc, m). All
other hyperparameters take their default value as they are less
influential on performance and considering more values would
increase computational time.

To facilitate performance comparisons across datasets, we
employed the relative RMSE (RRMSE), defined as the RMSE
divided by the minimum RMSE obtained by any method for

Table 2. A table showing the cross-validation values for competing methods.

Method Parameters Values considered

Random forests Number of trees 500
% variables sampled to

grow each node
10, 25, 50, 100

Gradient boosting Number of trees 50, 100, 200
Shrinkage (multiplier of

each tree added)
0.01, 0.05, 0.10, 0.25

Max depth permitted for
each tree

1, 2, 3, 4

BART Sigma prior: (ν, q)

combinations
(3, 0.90), (3, 0.99), (10, 0.75)

Number trees, m 50, 200
μ prior: k value for σμ 1, 2, 3, 5

SoftBART Number trees, m 50, 200
μ prior: k value for σμ 1, 2, 3, 5

AddiVortes # Tessellations: m 50, 200
Sigma prior: (ν, q) (6,0.85)
μ prior: k value for σμ 1, 3
Standard deviation of

center location: σc

0.255, 0.8

Probability weight for #
covariates: ω

3

Poisson rate for # centers:
λc

5, 25

each test/train split. This normalization allows for meaningful
comparisons irrespective of location and scale transformations
of the response variables. Boxplots of the RRMSE values for each
method across test/train splits are depicted in Figure 2 and the
(50%, 75%) RRMSE quantiles are provided in Table 3.

Note, we didn’t included gradient boosting in the box-plot
as the RRMSE values was much higher than the competitors
included. We also removed all RRMSE values greater than 1.5 so
that the box-plot gave a better comparison between competing
methods. No RRMSE value was removed for AddiVortes-CV or
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Figure 2. Boxplot of RRMSE for competing methods on 13 datasets.

Table 3. (50%, 75%) quantiles of relative RMSE values for each method.

Method (50%, 75%)

AddiVortes-CV (1.007635, 1.026602)
AddiVortes-Def (1.011348, 1.028736)
SoftBART (1.007709, 1.026700)
BART (1.013905, 1.056225)
Random forests (1.036218, 1.100439)
Gradient boosting (1.068354, 1.184328)

BART, only one value for AddiVortes-default, four values for
SoftBART and nine values for random forests.

While the relative performance in Figure 2 exhibits varia-
tion across different datasets, it is evident from the RRMSE
distribution that AddiVortes-CV consistently achieved smaller
RMSE values more frequently than its competitors. Notably,
AddiVortes-default exhibited impressive overall performance.
This is particularly noteworthy given that random forests, Soft-
BART and BART relied on cross-validation for hyperparameter
tuning, while AddiVortes-default excelled without the need for
such specifications.

5. Illustrating AddiVortes on Simulated Data

We use simulated data to evaluate the performance of Addi-
Vortes against known values and consider the set up originally
explored in Friedman (1991). We generate data by simulating
the values of x = (x1, x2, . . . , xp), with x1, x2, . . . , xp being
independently drawn from the standard uniform distribution
and the response variable Y given by

Y = f (x) + ε = 10 sin(πx1x2) + 20(x3 − 0.5)2

+ 10x4 + 5x5 + ε, (7)

where ε ∼ N (0, 1). Notably, Y is solely dependent on
x1, . . . , x5, so the predictors x6, . . . , xp are inactive variables.
The introduction of these extraneous variables injects a layer of
complexity.

5.1. Illustrating AddiVortes’ Abilities

To help compare the AddiVortes model with BART, we
have used examples with similar iterations to the ones used
in Chipman, George, and McCulloch (2010). To begin, we
highlight the fundamental aspects of AddiVortes by employing
a single simulated dataset from the Friedman function, with
p = 10 predictors and n = 150 observations. To facilitate our
illustration, we apply the default values (m, ν, q, k, σc, ω, λc) =
(200, 6, 0.85, 3, 0.8, 3, 25) and we generate 1800 MCMC pos-
terior samples f ∗, discarding the initial 200 iterations as
burn-in.

For each unique x value, we compute posterior mean esti-
mates f̂ (x) by averaging the 1800 posterior samples f ∗(x), and
we ascertain the endpoints of “Naive” 90% posterior intervals
for each f (x) by identifying the 5% and 95% quantiles of the
f ∗ values. Figure 3(a) illustrates the predicted output values
f̂ (x) vs the true values f (x) for the n = 150 in-sample x
values that generated the corresponding Y values through (7)
and the vertical lines denote the 90% posterior intervals for
f (x). Here, we see that the f̂ (x) values are near the true f (x)

values, while the true values are within the intervals. Figure 3(b)
extends this to 150 randomly selected out-of-sample x val-
ues. Although the correlation between f̂ (x) and f (x) is slightly
weaker, accompanied by slightly wider intervals, AddiVortes
performs considerably well with a small number of training
samples.

Note that the 90% posterior intervals may not precisely match
90% frequentist coverage and, in this case, for the training data
the intervals cover 92% the true values and 98% of the true
values for the testing data. In scenarios involving real-world
data where f remains unknown, bootstrap and cross-validation
methodologies could provide insights into interval coverage.
Notably, for extreme x values, the influence of the prior could
entail a more pronounced shrinkage toward zero, which leads to
reduced coverage frequencies.

Figure 3 (c) shows the draw of σ and the horizontal line
symbolizes the true value of σ = 1. This illustrates the Markov
chain’s quick convergence to equilibrium and the σ draws vary-
ing around the true value σ = 1 suggests the model is not over-
fitting.

Figure 4 shows for the average number of dimensions (left)
and average number of centers (right) for the simulation above,
with the default hyperparameters used and 2000 iterations.
There is quick convergence to approximately 2.4 and 3.5, for
the average number of dimensions and centers, respectively.
However, the graphs do suggest that the tessellations are still
exploring the space since these averages are still oscillating
around these values.

AddiVortes estimates the partial dependence function
(Friedman 2001), which summarizes the individual xi’s marginal
effects on Y . Figure 5 provides point estimates of the partial
dependence functions for x1, . . . , x10 derived from the 5000
posterior samples. This illustrates the impact of x1, . . . , x10 on
Y , clearly there is significant marginal effects for x1, . . . , x5 and
almost constant marginal effects for x6, . . . , x10.

In addition to prediction, AddiVortes can be used as a vari-
able selection tool by identifying the variables that are most
frequently included in accepted tessellations. Figure 6 illustrates
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Figure 3. Inference about Friedman’s f (x) for p = 10 dimensions.

Figure 4. The average number of dimensions (left) and centers (right) per tessella-
tion for each iteration.

the percentage of each variable used in accepted tessellations for
each covariate x1, . . . , x10, across 5000 posterior draws f ∗, across
a range of m values: 10, 20, 50, 100, and 200. We use a sample
of n = 500 simulated observations of the Friedman function (7)
with p = 10, matching the graph used in the BART paper. When
the number of tessellations m is lower, the ensemble of sum-of-
tessellations models progressively includes only the variables—
namely x1, . . . , x5—causing Y ’s variation. Without invoking any

presumptions or knowledge of the actual functional form of f
in (7), AddiVortes adeptly identifies the subset of variables that
underpin the dependency of f .

AddiVortes is robust to changes in the hyperparameters. To
illustrate this, we use 150 samples of the Friedman equation
with p = 10 and we calculate the RMSE of 150 out-of-sample
values and run AddiVortes 100 times for three cases: aggressive,
default and conservative. For the aggressive hyperparameters,
we chose (ν, q, k, σc, ω, λc) = (10, 0.75, 3, 0.8, 1, 5) where there is
high shrinkage toward zero and probability of lower dimension
tessellations with less centers. Whereas, for the conservative set-
ting hyperparameters (ν, q, k, σc, ω, λc) = (6, 0.95, 1, 1.5, 3, 25),
there is lower shrinkage toward zero and higher proba-
bility for higher dimensional tessellations with a higher
number of centers. The default setting, (ν, q, k, σc, ω, λc) =
(6, 0.85, 3, 0.8, 3, 25), is between the aggressive and conservative
setting. Figure 7 shows the RMSE for the 3 hyperparameter
settings for m increasing from 1 to 500, and the 90% intervals
for each case. We see the RMSE values are close for all settings
for any number of tessellations, with the aggressive setting
performing worse for smaller values of m. The graph also
illustrates a trend in RMSE values with varying numbers of
tessellations. Initially, there is a noticeable improvement in
RMSE values as we increase the number of tessellations from 1
to 50. However, as the number of tessellations continues to rise
beyond 200, there is a gradual degradation in RMSE values. This
is probably due to the uncertainty in individual tessellations.
Notably, when the number of tessellations exceeds 100, the
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Figure 5. Partial dependence plots for the 10 predictors in Friedman function.

90% intervals become much smaller. This implies that multiple
algorithm runs consistently produce similar results and it is best
to run one long chain instead of multiple smaller chains.

Next, we consider higher-dimensional data, for the function
f in (7), with its dependency on only five variables (x1, . . . , x5).
Building upon our earlier exploration of AddiVortes in Fried-
man’s setup with p = 10 and n = 150 observations,
we include higher p values. In the simulations, AddiVortes’
ability to find low-dimensional relationships when there is a
high number of inactive covariates in the data is highlighted.
We replicate the illustrations featured in Figure 3, now with
p = 20, 100, and 1000, all while keeping a small number of
observations.

For p = 20, we used the hyperparameters values similar
to the default setting but with m = 50 instead of 200. For
p = 100 and p = 1000, the hyperparameters used were
(m, ν, q, k, σc, ω, λc) = (50, 6, 0.99, 3, 0.2, 3, 25) and we use the
naive estimate σ̂ (sample standard deviation of Y) instead of the

least-squares estimate to anchor the qth prior quantile, adeptly
accommodating the problems arising when p ≥ n.

Figure 8 highlights the performance of AddiVortes to for in-
sample and out-of-sample data when the p value is increased and
the coverage of the 90% posterior intervals are give in Table 4.
The in-sample approximations and their accompanying 90%
intervals for f (x) are impressively accurate across all p values.
In the out-of-sample scenario, with larger p, the estimation of
extreme f (x) shifts toward the mean. The AddiVortes algo-
rithm performs extremely well with a small number of samples
training the model, even with a very high number of inactive
covariates.

In the third column of Figure 8, an illustration of the MCMC
progression of σ estimations with a solid line at σ = 1, the
known variance of the data. This σ draws frequently cross
the line for σ = 1 but with larger p, it increasingly tends
to stray back toward larger values, a reflection of increasing
uncertainty.
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Table 4. Coverage for the posterior intervals with increasing number of inactive
covariates.

p In-sample Out-of-sample

20 95% 92%
100 97% 98%
1000 93% 90%

Figure 6. A graph showing the percentage of the covariates’, x1, . . .x10, that are
most frequently included in accepted tessellations.

An appealing feature of AddiVortes is its robustness to being
misled by inactive covariates. To explore this, we simulated n =
150 observations with f ≡ 0, for p = 10, 100, and 1000. Using
these settings, AddiVortes indicated that f intervals—both in-
sample and out-of-sample—centered around 0 for p = 10 and
p = 100, indicating no relationship. For p = 1000, where data
provides limited insights, some in-sample intervals moved away
from 0 due to the prior’s influence. However, out-of-sample 90%
posterior intervals consistently included zero.

5.2. Evaluating Out-of-Sample Performance across
Competing Approaches

For our simulated study to gauge the effectiveness of AddiVortes
within the Friedman setup, we compare random forests, BART,
gradient boosting and SoftBART.We estimate the function f with
n = 200 observations with p = 10. To conduct this experiment,
for AddiVortes model, we performed 1000 MCMC iterations
after discarding an initial 200 draws as burn-in. For hyperpa-
rameter specification, we employed 5-fold cross-validation with
values from Table 2.

We simulated 100 datasets, each comprising n = 200 obser-
vations. Given that the data generating process is known, we
did not need to simulate a test set; instead, for each method’s
estimate f̂ derived from each dataset, 800 independent x val-
ues were randomly selected to assess the fit using the RMSE,
calculated as

RMSE =
√√√√ 1

800

800∑
i=1

(f̂ (xi) − f (xi))2.

Figure 7. The RMSE value and 90% intervals as m is increased from 1 to 500 for
three hyperparameter settings. An aggressive setting (circle) (ν, q, k, σc , ω, λc) =
(10, 0.75, 6, 0.8, 1, 5), the default setting (square) and a conservative setting (tri-
angle) (ν, q, k, σc , ω, λc) = (6, 0.95, 1, 1.5, 3, 25) have been considered. Note that
that the points have been shifted minimally left and right to make the graph more
interpretable.

Thus, we obtained 100 RMSE values for each method.
Figure 9 illustrates the outcomes using a boxplot (note

that the boxplot in Figure 9 represents RMSE values and not
relative RMSE values as in Figure 2). As expected, SoftBART
performs particularly well against its competitors because it
uses a sparsity inducing prior for selecting variables to use
in the trees introduced by Linero (2016), a modification that
can easily be applied to AddiVortes. AddiVortes performs
slightly better then BART but both perform much better
then gradient boosting and random forests. This shows that
the AddiVortes can find relevant variables for predicting
outcomes and can out-perform leading black-box methods.
Once further modifications and optimizations are applied to
AddiVortes it is likely to perform as well or even better then
SoftBART.

6. Computational Expense

The AddiVortes Algorithm is currently not optimized to be
computationally efficient when running. For example, we have
coded the algorithm in R studio which is a slower programming
language then many competitors. Despite using the efficient
FNN: Fast Nearest Neighbor Search Algorithms and Applica-
tions CRAN package that uses C++, AddiVortes can be pro-
grammed to run faster than the current version.

The advantage of using an additive approach means that we
can regularize the tessellation structures thereby limiting the
number of centers and dimensions. Thus, when the number of
covariates increases it does not have a significant effect on the
computational time and there exists fast algorithms to find the
centers of observations.
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Figure 8. Inference about Friedman’s function for p = 20, 100, 1000 dimensions.

7. Discussion

The application of AddiVortes to diverse datasets and a
simulation experiment highlights its attractive features. Notably,
in terms of out-of-sample predictive RMSE performance,
AddiVortes outperforms gradient boosting, BART and random
forests. In simulation experiments, AddiVortes consistently
yields reliable posterior mean and interval estimates of the
true regression function, along with correct marginal predictor
effects. The performance is robust to hyperparameter specifica-
tion even in higher-dimensional spaces. AddiVortes is a useful
tool for variable selection as when running the algorithm with
fewer tessellations the more influential covariates are included
in tessellations.

Usually, models that use Voronoi tessellations, such as the
one described in Pope et al. (2021), are very computationally
expensive and can not be scaled for higher dimensional
tasks. However, due to using an additive approach and

regularization priors, we only consider low dimensional
tessellations which are less computationally expensive to find
output values as there exits algorithms that efficiently find
the nearest center for an observation and increasing the
number of covariates has negligible effect on computational
time.

Currently, the AddiVortes algorithm has not been optimized
in terms of coding and is currently computationally expensive
when compared to other methods. For instance, in Kapelner
and Bleich (2016), an R package called “bartMachine” was intro-
duced that uses Java to optimize the BART algorithm and similar
techniques could be used to reduce computational expense.

In this article, we have exclusively looked at using the
Euclidean metric space. However, further research could look
into changing the metric used in the tessellations, for example
using the Manhattan distance or using multiplicatively-weighted
metrics. Some metrics would lead to the boundaries of the cells
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Figure 9. RMSE values for Friedman’s function for p = 10 covariates.

being curved and possibly partitioning the covariate space in a
more suitable way for particular datasets.

AddiVortes can be adapted for binary classification by
employing a probit link, similar to the one described in
Zhang and Härdle (2010) to modify the BART algorithm, to
predict the probability of activity. This adaptation incorporates
data augmentation techniques outlined in Albert and Chib
(1993). The approach can be further extended to handle
classification problems, following a similar approach applied
to BART described in Lee and Hwang (2024) for ordinal
classification and Kindo, Wang, Peña (2016) for nominal
classification.

In the AddiVortes algorithm, tessellations partition the
covariate space and output values are based on the cell the
sample falls in. However, if we apply a probabilistic approach
to which cell a sample falls into based on the distance to the
center of its cell and the others then this would further smooth
the output function of the algorithm. This approach is similar
to SoftBART presented in Linero and Yang (2018), where they
modified BART such that the function was smoothed by adding
a probabilistic aspect to each tree.

Expanding the model’s scope from regression, we note that
BART has been successfully adapted for causal inference in Hill
(2011). Similar adjustments to the AddiVortes algorithm can be
made so that it can be used for causal inference applications.
We believe that the AddiVortes algorithm will perform well in
causal inference settings as tessellations flexibly partition the
covariate space and determine interactions between variables
well. For causal inference, further modifications to the algorithm
can be made such as including the treatment application proba-
bility in the covariate space, similar to the method presented in
Hahn, Murray, and Carvalho (2019), and applying shrinkage for
datasets that are sparse, similar to the technique used in Caron,
Baio, and Manolopoulou (2021).

Supplementary Materials

Online Appendices: provides additional details of the default hyperpa-
rameter selection; cross-validation ranges used in our analysis and
adjustments to the algorithm. (Online Appendices.pdf, pdf file)

GitHub Respiratory: a repository on GitHub with all the code and
datasets to run the algorithm and produce all the figures in this article.
AddiVortes R code and datasets.
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