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Abstract: This study introduces a novel seatbelt-integrated, non-invasive, beam-focusing metama-
terial sensing system characterized by its thinness and flexibility. The system comprises a flexible
transmitarray lens and an FMCW radar sensor, enabling the accurate detection and analysis of
seatbelt usage and positioning through human tissue. The metasurface design remains effective even
when subjected to different bending angles. Our system closely tracks heart rate and respiration, vali-
dated against standard reference methods, highlighting its potential for enhancing in-car healthcare
monitoring. Experimental results demonstrate the system’s reliability in monitoring physiological
signals within dynamic vehicular environments.
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1. Introduction

As the demand for smarter vehicles increases, manufacturers are incorporating a
growing number of sensors to enhance functionality and safety [1]. However, the extensive
wiring required for these sensors complicates installation and maintenance, particularly
for driver and passenger monitoring systems [2]. Current solutions predominantly rely
on wired connections [3] or battery-powered wearable sensors [4,5], both of which present
significant drawbacks in terms of complexity, reliability, and maintenance.

Far-field radars have been widely used for monitoring physiological parameters, such
as heart and lung movements, by detecting changes in electromagnetic waves reflected
from a person’s body [6,7]. However, implementing this method in a vehicular environment
presents several challenges [8,9]. Engine vibrations and road noise can lead to inaccurate
readings, while the movement of the driver and passengers within the vehicle further
complicates the radar’s ability to accurately capture vital sign data [10,11].

To tackle these challenges, recent research has explored various approaches.
Zheng et al. [12] developed an ultra-wide-band (UWB) radar for detecting drivers’ heart
rates (HR) by analyzing Doppler frequency shifts in UWB signals caused by heartbeat,
breathing, and ambient noise. Shyu et al. [13] proposed a method that simultaneously
detects breathing and heartbeat information from a slightly swinging human (driver) using
novel multi-feature alignment (MFA) two-layer ensemble empirical mode decomposition
(EEMD). While these techniques offer precise detection, they face limitations such as sen-
sitivity to ambient noise, constraints in sampling rates, and accuracy issues with errors
exceeding 50 ms.

Metasurfaces, known for their ability to manipulate electromagnetic waves with high
precision, present a promising alternative [14,15]. These engineered surfaces offer unique
capabilities in controlling wave propagation, including beam steering, focusing, and shaping
of electromagnetic waves. Such properties make metasurfaces particularly suitable for
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enhancing radar performance in complex environments. However, the application of beam-
focusing metasurfaces in vehicular sensor systems requires further investigation to fully
assess their effectiveness in in-vehicle applications.

Previous studies have explored the use of metasurfaces for vehicular sensing applica-
tions. For instance, Kang et al. [16] developed a seatbelt-integrated multibeam metasurface
lens antenna and multifunctional metasurface tags designed to estimate the respiration
rates of multiple targets within a vehicle. However, this research did not address heart rate
detection or seat occupancy determination. Moreover, it lacked long-term performance
results under various driving conditions. Additional research on in-vehicle monitoring
radar [17–19,19–23] and seatbelt-integrated sensors [24] has been conducted, but limitations
persist. These studies primarily focus on a single vital parameter and face challenges in
adjusting beam direction and intensity [12], which hinders comprehensive vital signs moni-
toring in the dynamic and noisy environment of a moving vehicle. The lack of precision
impedes reliable detection of target seat occupancy and physiological parameters, such as
cardiac and pulmonary movements, leading to inconsistent monitoring outcomes [25–27].
The complexity and variability of conditions inside the vehicle, including passenger move-
ment and fluctuating levels of ambient noise, exacerbate these limitations. The referenced
studies focus on the development and application of radar-based sensors for various health
and occupancy monitoring applications. As to [28–33], while these studies provide valu-
able insights and advancements in signal processing and algorithm development, they
often fall short in addressing the fundamental hardware issues that can impact the overall
performance and reliability of the sensors. These challenges include signal stability, noise
reduction, interference, power management, environmental robustness, and component
durability. Addressing these hardware issues is crucial for ensuring consistent and reliable
performance of radar-based sensors in real-world applications.

To overcome these limitations, our research introduces a novel seatbelt-integrated, contact-
less beam-focusing metamaterial sensing system. This system offers several key advantages:

• Precise beam positioning: Integrating the metasurface into the seatbelt ensures accu-
rate and stable positioning of the radar beam on the driver’s or passenger’s chest. This
beam-focusing technology concentrates radar energy on the target area, minimizing
background noise and environmental interference. As a result, the system generates a
cleaner signal, enabling more reliable detection of subtle variations in physiological
parameters, even in the dynamic conditions of a moving vehicle, where maintaining
sensor accuracy is challenging.

• Enhanced sensitivity and selectivity: Our system leverages the unique properties of
metamaterials to enhance the sensitivity and selectivity of the radar. These engineered
surfaces enable tight beam focusing and couple confined electromagnetic waves with
subtle chest movements, allowing for precise detection of cardiac and pulmonary
activity compared to prior research [16,34,35].

• Multiparameter detection: Unlike previous systems limited to detecting a single
physiological parameter, our radar sensor system, integrated with metamaterials, can
accurately monitor multiple parameters simultaneously. This is achieved through
advanced beam-focusing technology, which improves signal precision and reduces
interference. As a result, the system can reliably detect various vital signs, even in
challenging environments with noise or passenger movement, such as in vehicles.
By focusing the radar beam, the system can clearly differentiate between different
physiological signals—for example, separating the smaller movements of heartbeats
from the larger movements of breathing. This ability to distinguish between signals
enables the system to monitor multiple parameters at once.

• Seat occupancy detection: The integration of metamaterials into the seatbelt allows the
system to precisely detect whether a seat is occupied. This ensures that safety features,
such as seatbelt reminders and airbag deployment systems, are activated correctly,
enhancing overall passenger safety.
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• Advanced signal processing: To effectively process the captured data and accurately
extract respiration and heartbeat signals from the complex sensor output, we have
employed variational mode decomposition (VMD) [34,35]. This technique enhances
the system’s ability to isolate and analyze individual vital sign components.

Variational mode decomposition (VMD) combined with metamaterial design signifi-
cantly enhances the detection and monitoring of vital signs in challenging vehicular settings.
VMD decomposes a signal into distinct modes, each with its own central frequency, allow-
ing it to isolate vital sign components such as respiration and heartbeat from noise and
irrelevant signals. This decomposition is particularly effective in vehicular environments,
where non-stationary and non-linear signals are common. VMD’s ability to separate noise,
which typically spans a broad frequency range, ensures that vital signs can be accurately
extracted without interference. Furthermore, VMD distinguishes between stable vital sign
frequencies and motion-induced variations, reducing the impact of motion artifacts.

Metamaterials enhance this process by improving the initial signal capture. Engineered
to have unique properties, metamaterials in sensors can focus and amplify specific signals,
increasing the signal-to-noise ratio and making it easier for VMD to process the data. These
materials act as spatial filters, targeting the region of interest, such as the chest area of a
passenger, and ignoring irrelevant areas. This spatial selectivity reduces extraneous data
and associated noise. Additionally, our metasurface can be easily adapted to different
vehicle interiors.

The combination of VMD and metamaterial design results in superior noise filter-
ing and effective motion artifact mitigation. The metamaterial-enhanced sensors capture
cleaner signals, which VMD then refines by isolating the respiration and heartbeat compo-
nents from residual noise. This dual-layer approach ensures high accuracy and reliability in
detecting vital signs, even in dynamic vehicular environments where traditional methods
often fail. By leveraging the strengths of both technologies, the system provides robust mon-
itoring capabilities, overcoming challenges that have previously limited the effectiveness of
vital sign detection in vehicles.

Our approach integrates a flexible transmitarray metasurface into the seatbelts with
a 60 GHz FMCW radar system combined with advanced signal processing, representing
a major leap forward in non-contact monitoring of drivers and passengers. With its
wireless, battery-less, and chipless design, this solution addresses major challenges faced by
current radar systems, such as low sensitivity, unstable performance, and noisy waveforms.
By enhancing the accuracy and expanding the scope of health monitoring in smart vehicles,
our research makes a substantial contribution to the development and innovation of vehicle
sensor systems.

2. Transmitarray Lens Design

In this study, we use a transmitarray lens to precisely control the electromagnetic
wavefront’s phase, amplitude, and polarization, essential for accurately focusing the radar
beam on a specific area on the chest. The lens’ unit cell, shown in Figure 1a, is a 1.6 mm
square, with approximately 0.6λg, where λg is the guided wavelength in the polyimide
film substrate (εr = 3.5). At the operating frequency 60 GHz, λg is λg = λo/

√
εr = 2.67 mm.

This subwavelength unit cell size is crucial for minimizing grating lobes while maintaining
a sufficiently wide phase range for effective wavefront manipulation.

The transmitarray lens was designed and optimized using ANSYS Electronics 2023 R2
software employing periodic boundary conditions and Floquet port excitation. The unit
cell consists of two layers: an even layer with a square copper pattern and a circular hole
and an odd layer with a square copper pattern, as illustrated in Figure 1b. To account for
the impact of human tissue on the lens performance, simulations incorporated a multi-layer
human tissue model comprising 10 mm of skin (εr = 35), 20 mm of fat (εr = 9), 20 mm of
muscle (εr = 52), and 15 mm of bone (εr = 14) [36]. This comprehensive model ensures
accurate prediction of the lens behavior in close proximity to the human body.
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Figure 1. (a) Unit cell design of the transmitarray lens. (b) Unit cell setup in HFSS incorporating the
human phantom model.

Figures 2a,b present the transmission magnitude and phase characteristics across the
57–62 GHz band as a function of the unit cell dimension L. Our primary design objective
was to achieve a wide phase range approaching 350◦ while maintaining a transmission
magnitude above −3 dB. This wide phase range is crucial for effective beam focusing and
steering, allowing for precise wavefront manipulation in our transmitarray design. We
systematically adjusted L from 0.2 to 1.2 mm to explore the range of achievable transmission
characteristics. Notably, the wide phase range and high transmission magnitude were
consistently maintained across the entire frequency band, demonstrating the broadband
capability of our design. This consistency is critical for stable performance across the
operational bandwidth of the radar system and highlights the robustness of our unit cell
design to frequency variations.

Figure 2. Transmission response at frequency 57 − 62 GHz. (a) Transmission magnitude for varying
unit cell dimensions L = 0.15−1.4 mm, W = 1.6 mm, R = 0.6 mm. (b) Transmission phase.

Based on these results, we investigate the concept of non-uniform transmitarray
lens configurations. Our goal is to achieve a uniform phase distribution of 0◦ across a
finite-size transmitarray lens, which is essential for optimal directivity and beam focus.
A key challenge is to implement phase corrections by strategically modifying the unit cells.
Figure 3a illustrates a carefully designed beam-focusing transmitarray lens, optimized
using MATLAB for precise electromagnetic interactions. This advanced design, fabricated
on a flexible polyimide substrate as depicted in Figure 3b, consists of 37 × 37 elements
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over an area of 59.2 mm × 59.2 mm, specifically engineered for 60 GHz operation. This
transmitarray lens, operating in the millimeter-wave spectrum, holds significant promise for
medical and radar applications, where precise wave focusing and manipulation are crucial.

Figure 3. (a) Phase distribution optimization through MATLAB R2023b. (b) Fabricated metasurface
odd−layer and even−layer.

The tilt angle of the metal-dielectric composite metasurface (MDCM) [37] is related
to the phase delay gradient pi introduced in the phase of the electric field as it propagates
through the metasurface, given by

pi = sin δi × k0 (1)

where δi is the angle of tilt of the surface, k0 = 2π
λ0

is the wave number in free space, and λ0
is the wavelength in free space at the operating frequency.

For focusing the beam at a 0-degree angle, the wave propagates in the direction
of the antenna beam, characterized by the projected wave numbers kx and ky along the
unit vectors kx and ky in the direction of the unit vectors x̂ and ŷ, respectively. These
wavenumbers are related to the phase delay gradients and the physical rotation angles of
the MDCMs as follows:

kx = p1 cos α1 + p2 cos α2

ky = p1 sin α1 + p2 sin α2
(2)

To achieve a beam focus at 0◦, the azimuth (ϕ) and elevation angles (θ) are calcu-
lated [32] using the wavenumbers

θ = sin−1


√

k2
x + k2

y

k0


ϕ = tan−1

(
ky

kx

) (3)
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Substituting kx and ky from the above equations into the expressions for θ and ϕ,
we get the following:

θ = sin−1
[

1
k0

√
p2

1 + p2
2 + 2p1 p2 cos(α1 − α2)

]
ϕ = tan−1

(
p1 sin α1 + p2 sin α2

p1 cos(↓ +p2 cos α2

) (4)

For 0◦ beam focusing, θ must be zero, which simplifies the expression for the tilt angles
α1 and α2 such that √

p2
1 + p2

2 + 2p1 p2 cos(α1 − α2) = 0 (5)

This condition implies that the phase delay gradients must cancel each other out,
and thus the MDCMs need to be aligned appropriately [38]. Using these relationships,
the elevation and azimuth angles of the output beam can be analytically determined,
ensuring that the beam focuses at a angle 0◦ by properly selecting the rotation angles of the
two MDCMs while keeping the base antenna fixed.

Figure 4 (left side) shows the 3D radiation pattern, revealing a highly directional beam
with significant gain concentrated along the vertical axis. The narrow and elongated shape
of the main lobe suggests a pencil beam, which is advantageous for targeting specific areas
with minimal spread. The color gradient ranges from red (0 dB) at the highest gain to blue
(−30 dB) at the lowest, the red region at the top indicating the area of maximum gain,
essential to achieving high precision and accuracy in target detection [39,40]. Figure 4 (right
side) illustrates how the gain is distributed radially from the center. This pattern helps to
understand how the energy disperses on a plane perpendicular to the beam’s main axis.
The concentric rings with varying colors indicate different gain levels, with the central red
region representing the highest gain, surrounded by rings of decreasing gain, ensuring
consistent performance in different orientations.

Figure 4. Metasurface beam direction in 0◦ phase.

To design a greater performance metasurface beam focusing with normal incident,
the following phase profile of hyperbolical expression along one direction should be
satisfied, i.e.,

φ(x) =
2π

λ

(√
x2 + F2 − F

)
(6)

where λ is the working wavelength, F is the designed focal distance, and φ(x) is the phase
distribution in the coordinate related to location x.

The provided figures illustrate the focusing performance of a 60 GHz metasurface
lens with dimensions of 37 × 37 elements. The analysis focuses on the normalized power
distribution along the z-axis and the full width at half maximum (FWHM) [41] of the
focused beam along the x-axis. In Figure 5a, the intensity profile of the power along the
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z-axis demonstrates the behavior of the focused beam as it propagates. The profile shows an
initial decrease in intensity close to the lens, followed by a gradual increase, peaking around
150 mm, corresponding to the focal length. This peak signifies the point of maximum focus,
after which the intensity drops off, indicating the beam’s divergence beyond the focal point.
This behavior confirms the effective convergence of the beam by the metasurface elements,
which manipulate the incoming waves to focus them precisely.

(a) (b)

Figure 5. (a) The normalized power distributions along the z-axis in the center. The inset is the
focused pattern on the x-y plane. (b) The simulated spot size FWHM of focused 60 GHz wave along
the x-axis.

Figure 5b analyzes the beam width through the FWHM, a critical metric that quantifyes
the beam width at half of its maximum intensity. The bell-shaped curve in the profile,
with maximum intensity in the center (x = 0 mm) and symmetrical falloff on both sides,
indicates a well-focused beam. The measured FWHM is approximately 20 mm, reflecting
the beam’s lateral resolution. A smaller FWHM value is desirable for a tightly focused beam,
which is beneficial for applications requiring high spatial resolution. The symmetry of the
intensity profile suggests a uniform and well-focused beam, which is crucial for consistent
performance across the focal plane. The performance characteristics demonstrated by the
metasurface lens at 60 GHz have several significant implications [42]. In high-resolution
imaging applications, such as medical imaging and precision radar systems, the sharp
focus and small FWHM enable detailed imaging of small objects or fine features [43].
For sensing applications, a tightly focused beam can improve detection sensitivity and
accuracy, especially in scenarios requiring pinpoint targeting or coverage in a small area [44].
The enhanced focus at 60 GHz is advantageous for material characterization and surface
profiling, where detailed spatial information is critical.

The coordinates of any element on the focused transmitarray can be expressed as(
xij, yij

)
, and the focal length is recorded as Ft. The transmission phase difference ∆φi for

the i th element is shown in Equation (7).

∆φi = 2 · k ·
(√

R2
i + F2

t − Ft

)
(7)

Ri =
√

x2
ij + y2

ij (8)

where k is the propagation constant and Equation (8) denotes the distance from the center
of the focused transmit array to any element [45]. The color gradients are indicative of the
intensity of the electric field within the tissue, measured in volts per meter (V/m).

Figure 6 illustrates the electric field intensity distributions for a flexible transmitarray
lens subjected to bending angles of 10◦, 20◦, 30◦, and 40◦. These simulations account for
the propagation of electromagnetic waves through human tissue, which has a significant
impact due to its high dielectric constant (ϵr ≈ 48). This property affects the speed of the
wave and alters the wavefront, with the speed in the tissue reduced to ctissue = c/

√
ϵrµ
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and the number of waves defined as ktissue = 2π f
qiseser

. A transmitarray lens, composed
of subwavelength elements, manipulates the phase of transmitted waves to focus them
effectively. When the lens is bent, the wave paths change, introducing phase variations that
affect the focusing ability. The bending angle influences the effective focal length and thus
the phase distribution and focusing performance.

Figure 6. Different bending conditions through human tissue of the flexible transmitarray lens: 10◦,
20◦, 30◦, and 40◦.

At a bending angle of 10◦, the electric field shows a nearly ideal concentric pattern
with a distinct focal point in the center, indicating strong constructive interference and
effective focus. This suggests that minor bending introduces minimal phase errors and
maintains adequate performance. At 20◦ bending, the concentric wavefronts remain mostly
intact, although the intensity at the focal point becomes more diffuse, implying that phase
coherence is slightly affected. The lens still manages to maintain its focusing capability,
though with a slightly broader field distribution. As the bending increases to 30◦, the plots
begin to show noticeable irregularities in the wavefronts. The focal point is less pronounced,
highlighting that phase errors introduced by bending are significant enough to reduce
the sharpness of focusing. This suggests a decrease in constructive interference due to
more substantial deformation of the wavefronts. At the highest bending angle of 40◦,
the field distribution shows the most deviation from an ideal pattern. The focal point is
less defined, and the intensity spreads over a broader area, indicating that the phase errors
are substantial, causing decreased focusing performance. The distorted wavefronts at this
level of bending show the limits of the lens’s phase control, as the cumulative phase path
differences disrupt the coherence required for strong focusing.

In general, the analysis of Figure 6 demonstrates the impact of bending on the focusing
ability of a flexible transmitarray lens. Although minor bending (10◦ to 20◦) maintains the
lens’s focusing ability with only slight phase deviations, more substantial bending ((30◦ to
40◦)) introduces significant phase errors that diminish constructive interference, leading
to a broader and less-defined focal point. This analysis underscores the need for robust
phase management and adaptive compensation mechanisms to maintain the performance
of flexible metasurfaces when subjected to mechanical deformations.

Figure 7 presents an analysis of the implementation of a flexible metasurface integrated
into seatbelt materials, emphasizing how the total thickness of the initial matching layer im-
pacts the reflection coefficient. This analysis identifies the conditions that promote effective
transmission and minimize reflection. In Figure 7a, a broad range of permittivity values,
from 2 to 2.5, and thicknesses, between approximately 1.13 × 10−3 m and 1.15 ×10−3 m,
are analyzed. The gradient color scale represents the reflection coefficient, where lower
reflection values are shown in cooler colors (blue and cyan), and higher values are depicted
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in warmer colors (yellow, orange, and red). This broader analysis illustrates how different
combinations of permittivity and thickness affect wave reflection and transmission.

(a) (b)

Figure 7. Comparison of matching layers showing reflection coefficients. (a) Comparison range
reflection coefficient. (b) Optimal range reflection coefficient.

Figure 7b refines the analysis to a more targeted range, with permittivity values be-
tween 2.28 and 2.3 and thicknesses from about 1.137 × 10−3 m to 1.139 × 10−3 m. This
narrower focus reveals an overall lower reflection coefficient, indicated by the predom-
inance of cooler colors (mainly blue to cyan). This suggests that within this range of
permittivity and thickness, optimal conditions for wave transmission are achieved, sig-
nificantly reducing reflections. This insight is critical for practical applications involving
seatbelt materials and similar multi-layered structures, as it highlights the importance of
precise control over material properties and thicknesses. The findings also underscore that
despite variations in materials, such as different types of fabric, padding, or even air gaps
between layers, optimal transmission can still be achieved when we implement a flexible
metasurface transmitarray.

Figure 8 provides a comprehensive analysis of the performance metrics of a flexible
metasurface under varying bending angles. Three key aspects are examined: focal shift,
full width at half maximum (FWHM), and signal-to-noise ratio (SNR). Figure 8a illustrates
the relationship between the focal shift and bending angle. It is evident that the focal shift
remains relatively stable and close to zero across all tested bending angles (0 to 40 degrees).
This consistency indicates that the metasurface maintains its focal point effectively even
as it undergoes deformation. The robustness in focal shift suggests that the metasurface’s
design is resilient to bending, ensuring that the lens maintains its focusing capabilities
without significant displacement of the focal spot.

Figure 8b presents the FWHM versus bending angle. Similar to the focal shift,
the FWHM remains consistent and does not display significant variation across the bending
angles. This result implies that the beam width and focusing performance are not com-
promised as the metasurface bends. The stability in FWHM suggests that the metasurface
can preserve its optical focusing characteristics and maintain a sharp focal point, even
under mechanical deformation. Such performance is desirable for practical applications
where flexible and conformal metasurfaces need to maintain precise focusing abilities
under various conditions. Figure 8c shows the SNR as a function of the bending angle.
Unlike the focal shift and FWHM, the SNR exhibits a clear downward trend as the bending
angle increases. The steady decrease in SNR indicates that, while the metasurface can
maintain focal integrity and beam width, there is a gradual decline in signal quality as
bending intensifies. This behavior can be attributed to phase distortions and an increase
in noise as the metasurface bends, leading to reduced signal coherence. The decline in
SNR highlights the impact of mechanical deformation on the overall quality of the signal,
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suggesting that while the metasurface is resilient in terms of focusing, its ability to maintain
a high signal-to-noise ratio may be affected by larger bending angles.

(a) (b) (c)

Figure 8. Simulation results for a flexible metasurface: (a) The focal shift vs. varying bending angles.
(b) The FWHM vs. bending angle. (c) The SNR vs. bending angle.

The results demonstrate that the flexible metasurface maintains stable focal shift and
beam width (as indicated by the FWHM) across a range of bending angles, showcasing its
robustness in focusing performance. However, the SNR analysis reveals that the quality of
the signal degrades with increased bending, signaling potential challenges in maintaining
high signal fidelity under significant deformation. This analysis underscores the importance
of designing flexible metasurfaces with materials and structures that can mitigate noise
and phase distortion effects, especially when applications require high SNR.

3. Radar System Integration and Implementation

In this study, we integrated the BGT60TR13C FMCW radar sensor, operating in the
frequency range of 58 to 63.5 GHz, with a custom metasurface transmitarray lens. The
transmitarray lens was strategically attached to the seatbelt, as shown in Figure 9. To
evaluate the performance of this setup, experiments were conducted with five healthy
adult subjects, aged 25 to 40 years, who participated voluntarily and anonymously after
providing informed consent. Each subject was seated in a standard car seat with the seatbelt
fastened, ensuring consistent experimental conditions. The transmitarray lens was affixed
to the seatbelt, while the radar sensor was positioned in front of the subject at a distance of
0.6 m, aligned with the radar’s optimal detection range.

Figure 9. Experimental setup showing the integration of the metasurface lens with the seatbelt
in-vehicle conditions.
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Data collection for each subject was conducted over a 5-minute period to assess
the radar’s ability to reliably track micro-movements, such as breathing patterns. The
experimental protocol consisted of three distinct phases: baseline measurement, controlled
interference, and posture variations. During the baseline measurement phase, data were
collected with the subject seated and wearing typical indoor clothing to replicate real-world
conditions. In the controlled interference phase, additional data were collected with a layer
of material (e.g., light clothing or a simulated seatbelt pad) placed between the metasurface
and the subject to evaluate the impact of intermediate layers on signal quality. Finally,
during the posture variations phase, subjects made slight adjustments in their seating
position to test the radar’s ability to maintain accurate detection despite minor changes
in position.

The BGT60TR13C sensor provides high-precision measurements due to its frequency-
modulated, continuous-wave (FMCW) technology [46], Throughout the experiment, each
subject’s data was analyzed to identify any deviations caused by movement or environ-
mental factors. Table 1 outlines the key parameters used in the FMCW radar configuration,
including the number of ADC samples (64 samples per chirp), the number of chirps (1),
chirp time 32 µs, 1 transmit and 3 receive antennas, total bandwidth of 5 GHz, frame
time (75.476 ms), and azimuth antenna field of view 70◦. These parameters were cho-
sen to enhance the radar’s real-time monitoring capabilities and directional detection
performance [47].

Table 1. FMCW Radar parameters

Parameter Symbol Value

Number of ADC samples NTS 64
Number of Chirps Nc 1

Chirp Time Tc 32 µs
Transmit Antenna NTX 1
Receiver Antenna NRX 3
Total Bandwidth B 5 GHz

Frame Time Tf 75.476 ms
Azimuth Antenna Field of View ΘFOV 70◦

Figure 10 illustrates the signal processing block diagram for the FMCW radar system.
The process begins with transmitting the FMCW signal and receiving the reflected signal.
The received signal is then mixed with the transmitted signal and passed through a low-
pass filter. The signal then undergoes quadrature mixing and analog-to-digital conversion
(ADC). After downconversion, beam separation is performed, followed by segmentation of
time periods. Fast Fourier transform (FFT) is applied, and the range bins are extracted to
form a distance matrix. The distance matrix is then processed using variational mode de-
composition (VMD) [48], a method chosen for its ability to adaptively decompose complex,
non-stationary signals into a series of intrinsic modes without requiring prior knowledge
of signal components. VMD isolates distinct frequency modes within the distance ma-
trix, which correspond to different physiological activities or environmental signals. This
isolation of modes enhances signal clarity, allowing for more accurate analysis of specific
components within the data. Following VMD, phase extraction and frequency analysis
are performed to identify low-frequency components associated with vital signs, such as
respiration and heartbeat. These components are separated from noise and interference, im-
proving the accuracy and reliability of vital sign detection. The final results, which include
real-time monitoring of physiological signals, are displayed for observation, allowing for
continuous and noninvasive monitoring of vital signs.
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Figure 10. Signal Processing Block Diagram.

The lightweight and flexible nature of our transmitarray lens allows it to bend be-
tween 5◦ and 15◦ without affecting antenna performance or vital sign detection accuracy.
The transmitted signal from the FMCW radar is defined as [49] follows:

STX(t) = exp

[
j

(
2π fct + π

B
Tf

t2 + φ(t)

)]
(9)

where fc denotes the center frequency, B represents the signal bandwidth, Tf is the duration
of the ramp, and φ(t) indicates the initial phase of the signal [50]. Given the seatbelt
position, the displacement between the antenna and the human body due to respiration
and heartbeat is modeled as

R(τ) = d0 + A sin(2π frτ) + B sin(2π fhτ) (10)

where d0 is the initial distance between the antenna and the body; A and B are the peak
amplitudes of respiratory and heartbeat-induced displacements, respectively; and fr and
fh are the frequencies of respiration and heart rate [51].

The signal received back at the radar, considering a time delay td, is

SRX(t) = exp

[
j

(
2π fc(t − td) + π

B
Tf

(t − td)
2 + φ(t − td)

)]

td =
2R(τ)

c

(11)

The resulting signal x(t), formed by the convolution of STX(t) and SRX(t), simplifies to

x(t) = STX(t) ∗ SRX(t) ≈ exp

[
j

(
4π

BR(τ)
cTf

t +
4π fcR(τ)

c

)]
= exp[j( fbt + φb)]

fb =
2BR(τ)

cTf

φb =
4π fcR(τ)

c
=

4πR(τ)
λ

(12)

where c is the speed of light, φb indicates the phase of the intermediate frequency (IF)
signal [52], and fb is the frequency of the IF signal. The displacement data R(τ), influenced
by the movements of the body, are embedded in both fb and φb. As the movement of
the body caused by heartbeat and respiration is subtle, it cannot be effectively captured
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by fb due to the resolution limitations of the radar. Consequently, it is derived from φb
with greater precision for shorter wavelengths. After quadrature mixing, the intermediate
frequency (IF) [50] signal can be approximately expressed as

SIF(t) = AIF exp
(

j
(

2π

[
B
Tc

td

]
t + 2π fctd + π

B
Tc

t2
d + ∆ϕ(t)

))
= AIF exp(j(2π fbt + ϕb(t) + ∆ϕ(t)))

(13)

where AIF is the amplitude of the IF signal, and fb is the bandwidth of the IF signal that
can be expressed as

fb =
2BR(t)

cTc
(14)

and the phase is

ϕb(t) = 2π fctd + π
B
Tc

t2
d ≈ 2π fctd (15)

The residual phase noise that is ∆ϕ(t) = ϕ(t)− ϕ(t − 2R/c)) can be neglected, and be-
cause the time td is very small, the term π B

Tc
t2
d can also be neglected. After sampling,

the final signal can be expressed as

y[n, m] = AIF exp
(

j
(

2π fbnTf +
4π

λ

(
nTf + mTs

))
(16)

where n is the sampling points, Tf is the ADC sampling rate, m is the sampling points of
the slow time, Ts is the sampling frequency of the slow time dimension, which is equal
to the reciprocal of the frame interval. The frame interval is the duration of time between
consecutive radar frames. This setup allows the radar system to capture detailed temporal
variations in the signal, which is essential to accurately extract physiological movements
such as respiration and heartbeat [53].

To effectively process the captured data and accurately extract the respiration and
heartbeat signals from the complex sensor output, we employ VMD. This method allows
for the isolation and extraction of subtle physiological signals amidst substantial noise
from the vehicle environment. The VMD algorithm operates by iteratively searching for
modes that minimize the total bandwidth. This is achieved through the following steps:
1. Initialization: Initialize the modes and their center frequencies. 2. Decomposition:
Iteratively update the modes by solving the constrained variational problem to minimize
the sum of the bandwidths of the modes. 3. Mode extraction: Extract the modes which
represent different intrinsic components of the signal. Mathematically [34,35], the VMD
process is described by

min
uk ,ωk

∑
k

∣∣∣∣∂t

[(
δ(t) + j

1
πt

)
∗ uk(t)

]
e−jωkt

∣∣∣∣2
2

(17)

subject to
∑
k

uk = f (18)

where uk are the modes, ωk are the center frequencies, and f is the input signal. By decom-
posing the radar signal using VMD, we can effectively isolate the components correspond-
ing to respiration and heartbeat. This enables accurate detection of these physiological
signals, which previous works could not achieve due to limitations in signal processing
and noise reduction techniques.

4. Results

Experiments were conducted to validate the practicality and effectiveness of the
proposed system. The radar sensor was strategically oriented toward the driver wearing a
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seatbelt, as shown in Figure 7, to ensure optimal detection of vital signs. The implemented
algorithm was applied to process the radar signals, allowing for accurate monitoring of
physiological parameters. The radar acquisition range was configured to cover a span of
0.5 to 0.8 m, a distance that is ideal for capturing the necessary data from the driver. This
setup was chosen to ensure that the radar could effectively detect subtle physiological
movements, such as respiration and heartbeat, without interference from surrounding
objects or environmental noise.

To ensure synchronization between radar detection and the standard reference method,
specific steps were taken to align the data acquisition and processing timelines of both
systems. Time synchronization was established using a unified time source, allowing
precise matching of data timestamps from both systems. Simultaneous data acquisition
was achieved by triggering both the radar and the reference systems to collect data at the
exact moment, ensuring a direct comparison of measurements. Furthermore, a calibration
protocol was conducted before each experiment to align radar outputs with standard refer-
ences, such as the ECG and respiration belt from BIOPAC, ensuring comparable readings
of physiological signals. The radar data processing algorithm was further refined to syn-
chronize with the time scale of the reference method, effectively eliminating any potential
delay discrepancies. The validation trials subsequently confirmed this synchronization,
enabling an accurate overlay of radar and reference data.

The results of these experiments confirmed the ability of the system to operate reliably
within the specified range and demonstrated its potential for practical application in
real-world driving conditions. Through careful synchronization measures, the system
performance was validated against the standard reference method, ensuring accurate and
reliable data comparisons.

4.1. Seat Occupancy

Radar sensors are crucial for detecting occupants or objects in vehicle seats, ensuring
safety and functionality. These sensors identify subtle changes in distance and movement,
distinguishing between a person and items. To improve radar accuracy, we are developing
a beam-focusing metasurface attached to the seatbelt, which enhances signal reflection.
This design boosts the radar’s ability to detect small movements and better differentiate
between objects and human occupants, improving overall system reliability and reducing
false detections.

When no occupant is present, the radar sensor measures the distance to the seat
surface or any objects placed on it, such as a bag. If the object remains still, the sensor
detects a relatively constant distance, with only minor fluctuations due to environmental
factors such as noise and vibrations within the vehicle, rather than any significant object
movement. To determine if a person is present, the standard deviation of the envelope
amplitude component is calculated as follows:

σ2(t) =
∫ t

0

(
dy
dt

)2
dt (19)

This equation can be implemented digitally using the sampled peak amplitude values,
y[n], measured by the radar during each sweep. This type of moving average filter functions
similarly to an infinite impulse response (IIR) filter [54]. The formula for implementing
Equation (19) with an exponentially weighted moving average (EWMA) filter is

σ2[n] = α

(
y[n]− y[n − 1]

Ts

)2

+ (1 − α)σ2[n − 1] (20)
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In this case, the derivative is estimated using the finite difference between two consec-
utive samples. The smoothing coefficient, α, can be derived from the cutoff frequency [55]
using the equation

α =
√

cos2(Ω3dB)− 4 cos(Ω3dB) + 3 + cos(Ω3dB)− 1 (21)

Here, Ω3dB represents the normalized angular frequency, which is given by

Ω3dB = fc
Ts

2π
(22)

The seat is classified as occupied by a person if the value of σ exceeds a predetermined
threshold, σth. In the case of a stationary object, the difference between consecutive samples
should be zero, with only noise contributing to the signal [56]. Consequently, σ serves as
an indicator of noise deviation. The threshold is initially determined on the basis of the
average value of σ when the seat is occupied. If the threshold is set too low, it may lead to a
higher likelihood of false alarms, while setting it too high could result in detection errors or
delayed sensor responses.

Figure 11 illustrates the process of seat occupancy detection using a flexible transmi-
tarray lens integrated with a 60 GHz frequency−modulated continuous-wave radar system
(FMCW). The figure contains two key plots. The top plot shows the signal amplitude over
a 120 s time interval, capturing both noise and the breathing signal, while the bottom plot
displays the seat occupancy indicator, which reflects whether the seat is empty or occupied
over time. In the first 20 s, the seat remains empty, as indicated by the low amplitude
fluctuating around 0.2 units, suggesting the absence of any significant object. Minor fluctu-
ations are present due to environmental noise, but the system accurately detects the seat
as unoccupied. Between 20 and 40 s, a bag is placed on the seat, causing a slight increase
in the signal amplitude. However, this increase remains below 0.5 units, indicating that
the radar system is capable of distinguishing between an inanimate object, such as a bag,
and a person. This reflects the system’s robustness in avoiding false positives for seat
occupancy detection.

Figure 11. Seat occupancy detection using 60 GHz FMCW radar, showing range, amplitude (with
noise and breathing signal), amplitude deviation, and seat occupancy indicator over time.

Seat occupancy detection using 60 GHz FMCW radar, showing range, amplitude (with
noise and breathing signal), amplitude deviation, and seat occupancy indicator over time.
The green dashed line represents the threshold for detecting seat occupancy, distinguishing
between empty, bag placement, and true seat occupancy states. From 40 to 80 s, a person
occupies the seat, causing the amplitude to rise sharply to around 0.5 units. During this
period, the system detects fine variations in the signal, corresponding to the person’s
breathing and slight movements. This demonstrates the radar’s capability to capture micro-
movements, which is essential for accurately identifying both presence and physiological
signals, like breathing. After 80 s, when the person vacates the seat, the amplitude returns
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to the lower level, once again signaling an empty seat. The seat occupancy indicator
in the second plot also mirrors these changes, clearly switching between empty, bag
placement, and occupied states throughout the time interval. This shows the radar system’s
ability to reliably differentiate between unoccupied, object placement, and true occupancy
by a person, highlighting its sensitivity and accuracy in detecting seat occupancy and
physiological movements.

4.2. Vital Sign Detection

In this section, we present the findings from our experimental evaluation, which
demonstrates the performance and effectiveness of the contactless, beam-focusing, seatbelt-
integrated flexible transmitarray metasurface sensing system. The results focus on its
ability to accurately detect and monitor vital signs, showcasing its reliability in real-world
conditions. Detailed analysis includes comparisons with reference sensor methods, high-
lighting improvements in signal clarity, response time, and overall data accuracy. These
findings underscore the potential of this innovative system for enhanced in-vehicle health
monitoring and safety applications.

Figure 12 illustrates the experimental comparison of vital sign detection using a radar
system with and without the integration of a flexible transmitarray lens. This experiment,
conducted under controlled conditions outside of a vehicle setting, emphasizes the impact
of the flexible lens on enhancing the detection of physiological signals. The results clearly
demonstrate that the use of the flexible lens significantly improves the accuracy and
sensitivity of vital sign monitoring. When the flexible lens is applied, the detected signal
amplitudes for both respiration and heart rate are significantly higher and more distinct,
underscoring the improved detection capabilities. For instance, the respiration signal
exhibits a pronounced peak at 0.49 Hz, and the heart rate signal shows a clearer and more
defined peak at approximately 1.04 Hz. These results indicate a stronger and more reliable
signal capture when the lens is used, facilitating better identification and analysis of vital
signs. Conversely, in the absence of the flexible lens, the amplitudes of the signals for both
respiration and heart rate are substantially lower. This reduction reflects a decrease in
detection sensitivity and signal clarity, which may hinder the accurate monitoring of vital
signs. The loss of signal quality without the lens highlights the potential limitations of
using a radar system alone for precise physiological measurements.

Figure 12. Heart rate and respiration comparison with or without the flexible lens.

Figure 13 presents a comparative analysis of radar-detected vital sign signals against
standard reference methods (ECG and Biopac MP160 respiration belt), measured from
the same subjects in a nonvehicular experimental setting. This figure is divided into
two sections to illustrate the effectiveness of the radar system in detecting both respiratory
and heart rate signals. The upper graph displays the respiration signals, with the radar-
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detected respiration signal (radar resp) shown in blue and the reference respiration belt
signal (resp belt) depicted in black. The visual alignment between the radar-detected signal
and the respiration belt measurements indicates a strong correlation and high precision
in capturing respiratory patterns. This close match suggests that the radar system can
reliably monitor respiration rates and patterns comparable to those obtained from the
standard respiration belt. The lower graph illustrates the heart rate signals, with the radar
detected heart rate (radar heart) in blue and the corresponding ECG measurements in black.
Similarly to the respiration signals, the heart rate detected by radar shows a clear and
consistent alignment with the ECG signal. This indicates that the radar system is capable of
accurately detecting heart rate while maintaining fidelity to the gold standard provided by
the ECG measurements.

Figure 13. Heart rate and respiration comparison with flexible transmitarray lens.

Figure 14 illustrates the comparison between radar-based measurements and standard
monitoring techniques for heart rate and respiration when a flexible transmitarray lens
is not used. This experiment, conducted under controlled conditions outside of a vehicle
setting. The figure highlights key differences in accuracy and signal stability. In the
respiration data, the extracted radar signal follows a waveform similar to the respiration
belt, showing that the radar system can reasonably track respiratory activity. However,
minor discrepancies in amplitude and slight phase shifts between the two signals indicate
that without a flexible lens, the precision of the radar system is somewhat compromised.
These variances suggest that, while the radar can detect respiration, its accuracy and
reliability are not fully optimal without the lens.

The lower part of the figure presents radar-derived heart rate data compared to the
ECG as the gold standard for heart rate monitoring. Unlike relatively accurate respira-
tion tracking, the extracted radar signal shows significant difficulties in capturing heart
rate. The radar-based heart rate signal does not replicate the sharp peaks and consistent
amplitude seen in the ECG. This lack of precision highlights the system’s limitations in
detecting heart rate without the support of a flexible transmitarray lens. The radar sig-
nal demonstrates less stability, characterized by significant variations and a more diffuse
pattern, indicating difficulties in maintaining consistent detection and alignment with the
ECG. The figure demonstrates that without a flexible transmitarray lens, the radar system
can still track respiratory activity with moderate accuracy, albeit with some limitations
in amplitude and phase stability. However, its ability to accurately detect heart rate is
markedly diminished, as evidenced by the poor correlation with the ECG signal. This
underscores the importance of a flexible lens for enhancing the sensitivity and stability of
radar-based remote monitoring systems, especially for precise heart rate detection.
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Figure 14. Heart rate and respiration comparison without flexible transmitarray lens.

Figure 15 presents the analysis of the amplitude and frequency of the respiration
and heart rate signals under three conditions: car standby, driving, and bumpy condition.
The car standby condition with a flexible transmitarray lens demonstrates superior detec-
tion capabilities. The time domain signal exhibits clear periodic waveforms, indicating
reliable heart rate and respiration monitoring. The frequency-domain analysis supports
this observation, showing distinct peaks at 0.45 Hz for respiration and 1.12 Hz for heart
rate, aligning closely with the reference ECG measurement at 1.18 Hz. This clear align-
ment underscores the contribution of the flexible lens to improved system sensitivity,
allowing accurate separation of heart rate and respiration signals. In contrast, perfor-
mance without a flexible transmitarray lens under the same standby conditions shows
notable degradation. The time-domain signal appears noisier with less defined patterns,
suggesting reduced sensitivity. The frequency domain analysis reveals a weaker heart
rate peak at approximately 1.11 Hz, which struggles to stand out against background
noise, while the respiration peak at 0.41 Hz remains identifiable but less pronounced.
These observations indicate that without the flexible lens, the system’s ability to reliably
detect the heart rate is compromised due to insufficient signal clarity and increased
noise interference.

(a) (b)

Figure 15. Comparison of heart rate and respiration detection under a different driving conditions
such as standby, driving, and bumpy (a) with a flexible transmitarray lens and (b) without flexible
transmitarray lens.

Under driving conditions, the system equipped with a flexible transmitarray lens
maintains steady detection performance. The time domain signal presents discernible
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waveforms despite motion, while the frequency domain analysis shows a respiration peak
at 0.53 Hz and a heart rate peak at 1.20 Hz, consistent with an ECG reference of 1.21 Hz. This
indicates that the flexible lens provides a stabilizing effect that preserves sensitivity even
under moderately dynamic conditions, allowing reliable differentiation between heart rate
and respiration. However, without the flexible transmitarray lens, the driving condition
significantly affects the detection accuracy. The time domain signal becomes more erratic
with waveforms that are harder to interpret. The frequency domain analysis shows weaker
peaks, with the heart rate appearing around 1.17 Hz but nearly blending into noise, and a
respiration peak at 0.51 Hz that is less distinguishable. These results suggest that motion
exacerbates the system’s limitations when a flexible lens is not used, leading to challenges
in accurately isolating the heart rate signal.

Bumpy conditions pose the most rigorous test for the system. When using a flexible
transmitarray lens, the time-domain signal displays more movement-induced distur-
bances, yet the periodic patterns for respiration and heart rate remain somewhat rec-
ognizable. The frequency domain analysis shows peaks at 0.52 Hz for respiration and
1.18 Hz for heart rate, compared to an ECG reference at 1.19 Hz, although with a wider
spectral width due to motion artifacts. This shows that the flexible lens effectively en-
hances the resilience of the system against severe motion, ensuring the detection of vital
signs even in challenging conditions. In contrast, without the flexible transmitarray lens,
the system’s performance deteriorates considerably in the bumpy condition. The time
domain signal becomes highly erratic, with patterns that are difficult to interpret, result-
ing in unreliable detection. The frequency domain analysis does not show clear heart
rate peaks as they are nearly indistinguishable from noise, highlighting the limitations
in heart rate detection under high-motion conditions without the stabilizing effect of
a flexible lens. Respiration detection also suffers, with peaks at approximately 0.57 Hz
that are less defined.

Table 2 provides a detailed understanding of how different driving conditions such as
standby, driving, and bumpy conditions affect physiological measurements, specifically
heart rate and respiration detection, both with and without the use of a flexible transmi-
tarray lens. The RMS acceleration (RMS Acc.) values indicate the level of environmental
vibration experienced during each condition. The data show that using the lens results
in lower RMS Acc. values across all conditions: 0.030 m/s2 during standby, 0.200 m/s2

while driving, and 0.310 m/s2 in bumpy conditions. In contrast, without the lens, the RMS
Acc. values are higher: 0.037 m/s2 in standby, 0.325 m/s2 while driving, and 0.470 m/s2

in bumpy conditions. These results indicate that the lens helps reduce environmental
vibrations, leading to more stable measurements.

Table 2. Comparison of RMS acceleration, heart rate coefficient of variation (CV), and respiration
coefficient of variation across conditions with and without the flexible transmitarray lens.

Condition
With Lens Without Lens

RMS Acc./CV HR/CV Resp. RMS Acc./CV HR/CV Resp.

Standby 0.030/0.011/12.20 0.037/0.021/14.20

Driving 0.200/0.021/13.00 0.325/0.031/14.26

Bumpy 0.310/0.045/14.30 0.470/0.075/15.10

The heart rate coefficient of variation (CV HR) also shows improved consistency with
the use of the lens. The CV HR values with the lens start at 0.011 in standby, rise to 0.021 dur-
ing driving, and peak at 0.045 in bumpy conditions. Without the lens, the values are higher:
0.021 in standby, 0.031 during driving, and 0.075 in bumpy conditions. This indicates that
the lens helps mitigate motion-induced variability, making heart rate measurements more
reliable. The increasing CV HR values across conditions underscore the impact of motion
on heart rate detection, particularly in high-intensity conditions like bumpy environments,
where the absence of the lens leads to greater variability.
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Respiration detection, represented by the coefficient of variation for respiration (CV
Resp.), also benefits from the use of the lens, though it remains more stable overall compared
to heart rate. The CV Resp. values with the lens are 12.20 in standby, 13.00 during driving,
and 14.30 in bumpy conditions, while without the lens, these values are higher: 14.20 in
standby, 14.26 during driving, and 15.10 in bumpy conditions. This suggests that while
respiration is less affected by motion than heart rate, the use of the lens still contributes to
improved consistency in respiration measurements.

Overall, the data indicate that the flexible transmitarray lens enhances the stability
and reliability of physiological measurements across all conditions. The lens proves
especially beneficial for heart rate detection by reducing variability in high-motion
environments. While respiration detection is inherently more resilient to motion artifacts,
the lens further improves its measurement consistency. These findings reinforce the
value of using the lens for more accurate and stable physiological monitoring in variable
driving conditions.

Figure 16 presents a box plot analysis of inter-beat interval (IBI) errors across three
different conditions such as standby, driving, and bumpy using of the flexible transmi-
tarray lens. The IBI error is measured in milliseconds (ms) and reflects the deviation of
radar−based IBI measurements from the reference standard. The red line within each box
plot represents the median value, while the ′+′ symbols indicate outliers in the data. In the
standby condition, the IBI error is relatively low and consistent, with most values clustering
around the median and few outliers. During driving, the IBI error distribution is similar to
the standby condition but exhibits slightly more variability, indicating minor increases in
measurement error due to movement. The bumpy condition shows a significant increase in
the variability of the IBI error, with a wider range and higher median error, indicating that
rough driving conditions substantially affect the accuracy of radar-based IBI measurements.
This analysis highlights the challenges of maintaining precise vital sign monitoring in
dynamic and unstable environments. Although this suggests potential limitations in the
reliability of the proposed approach for certain applications, it also underscores the need for
further development. Defining the severity of “bumpy”conditions and proposing remedies
such as enhanced signal processing, multisensor fusion, adaptive calibration, and envi-
ronmental compensation are crucial steps toward improving robustness. Additionally,
understanding the likelihood of encountering such conditions will help in assessing and
mitigating these challenges effectively.

Figure 16. Comparison of inter−beat interval (IBI) errors during different driving conditions (standby,
driving, and bumpy) using a flexible transmitarray lens.

The Bland–Altman plots presented in Figure 17 illustrate the agreement between the
inter-beat interval (IBI) measurements obtained from the ECG (electrocardiogram) and
radar under three different conditions such as car standby (a), driving (b), and bumpy
condition (c) using a flexible transmitarray lens. In each graph, the difference between
the BBI ECG and BBI radar measurements is plotted against their average, allowing for a
visual assessment of the agreement between the two methods. In the car standby condition
Figure 17a, the points are relatively tightly clustered around the mean difference line (solid
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red line), with the majority of differences falling within the limits of agreement (dashed
black lines at ±1.96 standard deviations). This suggests a good agreement between the
two measurement methods in a stable environment. The estimated radar heart rate for
car standby is 72.0661 bpm, compared to the estimated ECG heart rate of 72.6271 bpm,
highlighting the minimal discrepancies between the two methods.

(a) (b) (c)

Figure 17. Bland–Altman plots showing the heart rate agreement between Beat-to-beat interval ECG
and Radar measurements under different conditions from 5 subjects: (a) Car Standby, (b) Driving,
and (c) Bumpy Condition using flexible transmitarray lens.

Under the driving condition in Figure 17b, there is a slight increase in the spread
of the differences between the BBI measurements from ECG and radar. Although the
mean difference remains close to zero, the broader range of differences suggests that the
agreement between the two methods is slightly less consistent compared to the car standby
condition. This increased variability can be attributed to the dynamic nature of driving,
which introduces additional noise and movement artifacts. The estimated radar heart rate
during driving is 78.7428 bpm, compared to the ECG heart rate of 78.1955 bpm, indicating
a small but noticeable variability. Figure 17c shows the highest dispersion of points, with a
noticeable trend to increase the difference values as the average BBI increases. This trend,
along with the wider spread of points, indicates a reduced agreement between the mea-
surement methods under more challenging conditions with significant motion. The limits
of agreement are wider, reflecting the increased variability and potential measurement
errors introduced by the bumpy environment. The estimated radar heart rate in bumpy
conditions is 84.2739 bpm, while the ECG heart rate is 84.9816 bpm, demonstrating the
greatest variability among the conditions tested.

The Bland–Altman plots in Figure 18 illustrate the agreement of the breath–breath
interval obtained from the respiration belt and radar under three different conditions such
as standby, driving, and bumpy—using a flexible transmitarray lens. In Figure 18a, the plot
reveals that the differences between the belt and radar measurements are minimal and cen-
tered to be around zero, indicating a negligible systematic bias. The estimated respiratory
rates are nearly identical, with the radar measuring 14.9948 breaths per minute and the belt
measuring 15.0026 breaths per minute. The majority of the data points fall within the limits
of agreement, suggesting a strong correlation between the two methods in a stationary
state. For the driving condition depicted in Figure 18b, the Bland–Altman plot continues
to show a small mean difference close to zero, with data points closely clustered around
the mean difference line. This clustering indicates high consistency and reliability between
the belt and radar measurements during driving. The estimated respiratory rates are again
very similar, with the radar at 18.001 breaths per minute and the belt at 18.0026 breaths
per minute, further underscoring the strong agreement between the two measurement
techniques. Under the bumpy condition, as shown in Figure 18c, there is a slight increase
in the mean difference, though it remains close to zero, indicating minimal bias even under
more dynamic conditions. The estimated respiratory rates are 20.0068 breaths per minute
for the radar and 19.9966 breaths per minute for the belt. Although the data points are
more spread out compared to the other conditions, they still fall mostly within the limits
of agreement. This slight increase in variability can be attributed to increased movement
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and instability in bumpy conditions, but does not significantly detract from the overall
agreement between the two methods.

(a) (b) (c)

Figure 18. Bland–Altman plots showing the respiration rate agreement between breath-to-breath
interval respiration belt and radar measurements from 5 subjects under different conditions such as
(a) car standby, (b) driving, and (c) bumpy using a flexible transmitarray lens.

Figure 19a shows that the error percentages, representing the deviation between the
ECG and radar methods, are consistently low in all subjects and driving conditions, gener-
ally below 1.5%. This low level of error further supports the accuracy of radar compared
to the traditional ECG method. Although there is some variation in the percentages of
errors between subjects, with certain individuals showing slightly higher errors under
specific conditions, these differences are minimal and do not detract from the overall
reliability of the radar method. Additionally, the error percentages remain stable across
the various driving conditions, suggesting that the accuracy of radar is not significantly
impacted by different types of driving activities, even in more challenging environments
like bumpy roads.

(a)

(b)

Figure 19. Error percentages of (a) heart rate and (b) respiration measurements under different
conditions such as car standby, driving, and bumpy from 5 subjects using a flexible transmitarray lens.

The percentages of error in Figure 19b, representing the discrepancies between the belt
and radar measurements, are shown for each subject under the three driving conditions.
These errors are generally low, with most values remaining below 1.2%, further confirming
the accuracy of the radar method compared to the traditional respiration belt sensor.
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Although there are slight variations in the percentages of errors between subjects, some
showing higher errors under certain conditions, particularly in more dynamic environments
such as driving and bumpy roads, these differences are minimal. The error percentages
remain relatively stable under the different driving conditions, suggesting that the accuracy
of the radar sensor is not significantly affected by the type of driving activity.

5. Discussion

The results from seat occupancy detection using the flexible transmitarray lens with
60 GHz FMCW radar provide valuable insights into the system’s ability to monitor seat
occupancy and physiological signals, such as heart rate and breathing. The data demon-
strated that the radar system reliably differentiated between an empty seat and an occupied
one, with minimal noise interference, highlighting its reliability for this purpose. These
findings align with previous studies that have shown the effectiveness of radar in capturing
micro-movements like breathing and heart rate and in detecting the presence of occupants.

The broader implications of these results suggest that such noninvasive, radar-based
monitoring systems with transmitarray lens could play a significant role in the future of
smart vehicle technology. As automakers continue to develop safer and more autonomous
vehicles, radar systems for occupancy detection, vital sign monitoring, and safety checks
could become standard features. This capability not only improves passenger safety,
but also provides continuous, real-time health monitoring.

Future research should focus on improving the robustness of the system in more
dynamic driving conditions, such as bumpy roads or sudden changes in occupant behavior.
Advanced noise reduction techniques with different algorithms could help isolate physio-
logical signals from environmental noise. Furthermore, incorporating machine learning
algorithms to distinguish between real and false detections, such as differentiating between
a small object and a human occupant, could further enhance accuracy. Investigating the
long-term durability and performance of the system in varying vehicle environments,
including extreme weather, will be crucial to its widespread adoption.

6. Conclusions

Our study demonstrates the effectiveness of a seatbelt-integrated beam-focused meta-
material sensing system for the accurate detection of vital signs in an automotive envi-
ronment. Integrating a flexible transmitarray lens with a 60 GHz FMCW radar sensor
significantly improves the precision of physiological signal measurements. Validated
against standard reference methods, the radar system closely tracks heart rate and respira-
tion, underscoring its potential for improving in-car healthcare monitoring and is suitable
for implementation on the seatbelt for seat occupancy detection. Future work will focus on
further refining the robustness of the system and exploring broader applications.
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