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ABSTRACT Monostatic backscatter has garnered significant interest due to its distinct benefits in low-cost
passive sensing. Observing and sensing with backscatter necessitates determining the phase and amplitude
of the backscatter channel to identify the state of the target of interest. In the detection of multiple targets,
colliding signals can distort the backscatter channel, complicating channel state recovery. It becomes
even more challenging when multiple backscattering devices (BDs) are used. This paper proposes a
novel channel estimation scheme to tackle the challenge, which is applied to a monostatic backscatter
communication system with multiple reader antennas (RAs) and backscatter devices. Specifically, we
propose a backscatter communication model and subsequently develop a de-interfering channel estimation
framework that considers the ambient interference in the channel, named model-driven unfolded channel
estimation (MUCE). To validate the effectiveness and advantages of the MUCE method, it is compared
with the least square (LS) algorithm and convolutional neural network (CNN). The results prove that
MUCE requires lower computational costs for the same channel estimation performance and achieves an
optimal balance between estimation performance and computational expense.

INDEX TERMS Channel estimation, deep unfolding, interference cancellation, monostatic backscatter.

I. INTRODUCTION

THIS Backscatter communication (BC) has emerged as
an appealing technology for various wireless systems

and applications. Compared with conventional wireless archi-
tecture sensor systems with radio frequency (RF) transceiver
components like local oscillators, mixers, and convert-
ers, BDs can operate with low power consumption [1].
Numerous BDs have been investigated and deployed in
Internet of Things (IoT) applications, such as warehouse
management and supply chain monitoring [2], [3]. Their
advantages and unique features in the wireless sensing
field have been proposed and demonstrated worldwide,
with applications encompassing localization, tracking, and
motion recognition [4], [5], [6], [7], [8]. The backscatter
system is made of the carrier emitter and signal receiver

with either full-duplex or bistatic architecture depending
on whether the reader transmitting and RAs are shared or
not.
The majority of existing backscatter research relies on

channel state information (CSI). However, to obtain accurate
CSI for backscatter communications symbols is challenging
due to limited energy resources available to support the trans-
mission of pilot and the channel variance. A source channel
estimation algorithm based on expectation maximization has
been proposed, which can determine channel parameters
without the need for training symbols [9]. The authors
in [10] investigates the impact of phase noise on downlink
compressive channel estimation in massive multiple-input
multiple-output (MIMO) systems. Furthermore, the authors
propose a novel tensor-based approach [11] that addresses
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both the channel estimation and target sensing prob-
lems. For dedicating signal readers, the authors in [12]
have developed a scheme that incorporates the backscat-
ter signal receiver into an orthogonal frequency-division
multiplexing access point, leading to detect the backscatter
symbols iteratively and perform interference cancellation
simultaneously.
In monostatic backscatter communication, the carrier

emitter and backscattered signal receiver are co-located
and referred to as readers. The downlink carrier activation
signal and uplink backscatter signal are reciprocal when
sharing the same antenna [13]. Building on this property,
the authors in [14] have derived a new LS estimator
for forward and backward links between a full-duplex
multiple-input multiple-output (MIMO) reader and a single
tag, resulting in a linear least mean square (LLMS) error
estimation for the corresponding backscatter channel. In
addition to backscatter channel estimation under flat fading,
the authors in [15] have examined backscatter commu-
nication systems under frequency-selective channels and
proposed a novel deep learning-based algorithm for tags
with varying state parameters. The authors in [16] have
introduced a system model for information decoding, which
combines RF sources and ambient backscatter equipment
cooperatively. Further research in [17] has explored the
cognitive ambient backscatter of this type of backscatter
system, sharing the same spectrum and RF source as
conventional systems, and employed a multi-antenna reader
to address co-channel direct link interference in the legacy
system. Besides, in [18], the authors have proposed a new
receiver structure with a simpler design based on direct
averaging of signal samples for detection, in conjunction with
time-selective fading channels and non-coherent detectors.
Existing research on channel estimation in backscatter
communication employs both traditional algorithms and deep
learning. For monostatic backscatter, considering environ-
mental interference, two main challenges arise: first, as the
number of tags and antennas increases, the problem’s dimen-
sionality grows significantly, leading to higher computational
costs and reduced channel estimation efficiency. Second,
changes in the surrounding environment affect ambient
interference estimation, requiring timely adjustments to the
interference model to maintain estimation quality. Traditional
methods often struggle to effectively address these
challenges.
In [19], the authors have examined the channel estimation

problem from a signal processing perspective for readers
in large-scale antennas array scenario. They perform pre-
liminary channel estimation for different states using the
LS algorithm and then combine the angular rotation with
a discrete Fourier transform of the estimates to obtain the
channel gain and direction of arrival. Most of the research
focuses on tags with a single antenna. Considering multi-
antenna tags capable of simultaneous energy harvesting and
data transmission, the authors in [20] have proposed a
undefined detector based on the generalized likelihood ratio

test (GLRT) for the multi-antenna channel between tag and
reader, circumventing the need to consider CSI, signal power,
and noise variance. In general backscatter networks, energy
detection occurs at the receiver. The authors in [21] have
introduced a matched filter-based OFDM carrier ambient
backscatter modulation scheme that forces the OFDM signal
forwarded by the BD to be consistently received at the
receiver. The studies mentioned above primarily focus on
backscatter channel estimation using conventional numerical
methods. Nevertheless, more effective deep learning-based
methods from conventional wireless communication as
supervised learning, reinforcement learning, neural networks,
and transfer learning, have also been applied in backscatter
communication [22].
The authors in [23] conduct research on orthogonal

frequency-division multiplexing systems aided by re con-
figurable intelligent surfaces. Considering the problem that
the lack of cyclic prefix (CP) generated by the additional
cascading channels of RIS and the nonlinear distortion
caused by imperfect hardware affect the channel estimation
accuracy, a channel estimation network based on enhanced
extreme learning machine was proposed. Based on the
traditional linear receiver model, the authors in [24] proposes
a joint model and a data-driven receiver scheme. Firstly, least
squares estimation and zero-forcing equilibrium are used to
extract the initial features for channel estimation and data
detection. Then, shallow neural networks called CE-Net and
SD-Net were developed to improve channel estimation and
data detection. The scheme effectively suppresses symbol
mis-identification and achieves similar or better bit error
rate (BER) performance without the need for second-order
statistics on channels and noise.
In [25], the authors have introduced a tag-assisted trans-

mission framework that transmits two known tag pilots
to data transmission. The performance of the proposed
constellation learning method is comparable to an optimal
detector with perfect CSI. In [26], a machine learning-based
detection method for the ambient backscatter communica-
tion (AmBC) system has been proposed, transforming the
problem of using energy detectors or minimum mean square
error (MMSE) detectors for detecting label signals with
high bit error rate (BER) into a classification problem.
For the same problem, [27] has presented a deep transfer
learning detection framework, consisting of offline learning,
transfer learning, and online detection. The framework is
designed with a signal detector based on the pre-trained
deep neural network (DNN) and a few pilots to obtain a
deep transfer learning-based likelihood ratio test. Regarding
interference handling, the authors in [28] have modelled the
interaction between users and intelligent interference sources
in an AmBC network as a game. Afterwards, they employ
a Q-learning algorithm with a dynamic iterative process
to solve the convex optimization problem and obtain the
optimal strategy.
In monostatic multi-antenna backscatter networks, [29]

introduces a fast and flexible convolutional neural network
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(FFDNet) based on the optimal solution of a linear minimum
mean square error (LMMSE) estimator for backscatter chan-
nels. This approach estimates forward channel coefficients
directly from the backscattered signal by using a DNN with a
custom loss function. By framing the MMSE channel estima-
tion as an image denoising problem, [30] has proposed two
CNN-based methods for denoising and approximating the
optimal MMSE channel estimation solution. Similarly, [31]
introduces a CNN-based deep residual network (CDRN)
that implicitly learns residual noise to recover channel
coefficients from noisy pilot-based observations. However,
these learning-based channel estimation approaches treat
communication systems as closed boxes, relying on exten-
sive data for training and lacking a theoretical basis and
interpretability in network design.

A. MOTIVATION
According to our research, most of the current channel
estimation work revolves around traditional communication
systems. In backscatter systems, accurate channel estimation
plays an important role in correctly decoding the state
of backscatter devices. The research work in this area is
mainly based on traditional neural networks such as least
squares or data-driven neural networks, which may have
problems of difficulty and high computational complexity.
Therefore, we hope to explore a model-driven deep learning
method to design a more efficient channel estimation
network by combining backscatter communication model
and deep learning to solve the decoding problem in the
field of backscatter communication. Low-complexity channel
estimation models are crucial for practical applications,
such as vehicle-to-everything (V2X) communications [32],
M-MIMO based cognitive radio system [33], and other
wireless communication applications such as LTE (Long-
Term Evolution), DVB (Digital Video Broadcasting), DAB
(Digital Audio Broadcasting). However, channel estimation
models still face to factors such as noise, interference,
dynamic environments, and limited computational resources,
especially in low-power devices. Simplified models often
struggle to accurately capture real-world channel conditions,
and scalability becomes a significant issue in large systems.
Additional challenges include managing sparse channels,
ensure energy efficiency, balance real-time processing needs,
minimize pilot overhead, and handle channel state feedback.
Furthermore, to adapt diverse environments with limited
training data, we need to reduce the complexity of chan-
nel estimation, make it effectively with minimal training
resources.

B. CONTRIBUTION
In this paper, we present a novel MUCE scheme for
multi-antenna, multi-BD monostatic backscatter (MBS) com-
munication networks with ambient interference. A deep
unfolding neural network is employed for channel parameter
estimation, which circumvents the computationally intensive
and complex iterations in traditional LS channel estimation

methods. MUCE is the first scheme to apply model-driven
deep unfolding to MBS. The main contributions of this
learning-based scheme are summarized below:
(1) Network architecture based on deep unfolding: A

network hierarchy based on the iterative computational
process of gradient descent is designed, by replacing the
iterative computation of channel parameters with dedicated
neural network layers. In particular, the nonlinear mapping
in the iterative computation is substituted with activation
functions in deep learning in each layer. We also introduce
learnable parameters into the network, which are updated
based on error backpropagation to accelerate the training
convergence. The channel estimation parameter learning
is accomplished through the iterative calculation process
connecting multiple network layers. The deep unfolding
network scheme offers better interpretability and ease of
optimization and modification compared with traditional
closed-box neural networks.
(2) Integrating matrix computation into the deep learn-

ing hierarchy: We utilize neural network layers to learn
variational parameters, avoiding computationally complex
iterative operations such as matrix inversion and differen-
tiation, and enhancing computational efficiency. MUCE is
streamlined in network design, with learning-based char-
acteristics requiring only a few layers for convergence.
This approach necessitates fewer parameters than existing
learning-based algorithms and significantly reduces spatial
complexity.
(3) Parameterizing the system model to enhance gen-

eralization capabilities: as the number of RAs and BDs
increases, computational challenges arise. The method we
propose requires only one efficient training session and
is applicable to repeated channel estimation of the same
scale. Furthermore, MUCE is a model-driven approach that
achieves performance comparable to data-driven networks
trained with many samples, using only a small number of
samples.

C. ORGANIZATION
The paper is structured as follows: Section II delves into
existing research on deep unfolding. Section III intro-
duces the monostatic multi-antenna multi-BD backscatter
communication network system model, along with its associ-
ated channel estimation and information decoding protocol.
Section IV is composed into three parts: the first part derives
the solution to channel estimation based on the LS algorithm;
the second part elaborates on our proposed MUCE channel
estimation method and its corresponding network structure;
and the third part presents a comparison with a CNN-based
channel estimation network for channel estimation. Section V
showcases numerical results from simulation experiments,
and examines the influence of various parameters on MUCE
as well as the performance comparison among the three
schemes. Finally, Section VI gives the discussion and
conclusion.
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II. RELATED WORK
With the rapid development of modern wireless communica-
tion technology in the Internet of Things, the focus of current
research is on making wireless communication systems
more intelligent, enhancing their capabilities to process large
volumes of wireless data, and improving their accuracy in
identifying and adapting to complex environmental changes.
Consequently, numerous studies have applied deep learning
to various aspects of physical layer communication [34],
network resource allocation, error correction coding, intelli-
gent flow control, and perceptual communication. However,
many of these studies focus on data-driven networks, which
demand substantial computing resources and time for the
training process. Additionally, their generalization capability
tends to be insufficient, making them unsuitable for wireless
communication applications.
As a result, researchers have introduced model-driven

deep learning methods that diverge from purely data-driven
approaches. These techniques involve creating network
topologies that draw on established domain knowledge, engi-
neering theories, and physical mechanisms. This approach
significantly reduces the training cost, both in terms of data
and time, compared to data-driven methods. In [35], the
authors detail the procedure for developing a model-driven
deep learning method. Initially, they construct a function
family, also known as a model family, which contains
numerous unknown parameters tailored to the specific task
context. Subsequently, an algorithm is designed to address
the model family problem. Finally, the algorithm is integrated
into a deep network to facilitate parameter learning.
The depth of such networks is determined by the algo-

rithm’s convergence rate estimation, while the parameter
space is defined by parameter constraints. All parameters
in the algorithm are learnable, allowing for a variety of
algorithms to establish and train the deep network topology
through backpropagation. This method circumvents the
necessity for exact modelling by counterbalancing inaccu-
racies in the model and pre-established parameters through
the deep network’s resilient learning abilities. Additionally,
model-driven deep learning’s low demand for training data
reduces the risk of overfitting and enhances training speed.
Deep unfolding serves as a potent example of these model-
driven neural networks.
Given a model-based optimization problem and an

iterative inference algorithm, deep unfolding [36] performs
accurate inference within a fixed network size by disentan-
gling model parameters across layers, introducing a specific
number of trainable parameters to expand the iterative infer-
ence into neural network layers. Numerous signal processing
tasks in wireless communication systems, such as detection
and decoding, can be formulated as numerical optimization
problems solved through iterative algorithms. Most practical
communication applications require high throughput and
low latency processing, allowing only a minimal number
of algorithm iterations and placing high demands on the
iterative algorithm’s parameter selection. Deep unfolding

leverages deep learning’s excellent data-driven learning capa-
bilities and model-driven algorithms’ training simplification
to efficiently solve such problems, avoiding the stability
issues faced by traditional algorithms [37]. As a result, it
has been widely adopted by scholars worldwide.
Liao et al. propose a deep neural network for MIMO

detection, demonstrating robustness to pathological channels
and incorrectly specified noise variance [38]. Later, in [39],
the authors developed DetNet, a deep unfolding-based signal
detection network, by employing an iterative projected
gradient descent algorithm. They have confirmed that DetNet
achieves high computational accuracy with low complexity
when compared to other methods. The authors of [40] devise
a new iterative signal processing algorithm for 6G networks,
utilizing deep unfolding techniques to fulfil both service
requirements and physical layer specifications envisioned by
the 6G communication architecture. This approach aims to
enable truly efficient hardware-based edge intelligence for
future 6G networks. In the context of beamforming, which
calculates the maximum weighted sum rate under power
constraints, the authors of [41] suggest an iterative method
to map a fixed number of weighted minimum mean square
error (WMMSE) algorithms onto a trainable neural network
layer. This is based on the principle of deep unfolding,
which addresses cellular downlink beamforming problems in
networks. Reference [42] proposes an algorithm for jointly
designing active and passive beamforming matrices based
on stochastic successive convex approximation (SSCA)
for intelligent reflector (IRS)-assisted MIMO full-duplex
systems. By constructing a neural network, the results
achieve significantly outperform the closed-box network
used as a benchmark. To tackle massive MIMO channel
estimation issues, the authors of [43] introduce a deep
unfolding-based unsupervised neural network architecture
called mpNet. This can adaptively adjust the network depth
according to the input signal-to-noise ratio, allowing for
online training and estimation. The authors of [44] model the
deep unfolding process as a Markov decision process and
established a deep deterministic policy gradient (DDPG)-
driven deep adaptive unfolding framework. Simulation
results demonstrate that the algorithm considerably reduces
the number of layers in the algorithm and performs better
than traditional methods.

III. THEORIES AND METHODS
A. SYSTEM MODEL
The monostatic backscatter channel estimation (MBCE)
scheme, which consists of a full-duplex reader and M
pieces of BDs, is depicted in Fig. 1. In this system, hi(i =
1, 2, . . . ,M) represents the channel between different BD i

and the reader R, and hAI represents the ambient interference
channel. The reader has N RAs, and each BD is equipped
with a single antenna. Typically, backscatter devices remain
silent until they receive a communication request. The reader
(R) initiates the procedure by sending an activation signal to
the surrounding BDs of interest, awakening them from their

6700 VOLUME 5, 2024



FIGURE 1. Monostatic multi-antenna backscatter communication network with
multi-backscatter devices.

FIGURE 2. EPC global communication cycle.

silent state and preparing them for subsequent backscatter
communication. Upon receiving the activation signal, BDs
within the reading range respond by sending a 16-bit random
number (RN16) to R. When R receives the response, a
confirmation signal will be sent back to the BD, prompting
the BD to backscatter its respective electronic product code
(EPC). The EPC global protocol communication cycle can be
seen in Fig. 2. Following this communication establishment
process, the R and the BD proceed to conventional channel
estimation and backscatter communication.
We use the enhanced multipath channel model presented

in [45]. It takes the characteristics of a specific environment
and all signal paths between the reader and BDs into account
in modelling the passive ultra-high-frequency (UHF) RFID
system. According to this model, the backscatter signal
received by the reader is not only related to the azimuth and
elevation angles of different signal paths, but also to the gain
of the BDs. This insight inspires us to consider the effect
of the backscatter device’s response on the channel when
modeling the backscatter channel. In the following section,
we will give the BDs response model.
In backscatter communication, the activation of the BDs

results in the modulation of its complex baseband signal
xBD = F − ζ with the reader’s carrier signal. Here,
F represents a load-independent constant connected to
the antenna structure, while ζ ∈ {ζ0, ζ1, ζ2, . . . , ζM−1}

denotes a set of reflection coefficients controlled by the
load to achieve desired modulation. For simplicity, let
ai = |xBDi |(i = 1, 2, . . . ,M) signify the modulation
parameters of the activated M BDs, with a0 representing
the parameters of inactive BDs. In a typical backscatter
communication scenario, the values of the two variables are
a0 ≈ 0, ai ≈ 1.

B. ESTIMATION AND INFORMATION DECODING
PROTOCOL
The established research on channel estimation primarily
relies on the approximate time-invariant property of the
channel within coherence time. For multi-BD MBCE, we
propose a sequential estimation strategy analogous to tra-
ditional communication preamble design. Specifically, the
estimation is conducted sequentially for M BDs, with only
BDi active (denoted by BDon) during the estimation phase
τCEi of the i−th BD, while other BDs remain silent (denoted
by BDoff ). Furthermore, during communication between R
and BDon, the signal received by R includes interference
from environmental random noise (collectively referred to
as ambient interference), in monostatic systems interference
is typically minimal, in addition to the backscatter signal
modulated by BDon to downlink excitation signal from
R. The presence of such interference severely hinders R’s
ability to correctly demodulate the backscatter signal. As
a result, we design the MUCE channel estimation and
information decoding protocol, as illustrated in Fig. 3. Over
τ sample durations (a coherence time), the first stage τCE0 is
dedicated to estimating ambient interference. Subsequently,
channel estimation between each BD and R occurs sequen-
tially during τCEi(i = 1, . . . ,M), with the remaining time
period τ − ∑M

i=0 τCEi allocated for signal reception and
decoding.

1) AMBIENT INTERFERENCE ESTIMATION

In the multi-antenna monostatic backscatter communication
system, R performs channel estimation by transmitting
orthogonal pilot signals of length l0 samples from all N RAs.
During this process, all BDs are set to a silent state, with
a modulation parameter of a0. To simplify, we set l0 = N,
and the received signal at R during τCE0 can be described
as

YAI =
(

HAI +
M∑

k=1

a0hk

)

S0 + W0. (1)

where the transmitting pilot signal matrix as S0 ∈ C
N×N ,

the received signal YAI ∈ C
N×N , HAI ∈ C

N×N denotes
ambient interference channel parameters, hk ∈ C

N×N denotes
the backscatter channel parameters of BDk. Based on chan-
nel reciprocity [14], [46], due to characteristic of channel
reciprocity, the channel between each BD and R can be
represented as hk = h�UP

k
hT

�UP
k
, with h�UP

k
being the uplink

channel parameters from BDk to R, the proposed method
performs channel estimation for ambient interference and
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FIGURE 3. The MUCE channel estimation and information decoding protocol.

backscatter channels, followed by signal decoding using the
estimated channels, hence, the channel estimation for h�UP

k
does not take into account.
The parameter βk represents the average channel power

gain, which accounts for both fading gain and propaga-
tion loss. For Rayleigh channel, this leads to h�UP

k
∼

CN(0N×1, βkIN), (∀k = 1, 2, . . . ,M), where IN represents
the identity matrix of N × N. The additive Gaussian white
noise (AWGN) is represented by W0 ∈ C

N×N , with W0 ∼
CN(0, σ 2

W0
I).

Using the LS algorithm, the LS estimate of the interference
channel can be expressed as:

ĤAI = YAIS
+
0 = HAI +

M∑

k=1

a0hk + W0SH0
p

= HAI + ∼
HAI .

(2)

where S+
0 denotes the pseudo-inverse matrix of the pilot

signal, defined as S+
0 = SH0 (S0SH0 )−1, and

∼
HAI represents

the estimation error of the interfering channel. The power of
the transmitting pilot, denoted by p, satisfies S0SH0 = pIN .

2) BACKSCATTER CHANNEL ESTIMATION

The second stage involves modeling and estimating the
backscatter channel for M BDs. During the estimation phase,
R sends the pilot signal S0 to each BD sequentially. The
received signal from the reader in τ = ∑M

k=1 τCEk can be
represented as:

YCE = (A ⊗ S0)H + (1M×1 ⊗ HAI)S0 + W1, (3)

where YCE ∈ C
MN×N , H ∈ C

MN×N is the backscattered
channel to be estimated, and W1 ∈ C

MN×N is the additive
Gaussian white noise with W1 ∼ CN(0, σ 2

W1
I). The operator

⊗ denotes the Kronecker product of two matrices, A is the
M ×M combined modulation matrix of all M BDs and the
element in column m of row i in A is defined as:

[A]im =
⎧
⎨

⎩

ai+1 ≈ 1, i = m
∀i,m ∈ {0, 1, 2, . . . ,M − 1}

a0 ≈ 0, i �= m,

(4)

where ai(∀i ∈ {0, 1, 2, . . . ,M−1}) is defined the modulation
parameter.

H =
[
h1 h2 · · · hM]T , (5)

with hi ∈ C
N×N (∀i ∈ {0, 1, 2, . . . ,M − 1}) being the

channel parameter between R and BDi.
Based on the estimation of the interference channel

ĤAI , the received signal after removing the environmental
interference can be expressed as:

Y = YCE − ŶAI = YCE −
(

1M×1 ⊗ ĤAI

)
S0 = (A ⊗ S0)H + W.

(6)

where W = 1M×1 ⊗ (
∑M

k=1 a0hkS0 +W0) +W1. Therefore,
the channel estimation for multi-BD multi-antenna backscat-
ter channels based on the LS algorithm can be modeled
as:

P1 : arg min
h1,h2,...,hm

E(H) = ‖Y − (A ⊗ S0)H‖2, (7)

We are considering a conventional monostatic multi-
antenna backscatter communication system. In order to
achieve full-duplex function, each of all N antennas in
the reader can transmit a carrier signal to a BD and also
receive the backscatter signal from the BD. But as stated
in [47], we don’t need to consider the self-interference
caused by full-duplex. This is because the reader includes
a decoupler consisting of an automatic gain control circuit
and a conventional phase-locked loop, which can effectively
suppress the self-interference carrier by carefully adjusting
the underlying phase shifter and attenuator. Consequently,
our model remains general.
In the backscatter communication system under discus-

sion, all BDs are considered semi-passive devices equipped
with an energy storage module. This module enables low-
power onboard operation without the need to await sufficient
RF signal acquisition before backscatter, thereby eliminating
the need to account for reader access delays to the BD. With
the completion of the mathematical modelling for the MBCE,
we will present the novel channel estimation algorithm,
derived from this model, in the following section.
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IV. THE MODEL-DRIVEN UNFOLDED CHANNEL
ESTIMATION
Based on the channel estimation scheme MUCE proposed
in Section III for a multi-antenna multi-BD mono-
static backscatter system considering interference, this
section addresses several challenges. As the number of
BDs and RAs increases, the dimension of the problem
not only raises computational costs but also impacts the
efficiency of channel estimation. Furthermore, changes in
the surrounding environment will affect the estimation
of ambient interference. Therefore, it becomes necessary
to adjust the interference estimation model in a timely
manner to prevent any adverse effects on the quality of
channel estimation. Therefore, we propose a model-driven
deep learning with better generalization ability and lower
computational cost. In this section, we will introduce the
network structure of MUCE and the algorithm model on
which the network construction is based.
Firstly, (6) can be rewritten as:

Y = S′
0H + W. (8)

where, the receiving signal is represented by Y =[
y1 y2 · · · yM

]T , with Y ∈ C
MN×N and

yk(∀k = 1, 2, . . . ,M) ∈ C
N×N , the noise W =[

w1 w2 · · · wM
]T , with wk(∀k = 1, 2, . . . ,M) ∈

C
N×N and W ∈ C

MN×N .
The joint pilot matrix S′

0 can be extended as:

S′
0 = A ⊗ S0

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a1S0 0N×N · · · 0N×N 0N×N
0N×N a2S0 · · · 0N×N 0N×N

...
...

. . .
...

...

0N×N 0N×N · · · aM−1S0 0N×N
0N×N 0N×N · · · 0N×N aMS0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ C
MN×MN

(9)

To solve (7), we can utilize gradient descent. Given that
hk(∀k = 1, 2, . . . ,M) is uncorrelated with each other, the
complex multivariate gradient descent is not needed. Instead,
we can transform it into a univariate gradient descent through
matrix vectorization. In the following, we will first perform
an equivalent vectorization operation on (8). Then, we will
derive an iterative gradient descent algorithm based on the
vectorized expression.

A. EQUIVALENT VECTORISATION
For ease of representation during vectorization, we propose
the following definition: for a matrix B, B(i; ) represents the
ith row, while B(; j) denotes the jth column. Consequently,
we can vectorize (8) as:

yvec = Shvec + wvec, (10)

In (10), S represents the new pilot matrix with modulation
parameters of BDs, which is obtained as:

S =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

S1,1 0N×N2 · · · 0N×N2 0N×N2

...
...

...
...

...

S1,N 0N×N2 · · · 0N×N2 0N×N2

0N×N2 S2,1 · · · 0N×N2 0N×N2

...
...

...
...

...

0N×N2 S2,N · · · 0N×N2 0N×N2

...
...

. . .
...

...
...

...
. . .

...
...

0N×N2 0N×N2 · · · 0N×N2 SM,1

...
...

...
...

...

0N×N2 0N×N2 · · · 0N×N2 SM,N

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ C
MN2×MN2

, (11)

where:

Si,j = aiS0(j; )

=

⎡

⎢
⎢
⎢
⎣

aiS0(j; ) 01×N · · · 01×N
01×N aiS0(j; ) · · · 01×N

...
...

. . .
...

01×N 01×N · · · aiS0(j; )

⎤

⎥
⎥
⎥
⎦

∈ C
N×N2

,

(12)

Moreover, yvec = vec{Y} = [y1 y2 · · · yM]T . is an
MN2 × 1 column vector, with yi(∀i ∈ 1, 2, . . . ,M) being an
N2 × 1 column vector. The latter is obtained by splicing yi
horizontally by row and then transposing it:

yi = [
yi(1; ), yi(2; ), . . . , yi(N; )

]T
, (13)

Similarly, wvec = vec{W} = [w1 w2 · · · wM]T is an
MN2 ×1 column vector, with wi(∀i ∈ 1, 2, . . . ,M) being an
N2 × 1 column vector. This vector is obtained by splicing
wi horizontally by row and then transposing it:

wi = [
wi(1; ), wi(2; ), . . . , wi(N; )

]T
, (14)

Similarly, the vectorization of the channel parameters to
be estimated is hvec = vec{H} = [h1 h2 · · · hM]T ,
which is a column vector of MN2 × 1. Furthermore, hi(∀i ∈
1, 2, . . . ,M) is a column vector of N2 ×1, and it is obtained
by concatenating the columns of each channel parameter
matrix vertically as:

hj = [
hj(; 1) hj(; 2) · · · hj(;N)

]T
. (15)

B. COMPLEX-TO-REAL
In this part, we design the network hierarchy and overall
architecture based on the model given above. In the previous
part, we completed the vectorization of (8). It is important
to note that the transmit signal, receive signal, and channel
parameters mentioned above are all in the complex domain.
To facilitate processing with gradient descent, we first
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FIGURE 4. The detailed structure of each layer in MUCE.

transform them into the real domain. Specifically, in the
neural network, the real part and the imaginary part of the
complex signal are taken, and then the real part and the
imaginary part are spliced by columns/rows as [48]

y′ =
[�(yvec)
�(yvec)

]

∈ R
2MN2×1, (16a)

h′ =
[�(hvec)
�(hvec)

]

∈ R
2MN2×1, (16b)

S′ =
[�(S) −�(S)

�(S) �(S)

]

∈ R
2MN2×2MN2

, (16c)

where �(·) and �(·) denote the real and imaginary parts
of complex numbers, while y′, h′ and S′ are the results of
realization of yvec, hvec and S of (10), respectively. Since
our labels have undergone the same equivalent real-field
conversion, the loss can be calculated directly using the
separated real and imaginary components, without the need
to revert to complex numbers. The final result is also stored
in the real-number form, as shown in the formula above.
With the result of the above equivalent, the real number

transformation is as the input to the network. Thus, (7) can
be reformulated as follows:

P2 : arg min
h1,h2,...,hm

E
(
h′) = ∥

∥y′ − S′h′∥∥2
. (17)

C. PROPOSED UNFOLDING ARCHITECTURE
As stated in Section II, given a model-based optimization
problem, deep unfolding can perform inference across layers
and solve for relevant parameters. Therefore, we design an
iterative process based on projected gradient descent [49]
for the problem in (17) as:

ĥ′
k =

∏
⎡

⎣ĥ′
k−1 − βk

∂
∥
∥ŷ′ − y′∥∥2

∂h′

∣
∣
∣
∣
∣
h′=ĥ′

k−1

⎤

⎦

=
∏[

ĥ′
k−1 − βkS′Ty′ + βkS′TS′ĥ′

k−1

]
. (18)

where ŷ′ = S′ĥ′
k−1, and ĥ′

k is the estimated value of the
kth iteration. The output of the last iteration is the channel
parameter sought, and the initial iteration value is set to 0.
S′ and y′ are transmitted pilot signal matrix and the received
signal vector in (16), respectively. The nonlinear projection
operator is represented as

∏
[·], and βk is the step factor.

In Section II, we examine the model-driven deep unfolding
technique extensively employed in wireless communication
and investigate its applications within the field. As previously
mentioned, deep unfolding enables the construction of
neural networks that solve required parameters, and leverage
a priori knowledge of wireless communication systems.
This approach eliminates the need for repetitive iterative
operations found in traditional parameter estimation methods
and also addresses the “closed box” issue in deep learning.
Consequently, we introduce MUCE, which integrates the

deep unfolding and the LS parameter solution using gradient
descent. Initially, we establish a single-layer network, as
illustrated in Fig. 4, grounded in the iterative computation
process detailed in (18). We then employ an activation
function within the neural network to replace non-linear
mapping to the output. Additionally, we incorporate learnable
parameters into the network and adjust these parameters
based on error gradient backpropagation.
The forward propagation error is calculated for each layer

of the network in the figure using the following equations:

zk = ReLU

(

W1k

[
ĥ′
k−1 − δkS′Ty + λkS′TS′ĥ′

k−1
Vk−1

]

+ B1k

)

.

(19)

where Vk = f (W2kzk + B2k), hk = g(W3kzk + B3k),
V0 = 0 and ReLU(x) = max{0, x}. f (•) and g(•) represent
different nonlinear activation functions, respectively. V are
the auxiliary training variables, which are incorporated to
increase the width of the network for improving training
performance. Furthermore, both ĥ′

0 and V̂′
0 are initialized

to 0. The inputs for the current kth layer include S′Ty′,
S′TS′, and the output ĥ′

k−1 from the previous layer. The
trainable parameter introduced to the network is θ =
{W1k,W2k,W3k,B1k,B2k,B3k, δk, λk}Lk=1.

The size of auxiliary training variable V and B is
2MN2 × 1, and variable W is 2MN2 × 4MN2. The compu-
tational complexity is O(M3N6), where O(·) represents the
asymptotic upper bound of computational complexity. The
width of the deep neural network determines the amount
of feature information extracted from each layer. The more
feature information the easier it is to train the network.
The loss function employs a logarithmically weighted

approach, taking into account the output of each layer. The
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FIGURE 5. The architecture of the MUCE network for backscatter channel estimation.

closer the layer to the output, the higher the proportion of
the loss function given as:

Loss
(
h′, ĥ′(S′, y′; θ

)) =
L∑

k=1

log(l)
∥
∥
∥h′ − ĥ′

k

∥
∥
∥

2
. (20)

We simulate the iterative calculation process by connecting
the single-layer network depicted in Fig. 4, for obtaining
the channel parameters estimation after iterating through L
layers ultimately. Fig. 5 displays the comprehensive network
structure of MUCE, which employs the Adam optimizer for
error backpropagation and parameter tuning based on the
loss function. The layer named “Preprocess” stands for the
operations described in Section IV.A 1) and 2). In addition,
to ensure the conciseness of the schematic, the superscript
of the corresponding variables in (19) and (20) have been
removed, and the data used in the actual network training is
still the result in (16). The design of this network reduces
computational complexity and enhances channel estimation
efficiency by eliminating the need for complex matrix
inversion operations in the LS algorithm. Consequently, the
network can adapt to changing channels, allowing it to
estimate channel parameters based on current transmit and
receive signals even when the channel state varies.
The channel is measured using the normalized mean

squared error (NMSE), as demonstrated in (21):

NMSE = 1

M

M∑

m=1

∥
∥
∥ĥm − hm

∥
∥
∥

2

‖hm‖2
. (21)

Here, hm and ĥm represent the true channel parameters and
the estimated channel parameters by MUCE between BDm

and R, respectively.

V. NUMERICAL RESULTS AND DISCUSSION
In this section, the effectiveness of the proposed MUCE
scheme is assessed. Subsequently, the impact of various
network architectures on channel estimation performance
is evaluated. Finally, the LS algorithm, MUCE, and

Backscatter Channel Estimation Convolutional Neural
Network (BCECNN) are deployed for channel estimation
on an identical dataset for comparison. The hardware used
for the simulations is a desktop equipped with an Intel i7-
10700K CPU, an NVIDIA GeForce RTX 3080 GPU and
64GB RAM. And we implement the proposed framework in
Python 3.6.13 with Tensorflow 2.3.0.

A. SIMULATION SETUP
In the simulation, we set the transmit power of the reader
at p = 30 dBm, while the variances of W1 and W2 are
both assigned as σ 2

W0
= −20 dBm and σ 2

W1
= −20 dBm,

respectively. We model all links as being subject to flat
quasi-static Rayleigh block fading. Consequently, the channel
parameter βi is given by ( 3×108

4π f )2d−�

i (∀i ∈ 1, 2, . . . ,M).
Unless otherwise specified, the transmit frequency and path
loss exponent of the system default as f = 915 MHz and
� = 3, respectively. Furthermore, we assume that M BDs
are randomly distributed within a circular area of radius
R = 100m centered on the reader. The coordinates of each
BDi are denoted as (xi, yi), and the distance between BDi

and the reader, di, is calculated as
√
x2
i + y2

i . Lastly, the
modulation parameters ai(∀i ∈ 1, 2, . . . ,M) for backscatter
device BDi at activation are set randomly, following a
uniform distribution U(0.9, 1), while the silent modulation
parameter a0 is set to 0.01.

B. IMPACT OF KEY PARAMETERS ON MUCE
In this section, we assess the performance of MUCE by
varying network parameters, such as learning rate and
number of layers, as well as system model settings, such as
the number of RAs and BDs. To streamline our presentation,
we use lr for the learning rate, iter for total training iterations,
and L for the number of network layers. The results presented
below are obtained from a training set containing 6000
samples and a validation set of 2000 samples, which are
randomly generated from the established system model.
Unless otherwise stated, these simulations were conducted

VOLUME 5, 2024 6705



ZHOU et al.: MODEL-DRIVEN CHANNEL ESTIMATION FOR MIMO MBS SYSTEM WITH DEEP UNFOLDING

FIGURE 6. Mean of NMSE of three methods with different SNR.

FIGURE 7. The validation time of three methods with different M, N .

on a desktop featuring an Intel i7-10700K CPU, an NVIDIA
GeForce RTX 3080 GPU and 64 GB RAM.
To compare the average performance with other traditional

methods, the mean NMSE for different SNRs is shown
in Fig. 6, with parameters M = 12,N = 6,L = 3, and
iter = 100. As shown in Fig. 6, the proposed MUCE method
performs better than the LS and OMP methods. To compare
the robustness of validation time for different groupings of
M,N, Fig. 7 shows that when either M or N increases, unlike
the LS and OMP methods, the MUCE method can maintain
stable validation time, demonstrating better robustness than
traditional methods.
The cumulative distribution function (CDF) of channel

estimation NMSE for different learning rates is shown in
Fig. 8, with parameters M = 3,N = 6,L = 5, and
iter = 100. As shown in Fig. 8, when the learning rate is
1e−06, it is too small, causing the model to get stuck in
a local optimum. When the learning rate is 1e−04, it is
too large, leading the model to oscillate around the optimal
solution. At a learning rate of 1e−05, the model can converge
quickly and steadily to the optimal solution of the loss
function.

FIGURE 8. NMSE with different lr . (M = 3, N = 6, L = 5, iter = 100).

TABLE 1. The performance of different lr .

As shown in Fig. 8, the proportion of samples with
NMSE less than 0.5 increases from 60% to 80% when
lr decreases from 0.001 to 0.00001 and the samples with
NMSE less than 0.5 also exceed 95%. However, as lr
continues to decrease, the estimated performance worsens.
To facilitate a more intuitive comparison of performance,
we summarize the mean, maximum, and minimum NMSE
values for each learning rate, as well as the network training
and validation times, in Table 1, with the minimum value
for each metric highlighted in a red box. As observed in
the table, the smallest difference between the maximum and
mean estimation NMSE values occurs at lr =1e−05, where
the minimum is also notably smaller than that at lr =1e−06.
In addition, the learning rate affects the speed of convergence
of the network, which in turn affects the training time of
the network. The penultimate row in Table 1 reveals that the
training time is shortest when the learning rate is lr =1e−6.
Thus, the optimal learning rate for estimation is set to be
lr =1e−6 [50], [51], [52].
The empirical CDF of the channel estimation NMSE

for different numbers of layers is depicted in Fig. 9 with
parameters set at M = 12, N = 6, lr = 0.0001, and
iter = 100. As shown in Fig. 9, when the NMSE increases
the estimated performance is increasing first and then tend to
be stable, and the estimated performance does not improve
as L continues to increase. The proportion declines when
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FIGURE 9. NMSE with different L. (M = 12, N = 6, lr = 0.0001, iter = 100).

TABLE 2. The performance of different L.

L increases from 3 to 11, while it remains approximately
the same for L = 5, 7, and 11. An analysis of several
cases provided in Table 2 reveals that the difference between
maximum and minimum values is more prominent for
smaller numbers of layers, indicating that the estimation
performance is less stable. Additionally, both the training and
validation time for the network significantly increase with
a greater number of layers. By conducting a comprehensive
comparison of the results across varying parameters, the
optimal choice for achieving better performance and reduced
time costs at M = 12 and N = 6, as the inherent uncertainty
of deep learning networks, coupled with the risk of over
fitting when layers are excessively numerous and under
training when they are insufficient, contributes to the non-
monotonic trend observed in the estimated performance as
the number of layers is varied. For our method, the optimal
number of layers is determined to be L = 9.

The variation of the CDF of the NMSE with respect to
the number of BDs is depicted in Fig. 10, while Table 3
presents several essential metrics. Model parameters are set
as follows: M = 8,L = 5, lr = 0.0001, and iter = 100.
We observe that when M remains constant, an increase in N
leads to a decline in the proportion. Besides the mean NMSE
displayed in Table 3 that demonstrates the aforementioned
changes, the training and validation times listed in the final
two rows also reveal the substantial rise in computational
cost correlated with the expansion of the system model.

FIGURE 10. NMSE with different N . (M = 8, L = 5, lr = 0.0001, iter = 100).

TABLE 3. The performance of different N .

FIGURE 11. NMSE with different M . (N = 6, L = 5, lr = 0.0001, iter = 100).

The channel estimation error increases with the number
of BDs M as illustrated in Fig. 11, which mirrors the effect
caused by the increase in N in Figure 10. By analyzing the
variation in the four curves displayed in the figure, along
with the first three rows of data in Table 4, it’s obvious to see
that the estimation performance deteriorates progressively as
M grows from 3 to 12 while keeping parameters constant as
N = 6,L = 5, lr = 0.0001, iter = 100. This is an expected
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FIGURE 12. The NMSE Empirical CDF of three methods. (a) M = 3, N = 6. (b) M = 6, N = 6. (c) M = 8, N = 2. (d) M = 8, N = 4. (e) M = 9, N = 6. (f) M = 12, N = 6.

TABLE 4. The performance of different M .

outcome, as a largerM value results in higher channel dimen-
sionality and a significantly greater number of parameters
to estimate. Consequently, the network training time and
validation time also experience substantial increases.

C. COMPARISON WITH BCECNN
In the previous section, we assessed the estimation
performance of MUCE under various parameter settings to
determine the optimal L and lr values for achieving the
best performance in MBCE with differing M and N. In this
section, we conduct channel estimation while keeping bothM
and N constant, and analyze the results of the three methods
proposed in Section IV. For ease of reference, we will use
MUCE, and BCECNN to denote each of the two methods
in subsequent content and graphs.
MUCE and BCECNN are learning-based methods, where

different network settings significantly impact channel esti-
mation performance, necessitating the tuning of network

TABLE 5. The mean values of NMSE with different {M, N}.

parameters for improved results. On one hand, as demon-
strated in the previous section, the number of layers
influences the network’s training time. On the other hand, it
is evident that iterative training rounds also affect training
time, with more rounds requiring more time for training. To
ensure a fair comparison, we restrict iter to 100 and L to 6,
while separately adjusting other parameters for MUCE and
BCECNN. We then compare the estimation results of both
methods.
After the validation process, we selected six distinct

combinations of M and N parameters for comparison and
performance analysis. Fig. 12 displays the CDF of channel
estimation for the three methods across each of the six
parameter sets in separate subplots. As depicted in Fig. 12,
the overall distribution of NMSE for the MUCE method
surpasses the performance of BCECNN for all six settings.
Table 5 illustrates the differences between the maximum

and minimum NMSE values for different M,N combina-
tions among the three methods. The table highlights the
maximum difference under each of the six parameter sets
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FIGURE 13. Mean of NMSE of five methods with different M, N .

FIGURE 14. The training time of four methods with different M, N .

with red boxes. The results indicate that CE-LS has the
most significant performance gap in five out of the six
sets, while BCECNN has the largest performance gap in
the remaining set. Furthermore, the performance gap of
the MUCE method is considerably smaller compared to the
other two methods, demonstrating its superior performance
in estimating stability.
To compare the average performance with other advanced

deep learning methods, we present the mean NMSE of
each method in Fig. 13. The figure demonstrates that
our MUCE method achieves comparable channel estima-
tion performance to EPFormer [50], while outperforming
BCECNN, PruningCNN [51], and LS. In addition to
performance, our purpose is to reduce computational time,
which is an essential consideration for channel estimation.
Fig. 14 displays the validation time for each method using
a bar chart on the left y-axis, while the network training
time is illustrated with a line chart on the right y-axis.
BCECNN and EPFormer consistently take longer than
MUCE, while PruningCNN has similar training time but
worse performance. With focusing on the training time for
BCECNN and MUCE, the line graph in Fig. 14 demonstrates

that BCECNN generally demands more time, with the gap
widening as M and N increase. From this perspective,
MUCE holds a substantial advantage in computational time
compared to the two alternative methods. MUCE is a
learning-based approach that involves the computation of
multi-layer networks when performing parameter estimation.
For cases with a large number of BDs and RAs, there
has been a significant computational efficiency improvement
over conventional methods such as L. For smaller system
settings such as M = 3,N = 6, traditional methods involve
less computation and less time. This is also what we
mentioned in the contribution, and our method is important
to solve the channel estimation challenges caused by the
increase in the number of RAs and BDs.
By synthesizing the preceding validation and analy-

sis results, the MUCE method emerges as an effective
backscatter channel estimation technique that balances high
performance with low computational overhead. MUCE out-
performed traditional least squares (LS) and CNN-based
approaches in terms of computational efficiency and estima-
tion accuracy, while also demonstrating strong generalization
capabilities. Specifically, MUCE reduces computational costs
by up to 83% compared to LS methods, with only minimal
accuracy loss.

VI. CONCLUSION
In this paper, we propose a novel channel estimation
scheme for monostatic backscatter communication systems
that incorporates ambient interference cancellation. Our
approach extends the gradient descent-based parameter
iterative algorithm to a hierarchical neural network structure,
by updating parameters and solving problems based on
channel estimation errors. The results demonstrate that our
method, which is referred to as MUCE, successfully blends
the benefits of the traditional LS algorithm and closed-box
neural networks, for achieving an optimal balance between
computational cost and performance. To set the number of
BDs M = 12 and the number of RAs N = 6, our novel
channel estimation scheme reduces computational time costs
by approximately 83% compared to the conventional LS
algorithm, while delivering marginally improved estimation
performance. Additionally, the MUCE significantly outper-
forms the closed-box networks in terms of network training
efficiency. When M = 9 and N = 6, the training time
required by the proposed method is only 63.8% of that
needed by the closed-box approach, without a decline in
estimation performance. Furthermore, the MUCE is more
explainable and optimizable than deep learning-based closed-
box networks, which tend to be more data-driven than
model-driven in their network design. In future work, we
will take channel capacity, precoding, and other techniques
into account to optimize our approach.

APPENDIX
A. LS CHANNEL ESTIMATION ALGORITHM
The Appendix to this section describes the LS algorithm we
used for comparison.
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FIGURE 15. The architecture of the BCECNN network, where the layer named “Preprocess” is the same as that of Fig. 5.

For channel estimation, the essence of channel estimation
is to determine the channel parameters. Let the receiving
observation vector be denoted by y. The channel estimation
problem can then be represented in matrix form as

y = Sh + w. (22)

where w represents the noise observation vector, S is
the pilot signal transmitted by the reader, and h =
[h(0), h(1), . . . , h(L − 1)] is the channel parameter to be
determined. The LS algorithm is widely used for parameter
estimation, and the primary goal of the LS algorithm is to
minimize the estimation error. Let ĥ denotes the estimated
channel parameters, then the entire channel estimation
problem can then be modeled as follows:

ĥ = argmin
ĥ

∥
∥
∥y − Sĥ

∥
∥
∥

2
, (23)

According to [53], the solution of the LS is obtained as

ĥLS =
(
SHS

)−1
SHy. (24)

This leads to the LS solution to the problem described
in (17) being as

ĥ′
LS =

(
S

′HS′)−1
S

′Hy′. (25)

The LS requires relatively high-complexity computations,
such as matrix inversion. The computational complexity
based on the LS algorithm is O(M3N6) + O(M4N8).

B. BCECNN FOR CONTRAST
The semi-closed solution based on the LS algorithm and
the MUCE based on deep unfolding for channel estimation
has been presented in the previous part. Since MUCE
employs a deep learning approach, we developed a CNN-
based benchmark for channel estimation called BCECNN.
This network takes transmitted signal S and received signal
y as inputs. These inputs are first converted from complex
to real domain through a signal processing layer, and
then tensor-dimensional transformations are performed to
meet the input requirements of the network. Subsequently,
multiple batch normalization (BN), convolution (Conv), and
activation function layers are incorporated into the complete
network structure, as depicted in Fig. 15. Overfitting is

mitigated using a dropout layer. Ultimately, the estimated
channel parameters, denoted as h, are derived from the flatten
and dense layers.
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