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We present nonperturbative lattice calculations in the quenched approximation of the low-lying meson
and baryon spectrum of the SU(4) gauge theory with fundamental fermion constituents. This theory is one
instance of stealth dark matter, a class of strongly coupled theories, where the lowest mass stable baryon is
the dark matter candidate. This work constitutes the first milestone in the program to study stealth dark
matter self-interactions. Here, we focus on reducing excited state contamination in the single-baryon
channel by applying the Laplacian Heaviside method, as well as projecting our baryon operators onto the
irreducible representations of the octahedral group. We compare our resulting spectrum to previous work
involving Gaussian smeared nonprojected operators and find good agreement with reduced statistical
uncertainties. We also present the spectrum of the low-lying odd-parity baryons for the first time.
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I. INTRODUCTION

Dark matter makes up about 84% of the mass of the
Universe, but its composition remains a mystery. Given
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that around 99% of the mass of visible matter in the
Universe arises from the strong dynamics of quantum
chromodynamics (QCD), it is well motivated to consider
dark matter candidates whose mass arises from the
dynamics of some new confining gauge theory. For
reviews, see Refs. [1-3]. There are a large variety of
theories that can lead to viable dark matter as dark baryons,
for instance see Refs. [4—15].

In this paper, we focus on stealth dark matter [9],
where the Standard Model is extended to include an
SU(4) gauge theory with four fermions in the fundamental
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representation that produces a spectrum of composite
particles. The lightest dark baryon is stable, electrically
neutral, and provides a viable candidate for the dark matter
in the Universe. Previous lattice studies of stealth dark
matter have investigated the effective Higgs coupling [7,9],
the dark baryon electromagnetic polarizability [16], and
the confinement transition and its relation to gravitational
waves [17-19]. We have recently [20] been working to
extend this research program to include studies of stealth
dark matter self-interactions, which is the motivation of the
work presented here. In the following we refer to stealth
dark matter as the SU(4) gauge theory which we study in
the quenched limit with two fundamental flavors in the
valence sector.

In order to study stealth dark matter self-interactions
from first principles, Liischer’s method [21,22] can be
applied to nonperturbative lattice calculations of the single-
and two-baryon spectrum. Such analyses require high
precision energy measurements from multibaryon correla-
tion functions, which still present challenges to the lattice
community in studies of QCD [23-25]. Stealth dark matter
with four colors represents a more challenging problem
compared to QCD due to the larger number of fermion
Wick contractions required to compute baryon correlation
functions, as well as the reduced signal-to-noise ratio. On
the other hand, the physical parameter space for stealth dark
matter extends to much heavier pion-to-nucleon mass ratios
than for QCD at the physical point, which ameliorates some
of the challenges related to studying baryons.

As a first step towards study of baryon interactions, we
begin in this work by computing baryon masses using state-
of-the-art lattice QCD techniques. To achieve the greatest
signal in our SU(4) hadron correlation functions, we
implement traditional and stochastic Laplacian Heaviside
(LapH) smearing (also known as distillation) [26,27].
We also project our operators into irreducible representa-
tions (irreps) of the lattice octahedral group [28], as
is done in state-of-the-art hadron-scattering studies of
QCD [25,29-31]. This paper represents the first applica-
tion of both LapH and irrep projection on the meson and
baryon spectrum of stealth dark matter.

In this work, we analyze the spectrum of the SU(4) gauge
theory with fundamental fermions in the quenched approxi-
mation. We consider the isospin symmetric limit of two-
flavor mesons and baryons. We study three quenched
ensembles with volume 32° x 64 and = 11.028, 11.5,
and 12.0. We estimate the ground state and first excited state
energies of the pseudoscalar meson, the vector meson, and
irrep-projected even- and odd-parity spin-0, spin-1, and
spin-2 baryons with 2-point correlation functions of LapH
smeared operators. We use a simple operator basis to
perform a combined fit analysis, and we apply model
averaging [32,33] to all of our fits. We then compare our

ground state energy values to the results presented in an
initial study of the SU(4) stealth dark matter spectrum
involving simpler operators [7].

This paper is organized as follows: in Sec. II we
describe our operator optimization, with Sec. II A describ-
ing how operators are projected onto the irreducible
representations of the octahedral group, and then
Sec. IIB reviewing the Laplacian Heaviside method
and describing our implementation. In Sec. III, we
describe our operator basis and fitting procedure, and
compare our spectrum results to results from Ref. [7]. We
present our conclusions in Sec. I'V.

II. OPTIMIZING OPERATORS

In this section, we develop the framework for the
operator construction we use for the baryon scattering
problem needed to study stealth dark matter self-inter-
actions. We anticipate the scattering problem to present
challenges. The first is the statistical challenge due to the
exponentially decreasing signal-to-noise ratio at large
Euclidean times, which is expected to scale like e~ 2mest

for SU(4) as opposed e=2mes! for SU@3) [34-36], where mpg
is the mass of the pseudoscalar meson (for an example of
this behavior with our data, see Appendix A 1). In addition,
we eventually will need to construct a large variational
basis to improve our estimation of the ground state of the
one- and two-baryon systems. Completing these calcula-
tions for various scattering momenta to access higher-wave
scattering channels presents the additional challenge of
estimating the all-to-all propagator. The following sections
discuss how projecting onto lattice irreps and implementing
the LapH method address these challenges.

One way of improving the signal in our correlation
functions is to project operators into the irreps of the
octahedral group. By using a set of operators in a definite
irrep, we reduce the contamination in our signal from states
with different spin.

Another way is using the LapH method [26], which
has three important benefits. First, it provides a low-rank
approximation to the all-to-all propagator. Second, LapH
has been shown to reduce excited state contamination
in correlation functions [20,26,27]. This is important
for scattering measurements because Liischer’s method
requires analyzing energy differences, and we need
the largest signal-to-noise ratio possible. Finally, LapH
allows for great flexibility and computational efficiency
in the construction of a large variational basis of
operators.

All operators presented in this work are defined with all
fermion fields at a single point prior to LapH smearing. We
do not include operators with displacement or nonzero
momentum in this work.
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A. Projection onto irreducible representations

In this section, we first review the motivation for using
lattice irreps in Sec. IIA 1. In Sec. I A2 we set up our
notation and describe our choice of flavor wavefunctions,
contrasting our SU(4) gauge theory choices against what
would be done for SU(3). Then in Sec. IT A 3, we review
the algorithm for constructing irreps and describe our basis
choice. The results of our irrep projections are presented in
the Appendix in Table X.

1. Irreps and SU(4)

When a continuum field theory is discretized onto a
lattice, the symmetry group SO(3) of rotations is broken.
Instead of the continuous rotations of the sphere, a cubic
lattice has symmetries of the octahedral group, O, describing
all of the discrete rotations about the axes of symmetry of the
cube. In the case of fermion representations with positive
and negative parity, we are concerned with the breaking of
0O(3) into the 96-element double point group, 0? [28]. In the
continuum, there are infinitely many spin irreps of O(3),
defined by the quantum numbers J and P, where
J=0.1,1,3,2,3,3,1,.--, and P = £1. However for a
lattice field where we consider the double point group
symmetries, there are just 16 irreps, G4, Gy, Gay, Goys
H, H, for fermions, and A, A, Az, Ay, Eg By, Ty,
Ty, Ty T,, for bosons, where the subscripts g and u
denote positive and negative parity, respectfully.

Due to the broken symmetry on the lattice, we cannot
construct hadronic operators with definite quantum number
J. We can only project operators into definite lattice irreps.
The discretization forces a subduction of spin irreps into
lattice irreps. In the continuum limit, when the full
symmetry is restored, the lattice irreps are induced back
to the spin irreps. We use the subduction rules, as given in
Table I, to select operators of interest and interpret the
spectrum.

In the study of SU(4) gauge theory, we are only
interested in bosonic representations due to the even
number of colors, so we will only be dealing with positive-
and negative-parity operators in the A, A,, E, T, T, irreps.
One can find detailed presentations of fermionic represen-
tations in Refs. [37,38].

To reiterate, our baryon operators are bosons, and the
only quantum numbers we care about are 1J”, rather than
I6JPC as one would consider for mesons. In this work we
will only consider operators with zero orbital angular
momentum, so J = S, with a maximum value of S = 2.
Hence, we only need the first three rows of the top-side
table in Table I. The irrep projection provides the J¥
quantum numbers and, as we describe in the next section,
we perform a separate projection onto isospin / as well.
Note that in this work, we focus on constructing two-flavor
baryons. Hence, isospin, /, is a sufficient quantum number
to describe the flavor content of our baryons (as opposed to

TABLE 1. Subduction tables for the five lowest integer (top)
and half-integer (bottom) spin representations, J, into octahedral
group representations, A.

J A

0 A

| T,

2 E®T,

4 A1®E®T1®T2
J A

3 Gy

3 H

3 G, ®H
] G®G®H
9 G, ® 2H

also keeping track of stealth dark matter analogues of
strangeness, charm, etc.).

According to the subduction table, to study the spin-0
baryon that is the dark matter candidate, we construct
operators in the A; irrep. The next particle in the spectrum
that overlaps with the A, irrep has spin-4. Hence, correlation
functions constructed from the A; irrep have no excited state
contamination from physical states with spin-1 or spin-2,
improving our signal compared to nonprojected operators.
We also study the spectrum associated with S = 1 through
projections onto 7'y, as well as S = 2, through projections
onto E and T5.

2. Setup for constructing irreps

To see how the irreps are constructed, first consider an
SU(4) baryon operator, O, to be given by

0= z : Ve fiaWerfraWesfsa3¥ eafaay
creatacs
f1faf3f4

ajazazay

x €123l 1f2f3fs ymamazas (1)

where y are Grassmann numbers indexed with color
indices, c;, flavor indices, f;, and spin indices, @;. The
Grassmann numbers are contracted with three rank-4
tensors. These tensors are the Levi-Civita tensor, ¢, the
flavor wavefunction, ¢, and the spin projection, y. We use
this notation for convenience, but also to emphasize the
symmetry constraints imposed by the Grassmann numbers,
as described below. Note that for nonlocal operators, the
Grassmann numbers would also need to be contracted with
some position/displacement tensor involving gauge links. In
this work, we are considering only local operators so we
omit the position tensor. Here, our goal is to find ¢ and y
such that the operators have definite isospin and lattice irrep.
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In the sections below, we compare our SU(4) spectrum
results to Ref. [7], where operators are constructed using
“di-quark™ operators given by

O = (WX yh) (wiX3us). (2)

with y; representing fermions with two flavors labeled u
and d. The rank-2 spin tensors X; and X, are identified with
spin according to

spin-0: X; = Cys, X, = Cys 3)
spin-1: X; =Cy;, X, =Cys, =123 (4)
spin-2: X; = Cy;, X, = Cyj, [ #] (5)

where C = y4y, is a charge-conjugation operator. As an
example, their spin-0 operator,

O = (u*(Cys)*dP)(u(Cys)™d®), (6)

in our notation corresponds to

27 = (Cys)™(Cys)™ (7)
¢f]'f2‘f3‘f4 _ { 1 for (fl.va’ f37f4) = (u’ d’ u, d) (8)
0 otherwise.

Note that these operator do not have definite total isospin
and spin.

To construct our irrep-projected operators in this work,
we use the fact Grassmann numbers anticommute, so when
they are contracted with tensors to form a scalar, as in
Eq. (1), only the fotally antisymmetric part of the product
ey will contribute. Given that the color tensor, e, is totally
antisymmetric, only the totally symmetric part of the
product of the flavor and spin tensors contributes.

To construct two-flavor baryon operators in SU(4)
(gauge theory), we can gain insight by looking at the to-
tally symmetric spin-flavor irreps of SUg (4) D SUg(2) x
SUx(2), with S denoting nonrelativistic 2-component spin,
and F denoting flavor. That is, we can embed representa-
tions of SUg(2) x SU(2) into representations of SUy (4),
where a representation of the spin-flavor group has a spin
label and a flavor label. The totally symmetric spin-flavor
wavefunction can be decomposed using the Young dia-
grams below:

HEEEsEEEEMEEEE

SUs, r(4) SUs(2) SUF(2)
NEEENEER
9)
SUs(2) SUF(2)
+ X
SUs(2)  SUr(2)

This equation tells us that a totally symmetric spin-flavor
wavefunction (horizontal Young Diagram on the left-hand
side) can be decomposed into a product of spin and flavor
wavefunctions in three ways. The first term represents
S =2, I =2. The second term represents S =1, [ = 1.
And the third term represents S =0, [ = 0.

The analogous equation for SU(3) gauge theory is

HEESEEENEEE

SUs,r(4) SUs(2) SUF(2)

+ X (10)

SUs(2)  SUR(2)

The first term, with totally symmetric isospin and spin,
corresponds to the A baryon, which has I = § = 3/2. The
second term corresponds to the nucleon, with I = § = 1/2.

The relativistic Dirac spins can have more nonvanishing
contributions, but in this work, we focus on the operators
with § = I. We assume that, as in QCD, the spectrum can
be described by a constituent quark model, where the
baryons with S # I require orbital angular momentum and
have higher masses. Using these symmetries to determine
the correct combination of lattice irreps and isospins, we
construct three sets of spin-flavor wavefunctions: A; with
I =0,T,with =1, and T, and E, with I = 2. The flavor
wavefunctions with definite 7 =0, 1, 2 are determined
from the SU(2) Clebsch-Gordon coefficients, and are given
in the Appendix in Table IX.

Given a particular flavor wavefunction, we can write
Eq. (1) in a more familiar form by combining the flavor
tensor with the Grassmann fields and labeling the
quarks by their flavor. For example, the operator with
the I = 0 flavor wavefunction labeled MS(()Z) in Table IX,
(ud — du)(ud — du), can be written as

O = eabed(usdh — diub) (usdd — dsud)yly,s (1)

where A indicates the lattice irrep, and y is the spin tensor
wavefunction for that irrep. Below, we summarize what is
needed to understand our application of the irrep-
projected spin tensors, y*, listed in Table X.
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3. Projecting into a definite irrep

Here we use the usual irrep projection formula [29], as
reviewed in Appendix A 6. For each irrep A, we produce
d, x K unique operators, y™*, 1 =1,....dy,k=1,....K
Here, d, is the dimension of the irrep, and K is the number
of copies in the irrep.

By the definition of being an irrep, each of the K sets of
d, operators is a closed subspace under application of all
elements of the group of lattice rotations. Therefore, once
yM* is calculated for each A, we are free to choose a basis
in the d, dimensional subspace defined by each irrep. In
this work, we compute the spin projections using Eq. (A2),
and then perform the basis transformation which diago-
nalizes the group element corresponding to rotation of z/2
about the z-axis, Cy4.. For example, d, = 2 for the E, irrep,
so the matrix representation of C4, is 2 x 2. It has
eigenvalues R, = {—1, 1}. These rotation group eigenval-
ues correspond to S, eigenvalues in the Lie algebra 8u(2)
according to

R, = e"/?5:, (12)

In the E, example, S, = {0,2}. The other positive-parity
irrep corresponding to spin-2 is T,,, which has algebra
eigenvalues S, = {—1,1,2}. Thus, these two irreps span
the full spectrum of spin-2, with S, = {-2,—1,0,1,2}."

The diagonalized irrep- prOJected spin tensors for irreps
Ay, Ey Ty, Tyyand Ay, E,, T, and T, are tabulated in
Table X. As a result of the diagonalization, S, are used as a
label for the irrep row instead of A.

B. Laplacian Heaviside method (LapH)

The basic concept of LapH is to construct correlation
functions from a low-rank approximation of the all-to-all
propagator by using the low modes of the gauge invariant
Laplacian [26]. In this section, we first review the formal-
ism of LapH, and then discuss our operator construction
through a baryon correlation function example. We then
discuss LapH in practice, with a discussion about opti-
mization and timing.

1. LapH formalism

LapH is essentially a form of quark field smearing. The
source and sink quark fields, y, at spacetime position (x, ¢)
are smeared according to

ec
Vx a\
1

wa(x, 1) —

i

Vi (Owhn.  (13)

\

'Note that —1 = e*/2~2 = ¢i7/22 5o R, = —1 appearing in
both £, and T, allows for both S, = 2 and S, = -2 as required.

where color indices are given by Latin letters, a, b, ... and
Dirac spinor indices are given by Greek letters, a,f, ...
Above, Einstein summation convention is used for the sum
over spatial position y and color index b, but the sum over
eigenvectors is written explicitly to draw attention to the
fact that the sum only runs up to the chosen parameter V.
The matrices V are the eigenvectors of the gauge invariant
lattice Laplacian, A, given by

Ny-1
k=1
— 28,80 (14)

A%?(t)‘/x.a\i(t) = 4V, pi(1), (15)

where N, — 1 is the number of spatial dimensions, and U,
are the gauge link fields in direction k. By ordering the
eigenvectors by increasing magnitude of their eigenvalues,
A;, the smearing, Eq. (13), becomes a sum over the first N,
low modes of the Laplacian. These are analogous to the low

Fourier modes in a scalar field theory. In the limit

max . .
Nyee = (Vec ) = = L3N, the smearing operation becomes

the identity, and the quark field is not smeared, i.e.
w(x,t) = w(x,t). In the limit N, — 0, the quark field
is smeared to a wall source.

Computationally, we compute N, eigenvectors, V, and
solve for the propagator, D~', using the eigenvectors as the
source, and then contracting the result with the Hermitian
conjugate of each eigenvector at the sink. The resulting
object is the perambulator, z, defined as

aao

Tii, (t t()) v \x( ) (l(lo(x’ t|x07 Z‘O)V)co|i0(t0)7 (16)
which can be interpreted as the matrix of N2, eigenvector-
to-eigenvector propagators (in contrast to point-to-all or all-
to-all propagators). The eigenvectors and perambulators are
then saved to disk and, depending on how they are
contracted with spin tensors, can be used to form any
number of hadron operators. This is true even with
displacements and projections onto different momenta,
as described in Ref. [26]. Therefore, the ability to construct
a large variational basis with the same initial building
blocks of eigenvectors and perambulators makes up for the
greater complexity of implementing LapH.

2. Example correlation functions using LapH

The operator and correlation function construction using
LapH is nearly the same for SU(3) and SU(4) mesons, the
only difference being the number of color indices carried on
the eigenvectors. See for example Ref. [26] or Ref. [20].

Here, we show the application of LapH to the baryon
example shown in Eq. (11). Suppressing the spatial,
temporal, and color indices for clarity, the correlation
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function without LapH is given by
C(x’ 'xl) = e(uadﬁ - dau/t’) (uﬁdﬁ - d(ruﬁ))(aﬂmﬁ
xe(itydy —dyitg)(iydy —dyity ) Fupes  (17)

_ eabcdea’b’c’d’

X aﬂo‘é)? odp oS
x (pzipz} - DD}
1 - 1
(D/x/j’ D&&’ D/ié’ Day’) (18)
b dd' bd  dv'

~ / .
where Zopos = Xy o ?s” yﬂ 4 57 y%, as required to com-

pute O'. Now, applying LapH, and writing the color indices
explicitly, the correlation function becomes

! A VLL
C(x,x0) = ebede?t'cdy o Fupos ZTU“T, el

bed ’h’ 'd
Xr ’k’l’

x (et — g g ) (L =iy ). (19)

where

T iju =

abcd

VaiVoiiVerVas (20)

T, =V vivi v

o ila” jlb" kle

- (21)
As is the case for mesons, the propagator in position and
color space is replaced by the perambulator in the LapH
subspace defined by the eigenvectors, and then the eigen-
vectors are used to take this low mode result back to
position space. Again, note that the result is similar to that
for SU(3) baryon correlation functions, except that there
would be three fermion fields being contracted and there
would be three indices on the tensors ¢, 7, and y above.
It is worth mentioning that these examples consider LapH
smearing of point-to-point correlation functions, but it is
straightforward to consider momentum projection as usual
by summing over all spatial positions with weights e’?*.

3. LapH in practice

Using LapH smearing reduces excited state contamina-
tion in a similar way as Gaussian smearing, but with LapH,
the tunable smearing parameter is N,... Figure 1 compares
the amount of excited state contamination appearing in our
SU@#4) p = 12 pseudoscalar meson correlation functions
produced with a range of smearing, from no smearing
(point-point) to smearing with N,.. =4, the four zero
modes of the Laplacian (due to there being four colors),
corresponding to a wall source. As expected, the effective
mass with the most excited state contamination comes from
the point-point correlation function with no smearing, the
red, highest curve. By inspection, one can see that the LapH

_|_ Nyee = 4
0.6 _+_ Nve(: =16
Nyee = 48
0.5 Nree = 96
& point-shell
Lg —}— point-point
0.41
0.31
5 10 15 20 25 30
t
FIG. 1. Hyperbolic cosine form of effective mass of pseudo-

scalar meson correlation function for 323 x 64 ensemble of 200
configurations with =12 and « = 0.1475. Plot compares
different LapH smearing parameters, N, to non-LapH point-
point and point-shell correlation functions. Lines connecting data
points are included to guide the eye.

effective masses, the lowest four curves, have significantly
less excited state contamination than both the point-point
and Gaussian sink smeared point-shell correlation func-
tions.’ However, one can see that all of the curves converge
to the same effective mass plateau.

Figure 2 shows a closer look at the same LapH effective
masses described above, but zoomed in and with the purple
Ny = 4 curve lightened for clarity. One can see that while
there is less excited state contamination for smaller values
of N, the errors are larger. Therefore, in choosing N,
one has to consider the trade off between increasing
systematic or statistical error.

Given that the parameter N, controls the overlap of the
operator with states in the spectrum, operators constructed
with different number of eigenvectors can be used as a
variational basis in a generalized eigenvalue problem. In the
Sec. IIE below, we follow a different approach and
perform combined fits of correlation functions using differ-
ent numbers of eigenvectors.

Looking back at Eq. (19), one can see that the baryon
correlation function requires the contraction of 2N, eigen-
vector indices, running from 1, ..., N,... More specifically,
the leading order of computational complexity in eigen-

vector indices for Eq. (19) is O(NZVVCCCH). In other words, the

computational cost is proportional to O(N3..) for SU(4)
baryons; see Appendix A 5 for more details. Therefore, the

The amount of excited state contamination appearing in the
Gaussian smeared data depends on the parameters of the smear-
ing. The non-LapH correlation functions were computed using the
Chroma implementation provided by Michael Buchoff [7]. In this
work, gauge invariant quark smearing was used with smearing
parameters wvf param = 4.0 for p=11.028, 11.5 and
wvf param = 8.0 for f = 12.
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0.384

0.36 1

0.34 1

0.321

0.301

aEeff

5 10 15 20
t
FIG. 2. Zoomed in version of Fig. 1, showing only LapH
effective masses to compare excited state contamination and

relative error. Lines connecting data points are included to guide
the eye.

computational cost of these contractions is especially
problematic for baryons in larger gauge groups like
SU(4), and will pose a significant challenge for 2-baryon
correlation functions which will require 4N, contractions.
Similarly, it will require O(N%évc"H) = O(NY,.) of leading
complexity for SU(4) baryon-baryon scattering and this is
extremely expensive, and therefore it will be essential to
apply the stochastic LapH (sLapH) method which is
discussed in the next section. For the single-baryon corre-
lation functions being studied in this work, we find that the
contraction step presented in Eq. (19) becomes the leading
contribution to the computation time of a baryon correlation
function for N,.. &~ 32. This number of course depends on
algorithmic and hardware details, discussed further in
Sec. IV and Appendix A 5.

C. Stochastic LapH (sLapH)

sLapH [27] is a powerful method that allows for a
significant reduction in the number of vector contractions,
while still controlling the number of eigenvectors used to
define the LapH subspace and therefore the overlap with
different states in the spectrum. Due to the computational
cost of computing LapH baryons, we choose to use sLapH
when smearing with larger N,.. is desired. sLapH vectors,
V are defined according to

NVSC
an|1' - an\n = an|ipinv

i=1

n=1,2,.. Nyger  (22)

where p;, is a matrix whose columns are noise vectors. In
this work, we use Z, noise with interlace-J = 2 dilution as
defined in Ref. [27]. In the following section, we argue that
it is not worth using sLapH for the baryon analysis with our
current computational resources. However, it is still useful
to use sLapH to study the larger N,.. behavior of meson

correlation functions to explore the relationship between /3
and the optimal N ... This will be essential when we move
on to baryon scattering, where the computational cost will
be higher as N,.. increases, and we will want to maximize
the signal at early times due to the exponentially decaying
signal-to-noise ratio.

In order to optimize statistical and systematic errors, it is
important to consider the relative times required to com-
plete each step of the LapH process. Computational
resources and timing are discussed in Appendix A 5.

III. ANALYSIS
A. Ensemble details

In this work, we compute the low-lying meson and
baryon spectrum for three quenched SU(4) ensembles with
lattice volume 323 x 64. We use the Wilson gauge action
and consider bare lattice couplings f = 11.028, 11.5 and
12. In Table II we report the corresponding values of the
plaquette (normalized to unity) and the Wilson flow scale
\/8ty/a (where “a” is the lattice spacing) defined through
the condition {r*(E(t))},_, = 0.4 [39,40].

We choose these couplings to match those studied in
Ref. [7]. While that earlier work used the heat bath
algorithm for gauge configuration generation, here we
employ the hybrid Monte Carlo (HMC) algorithm, in
preparation for future work using dynamical fermions.
We use a version of the Chroma software system [41], with
a force-gradient integrator and a trajectory length of one
molecular dynamics time unit (MDTU). Because autocor-
relations increase for larger f, we generated 160,000
MDTU for =12 and only around 40,000 MDTU for
each of f#=11.028 and 11.5. For each ensemble we
measured observables on 385 thermalized configurations,
separating the configurations by 400 MDTU for g = 12
and by 100 MDTU for the stronger couplings.

For each f we analyze the heaviest valence fermion mass
considered by Ref. [7]. We employ Chroma to calculate the
perambulators, using the unimproved Wilson fermion action
with the values of « shown in Table II. For the f = 11.028
and 11.5 ensembles, the corresponding pseudoscalar-to-
vector mass ratio is mpg/my ~0.77. For the f =12
ensemble we have heavier valence fermions leading
to mpg/my ~ 0.89.

TABLE II. The parameters, plaquette, and Wilson flow scale
for each of the three SU(4)32% x 64 ensembles considered in this
work.

p Plaquette \/8ty/a K

11.028 0.578791(4) 5.2411(16) 0.1554
11.5 0.605634(3) 7.8707(50) 0.1515
12.0 0.628840(3) 11.550(15) 0.1475
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FIG. 3. Spectrum results using the simple operators defined in Eq. (2) as used in previous work, Ref. [7]. Our results, colored points

with error bars, are compared to the quoted results from the previous work, depicted by error bands. Masses, my, are in units of the spin-
0 baryon mass, mgy, for each bare coupling, . The left figure shows all of the states measured in this work, and the right figure shows the
same results, zoomed in to focus on the baryons. In the left figure, the errors are smaller than the points.

B. Fitting details

All of our fits use the same procedure. First, all of our
SU(4) meson and baryon operators are bosons and are even
under time-reversal, so we “fold” the correlation functions
about N,/2 to increase the statistics. Also, all correlation
functions are calculated on only one source time. For the
case of point-point/point-shell/shell-shell correlations only
one measurement is performed, in contrast to 5 measure-
ments per configuration used in Ref. [7]. This is irrelevant
for LapH correlation functions, where N3tk x N30 mea-
surements are used. Before fitting, we average the corre-
lation functions corresponding to the three polarizations of
vector mesons, as well as all S, components, as listed in
Table X, of baryons in the E, T4, and T, irreps.

We perform y?-minimization fits using a full covariance
matrix with linear shrinkage [42], as presented in Ref. [43].
We implement model averaging [32,33] to estimate central
values and systematic errors due to the model choices. All
correlation functions are fit to hyperbolic cosine models
with one, two, and three energy states for a range of fitting
regions in Euclidean time. That is, the fit model is

N states

Clr) = D (el 4 e,

m=1

(23)

where Ny = 1, 2, 3, and the fit parameters are a,, is a
real number and E,, is positive. We estimate errors on fit
parameters by model averaging errors computed from a
sample of parameters obtained using a bootstrap analysis in
which we randomly select 385 measurements to form 100
bootstrap samples.

As motivated in Refs. [33,44] we use strict data quality
cuts in our model averaging and only fit to a maximum time,
few such that C(f.,)/C(1) is more than eight standard
deviations from zero. We also impose quality cuts to
determine the models used in the model average. We
exclude models where any of the fit parameters are

unconstrained, i.e. > 100% error. We also exclude models
to more states than the data appear to support.

C. Spectrum comparison with simple operators

In this work, we want to isolate the effects of using LapH
and irrep-projected operators. Therefore we compare our
results to a previous study [7] of the spectrum which does
not employ LapH or irrep-projected operators. This com-
parison also serves as a validation of the physics results
from our updated simulation code and methods. We ensure
our ensembles are statistically compatible with those used in
the previous work by fitting correlation functions con-
structed using the same operators used in the previous
work, as described in Eq. (2). We choose the Gaussian
smearing parameters to match the results of Ref. [7].

Our results of the ground state masses in each channel
are obtained by performing a combined fit to three different
zero-momentum projected smearing prescriptions: point-
point, point-shell, and shell-shell as implemented in Ref. [7].
The same procedure for performing the combined fits is used
here as is used for the LapH and irrep-projected correlation
functions, with more details given in Sec. IIL E.

Figure 3 shows the spectrum results in units of the spin-0
baryon. Our results are the data points with error bars and
are compared to those quoted in Ref. [7], which are given as
the horizontal error bands. We can see that our results are in
good agreement with the previous work. Even using the
same simple operators at this point, our errors are smaller
on average, even though we have less measurements for
each channel overall. We attribute this to our more
sophisticated analysis procedure, described in Sec. III B,
as well as the fact that we performed a combined fit to the
correlation functions with the three smearings.

D. LapH and irrep operator basis

The contractions required to calculate the baryon corre-
lation functions, as in Eq. (19), are computationally
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FIG. 4. p =11.028 (top) and f = 11.5 (bottom) pseudoscalar
meson effective masses, using the hyperbolic cosine form of the
effective mass. Lines connecting data points are included to guide
the eye.

expensive, and the cost scales badly with the number of
LapH eigenvectors, N,.. (or noise vectors in the case of
sLapH). Therefore, we compute the inexpensive meson
correlation functions for a range of N, in order to study
the trade-off between reduced excited state contamination
and reduced signal. Although the optimization may not
transfer directly from the mesons to the baryons, the meson
study provides an inexpensive starting point for optimizing
the baryon signal.

Figures 1, 2, and 4 show the effective mass of the
pseudoscalar meson for the =12, 11.028 and 11.5
ensembles for a range of N,.. The figures show that
depending on the coupling, some small N, choices smear
the operator wavefunction too much to even have a good
overlap with the ground state, for example N,.. = 4 for
p=12.0 and N,.. = 16 for f = 11.028. Also varying f
has a significant effect on the value of N, that is large
enough such that excited state signal appears at later
timeslices, where the fits are performed. For example,
excited state signal appears to be significant at N,.. = 16
for f = 12.0 between timeslices t =2 to t = 8. On the
other hand, the coarsest lattice, with f = 11.028, for both

TABLE III. Number of eigenvectors chosen for baryon corre-
lation functions for each ensemble.

ﬁ B+, Alu Nvec B~ Nvec
11.028 32 24
11.5 24 24
12.0 16 16

Ny =32 and N, = 64, the signal for excited states
diminished by timeslice ¢t = 8.

In this work, we focus our computational resources on
the even-parity baryons and the pseudoscalar baryon (A;,,).
We also estimate the rest of the odd-parity spectrum to
study the spectrum ordering, using a smaller number of
eigenvectors and accepting a larger error for the odd-parity
states. Using the initial meson analysis as described above,
the number of eigenvectors chosen for the even-parity (and
A;,) and odd-parity baryon correlation functions, B™ and
B~, are shown in Table III. As expected, the coarsest lattice
with # = 11.028 requires the largest number of eigenvec-
tors, N,.. = 32, and we are able to get away with using the
very small N,.. = 16 for the finest lattice with f = 12.

These choices of N, are significantly smaller than those
used in typical lattice QCD calculations. However, in the
baryon spectrum problem here, the bottleneck of the entire
lattice calculation is the contractions, so we choose to trade
off using a larger number of eigenvectors for increasing
statistics. That is, the computational cost is linear in the
number of configurations, but it is quartic (or worse) in the
number of eigenvectors, so for fixed computational cost, we
choose to reduce the number of eigenvectors and increase
the number of configurations.

The scaling of the computational cost as a function of the
number of (s)LapH vectors also means that using sLapH is
not very beneficial with our current computational pro-
cedure. While sLapH allows us to increase the number of
eigenvectors used for a fixed number of noise vectors, that
number of noise vectors has to be sufficiently large to
sample the LapH subspace well enough. Therefore, we
only use sLapH when constructing the meson correlation
functions. This still provides useful information about how
the signal varies with N, and . The LapH smearings used
for the mesons are presented in Table IV, with sLapH with
Npoise = 32 used for N, > 100.

TABLE IV. Number of eigenvectors chosen for meson corre-
lation functions for each ensemble.

)B NVCC
11.028 16, 32, 64, 160
11.5 16, 32, 64, 120
12.0 8, 16, 32, 64

095001-9



R.C. BROWER et al.

PHYS. REV. D 110, 095001 (2024)

TABLE V. Number of operators, K, for each irrep, A.

A

Alg
T,
E

g

[SSIRSS IRV I N

=3
AN R

E. Combined fits

The operators used in this work are zero-momentum,
nondisplaced operators, and we find that our operators are
not orthogonal enough to perform a reliable variational
analysis. Instead, for both the baryons and mesons, we
perform combined fits to N correlation functions. For the
meson analyses, N = 4 as four different LapH smearings
are used. For the baryon analysis, N = K, where K is the
total number of copies, indexed by k, for each irrep. The
values of K, as tabulated in Table X, are given in Table V.
We perform a simultaneous y> minimization fit to the N
correlation functions, fitting all correlation functions to a
model with the same number of states, N, but allowing
the range of timeslices in the fit to vary between the
different correlation functions. The fit parameters are the
Nguaes €nergy levels, plus the N X Ng,.s amplitudes of
each energy state for each correlation function. We use
shrinkage to provide a reliable estimate of the inverse
covariance matrix required to perform the y> minimization,
taking into account covariances among the data sets used
in the combined fit.

1. Meson combined fits varying N ..

For the meson spectrum analysis, we perform combined
fits of correlation functions constructed from N = 4 differ-
ent LapH smearings, parametrized by N .., with operators
defined as

Nyee
O(x,1) = Z
ij

X dy(z, 1)V, (V' (1), (24)

Jhx

Vx\i(t)vzy(t)ﬁa(y’ t)ra/f

where color indices are suppressed, and I' = y5 for the
pseudoscalar meson, and I" =y, y,, 73 for each polariza-
tion of the vector meson. As indicated in Sec. III B, we
average over the correlation functions corresponding to the
three polarizations of the vector mesons.

1.2 ]

g
S

1.0+ 1

0.8'+ ]
[ 0.7 + .
3

0.6 1 1 %

0.25650 1 1

(e}
[ 0.25625 1 +

3
0.25600 1

16 32 64 120
Nvec

Combined

FIG. 5. Results of f = 11.5 pseudoscalar meson fits with up to
two states to single correlation functions constructed with differ-
ent LapH smearing, N, (left panel) and combined fits with up to
three states to all four correlation functions simultaneously taking
into account all data covariances (right panel). Energies given in
lattice units.

Figure 5 shows the fit results after model averaging for
the = 11.5 pseudoscalar meson ground state and excited
state energies in lattice units. The left panel shows the
results of individual fits to each N,.., and the right panel
shows the result of a combined y* minimization fit to all
four correlation functions simultaneously, which we use as
the final results presented in Tables VI-VIIL. Only two-
state fits survived model averaging for the single correla-
tion fits, whereas three-state fits contributed to the model
average for the combined fit, so a third energy state was
extracted. From the single correlation function results in the
figure, it is possible to see the effect of increasing N,
which makes the operator more pointlike. For larger N,
the signal has more overlap with excited states, so the first
excited state is better resolved.

Because there is more signal to work with, the combined
fit is also able to constrain a third state, which provides better
constraints on the lower states. Thus combined fits have the
least excited state contamination and are working exactly as
desired. By combining the signals of four correlation
functions with different overlaps with excited state, it is
possible to achieve the best variational estimate of the
ground state and first excited state. We found similar results
for the mesons for all three ensembles presented here.

2. Baryon combined fits with N, fixed

For the baryon spectrum analysis, we perform combined
fits of the N = K correlation functions defined analogously
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TABLE VI. Final results of ground state hadron masses in
lattice units for the three ensembles studied in this work.

Y 11.028 11.5 12.0
PS 0.3477(1) 0.2561(2) 0.2734(2)
Vector 0.4527(2) 0.3278(3) 0.3044(3)
Ay (01) 0.983(3) 0.6975(8) 0.653(1)
Ty, (1) 1.012(2) 0.7168(8) 0.662(1)
Ty, (2*) 1.065(4) 0.751(1) 0.678(1)
E, (27) 1.064(3) 0.753(1) 0.677(1)
Ay, (07) 1.25(1) 0.833(7) 0.732(4)
Ty, (17) 1.40(4) 0.80(1) 0.733(3)
Ty, (27) 1.36(7) 0.88(1) 0.756(3)
E, (27) 1.42(3) 0.89(1) 0.755(3)
TABLE VII. Final results of first excited state hadron masses in

lattice units for the three ensembles studied in this work, with the

symbol - --” indicating combined fit not including this excited
state.

p 11.028 11.5 12.0
PS 0.82(5) 0.57(2) 0.455(7)
Vector 0.88(4) 0.60(2) 0.473(5)
Ay, (07) 1.56(9) 1.10(1) 0.84(1)
T, (17) 1.65(3) 1.094(8) 0.857(6)
Ty, (27) 1.71(7) 1.19(1) 0.91(3)
E, (27) 1.71(6) 1.20(1) 0.90(3)
Ay, (07) 2.1(1) 1.30(5) 0.99(6)
Ty, (17 1.12(2) 0.89(2)
Ty, (27 2.3(4) 1.4(1) 1.11(4)
E, (27) 1.5(1) 1.104)

to the example of Eq. (19) with spin wavefunctions defined
in Table X and flavor wavefunctions defined in Table IX,
using /, = I. Prior to the analysis, we average the corre-
lation functions corresponding to the different spin

TABLE VIII. Final results of second excited state hadron
masses in lattice units for the three ensembles studied in this
work, with the symbol “- - -” indicating combined fit not includ-
ing this excited state.

p 11.028 11.5 12.0
PS 1.8(4) 1.1(2) 1.01(5)
Vector 2.0(2) 1.2(2) 1.03(2)
Ay, (07) 2.4(3)
T, (17) 2.07(5)
Ty, (2*) 2.5(3)
E, (27) 2.4(3)
Ay, (07)
Tlu (1_) 24(2)
T, (2— .
E, (27)

210
S
S 9051
10/ +
3 |
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FIG. 6. Results of # = 12 T, baryon single fits with up to two
states to correlation functions constructed with different operators
indexed by & (left panel) and combined fits with up to three states
to all five correlation functions simultaneously taking into
account all data covariances (right panel). Energies are given
in lattice units and some error bars are smaller than the size of the
data points.

projection of each irrep. From the meson examples, we
see that varying N, in the combined fits can be useful in
achieving energy estimates with less excited state contami-
nation. However, due to the high computational cost of
increasing the number of eigenvectors for the baryons, we
are not able to vary N,.. meaningfully enough to achieve
correlation functions with significantly different overlaps
with higher energy states. We find that varying the
operators by using the K different operators resulting from
the irrep projection improves the energy estimates even for
fixed N,.., as shown in the examples below.

To first get a sense of the baryon data and examples of fits,
see Fig. 7 which shows the effective mass’ with A = 5 for
the combined fit of the # = 12.0 A, and is compared to the
data from the four correlation functions used in the com-
bined fit, indexed by k. The fit model which dominated the
model average was the fit with Ny, = 3, with £, = 2 for
all four correlation functions. This fit and its error band is
shown going through the data for each plot. The three energy
values in the fit were shared among the four correlation
functions, and the ground state energy model averaged result
is given as the horizontal black line, with the one sigma error

SHere, A =5 indicates the number of timeslices between
correlation function values being compared to compute the

effective mass. For the exponential form of the effective mass,

the effective mass E, is given by E, = %log(C(C’Z)A)), and the

hyperbolic cosine effective mass has a similar substitution
compared to the default A =1 form.

095001-11



R.C. BROWER et al.

PHYS. REV. D 110, 095001 (2024)

0.701

} }

0.681 +++ *

|

} t k=1 | bok=2

i
t

t
+++

- —
o —t—
—t

i |
0.661 H{HHIHHM} 1 H“%”

-4
R —
—t

! W

0 10 20 0 10 20
t t

FIG. 7.

0 10 20 0 10 20
t t

Ground state energy result from combined fit to the # = 12.0 A, correlation functions (horizontal gray band) plotted on top of

hyperbolic cosine form of effective mass with A = 5 (see footnote 3) of the four correlation functions. Error band of most probable fit

overlaid for each correlation function.

band in gray. The model values with one sigma error bands
are overlaid on each of the effective mass plots, and they
show good agreement with the data.

Figure 6 shows an example of single versus combined fit
results for the = 12 T, baryon, which corresponds to
spin-1. All of the baryon operators, indexed by k, used the
same number of eigenvectors, N,.. = 16, as shown in
Table III. The left panel shows the model averaged fit
results to the single correlation functions, and the right
panel shows the results of the combined y?> minimization to
all five correlation functions simultaneously. The single
correlation function fits contributing to the model average
are two-state fits, whereas the combined fit has enough
signal to constrain a third state as well. Although the
number of eigenvectors is kept fixed, the operators each

ot

]
3 1.2

1.1+ ] ¢

0.702-+

;g 0.7001 + + +
0.698 - 1 ‘i’ +

k Combined

FIG. 8. Left panel: results of = 11.5 A, baryon fits to
correlation functions constructed with different operators indexed
by k. Right panel: two examples of combined fits to all four
correlation functions simultaneously, where the difference be-
tween the open and closed circles is described in the text. All
energies given in lattice units.

have different overlaps with the energy eigenstates. Here,
the most notable example is the k = 4 correlation function,
which constrains the ground state the least, but gives the
lowest estimate of the first excited state with the least error.
By combining the signal from all of the correlation
functions, the combined fit is able to constrain three states,
and provides the best variational estimates of the ground
state and first excited state compared to the single corre-
lation function fits. We find that only the = 12 baryon
combined fits are able to constrain a third state.

Figure 8 shows the fit results to the f = 11.5 A, , baryon,
which corresponds to spin-0. The number of eigenvectors is
N,e. = 24 for each of the baryon operators, indexed by k.
The single correlation function fit results are shown in the
left panel, and two examples of combined fit results are
shown in the right panel. In this example, both the single fits
and combined fits only are able to constrain two energy
states. Even so, the final combined fit results, shown as the
solid data points in the right panel, have less excited state
contamination and smaller uncertainties. This can be under-
stood by looking more closely at the fits which contribute to
the model average. We find that the vast majority of the
model probability for the single correlation function fits
comes from two-state fits starting at timeslice ¢t = 2. For the
combined fits, models containing timeslice 2 contribute very
little to the model average (< 1%). However, to provide a
direct comparison between the single and combined fits, the
combined fit values for the model starting at timeslice = 2
for all correlation functions is shown as the unfilled data
points in the right panel. It appears that this combined fit is
able to resolve the first excited state with a lower value,
indicating that the single correlation function fits have
uncontrolled systematic uncertainties. On the other hand,
the model with the largest contribution to the combined fit
model average is the two-state model with initial timeslices
of + =3 for all correlation functions. By combining the
signal of the four correlation functions and leveraging the
additional statistics, the full combined fit model average is
able to constrain an excited state without including timeslice
t =2, where there is contamination from higher states.
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Hence, the final result from the combined fit provide the
lowest variational estimate of the ground state and first
excited states.

Fits like these, where a third state could not be con-
strained, occur for all of the = 11.028 and f=11.5
baryons. We attribute this to the fact that the coarser lattice
spacings require larger N,.. to achieve a sufficiently
localized operator, but we only use N, =32 and
Nyee = 24, respectively. See Appendix A 4 for comments
on a few nonintuitive combined fits which required
special care.

By studying combined fits for baryon correlation func-
tions, we can see that having a variety of operators leads to a
reduced statistical error and reduced excited state contami-
nation in ground state and first excited state energies. From
the meson analysis, we see that varying the number of
eigenvectors has a similar effect. Ideally we would use a
variety of N, for each operator, resulting in a large set of
operators which could be fit together. However, given the
high computational cost of increasing N, for the baryons,
performing combined fits to correlation functions with
varying operator construction alone is a robust and relatively

inexpensive way to resolve energy states with reduced
excited state contamination.

F. Final spectrum results

Tables VI-VIII show the final results of the ground, first
excited, and second excited state energies in lattice units.
Figure 9 shows the full spectra, including our fit results of
excited states, for each of the three ensembles, given in
units of the A}, ground state mass, which corresponds to the
dark matter candidate.

One feature to note is that the positive-parity baryons are
ordered as in QCD, with increasing spin having a larger
mass. That is, we find m,, < mr, < mr,, g , confirming
the ordering found in Ref. [7] This is an essential feature of
stealth dark matter, where the dark matter candidate, the
lowest energy stable baryon, must be the scalar. Also of
note is the fact that the two irreps corresponding to spin-2,
T,, and E, are consistent with each other, which indicates
that we are not sensitive to the discretization effects which
break the symmetry between these two irreps.

Also, as found in Ref. [7], the baryon spectrum is more
compressed for the heavier valence fermions used for the

4.5 —o— F(5=2)
4.0 1 —— T1(S=1)
' —@®— vector
3.0 —o— PS
<§ ' —&— cven
g 25 | — odd
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FIG. 9. Final results, including excited states, of combined fits to the LapH smearing and irrep-projected correlation functions for the
three ensembles studied in this work. All of the results are presented in units of the ground state A}, baryon mass. For each panel, from
the left to the right, the first two data points indicate the pseudoscalar and vector mesons. The next four data are for the baryons with
even-parity baryons (circles), and the last four data are the odd-parity baryons (squares). Filled and empty symbols are for the ground
and 1st excited state masses, respectively. The second excited state masses are presented in a lighter color. Note that the spin label in the
legend is meant to aid interpretation; in the continuum limit, the irreps are “injected” to higher spins as well. Also note that some of the

data points are larger than the error bars.
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FIG. 10. Final results of the mesons and even-parity baryons (data points with error bars) using LapH and irreps compared to the
spectrum results presented in Ref. [7] which use simple operators and Gaussian smearing (horizontal error bands). Masses, my, are in
units of the spin-0 baryon mass as determined in Ref. [7], for each bare coupling, 3. The right figure shows the same results, but zooming

in to focus on the baryons. In the left figure, the errors are smaller than the points.

S = 12 ensemble, corresponding to larger mpg/my =~ 0.89.
This is the behavior expected because the quark mass is a
greater contributor to the baryon mass compared to the
angular momentum and strong dynamics contributions.

We can confidently state that for all of the ensembles
studied in this work, the odd-parity baryons are heavier
than the even-parity baryons. For the f = 11.028 and
f = 12 ensembles, the odd-parity spectrum is consistent
with an ordering by increasing angular momentum. But for
p = 11.5, we see one three sigma outlier. We find that the
p = 11.5 combined fits to the K =2 A,,, T,,, and E,
correlation functions do not result in a significantly lower
ground state, whereas the 7, combined fit to K =4
correlation functions does see a marked improvement.
The ground state fit parameters of the 7', individual fits
sit right around 0.85, putting the spin-1 mass directly
between the spin-0 and spin-2 masses. To fully resolve the
spectrum ordering, further study involving more operators
or greater statistics are needed.

Figure 10 shows the same results as Fig. 9, but compares
the results of the mesons and even-parity baryons to the
results of the simpler non-LapH Gaussian smeared oper-
ators presented in Ref. [7]. Our results from the LapH,
irrep-projected operators are given by the data points with
error bars, and the results from the previous work with
simpler operators are given by the horizontal error bands. In
general, our results with LapH and irrep-projected oper-
ators have smaller uncertainties and provide estimates of
the baryon masses with less excited state contamination. In
particular, the f = 12.0 spectrum presented in the previous
work likely suffered from the greatest excited state con-
tamination, yielding the greater discrepancy seen in Fig. 10.

IV. CONCLUSION

This work is the first milestone in the research program
to calculate stealth dark matter self-interactions using
lattice field theory. We presented the first LapH smearing,

irrep-projected results of the baryon spectrum, and pre-
sented the first results of the odd-parity baryon spectrum.
For three points in the stealth dark matter parameter space,
for Nf = 2 at three quark masses, we resolved the even-
parity baryon ordering with greater precision and reduced
systematic error compared to previous work [7] from
2014. However, the changes to the spectrum are small,
so the excited state contamination in previous results does
not have significant implications on the electromagnetic
polarizability results [16] and effective Higgs coupling
results [7,9] found in previous work.

Due to the improved operator construction and use
of advanced analysis techniques, including model averag-
ing [32,33] and shrinkage [42,43], we achieved ground
state precision of 0.1% to 0.3% in the even-parity sector,
and 0.4% to 5% in the odd-parity sector. We also were able
to extract first excited state energy estimates for 22 of the 24
baryons, with second excited state energy estimates as well
for five baryons.

The baryon-baryon scattering problem required to study
stealth dark matter self-interactions will necessitate further
developments in the baryon construction and analysis
procedure. Having developed SU(4) irreps and LapH,
some interesting paths forward are now open. For example,
we may want to include irrep-projected displaced quark
baryon operators and compute two-baryon systems with
finite orbital angular momentum. These constructions
would provide a large variational basis of operators that
we can use to solve a generalized eigenvalue problem, as is
done in state-of-the-art hadron-scattering calculations in
QCD [25,30,31,45].

As we scale up to solving the baryon-baryon scattering
problem, we need to address the issue of the N, scaling
of the computational cost by using sLapH. In addition,
implementation of common subexpression elimination [46]
would greatly reduce the number of diagrams required to
complete Wick contractions required for two-baryon corre-
lation functions.
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APPENDIX

1. Baryon signal-to-noise example

Baryon signal-to-noise is expected scale like e>"*s' for
SU(4) as opposed e’ for SU(3) [34-36], where mps is
the mass of the pseudoscalar meson. Figure 11 shows how
the standard deviation of the f=11.028 A, baryon
correlation function (blue points) scales in proportion to
e2"rs! where we use the fitted value mpg = 0.3477 for the
pseudoscalar mass.

o(t)/o(0)

FIG. 11.  The noise of the A,, baryon correlation function (blue
points) is falling proportionally to e=>"s" (gray line) as expected.

Figure 12 shows how the signal-to-noise of the same
correlation functions scales in proportion to e~ ("&=2mes)t,
where mp is the baryon mass, which we use as the fitted
mass mpg = 0.983. At late times, the signal-to-noise ratio
scales proportionally to this model.

2. Tabulated isospin wavefunctions

Table IX shows all of the isospin 1 =0, 1, 2 wave-
functions for SU(4) baryons. As described in Sec. II A 2,
we constructed baryon operators with [ =S, and for
convenience, we used [, = 1.

3. Tabulated irreps

In Table X, we tabulate the spin projections used in this
work. Here we show only the irreps corresponding to
S =0, 1, 2, which, as shown in Table I, are A, Ty, E, and

101.

=

Z 1009 ceen.,,

E{ .“ .'.

U) * o

~ c ey

= 1014 N

Z. e .

E{ L]

(o) . .
1072 S
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t

FIG. 12. The late-time signal-to-noise ratio of the A, baryon
correlation function (blue points) is falling proportionally to
e~ (ms=2mes)t (gray line) as expected.
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TABLE IX.
four isospin-half fermions.

Irreducible representations of SU(2) isospin needed for SU(4) baryons determined from Clebsch-Gordon coefficients of

Tableau Label 1 I, Orthonormal basis
2 1 1 (uuud + uudu + uduu + duuu)
2 0 \/Lg (uudd + udud + duud + dudu + dduu + uddu)
2 -1 1 (uddd + dudd + ddud + duuu)
2 -2 dddd
)3 | 1 ‘ (1 1 1 L (ud - du)uu
9 MS; 2
— 1 0 3 (ud — du)(ud + du)
1 -1 L= (ud ~ du)dd
11214
3 1 suudu \/g(u u+ duu)u
1 0 \%uudd—\/%(udu+duu)d+ﬁ(udd+dud)u—\iﬁdduu
! -1 1= (udd + dud)d - \@ddud
1]2]3]
1 MS§3) ! ! 2(uuu)d — \/% (uud + udu + duu)u
T 1 0 Lﬁ (uud + udu + duu)d — \/ié (udd + dud + ddu)u
! -1 = (udd + dud + ddu)d - \/g(ddd)u
113 MS(()I) 0 0 3 (ud — du)(ud — du)
214
9 MSéz) 0 0 % (uudd + dduu) — \/% (ud + du)(ud + du)
314

T,. The left-hand and right-hand tables correspond to even-
and odd-parity irreps, respectively. See Sec. II A 3 for the
descriptions of k and S..

The final column of each table shows the indices of the
spin tensor y which are nonzero, with coefficients provid-
ing the value of the tensor at those indices. For example,
0013 + 0233 —2(0112 4 1223) corresponds to the spin
tensor with o913 = o233 = 1 and o112 = ¥1223 = —2, and
zeros elsewhere. Note that the isospin wavefunctions for A;

irreps and T’ irreps are given as [ = 0, MS(()Z) and I =1,

MS(II) from Table IX, respectively.

Note that the operators listed in Table X are not
symmetrized, i.e. averaged over all permutations of the
indices. It is unnecessary to symmetrized because only the
total symmetric components of the flavor-spin wavefunc-
tion ¢y contribute due to the symmetry of Eq. (1), so we
provide the simplest version of the operators in the table.

4. Nonintuitive combined fit cases

Most combined fits proceeded without issue according to
the analysis procedure described above, but here, we
explain each of the two types of special cases that come
up. The first special case is when the combined fit

parameters has significantly larger errors than the individ-
ual fits, for example in the E, = 11.5 correlation
functions fits. Upon inspection of the fits, we find that
only one- and two-state fits contributed to the model
average of the single correlation fits, whereas three-state
models dominated the combined fit model average. In this
case, we remove the three-state models from the set of
possible models and redid the combined fit, which yields
parameters whose error was similar to the individual fits. In
general, this case comes up when models dominating the
single state fits are those with 2-states and a starting
timeslice of 2, 3, or 4. The individual correlation function
fits do not prefer to add another state because the reduction
in > and inclusion of more timeslices do not compensate
for the additional parameters of the model, whereas it does
in the combined fit, at the expense of a much larger error.
Of the 45 total combined fits performed in this work, we
resolve the issue as described here for 10 combined fits.
The other case where we have to stray from the original
procedure occurred in the f = 11.028 odd-parity data sets
forTy,,T,,, E,. We find a very small 7., in our preanalysis
data quality cuts, with values of 7., =38, 4, and 8,
respectively. We expect these correlation functions to have
the worst signal because they are calculated on the coarsest
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TABLE X. Irrep projections for positive-parity (top) and negative-parity (bottom) irreps, A, used in this work. See
text for notation.

A k S, Nonzero elements of "4k
Ay, 1 0 0011 + 2233
2 0 0013 + 0233 —2(0112 + 1223)
3 0 0123 +2(0213)
4 0 0033 + 1122 + 4(0213)
Ty, 1 1 0111 + 2333
0 0101 + 2323
-1 0100 +- 2322
2 1 0133 — 1213 + 1312
0 0123 - 0213 + 0312
-1 0122 — 0203 + 0302
3 1 0311 4+ 0333 — 1211 + 1233 = 2(0113 + 1323)
0 0103 4+ 0211 — 0233 — 0301 + 1322
-1 0102 + 0201 — 0300 + 0322 + 1222 —2(0223)
4 1 0133 + 1213 + 1312 — 2(0313)
0 0303 — 1212
-1 0122 + 0203 + 0302 — 2(0212)
5 1 3(0311 + 0333 — 1211) +4(0113 + 1323) — 7(1233)
0 2(0103 — 0233 + 1322) + 3(0301 — 0211) + 5(0112 + 0323 — 1223)
-1 3(0300 — 0201 — 1222) — 4(0223) + 7(0322 + 0102)
E, 1 0 0011 + 2233
2 0000 + 1111 + 2222 + 3333
2 0 0013 4- 0112 + 0233 + 1223
2 0002 4- 0222 + 1113 + 1333
3 0 0033 + 1122 + 4(0123)
2 0022 + 1133
T, 1 | 0133 + 1123
-1 0023 + 0122
2 0022 — 1133
2 | 0333 + 1112 4+ 3(0113 + 1233)
-1 0003 + 1222 4 3(0012 + 0223)
2 0002 + 0222 — 1113 — 1333
3 1 0111 4 2333
-1 0001 +- 2223
2 0000 — 1111 + 2222 — 3333
A k S, Nonzero elements of y*k
Ay, 1 0 0011 —2233
0 0013 — 0233 +2(1223 - 0112)
T, 1 1 0011 —2333
0 0101 —2323
-1 0100 — 2322
2 1 0133 + 1213 - 1312
0 0123 + 0213 - 0312
-1 0122 + 0203 — 0302
3 1 0311 —0333 — 1211 — 1233 +2(1323 - 0113)
0 0103 + 0211 + 0233 — 0301 — 1322
-1 0102 + 0201 — 0300 — 0322 — 1222 + 2(0223)
4 1 0113+ 0311 —0333 — 1211 — 1323 + 2(1233)
0 0103 + 0233 — 1322 +2(0301 — 0211) + 3(0112 — 0323 + 1223)
-1 0201 — 0223 — 0300 — 1222 + 2(0322 — 0102)

(Table continued)
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TABLE X. (Continued)

A k S, Nonzero elements of y"4¥
E, 1 0 0011 — 2233
2 0000 + 1111 — 2222 — 3333
2 0 0013 +0112 — 0233 — 1223
2 0002 + 1113 — 0222 — 1333
T, 1 1 0111 — 2333
-1 0001 — 2223
2 0000 — 1111 — 2222 + 3333
2 1 1112 = 0333 4+ 3(0113-1233)
-1 0003 — 1222 + 3(0012 - 0223)
2 0002 4 1333 — 0222 — 1113

lattice, where N,.. = 32 or more would be required to
achieve a strong signal, but N,.. = 24 is used to reduce the
computational cost. Nonetheless, we achieve satisfactory
fits by increasing the cutoff time to 7., = 12 which
correspond to the value where the data was within one
standard deviation from zero, as opposed to eight standard
deviations, as described in Sec. III B. We do not find that
the results vary significantly from choosing different 7,
around 7., = 12.

5. LapH computational costs

Note that the eigenvector solve time is not exactly linear
in the number of eigenvectors, and depends on the
algorithm used. We use the Arnoldi algorithm in the
ARPACK++ matrix library.

For the perambulator timing, note that, as described in
Sec. IIB 1, computing an N, X Ny, perambulator, z;;
requires N,.. inversions of the Dirac matrix, one for each
source vector. Hence, the computation time is approxi-

mately proportional to the number of eigenvectors used at

source . . .
the source, Nsecu ). Also, the inversion time depends on

the fermion mass. This example considers the ensemble
with =12 and x = 0.1475, which corresponds to a
relatively heavy fermion mass, with a pseudoscalar-to-
vector mass ratio of mpg/my, = 0.76.

As described in Sec. IIB 2, the meson correlation
functions require Ny.. contractions, i.e. summation over
indices i,i',j,j running from 1 to N,.. The baryon
correlation function, in contrast requires N%Qﬁ“.

The computational cost (complexity) of the tensor con-
tractions in eigenvector indices for Eq. (19) is O(N]V\Q"CH).
The proof is as follows. In Eq. (19), T;jut; involves
O(N3e.) complexity. And T jipy = TijtiTj T T invol-
ves four such consecutive operations and still gives O(N3.)
computing complexity. The remaining contraction in
Eq. (19), T;juTij is in O(N3e.) complexity and it is a
subleading amount of order, but one should note that it
additionally scales with N, gpermN graph Where Nperaor 18 the

number of operators in our variational basis and N g, s the

number of possible permutation in indices in the Wick
contraction. In practice, N gr,p, can be much larger than Ny,
and therefore the last Wick contraction step becomes
dominant in the computational cost. To reduce the factor
Of Ngppn, further optimization with diagram consolidation
and common subexpression elimination [46] is in progress.

6. Review of projecting onto definite irreps

Please note that the following section can hold for spin
projections in any SU(N ) theory by changing the number
of indices on the spin tensors from N, = 4.

Here, we review the method of calculating the irrep-
projected spin tensor, ¥ for a particular operator choice k
of the d; row of irrep A. For each of the d, rows of the irrep,
we will find K unique operator copies. Table XI tabulates
the dimensions, d, of each of the irreps, A. One can check
these against the subduction table, Table I, to confirm that
the dimensions match, i.e. 2J+1=>d », for each of the
irreps A; in the subduction of the continuum irrep J.

By the definition of being irreps, each of the K sets of d
operators is a closed subspace under application of all
elements of the group of rotations.

To compute the irrep-projected spin tensor y*f for
lattice irrep A, row 4, and set k, we must determine the

TABLE XI. Dimensions, d, of each of the irreps, A, corre-
sponding to integer continuum spin (top) and half-integer
continuum spin (bottom).

A dy
A 1
E 2
T, 3
A dy
G, 2
G, 2
H 4
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projection matrix, P, and use

()(;\J)aﬁms = ZPQ‘J &j)a/)’o’ﬁ’

J

(A1)

where y; on the right-hand side is some convenient basis of
spin tensors, which are most likely not irreps. In general,
PM* has K linearly independent rows, so the projection
produces K linearly independent spin tensors for irrep A
and row A That is, y"** is given by linearly independent
combinations of y* on the left hand side.

The matrix PM is computed using the formula [29]

d
P = S0 ST TNR)WRY (A2

n ReoP

where d is the dimension of the irrep, Jop is the number of

elements in the double point group, OP, and sum is taken
over all elements, R, of the group. The matrices I'*(R) are
the known set of d, x d, matrices which define the irrep.
The matrices W(R) are defined by how the spin tensor
basis, y; transforms under each element, R, of the group.
Thatis, y; = W(R),x;. The transformation rule is given by

R / 4 / /
<Zi)a/56§ - A%a “ Afﬂ A;’ ’ Agﬁ ( i)a’ﬂ’a’&’v (A3)

where A, = A%(R) is the usual Lorentz transformation for

spinors under a rotation R. For example, the spin trans-
formation for the octahedral group element corresponding
to rotation of z/2 about the z-axis, the element called C,_,

is given by Ai(Cy,) = \/%(1 +1271)-

The convenient basis of spin tensors, y;, depends on the
flavor wavefunction. For example, in the positive-parity
irrep E,, which corresponds to spin-2, we consider the
totally symmetric flavor wavefunction uuuu. Using the
notation from Eq. (1), the flavor tensor ¢ =1 for
f1f2f3f4 = (uuuu) and zero elsewhere. An SU(4) baryon
operator with this flavor wavefunction and arbitrary spin is
given by

0= Z Zl//auaWbuﬁWctthduéeade¢uuuu)(aﬁmi' (A4)

a,b.c.d afjcd

In this case, y must be totally symmetric, so there are only
N = 35 linearly independent choices for the spin indices.
One choice of basis for the spin tensors is the 35 tensors
having a < f <06 <6.
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