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ABSTRACT
A bidisperse porous medium is one with two porosity scales. There are the usual pores known as macropores but also cracks
or fissures in the skeleton which give rise to micropores. In this article, we develop and analyze a model for thermal convection
where a layer of viscous incompressible fluid overlies a layer of bidisperse porousmedium. Care has to be taken with the boundary
conditions at the interface of the fluid and the porous material, and this aspect is investigated. We propose two Beavers–Joseph
conditions at the interface and we argue that the parameters in these relations should be different since they depend on the macro
or micro permeability, and these parameters are estimated from the original experiments of Beavers and Joseph. The situation
is one in a layer which is heated from below and under appropriate conditions bimodal neutral curves are found. These can
depend on the relative permeability between the macro and micropores, the Beavers–Joseph conditions appropriate to the macro
or micropores, the ratio 𝑑 of the depth 𝑑 of the fluid layer to the depth 𝑑𝑚 of the porous layer, or generally the nature of the
bidisperse medium.

1 Introduction

The problem of flow of a fluid overlying a porous medium satu-
rated by the same fluid is one which has attracted the attention
of many prominent scientists. A fundamental interface condition
between the fluid and the porous medium was proposed by
Beavers and Joseph [4]. The first analysis of thermal convection in
the situation where a fluid overlies a saturated porous medium is
due to Nield [44] who successfully employed the Beavers–Joseph
boundary condition to derive a satisfactory model. A surprising
result for the same thermal convection problem was discovered
by Chen and Chen [16] who showed that the ratio of fluid depth,
𝑑, to porous layer depth, 𝑑𝑚, defined by 𝑑 = 𝑑∕𝑑𝑚, is critical to
determining the process for the onset of thermal convection in
the two-layer system. If 𝑑 is below a critical value then convection

commences in the porous layer whereas when 𝑑 is above the
critical value then convection commences in the fluid. This class
of problem was further investigated both experimentally and
theoretically by Chen and Chen [17, 18], Chen [15], McKay and
Straughan [41], where the last mentioned article applies the
theory to the problem of stone formation into regular patterns at
the bottom of a shallow lake.

The subject of thermal convection or generally flow in a two-layer
system has been studied in much detail with a review of the early
work and applications to various areas in industry or geophysics
given in chapter 6 of Straughan [58]. The intense interest in this
class of problem has been driven by the many applications to
diverse areas such as heat pipe technology, renewable energy,
and desalination (see, e.g., Kumaravel, Nagaraj, and Barmavatu
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[35], Straughan [58]), contaminant dispersal in water ways (Hibi
and Tomigashi [28], Hibi [27]), or even blood flow in arteries
and veins in the human body (see, e.g., Sharma and Yadav [55],
Tiwari, Shah, and Chauhan [63], Ponalagusamy andManchi [48],
Wajihah and Sankar [65]). Indeed, the last mentioned article
involves five-layer flow comprising Darcy media, Brinkman
media, plasma, core flow, and plug flow.

There are many recent stability analyses of fluid flow in the two-
layer fluid–porous configuration (see, e.g., Anjali, Khan, and Bera
[1], Barman,Aleria, andBera [3], Carr and Straughan [10], Chang,
Chen, and Straughan [13], Hill and Straughan [29, 31], Hooshyar,
Yoshikawa, andMirbod [33],Mirbod et al. [42], Chang, Chen, and
Chang [14], Samanta [51–53], Wu and Mirbod [68], Yin, Wang,
andWang [69], and Tsiberkin [64]). Particular analyses involving
the nonlinear theory and bifurcations are given by Han, Wang,
and Wang [26], McCurdy, Moore, and Wang [40], Lyu and Wang
[39], and Hill and Straughan [30]. In addition, mathematical
analysis of the structural stability of the two-layer system has
been thoroughly investigated (see, e.g., Li, Xiao, and Lin [36],
Li, Zhang, and Zin [38], Li, Chen, and Shi [37], and Payne and
Straughan [47].

In a separate development, there has been immense interest in
thermal convection in a single layer of saturated porous material
butwhen the porous skeleton is of double porosity type. By double
porosity, we mean that the solid skeleton contains pores of a
visible size known as macropores, but the skeleton itself contains
cracks or fissures which give rise to much smaller micropores.
Flow in such materials is additionally called bidisperse or bidis-
persive. The thermal convection problem in a bidisperse porous
material was first developed by Nield and Kuznetsov [46] who
allowed for different velocities, pressures, and temperature fields
in the macro and microphases and a critical review of the topic
is given by Gentile and Straughan [25]. There are many recent
contributions driven by the need to understand bidispersive
convection in real-life applications (cf. Gentile and Straughan
[25], Straughan [59, chapter 13]). Analyses of bidispersive thermal
convection in isotropic, anisotropic, vertical layer, inclined layer,
and with rotation effects are given by Badday and Harfash [2],
Capone, De Luca, and Gentile [7, 8], Capone and De Luca [5],
Capone andMassa [6], Capone, De Luca, andMassa [9], Chaloob,
Harfash, and Harfash [11], Falsaperla, Mulone, and Straughan
[21], Gentile and Straughan [23, 24], Saravanan and Vignesh-
waran [54], Straughan [60–62], and the structural stability aspect
of the system of equations is considered by Franchi, Nibbi, and
Straughan [22].

The object of the current work is to present a model for thermal
convection in an incompressible viscous fluid when that fluid
overlies a bidispersive porous medium saturated with the same
fluid. We analyze the instability of thermal convection in this
system and show that while there are definite relations between
the onset of convective motion and the respective depths of the
fluid and porous layers, the properties of the bidisperse porous
medium strongly affect when convection will arise and whether
it initiates in the porous or fluid layer. The relative permeability
of the macro to the micropores plays a key role in the convection
process.We also propose twoBeavers–Joseph interface conditions
and the parameters in these relations play amajor role. This is the
first analysis we have seen of this problem, and we believe it has

much future application in diverse areas such as blood flow, heat
transfer, and renewable energy.

2 Basic Equations

We suppose a linearly viscous incompressible fluid is contained in
the infinite layer ℝ2 × {0 < 𝑧 < 𝑑} and below this is a bidisperse
porous medium saturated with the same fluid and this occupies
the infinite layer ℝ2 × {−𝑑𝑚 < 𝑧 < 0}, with gravity acting in the
negative 𝑧-direction.

The equations for the fluid in the layer ℝ2 × {0 < 𝑧 < 𝑑} are then
(cf. Chandrasekhar [12]),

𝑉𝑖,𝑡 + 𝑉𝑗𝑉𝑖,𝑗 = − 1

𝜌0
𝑝,𝑖 + 𝜈Δ𝑉𝑖 + 𝛾𝑔𝑘𝑖𝑇,

𝑉𝑖,𝑖 = 0,

𝑇,𝑡 + 𝑉𝑖𝑇,𝑖 =
𝑘𝑓

(𝜌0𝑐𝑝)𝑓
Δ𝑇,

(1)

where𝑉𝑖(𝐱, 𝑡) is the velocity field, 𝑇(𝐱, 𝑡) is the temperature field,
𝑝(𝐱, 𝑡) is the pressure field, 𝐱 is the spatial point in the layer, and 𝑡
is time. We use indicial notation throughout in conjunction with
the Einstein summation convention, so that, for example,

𝑉𝑖𝑇,𝑖 ≡

3∑
𝑖=1

𝑉𝑖𝑇,𝑖 ≡ 𝑉1

𝜕𝑇

𝜕𝑥1
+ 𝑉2

𝜕𝑇

𝜕𝑥2
+ 𝑉3

𝜕𝑇

𝜕𝑥3

≡ 𝑈
𝜕𝑇

𝜕𝑥
+ 𝑉

𝜕𝑇

𝜕𝑦
+𝑊

𝜕𝑇

𝜕𝑧
,

where 𝐕 = (𝑉1, 𝑉2, 𝑉3) ≡ (𝑈, 𝑉,𝑊). In Equations (1),
𝛾, 𝑔, 𝜌0, 𝑘𝑓, 𝜈, and 𝑐𝑝 are the thermal expansion coefficient
of the fluid, gravity, reference density, thermal conductivity of
the fluid, kinematic viscosity of the fluid, and specific heat at
constant pressure of the fluid. The vector 𝐤 = (0, 0, 1) and Δ is
the Laplacian

Δ = 𝜕2

𝜕𝑥2
+ 𝜕2

𝜕𝑦2
+ 𝜕2

𝜕𝑧2
.

For an isotropic bidisperse porous material, we suppose the
macroporosity is 𝜙, the microporosity is 𝜖. If we denote (𝑈𝑓

𝑖 , 𝑝
𝑓)

to be the pore averaged velocity and pressure in the macropores
and (𝑈

𝑝

𝑖 , 𝑝
𝑝) to be the pore averaged velocity and pressure

in the micropores, then the governing equations of flow in
the bidisperse porous medium may be written (cf. Gentile and
Straughan [23], Straughan [60])

−
𝜇

𝐾𝑓

𝑈
𝑓

𝑖 − 𝜁
(
𝑈

𝑓

𝑖 −𝑈
𝑝

𝑖

)
− 𝑝

𝑓

,𝑖 + 𝜌0𝛾𝑘𝑖𝑔𝑇
𝑚 = 0,

𝑈
𝑓

𝑖,𝑖 = 0,

−
𝜇

𝐾𝑝

𝑈
𝑝

𝑖 − 𝜁
(
𝑈

𝑝

𝑖 −𝑈
𝑓

𝑖

)
− 𝑝

𝑝

,𝑖 + 𝜌0𝛾𝑘𝑖𝑔𝑇
𝑚 = 0,

𝑈
𝑝

𝑖,𝑖 = 0,

(𝜌0𝑐)𝑚𝑇
𝑚
,𝑡 + (𝜌0𝑐)𝑓

(
𝑈

𝑓

𝑖 +𝑈
𝑝

𝑖

)
𝑇𝑚
,𝑖 = 𝑘𝑚Δ𝑇

𝑚,

(2)
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where 𝑇𝑚(𝐱, 𝑡) is the temperature field of the fluid in the
bidisperse porous medium.

Equations (1) hold on the domain {(𝑥, 𝑦) ∈ ℝ2} × {𝑧 ∈ (0, 𝑑)} ×
{𝑡 > 0} while (2) hold on the domain {(𝑥, 𝑦) ∈ ℝ2} × {𝑧 ∈

(−𝑑𝑚, 0)} × {𝑡 > 0}. Equations (2) assume Darcy’s law holds and
a Boussinesq approximation is employed. The variable 𝜇 is the
dynamic viscosity of the fluid,𝐾𝑓 and𝐾𝑝 are themacro andmicro
permeabilities, 𝜁 is an interaction coefficientwhich represents the
momentum transfer between the macro and microphases, and
(𝜌0𝑐)𝑚, 𝑘𝑚 are given by

(𝜌0𝑐)𝑚 = (1 − 𝜙)(1 − 𝜖)(𝜌0𝑐)𝑠 + 𝜙(𝜌0𝑐)𝑓 + 𝜖(1 − 𝜙)(𝜌0𝑐)𝑝 ,

and

𝑘𝑚 = (1 − 𝜙)(1 − 𝜖)𝑘𝑠 + 𝜙𝑘𝑓 + 𝜖(1 − 𝜙)𝑘𝑝 ,

where 𝑠, 𝑓, and 𝑝 denote values in the solid skeleton, the fluid in
the macropores, and the fluid in the micropores.

The boundary conditions at the top and bottom of the layer, 𝑧 = 𝑑

and 𝑧 = −𝑑𝑚 are specified as follows:

𝑉𝑖 = 0, 𝑇 = 𝑇𝑈, on 𝑧 = 𝑑,

𝑈
𝑓

3 = 0, 𝑈
𝑝

3 = 0, 𝑇𝑚 = 𝑇𝐿, on 𝑧 = −𝑑𝑚 ,
(3)

where 𝑇𝑈, 𝑇𝐿 are constants with 𝑇𝐿 > 𝑇𝑈 > 0. Under these
conditions, (1) and (2) admit a steady conduction solution of form

𝑈̄
𝑓

𝑖 = 0, 𝑈̄
𝑝

𝑖 = 0, 𝑉̄𝑖 = 0,

𝑇̄ = 𝑇0 − (𝑇0 − 𝑇𝑈)
𝑧

𝑑
, 0 ≤ 𝑧 ≤ 𝑑,

𝑇̄𝑚 = 𝑇0 − (𝑇𝐿 − 𝑇0)
𝑧

𝑑𝑚
, −𝑑𝑚 ≤ 𝑧 ≤ 0,

(4)

where we have employed the fact that the temperature is contin-
uous across the interface 𝑧 = 0. To determine the constant 𝑇0, we
require the heat flux to be continuous across the interface 𝑧 = 0

and then

𝑘𝑚
𝑑𝑇̄𝑚

𝑑𝑧
= 𝑘𝑓

𝑑𝑇̄

𝑑𝑧
, at 𝑧 = 0.

This yields 𝑇0 as

𝑇0 =
𝑘𝑓𝑇𝑈𝑑𝑚 + 𝑘𝑚𝑇𝐿𝑑

𝑑𝑘𝑚 + 𝑑𝑚𝑘𝑓
. (5)

The initial conditions required for the evolution problem are the
prescription of the initial values of 𝑉𝑖, 𝑇, 𝑇

𝑚, that is, prescription
of 𝑉𝑖(𝐱, 0), 𝑇(𝐱, 0), and 𝑇𝑚(𝐱, 0).

3 Perturbation Equations

As our goal is to study instability of the base solution (4), we now
introduce perturbations to the variables𝑉𝑖, 𝑇, 𝑝

𝑓,𝑈
𝑓

𝑖 , 𝑈
𝑝

𝑖 , 𝑇
𝑚, and

𝑝𝑝 as 𝑢𝑖, 𝜃, 𝜋𝑓, 𝑢
𝑓

𝑖 , 𝑢
𝑝

𝑖 , 𝜃
𝑚, and 𝜋𝑝. We derive the perturbation

equations for these variables fromEquations (1) and (2). However,

it is convenient to present these in nondimensional form with
length scales 𝑑, 𝑑𝑚 in the fluid and bidisperse porous layers, and
with corresponding velocity scales 𝑈 and 𝑈𝑚, although we here
select 𝑈 = 𝑈𝑚. The time scales are  and  𝑚 where  = 𝑑2∕𝜈,
with 𝜈 = 𝜇∕𝜌0 and we pick  =  𝑚. The pressure scale is 𝑃 =
𝜇𝑈∕𝑑. The temperature scales are

𝑇♯ =
𝑈(𝑇0 − 𝑇𝑈)𝑑(𝜌0𝑐𝑝)𝑓

𝑘𝑓

and

𝑇
♯
𝑚 = 𝑈𝑚(𝑇𝑙 − 𝑇0)

𝑑𝑚(𝜌0𝑐𝑝)𝑓

𝑘𝑚

and thus one finds

𝑇♯

𝑇
♯
𝑚

=
(𝑘𝑚
𝑘𝑓

)2
𝑑2 ,

𝑇0 − 𝑇𝑈
𝑇𝐿 − 𝑇0

=
𝑘𝑚
𝑘𝑓

𝑑,

where 𝑑 = 𝑑∕𝑑𝑚. It is convenient to introduce the notation

𝑘̂ =
𝑘𝑓

𝑘𝑚
, 𝜅̂ =

(𝜌0𝑐)𝑚
(𝜌0𝑐)𝑓

𝑘̂ ,

and to define the Prandtl number, 𝑃𝑟, and the porous Prandtl
number, 𝑃𝑟𝑚, by

𝑃𝑟 = 𝜈

𝜅
=

𝜇

𝜌0

(𝜌0𝑐𝑝)𝑓

𝑘𝑓
, 𝑃𝑟𝑚 =

𝜇

𝜌0

(𝜌0𝑐)𝑚
𝑘𝑚

from which one may show 𝑃𝑟𝑚 = 𝜅̂𝑃𝑟.

The fluid and porous Rayleigh numbers 𝑅𝑎 and 𝑅𝑎𝑚 are defined
by

𝑅𝑎 =
𝛾𝑔𝑑4

𝜅𝑓𝜈

(𝑇0 − 𝑇𝑈)

𝑑
, (6)

where 𝜅𝑓 = 𝑘𝑓∕(𝜌0𝑐𝑝)𝑓 , and

𝑅𝑎𝑚 = 𝛾𝑔𝐾𝑓
(𝑇𝐿 − 𝑇0)

𝑑𝑚

𝑑2𝑚
[𝑘𝑚∕(𝜌0𝑐)𝑓]𝜈

, (7)

from which one shows

𝑅𝑎 =
(𝑑
𝑘̂

)2 𝑅𝑎𝑚
𝐷𝑎

,

where 𝐷𝑎 is the Darcy number defined here as

𝐷𝑎 =
𝐾𝑓

𝑑2
.

The relative permeability 𝐾𝑟 is defined by 𝐾𝑟 = 𝐾𝑓∕𝐾𝑝, and
another useful nondimensional variable is 𝛿 =

√
𝐾𝑝∕𝑑𝑚, from

which we may see that 𝐷𝑎 = 𝐾𝑟𝛿
2∕𝑑2.
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With the above nondimensionalization one may show that the
linearized fluid perturbation equations have form

𝑢𝑖,𝑡 = −𝜋,𝑖 + Δ𝑢𝑖 + 𝑅𝑎𝑘𝑖𝜃,

𝑢𝑖,𝑖 = 0,

𝑃𝑟𝜃,𝑡 = 𝑤 + Δ𝜃,

(8)

where𝑤 = 𝑢3 and these equations hold onℝ2 × {𝑧 ∈ (0, 1)} × {𝑡 >

0} while the linearized bidispersive porous media equations have
form

− 𝑢
𝑓

𝑖 − 𝜉(𝑢
𝑓

𝑖 − 𝑢
𝑝

𝑖 ) − 𝜋
𝑓

,𝑖 + 𝑅𝑎𝑚𝑘𝑖𝜃
𝑚 = 0,

𝑢
𝑓

𝑖,𝑖 = 0,

− 𝐾𝑟𝑢
𝑝

𝑖 − 𝜉(𝑢
𝑝

𝑖 − 𝑢
𝑓

𝑖 ) − 𝜋
𝑝

,𝑖 + 𝑅𝑎𝑚𝑘𝑖𝜃
𝑚 = 0,

𝑢
𝑝

𝑖,𝑖 = 0,

𝑃𝑟𝑚

𝑑2
𝜃𝑚,𝑡 = 𝑤𝑓 + 𝑤𝑝 + Δ𝜃𝑚,

(9)

where 𝑤𝑓 = 𝑢
𝑓

3 , 𝑤
𝑝 = 𝑢

𝑝

3 and Equations (9) hold on 2 × {𝑧𝑚 ∈

(−1, 0)} × {𝑡 > 0}. The nondimensionalmomentum transfer inter-
action coefficient 𝜉 is defined by 𝜉 = 𝜁𝐾𝑓∕𝜇.

Equations (8) and (9) when reduced to the thermal convection
instability problem essentially represent a 12th-order system of
equations. We thus require 12 boundary conditions. In this work,
we employ a normal-mode instability analysis and it is sufficient
to require the following conditions:

𝑤 = 𝑤′ = 𝜃 = 0, on 𝑧 = 1,

where 𝑤′ = 𝜕𝑤∕𝜕𝑧. This corresponds to a fixed upper surface.
Also,

𝑤𝑓 = 𝑤𝑝 = 𝜃𝑚 = 0, on 𝑧 = −1.

The remaining six boundary conditions come from considera-
tions on the interface 𝑧 = 0. To retain conservation of mass flow
across the interface, we require

𝑤 = 𝑤𝑚 ,

where 𝑤𝑚 = 𝑤𝑓 + 𝑤𝑝. Likewise, the dimensional temperatures
are continuous so

𝜃 = 𝜃𝑚, at 𝑧 = 0.

In addition, the normal component of heat flux 𝐪 ⋅ 𝐧 is continu-
ous across 𝑧 = 0. Three further conditions are needed and these
arise by requiring continuity of normal stress, and by appealing to
a combination of appropriate forms of the experimentally verified
Beavers and Joseph [4] condition. Details of these boundary
conditions are amplified below.

4 Instability Analysis

The next step is to remove the pressure terms 𝜋, 𝜋𝑓 , and 𝜋𝑝

from (8) and (9), and this we do by taking curl of Equations (8)1
and (9)1,3 and retaining the third component. This results in the
system of equations

𝜎Δ𝑤 = Δ2𝑤 + 𝑅𝑎Δ∗𝜃,

𝜎𝑃𝑟𝜃 = 𝑤 + Δ𝜃,
(10)

and

(1 + 𝜉)Δ𝑤𝑓 − 𝜉Δ𝑤𝑝 − 𝑅𝑎𝑚Δ∗𝜃𝑚 = 0,

(𝐾𝑟 + 𝜉)Δ𝑤𝑝 − 𝜉Δ𝑤𝑓 − 𝑅𝑎𝑚Δ∗𝜃𝑚 = 0,

𝜎𝑚𝑃𝑟𝑚

𝑑2
𝜃𝑚 = 𝑤𝑓 + 𝑤𝑝 + Δ𝜃𝑚,

(11)

where we have represented time by 𝑒𝜎𝑡 in the fluid equations and
by exp(𝜎𝑚𝑡) in the bidispersive porous equations. The symbol Δ∗

is the horizontal Laplacian. Equations (10) hold on ℝ2 × (0, 1)

while (11) hold on ℝ2 × (−1, 0).

We next solve (11)1,2 in terms ofΔ𝑤𝑓 andΔ𝑤𝑝.We represent𝑤 and
𝜃 as𝑤 = 𝑊(𝑧)ℎ(𝑥, 𝑦), 𝜃 = Θ(𝑧)ℎ(𝑥, 𝑦), and𝑤𝑓 = 𝑊𝑓(𝑧)ℎ𝑚(𝑥, 𝑦),
𝑤𝑝 = 𝑊𝑝(𝑧)ℎ𝑚(𝑥, 𝑦), 𝜃𝑚 = Θ𝑚(𝑧)ℎ

𝑚(𝑥, 𝑦), where ℎ and ℎ𝑚 are
plan forms which tile the plane (cf. Chandrasekhar [12], pp. 43–
52), and are typical of the hexagonal convection cell forms found
in real life. The functions ℎ and ℎ𝑚 satisfy the relations Δ∗ℎ =
−𝑎2ℎ andΔ∗ℎ𝑚 = −𝑎2𝑚ℎ𝑚, for wavenumbers 𝑎 and 𝑎𝑚. We reduce
(10)1 to two second-order equations by setting Δ𝑤 = 𝜒, and then
we arrive at the following coupled system of equations to solve for
the growth rate (eigenvalues) 𝜎, 𝜎𝑚:

(𝐷2 − 𝑎2)𝑊 − 𝜒 = 0,

(𝐷2 − 𝑎2)𝜒 − 𝑅𝑎 𝑎2Θ = 𝜎𝜒,

(𝐷2 − 𝑎2)Θ +𝑊 = 𝑃𝑟 𝜎 Θ

(12)

on 𝑧 ∈ (0, 1), where 𝐷 = 𝑑∕𝑑𝑧, and

(𝐷2 − 𝑎2𝑚)𝑊
𝑓 + 𝑅𝑎𝑚 𝑎

2
𝑚

(𝐾𝑟 + 2𝜉)

(𝐾𝑟 + 𝜉 + 𝜉𝐾𝑟)
Θ𝑚 = 0,

(𝐷2 − 𝑎2𝑚)𝑊
𝑝 + 𝑅𝑎𝑚 𝑎

2
𝑚

(1 + 2𝜉)

(𝐾𝑟 + 𝜉 + 𝜉𝐾𝑟)
Θ𝑚 = 0,

(𝐷2 − 𝑎2𝑚)Θ𝑚 +𝑊𝑓 +𝑊𝑝 =
𝑃𝑟𝑚

𝑑2
𝜎𝑚 Θ𝑚

(13)

on 𝑧𝑚 ∈ (−1, 0).

The nondimensional boundary conditions are

𝑊 = 𝑊′ = Θ = 0, 𝑧 = 1,

𝑊𝑓 = 𝑊𝑝 = Θ𝑚 = 0, 𝑧 = −1,
(14)

4 of 14 Studies in Applied Mathematics, 2025
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together with the nondimensional interface conditions

𝑊 = 𝑊𝑝 +𝑊𝑓 ≡ 𝑊𝑚 , 𝑧 = 0,

𝜃𝑚 = 𝜃
(𝑘𝑚
𝑘𝑓

)2
𝑑2,

𝑑𝜃𝑚
𝑑𝑧𝑚

= 𝑑𝜃

𝑑𝑧
𝑑
𝑘𝑚
𝑘𝑓

, 𝑧 = 0,
(15)

where the latter two arise due to continuity of temperature, and
continuity of heat flux.

Equations (12) and (13) represent a 12th-order eigenvalue prob-
lem. We thus require three more conditions on the interface.
Many approaches to interface conditions have been suggested in
the one-porosity case (see Ehrhardt [20]). In this work, we follow
the approach of Beavers and Joseph [4] which was proposed for
the one-porosity model and we adapt it to be applicable to the
bidisperse situation. Thus, for the remaining interface conditions
we argue as follows.

In terms of the fluid and pore averaged velocities at the micro-
scopic level, the Beavers and Joseph [4] condition may be
applied separately to the macro and microcomponents to yield in
dimensionless form

1

𝑑

𝜕𝑢𝛽

𝜕𝑧
=

𝛼𝑓√
𝐾𝑓

(
𝑢𝛽 − 𝑢

𝑓

𝛽

)
, 𝛽 = 1, 2, (16)

and

1

𝑑

𝜕𝑢𝛽

𝜕𝑧
=

𝛼𝑝√
𝐾𝑝

(
𝑢𝛽 − 𝑢

𝑝

𝛽

)
, 𝛽 = 1, 2, (17)

where 𝛼𝑓 and 𝛼𝑝 are experimentally determined constants. For
a single-porosity material, Beavers and Joseph [4] write that “𝛼
is a dimensionless quantity depending on the material parameters
which characterize the structure of permeable material within the
boundary region.” Beavers and Joseph [4] estimate the values of
𝛼 for a one-porosity material by performing an experiment with
demineralized water or a specific oil flowing over a foametal
block. The blocks were of five types of porous material which
they call Foametal A, Foametal B, Foametal C, and two types of
aloxite. The permeabilities are all different and vary from 10−6in2
to 12.7×10−5in2. The average pore sizes vary from 0.013 to 0.045
in. On the basis of their experimental results, they obtain values
of 𝛼in the one-porosity case of 𝛼 = 0.1 (twice), 0.78, 1.45, and 4.0.
If one graphs the Beavers and Joseph [4] values of 𝛼 against
the permeability 𝐾 then it appears there is a definite increase
of 𝛼 with 𝐾. With a bidispersive material, we have different
permeabilities 𝐾𝑓 and 𝐾𝑝 in the macro and micropores. Thus,
we believe using the results of Beavers and Joseph [4], we should
employ different values of 𝛼 in each of the two Beavers–Joseph
conditions. We denote these by 𝛼𝑓 and 𝛼𝑝. In this work, we keep
𝛼𝑝 fixed at value 𝛼𝑝 = 0.1 and then employ values of𝐾𝑟 estimated
by Gentile and Straughan [25] for real porous materials. Using
these values and that of 𝛼𝑝, we then know 𝐾𝑓 and so we may
estimate𝛼𝑓 fromagraphical representation of Beavers and Joseph
[4]. When 𝐾𝑟 = 10, we estimate 𝛼𝑓 to be in the range 0.3 ≤ 𝛼𝑓 ≤

0.65. When 𝐾𝑟 = 25, we estimate 𝛼𝑓 to be in the range 0.6 ≤ 𝛼𝑓 ≤

1.25. We also use 𝐾𝑟 = 151.7 and this is consistent with a value of
𝛼𝑓 = 4, although we also compute with 𝛼𝑓 = 2 in this case.

We differentiate (16) and (17) and employ the incompressibility
conditions to derive the interface conditions

𝑤𝑧𝑧 = 𝐴𝑓𝑤𝑧 − 𝐴𝑓𝑑𝑤
𝑓
𝑧𝑚

(18)

and

𝑤𝑧𝑧 = 𝐴𝑝𝑤𝑧 − 𝐴𝑝𝑑𝑤
𝑝
𝑧𝑚
, (19)

where the derivatives are with respect to 𝑧, 𝑧𝑚 nondimensional,
0 ≤ 𝑧 ≤ 1, −1 ≤ 𝑧𝑚 ≤ 0, and where

𝐴𝑓 =
𝛼𝑓𝑑

2
√
𝐾𝑓

, 𝐴𝑝 =
𝛼𝑝𝑑

2
√
𝐾𝑝

. (20)

For the final interface condition, we argue that continuity of
normal stress at the interface 𝑧 = 0 requires

𝜋𝑓 + 𝜋𝑝 = 𝜋 − 𝜇𝑤𝑧,

or in nondimensional form

𝜋𝑓 + 𝜋𝑝 = 𝜋 − 𝑤𝑧, on 𝑧 = 0. (21)

Equation (21) is differentiatedwith respect to 𝑥𝜂 , 𝜂 = 1, 2, and one
then employs the differential Equations (8)1,2 and (9)1−4 in the
forms

𝜋,𝜂 = Δ𝑢𝜂 − 𝜎𝑢𝜂 , 𝑢𝜂,𝜂 + 𝑤,𝑧 = 0,

𝜋
𝑓
,𝜂 = −𝑢𝑓𝜂 − 𝜉

(
𝑢
𝑓
𝜂 − 𝑢

𝑝
𝜂

)
, 𝑢

𝑓
𝜂,𝜂 + 𝑤

𝑓
,𝑧 = 0,

𝜋
𝑝
,𝜂 = −𝐾𝑟𝑢

𝑝
𝜂 − 𝜉

(
𝑢
𝑝
𝜂 − 𝑢

𝑓
𝜂

)
, 𝑢

𝑝
𝜂,𝜂 + 𝑤

𝑝
,𝑧 = 0

(22)

to eliminate the pressure terms. We differentiate (21) and employ
(22) to find

𝜎𝑤,𝑧 − Δ𝑤,𝑧 − Δ∗𝑤,𝑧 = 𝑤
𝑓
,𝑧 + 𝐾𝑟𝑤

𝑝
,𝑧 .

The differentiated form of (21) is rewritten using (22) as

−𝑢𝑓𝜂 − 𝐾𝑟𝑢
𝑝
𝜂 = Δ𝑢𝜂 − 𝜎𝑢𝜂 − 2𝜇𝑤,𝑧𝜂 , (23)

where 𝜂 = 1, 2. Note that in this case the 𝜉 terms disappear. Now
differentiate (23) for 𝜂 = 1 with respect to 𝑥 and for 𝜂 = 2 with
respect to 𝑦. This yields after summation to

−𝑢𝑓𝜂,𝜂 − 𝐾𝑟𝑢
𝑝
𝜂,𝜂 = Δ𝑢𝜂,𝜂 − 𝜎𝑢𝜂,𝜂 − 𝑤,𝑧𝜂𝜂 .

Then, use the incompressibility conditions to find

𝑤
𝑓
,𝑧 + 𝐾𝑟𝑤

𝑝
,𝑧 = −Δ𝑤,𝑧 + 𝜎𝑤,𝑧 − Δ∗𝑤,𝑧, (24)

where Δ∗ = 𝜕2∕𝜕𝑥2 + 𝜕2∕𝜕𝑦2. Equation (22)3 allows one to deter-
mine the following nondimensional interface condition

𝐷𝑚𝑤
𝑓 + 𝐾𝑟𝐷𝑚𝑤

𝑝 = 𝜎𝐷𝑤 − 𝐷Δ𝑤 − Δ∗𝐷𝑤, (25)

where 𝐷 = 𝑑∕𝑑𝑧, 𝑧 ∈ (0, 1), 𝐷𝑚 = 𝑑∕𝑑𝑧𝑚, 𝑧𝑚 ∈ (−1, 0).
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Thus, the complete set of boundary conditions are (14), (15),
together with (18), (19), and (25).

5 Numerical Method

We solve Equations (12) and (13) by a Chebyshev tau method
(cf. Dongarra, Straughan, and Walker [19]) coupled with the
𝑄𝑍 algorithm for a generalized matrix eigenvalue problem (cf.
Moler and Stewart [43]). Equations (12) are transformed into
the Chebyshev domain (−1, 1) and Equations (13) are likewise
transformed into the same domain with the interface now being
𝑧 = −1, with the transformations 𝑧𝑚 = −2𝑧̂𝑚 − 1, 𝑧 = 2𝑧̂ − 1. The
variables𝑊,𝜒,Θ,𝑊𝑓,𝑊𝑝, and Θ𝑚 are written as finite series of
Chebyshev polynomials, for example,

𝑊 =
𝑁∑
𝑖=0

𝑊𝑖𝑇𝑖(𝑧)

for Fourier coefficients𝑊𝑖 . This yields a blockmatrix generalized
eigenvalue problem of form𝐴𝐱 = 𝜎𝐵𝐱 for 6𝑁 × 6𝑁matrices𝐴, 𝐵
with 𝐵 singular, where

𝐱 = (𝑊̃, 𝜒̃, Θ̃, 𝑊̃𝑓, 𝑊̃𝑝, Θ̃𝑚),

𝑊̃, and so forth, being the truncated versions of𝑊, and so forth,
that is,

𝑊̃ = (𝑊0, … ,𝑊𝑁), … , Θ̃𝑚 = (Θ𝑚
0 , … ,Θ𝑚

𝑁).

The boundary conditions are likewise expanded in Chebyshev
polynomials and added as rows of the matrices 𝐴 and 𝐵 via a
similar procedure to that explained in Dongarra, Straughan, and
Walker [19].

The complete set of boundary conditions on 𝑧 = 1 or 𝑧 = −1 are
now

𝑊 = 0, 𝐷𝑊 = 0, Θ = 0, 𝑊𝑓 = 0, 𝑊𝑝 = 0, Θ𝑚 = 0, 𝑧 = 1,

𝑊 = 𝑊𝑓 +𝑊𝑝 ≡ 𝑊𝑚 , 𝑧 = −1,

Θ𝑚 = Θ
𝑑2

𝑘̂2
, 𝐷𝑚Θ𝑚 + 𝑑

𝑘̂
𝐷Θ = 0, 𝑧 = −1,

𝐷𝜒 − 𝑎2𝐷𝑊 − 𝐷𝑚𝑊
𝑓 − 𝐾𝑟𝐷𝑚𝑊

𝑝 = 0, 𝑧 = −1,

𝜒 + 𝑎2𝑊 − 𝛼𝑓

2
𝐷𝑊 − 𝛼𝑓

2
𝑑 𝐷𝑚𝑊

𝑓 = 0, 𝑧 = −1,

𝜒 + 𝑎2𝑊 − 𝛼𝑝

2
𝐷𝑊 − 𝛼𝑝

2
𝑑 𝐷𝑚𝑊

𝑝 = 0, 𝑧 = −1.
(26)

In our computations, we employed the value of 𝑁 = 30. We
varied 𝑁 and found that once this number is 30 convergence of
each variable is achieved. This is typical in convection problems,
although it is not the case in other areas such as shear flow.

6 Numerical Results

This section reports on numerical results for the critical Rayleigh
number and critical wavenumber for the equations for thermal

convection in a linearly viscous fluid overlying a bidisperse
porous material. We choose parameter values appropriate to
water being the working fluid and a bidisperse porous material
being based upon a glass bead skeleton.

As this is the first calculation for this problem, we base our
calculations for 𝛼𝑓 and 𝛼𝑝 on the results of the experimental
work of Beavers and Joseph [4], as explained in Section 4. For
numerical values of themany parameters, we refer to Gentile and
Straughan [25] who employed tabulated experimental values of
Hooman, Sauret, and Dahari [32], Imani and Hooman [34], Chen
[15], Rees [49, 50], and Nield [45]. In particular, two key articles
pertaining to the bidisperse porous medium theory of Nield and
Kuznetsov [46] were presented by Hooman, Sauret, and Dahari
[32] and by Imani andHooman [34]. Hooman, Sauret, andDahari
[32] analyze heat transfer in a plate-fin heat exchanger and they
perform the first calculation of values for themomentum transfer
coefficient for the flow between the macro and microphases.
Imani and Hooman [34] establish that for conditions analogous
to those investigated here the local thermal equilibrium theory is
valid for a bidisperse porous medium in that one may employ a
single temperature field. The results of these articles are invoked
here when we employ the numerical parameter values from
Gentile and Straughan [25].

Beavers and Joseph [4] reported values of 𝛼 for a single-porosity
material in the range 0.1–4. These values are for a granular
aloxite material and for man-made porous foams. The values
of bidisperse parameters reported in Gentile and Straughan [25]
suggest that we take relative permeabilities of

𝐾𝑟 = 25, 151.7, 263.16

and values for the nondimensional momentum transfer coeffi-
cient in the group

𝜉 = 1.515 × 10−2, 2.347 × 10−2, 2.987 × 10−2, 0.1316.

We here choose to investigate the behavior of the critical 𝑅𝑎𝑚 and
𝑎𝑚 values upon 𝐾𝑟, 𝛼

𝑓, 𝛼𝑝𝜉, and we allow 𝐾𝑟 = 10.

For core values using glass beads and water, the thermal conduc-
tivities, densities, and specific heats are taken from the Internet
version of Engineering Toolbox to yield 𝑘𝑚, 𝑘𝑓, (𝜌𝑐)𝑚, and (𝜌𝑐)𝑓 .
We also employ the parameter ranges in Gentile and Straughan
[25] to find values for 𝜉, 𝐾𝑟, and 𝛿. In this way, we obtain 𝑃𝑟 =
6, 𝑃𝑟𝑚 = 0.75828, 𝐷𝑎 = 0.161278 × 10−2, 𝛿 = 0.3279 × 10−2, 𝑘̂ =
0.16736, 𝜉 = 0.02987, and 𝜅̂ = 0.12638, although specific values
will be varied at appropriate points in our discussion. The nature
of the onset of convective motion in all cases depends on 𝑑, the
depth of fluid layer to depth of porous layer. There is a critical
value of 𝑑 such that when 𝑑 is below this value then convective
motion commences in the porous layer whereas such motion is
initiated in the fluid layer when 𝑑 is above the critical value. The
critical 𝑑 value depends very strongly on the other parameters
in the problem and this variation is examined in detail here.
This bimodal nature of convection is already known in the two-
layer system with a single-porosity medium (see, e.g., Chen and
Chen [16]). However, we here highlight differences which we
see only in the bidisperse case, especially involving the variation
of macro and micro permeability, via 𝐾𝑟, and the variation of
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TABLE 1 The minimum values of the porous Rayleigh number and
corresponding wavenumber for the first minimum, 𝑅𝑎𝑚, 𝑎𝑚 , and the
second minimum, 𝑅𝑎(2)𝑚 , 𝑎

(2)
𝑚 , indicating where instability switches from

initiation in the porous layer to the fluid layer. Here, 𝛿 = 0.003279, 𝑘̂ =
0.16736, 𝜉 = 0.02987, and 𝜅̂ = 0.12638.

𝑲𝒓 𝒅̂ 𝜶𝒑 𝜶𝒇 𝒂𝒎 𝑹𝒂𝒎 𝒂(𝟐)𝒎 𝑹𝒂(𝟐)𝒎

10 0.12 0.1 0.3285 2.11 9.83747 18.73 9.84198
10 0.12 0.1 0.3286 2.11 9.84649 18.73 9.84134
15.84 0.12 0.1 0.5 2.39 15.80169 18.37 15.79784
15.85 0.12 0.1 0.5 2.39 15.79928 18.37 15.80973
10 0.1514 0.1 0.3 1.43 3.74989 14.86 3.75241
10 0.1515 0.1 0.3 1.43 3.74305 14.85 3.74187
10 0.0971 0.1 0.65 2.57 21.39214 22.27 21.44558
10 0.0972 0.1 0.65 2.57 21.37669 22.25 21.35607
25 0.1210 0.1 1.25 2.55 21.93729 17.56 21.99490
25 0.1211 0.1 1.25 2.55 21.92427 17.55 21.92237
151.7 0.20 0.1 2 3.0 16.5495 10.0 17.3917
151.7 0.21 0.1 2 3.0 15.5249 10.0 14.3970
151.7 0.1907 0.1 4 2.54 19.44888 10.57 19.47030
151.7 0.1908 0.1 4 2.54 19.43946 10.56 19.43068

the Beavers–Joseph coefficients 𝛼𝑓 and 𝛼𝑝, via their ratio, 𝛼𝑟 =
𝛼𝑓∕𝛼𝑝.

Table 1 displays parameter values for the transition from con-
vection in the porous layer to convection in the fluid layer. The
lower of values 𝑅𝑎𝑚 and 𝑅𝑎(2)𝑚 demonstrates where convection
commences. When 𝑅𝑎𝑚 is lower, convection initiates in the

porous layer, when 𝑅𝑎(2)𝑚 is lower convection initiates in the fluid
layer. The first two sets of values in Table 1 show that if we keep
𝐾𝑟, 𝛼𝑝, 𝑑 fixed then changing 𝛼𝑓 can change whether convection
occurs in the porous layer or in the fluid layer. The second two sets
of values in Table 1 keep 𝑑, 𝛼𝑓, 𝛼𝑝 fixed and show that changing
𝐾𝑟 can change whether convection occurs in the porous layer or
in the fluid layer. The next five sets of parameter values in Table 1
show what values of 𝑑 the convection transition occurs at for a
variety of values of𝐾𝑟, 𝛼

𝑝, and 𝛼𝑓 . It should be noted from Table 1
that 𝑑 has a large variation from 0.0971 to 0.21 depending on what
values the other parameters have.

Figure 1 displays the neutral curves of 𝑅𝑎𝑚 against 𝑎𝑚. The
parameters 𝐾𝑟, 𝛼

𝑝, and 𝑑 are fixed and 𝛼𝑓 = 0.3 or 0.35. When
𝛼𝑓 = 0.3, convection occurs first in the porous layer, whereas
when 𝛼𝑓 = 0.35, convection occurs first in the fluid layer. It is
notable that the neutral curves cross, a fact not witnessed in
previous articles displaying the neutral curves when 𝑑 is changed.
Figure 2 displays the neutral curves of 𝑅𝑎𝑚 against 𝑎𝑚, when the
parameters 𝛼𝑝, 𝛼𝑓 , and 𝑑 are fixed and 𝐾𝑟 = 14 or 16. When 𝐾𝑟 =
14, convection initiates in the fluid layer, whereas when 𝐾𝑟 = 16,
convection initiates in the porous layer. Physically, this is to be
expected since when 𝐾𝑟 = 16, the relative permeability is higher,
and so convective motion in the saturated porous layer should
be easier. We concentrate on showing the novel effects with the
problem under study employing a bidisperse porous material. Of
course, keeping other parameters fixed and changing 𝑑will result
in a change from initiation in either the porous or the fluid layer.
However, this is known also in the single-porosity case. What
is new in the bidisperse case is that changing the ratio of the
Beavers–Joseph parameters or the relative permeability can also
lead to how convective motion will commence.

Velocity eigenfunctions close to the transition points for the
situation analogous to that pictured in Figures 1 and 2 are

FIGURE 1 Graph of 𝑅𝑎𝑚 versus 𝑎𝑚 . Here, 𝛿 = 0.003279, 𝑘̂ = 0.16736, 𝛼𝑝 = 0.1, 𝜉 = 0.02987, 𝜅̂ = 0.12638, 𝑑 = 0.12, and 𝐾𝑟 = 10. The minimum
values on the 𝛼𝑓 = 0.3 curve are at 𝑎𝑚 = 1.50, 𝑅𝑎𝑚 = 5.98525 and 𝑎𝑚 = 18.98, 𝑅𝑎𝑚 = 10.05117, on the 𝛼𝑓 = 0.35 curve they are 𝑎𝑚 = 2.29, 𝑅𝑎𝑚 =
11.43693 and 𝑎𝑚 = 18.60, 𝑅𝑎𝑚 = 9.71738. The instability when 𝛼𝑓 = 0.3 initiates in the porous medium, whereas when 𝛼𝑓 = 0.35, it initiates in the
fluid.
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FIGURE 2 Graph of 𝑅𝑎𝑚 versus 𝑎𝑚 . Here, 𝛿 = 0.003279, 𝑘̂ = 0.16736, 𝑑 = 0.12, 𝛼𝑝 = 0.1, 𝜉 = 0.02987, and 𝜅̂ = 0.12638. The minimum values on
the 𝐾𝑟 = 14 curve are at 𝑎𝑚 = 2.46, 𝑅𝑎𝑚 = 16.12391 and 𝑎𝑚 = 18.32, 𝑅𝑎𝑚 = 13.64971, on the 𝐾𝑟 = 16 curve they are 𝑎𝑚 = 2.39, 𝑅𝑎𝑚 = 13.76240 and
𝑎𝑚 = 18.38, 𝑅𝑎𝑚 = 15.98839. The instability when 𝐾𝑟 = 16 initiates in the porous medium, whereas when 𝐾𝑟 = 14, it initiates in the fluid.

FIGURE 3 Eigenfunctions for convection initiation in the fluid, 𝑊 representing the fluid layer with 𝑊𝑚 = 𝑊𝑓 +𝑊𝑝 representing the porous
layer. Here, 𝑎𝑚 = 18.37, 𝑅𝑎𝑚 = 15.79784, other parameters are 𝐾𝑟 = 15.84, 𝛿 = 0.003279, 𝑘̂ = 0.16736, 𝑑 = 0.12, 𝛼𝑝 = 0.1, 𝛼𝑓 = 0.5, 𝜉 = 0.02987, and
𝜅̂ = 0.12638.

displayed in Figures 3, 5, 7, and 9. Figures 4, 6, 8, and 10 show
the streamlines corresponding to Figures 3, 5, 7, and 9. The
streamlines are not drawn to scale. Since 𝑑 = 0.12 the depth of
the porous part of the convection cell is 8.33 times larger than
that in the fluid. The streamlines are shown only for half a cell
since the fluid rises in the center of the cell and descends at the
edges. Figure 4 shows that convection ismostly in the fluid region
with some movement in the upper part of the porous domain.
The half-cell width is 𝐿 = 𝜋∕𝑎𝑚 = 0.171018 and so in Figure 4 the

convection cells are relatively narrow and dominated by the fluid.
The relative permeability has value 15.84 in this case. However,
in Figure 6 the relative permeability is 15.85 and so the fluid can
movemore freely in themacropores and convection is dominated
by the porous layer. For Figure 6, we have 𝐿 = 𝜋∕𝑎𝑚 = 1.31447,
and so the half cell in this case is 7.686 timeswider than inFigure 4
where the fluid dominates. Even though convection is dominant
in the porous layer in Figure 6, the convectivemotion does extend
well into the fluid layer.

8 of 14 Studies in Applied Mathematics, 2025
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FIGURE 4 Streamlines for the situation of Figure 3. The inner streamline is for a stream function of value 0.9, then for 𝜓 = 0.7, 0.5, 0.5 until the
outer streamline has 𝜓 = 0.1.

FIGURE 5 Eigenfunctions for convection initiation in the porous layer, 𝑊 representing the fluid layer with 𝑊𝑚 = 𝑊𝑓 +𝑊𝑝 representing the
porous layer. Here, 𝑎𝑚 = 2.39, 𝑅𝑎𝑚 = 15.79928, other parameters are 𝐾𝑟 = 15.85, 𝛿 = 0.003279, 𝑘̂ = 0.16736, 𝑑 = 0.12, 𝛼𝑝 = 0.1, 𝛼𝑓 = 0.5, 𝜉 = 0.02987,
and 𝜅̂ = 0.12638.

FIGURE 6 Streamlines for the situation of Figure 5. The inner streamline is for a stream function of value 0.9, then for 𝜓 = 0.7, 0.5, 0.5 until the
outer streamline has 𝜓 = 0.1.

9 of 14
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FIGURE 7 Eigenfunctions for convection initiation in the porous layer, 𝑊 representing the fluid layer with 𝑊𝑚 = 𝑊𝑓 +𝑊𝑝 representing the
porous layer. Here, 𝑎𝑚 = 2.11, 𝑅𝑎𝑚 = 9.83747, other parameters are 𝐾𝑟 = 10, 𝛿 = 0.003279, 𝑘̂ = 0.16736, 𝑑 = 0.12, 𝛼𝑝 = 0.1, 𝛼𝑓 = 0.3285, 𝜉 = 0.02987,
and 𝜅̂ = 0.12638.

FIGURE 8 Streamlines for the situation of Figure 7. The inner streamline is for a stream function of value 0.9, then for 𝜓 = 0.7, 0.5, 0.5 until the
outer streamline has 𝜓 = 0.1.

Figures8 and 10 show analogous behavior when the Beavers–
Joseph coefficient for the macropores is varied. When 𝛼𝑓 =
0.3285, themotion in the porous part of the layer is dominant as in
Figure 8. However, in Figure 10, 𝛼𝑓 = 0.3286 and the increase in
the Beavers–Joseph coefficient is sufficient to ensure convection
is dominated by the fluid layer. The ratio of half-cell widths
between Figures 10 and 8 is approximately 8.877.

7 Conclusions

We have formulated equations for thermal convection in a fluid
layer which overlies a layer of bidisperse (or double porosity)

porous medium saturated by the same fluid. The macro and
micro permeabilities 𝐾𝑓 and 𝐾𝑝 are explicitly included and play
a major role in the model along with the depth of the fluid layer 𝑑
and the depth of the porous layer 𝑑𝑚. The interface conditions
between the fluid and porous medium are very important and
we have adopted an approach which assumes continuity of the
mass flow rate, but allows for separate Beavers–Joseph conditions
appropriate to the macro or micropores. This allows for two
Beavers–Joseph interface coefficients 𝛼𝑓 and 𝛼𝑝 corresponding
to the macro and microphases. The permeabilities associated
to the macro- and micropores are usually widely different for
real porous materials, Gentile and Straughan [25], and using
the fundamental results of Beavers and Joseph [4], we analyze

10 of 14 Studies in Applied Mathematics, 2025
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FIGURE 9 Eigenfunctions for convection initiation in the fluid, 𝑊 representing the fluid layer with 𝑊𝑚 = 𝑊𝑓 +𝑊𝑝 representing the porous
layer. Here, 𝑎𝑚 = 18.73, 𝑅𝑎𝑚 = 9.84134, other parameters are 𝐾𝑟 = 10, 𝛿 = 0.003279, 𝑘̂ = 0.16736, 𝑑 = 0.12, 𝛼𝑝 = 0.1, 𝛼𝑓 = 0.3286, 𝜉 = 0.02987, and
𝜅̂ = 0.12638.

FIGURE 10 Streamlines for the situation of Figure 9. The inner streamline is for a stream function of value 0.9, then for 𝜓 = 0.7, 0.5, 0.5 until the
outer streamline has 𝜓 = 0.1.

combinations of 𝐾𝑟, 𝛼
𝑓 , and 𝛼𝑝 which may be expected in real

life.

Our numerical results show that the bidisperse porous medium
is very different from the single porous medium case in that
the coefficients of the double porosity material must be taken
into account to fully describe thermal convection instability.
Since the two-layer convection problem with a fluid overlying
a bidisperse porous medium does have serious application to
renewable energy generation (see, e.g., Wang et al. [66], Wang,
Zhang, and Mei [67]), we believe the current work is very
useful. Of course, two-layer convection with a single-porosity
medium already has many parameters (see, e.g., Chen [15], Chen
and Chen [16–18], Straughan [56, 57]), while convection in a

single bidisperse layer likewise involves many parameters. The
combined problem is necessarily complicated and, therefore,
involves a lot of parameters. Future work will apply this theory
to specific renewable energy situations.

Nomenclature

𝑉𝑖 Fluid velocity

𝑈
𝑓
𝑖

Pore averaged velocity in the macropores

𝑈
𝑝
𝑖

Pore averaged velocity in the micropores

11 of 14
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𝑝 Pressure in the fluid

𝑝𝑓 Fluid pressure in the macropores

𝑝𝑝 Fluid pressure in the micropores

𝑇 Temperature of the fluid

𝑇𝑚 Temperature of the fluid in the porous medium

𝑇𝑈 Temperature of the upper boundary

𝑇𝐿 Temperature of the lower boundary

𝜙 Porosity associated with the macropores

𝜖 Porosity associated with the micropores

𝜈 Kinematic viscosity of the fluid

𝐾𝑓 Permeability associated with the macropores

𝐾𝑝 Permeability associated with the micropores

𝑘𝑓 Thermal conductivity of the fluid

(𝜌0𝑐𝑝)𝑓 Product of the density and specific heat at constant
pressure of the fluid

𝛾 Thermal expansion coefficient of the fluid

𝜁 Coefficient of momentum transfer between themacro and
microphases

𝑔 Gravity coefficient

(𝜌0𝑐)𝑚 Product of the density and specific heat at constant
pressure suitably averaged over the porous medium

𝑘𝑚 Thermal conductivity suitably averaged over the porous
medium

𝑘𝑠 Thermal conductivity of the solid skeleton

𝜇 Dynamic viscosity of the fluid

𝜉 Nondimensional version of the momentum transfer coef-
ficient

𝑅𝑎 Rayleigh number

𝑅𝑎𝑚 Porous Rayleigh number

𝑃𝑟 Prandtl number

𝑃𝑟𝑚 Porous Prandtl number

𝑘̂ Ratio of 𝑘𝑓 to 𝑘𝑚

𝜅̂ Product of 𝑘̂ and ratio of (𝜌0𝑐)𝑚 to (𝜌0𝑐)𝑓
𝑑 Depth of fluid layer

𝑑𝑚 Depth of the bidisperse porous layer

𝑑 Ratio of 𝑑 to 𝑑𝑚
𝛼𝑓 Beavers–Joseph interface coefficient for the macropores

𝛼𝑝 Beavers–Joseph interface coefficient for the micropores

𝐾𝑟 Ratio of 𝐾𝑓 to 𝐾𝑝

𝐷𝑎 Darcy number

𝑎 Fluid wavenumber

𝑎𝑚 Porous wavenumber
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