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Quantum computers can efficiently simulate highly entangled quantum systems, offering a solution to
challenges facing classical simulation of quantum field theories (QFTs). This paper presents an alternative to
traditional methods for simulating the real-time evolution in QFTs by leveraging Hamiltonian truncation
(HT). As a use case, we study the Schwinger model, systematically reducing the complexity of the
Hamiltonian via HTwhile preserving essential physical properties. For the observables studied in this paper,
the HTapproach converges quickly with the number of qubits, allowing for the interesting physics processes
to be captured without needing many qubits. Identifying the truncated free Hamiltonian’s eigenbasis with the
quantum device’s computational basis avoids the need for complicated and costly state preparation routines,
reducing the algorithm’s overall circuit depth and required coherence time. As a result, the HT approach to
simulating QFTs on a quantum device is well suited to noisy-intermediate scale quantum devices, which
have a limited number of qubits and short coherence times. We validate our approach by running simulations
on a noisy-intermediate scale quantum device, showcasing strong agreement with theoretical predictions.
We highlight the potential of HT for simulating QFTs on quantum hardware.
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I. INTRODUCTION

The simulation of quantum field theories (QFTs) is
crucial for understanding fundamental particles and their
interactions and forms the cornerstone of modern particle
theory. Despite their success, simulating QFTs on classical
computers is difficult, and contemporary approaches suffer
from challenges which severely limit the exploration of
QFTs, such as the so-called sign problem, which is a
fundamental difficulty in Monte Carlo importance sam-
pling algorithms [1–3]. These challenges are especially
pronounced in areas such as quantum chromodynamics
(QCD) at finite density and nonperturbative calculations of
the real-time dynamics of hadrons.
Quantum computers have the ability to simulate the real-

time dynamics of highly entangled systems, therefore
offering a solution to the sign problem and providing
a natural regime for simulating QFTs. As a result, there
has been great interest in designing algorithms for the

simulation of QFTs on quantum devices [4–10], with
most approaches choosing to adopt the Kogut-Susskind
Hamiltonian formulation for SUðNÞ lattice gauge the-
ory [11]. The lattice approach, whilst powerful, has its
own set of limitations. One of the most prominent
problems facing this approach is the initial-state prepara-
tion, achieved by preparing specific quantum states on the
device using state-preparation routines. These routines are
known to be extremely costly, and the resources required to
implement the state-preparation for an arbitrary state can
scale exponentially [12–15].
This paper presents an alternative method that leverages

Hamiltonian truncation (HT) techniques to facilitate the
nonperturbative, real-time simulation of QFTs on a quan-
tum device. It will be shown that this approach allows for
the Hamiltonian to be constructed such that complicated
and costly state-preparation routines are not needed to
simulate the time evolution of a QFT. Furthermore, for the
observables studied in this paper, it will be shown that the
HT approach converges quickly as the truncation increases,
thus allowing for the system’s dynamics to be captured
reliably without needing many qubits. As a result, the HT
approach has a reduced circuit depth on fewer qubits,
making the method well suited for noisy-intermediate scale
quantum (NISQ) devices, which have limited numbers of
qubits and short coherence times.
Hamiltonian truncation is a nonperturbative numerical

method for approximating the spectrum and dynamics of
strongly coupled quantum systems. In this approach, the
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Hamiltonian is expressed on a truncated basis of states.
It is particularly useful when applied to QFTs because
selecting a finite number of basis states reduces the
infinite-dimensional Hamiltonian of a QFT to a finite-
dimensional one, making computational analysis possible.
Furthermore, HT can be applied directly to continuum
QFT Hamiltonians without discretizing them first on a
lattice, removing the need to control systematic uncertain-
ties arising from lattice artifacts. This formalism, which is
an alternative to the lattice, has enabled the study of a wide
variety of phenomena, including critical points in scalar
field theories [16–21], scattering processes [22–24], and
the decay of metastable vacua [25,26]. For a general
introduction and review of applications, see Refs. [27,28].
Truncation schemes have also been extensively devel-

oped within the context of lattice Hamiltonians. In these
schemes, there are local Hilbert spaces for the lattice sites
or links, and each local Hilbert space gets truncated
independently. Such schemes can also be applied to non-
Abelian gauge theories and to those in higher dimensions,
for example in [29–33]. Truncation schemes which act on
operators have been considered in [34]. See Refs. [35,36]
for an overview.
To explore and illustrate the efficacy of the HT approach

and its suitability to NISQ devices, we consider the massive
Schwinger model [37–39], which is analogous to quantum
electrodynamics in (1þ 1) dimensions. The model provides
a simple yet rich framework to test the quantum simulation
of QFTs via HT. The Schwinger model is exactly solvable in
its massless form and offers insights into phenomena such
as confinement and screening, which are crucial for under-
standing more complex theories like QCD.
In Sec. II, the HT procedure is outlined by first bosoniz-

ing the model, which reexpresses it as an interacting scalar
field theory and removes all the gauge redundant degrees of
freedom. This scalar field theory is constructed on the finite-
volume circle before applying HT, without introducing a
lattice. The process of truncating the Hilbert space reduces
the complexity of the Hamiltonian whilst ensuring that it
retains the essential features and interactions to simulate
real-time evolution accurately. Consequently, the truncated
Hamiltonian is more suited to implementation on NISQ
devices with limited qubits and coherence times.
In Sec. III, we demonstrate this suitability by considering

the dynamics of the model after a quench and evaluating
time-evolution using different truncation levels. We see that
the model gives a good description of the postquench
dynamics of the Schwinger model, even with a small
number of resources, ultimately allowing for the model
to be run on the ibm_brisbane quantum computer.
Utilizing the control and error suppression techniques
provided by Q-CTRL [40,41] to improve the fidelity of the
results, we obtain the first simulation of a QFTon a quantum
device through HT. The results show a remarkably accurate

simulation of the postquench dynamics of the Schwinger
model on a NISQ device.
This work highlights the potential of HT for simulating

QFTs on near-term quantum hardware, achieving accurate
and precise results with low resource costs. Furthermore, it
paves the way for future research in leveraging quantum
devices for nonperturbative field theory simulations.

II. HAMILTONIAN TRUNCATION

HT [27,28] involves approximating the full Hamiltonian
of a theory by restricting it to a finite subspace of the
Hilbert space. This technique is particularly useful when
perturbative methods fail, such as in strongly coupled
systems or when nonperturbative effects are significant.
In this approach, the first step is to decompose the

Hamiltonian of the quantum system of interest into a
solvable part H0, plus an interaction V so that

H ¼ H0 þ V: ð2:1Þ

The eigenstates and corresponding eigenvalues of the
solvable part can then be identified and labelled H0jii ¼
Eijii. Next, a truncation scheme is introduced. An energy
cutoff, denoted as Emax, is applied, and we retain only states
with H0 eigenvalues up to this cutoff Ei ≤ Emax in the
truncated Hilbert space. To the extent that low-energy states
in the full theory lie within this truncated Hilbert space, the
low energy physics of the full theory will be well approxi-
mated in HT.
The truncated Hamiltonian is then represented as a

matrix, which acts on states of a truncated basis. Numerical
diagonalization can then yield approximate eigenvalues
and eigenvectors for the system. The eigenvalues corre-
spond to the approximate energy levels, while the eigen-
vectors provide information about the corresponding
quantum states.
The results are then analyzed, checking the convergence

with respect to the cutoff Emax. This involves increasing
Emax and stabilizing physical observables such as energy
levels or correlation functions. The physical interpretation
of these results is then made in the original problem’s
context, often compared with known analytical results or
experimental data if available.
In the QFT context, truncation of the basis acts as a kind

of nonlocal UV regularization,1 so that in a QFT with UV
divergences, there will be observables that diverge as Emax
is increased. In this case, nonlocal counterterms must be
added to the Hamiltonian to renormalize the theory. A
systematic procedure for constructing the nonlocal terms is
outlined in Refs. [42,43]. Even in UV finite QFTs, many

1The regularization is nonlocal because the cutoff Emax acts on
the total energy of a state and does not take into account how
widely separated in space different particles or excitations in the
same state are.

JAMES INGOLDBY et al. PHYS. REV. D 110, 096016 (2024)

096016-2



observables converge in a power like fashion (i.e. as
O ∼O∞ þ c=Ep

max for a model-dependent positive power
p) as the cutoff is increased, and it can be beneficial to add
improvement terms to the Hamiltonian which improve the
rate of convergence [16–20,44–46]. These terms are con-
structed to account for states above the HT cutoff on low
energy dynamics, and are analogous to higher dimension
effective operators included in the action of a low-energy
effective field theory.
Hamiltonian truncation is a versatile technique adaptable

to various quantum systems and field theories. It has the
potential to bridge the gap between exact analytical
solutions and purely numerical approaches like lattice field
theory, offering a tool for studying complex quantum
phenomena.

A. Hamiltonian truncation applied
to the Schwinger model

The Schwinger model has become a benchmark scenario
for comparing nonperturbative methods in simulating field
theories, ranging from lattice gauge theories [47–51] over
Hamiltonian simulation with tensor networks [52–56] to its
simulation on quantum devices in various quantum com-
puting paradigms [57–64].
The Schwinger model has also been investigated using

truncated light cone Hamiltonians [65–67]. The light cone
Hamiltonian generates translations in the light cone coor-
dinate xþ ¼ ðtþ xÞ= ffiffiffi

2
p

. An overview of light cone quan-
tization is given in Ref. [68] and the application of quantum
computing to QFTs defined using the truncated light cone
Hamiltonian approach has been investigated in [69].
The massive Schwinger model is quantum electrody-

namics in (1þ 1) dimensions describing the dynamics of
fermions and photons. The Lagrangian takes the usual
form,

L ¼ −
1

4
FμνFμν þ ψ̄ði=∂ − g=A −mÞψ ; ð2:2Þ

where Fμν ≡ ∂μAν − ∂νAμ is the electromagnetic field
tensor, Aμ is a U(1) photon field, ψ is a two-component
fermion field, and g is the coupling strength with dimen-
sions of mass. In (1þ 1) dimensions, there are no direc-
tions transverse to the momenta of moving particles.
Therefore, there are no propagating photon degrees of
freedom.
To begin, we consider the massless case by settingm ¼ 0,

such that the massless Schwinger model Lagrangian takes
the form

L0 ¼ −
1

4
FμνFμν þ ψ̄ði=∂ − g=AÞψ : ð2:3Þ

In this limit, the model has an anomalous U(1) chiral
symmetry, and the θ term can be removed with a chiral

transformation. The massless Schwinger model was solved
exactly by Schwinger [37], who showed that the model’s
Green’s functions were those of a free massive scalar
field. Therefore, it is possible to reformulate the model
as a massive scalar field theory, with the Hamiltonian
density [70]

H0 ¼
1

2
∶Π2 þ ð∂xϕÞ2 þ

g2

π
ϕ2∶ ; ð2:4Þ

where ∶∶ denotes the normal ordering of the creation and
annihilation operators used to represent the scalar field,
changing the definitions of these operators, and therefore
the normal ordering convention only adds an extra constant
toH0. The mass can be read off asM2 ≡ g2=π, andΠ is the
canonical momentum of the scalar field ϕ. This reformu-
lation of the model is an example of bosonization [39,71].
Although the Schwinger model can be bosonized, this is
not the case for generic gauge theories. However, the HT
approach can still be applied in these cases by takingH0 to
be a solvable theory other than the free scalar field. See the
discussion in Ref. [28].
In this study, we are interested in simulating the real-time

evolution of interacting quantum field theories. Therefore,
we will consider the massive Schwinger model from
Eq. (2.2). The mass m breaks chiral symmetry, rendering
the θ term physical. The background electric field strength
is related to θ through EB ¼ gθ=2π [38].
Adding the fermion mass introduces a interaction term to

the bosonized Hamiltonian [70], such that

H ¼ H0 − 2cmM∶ cos ð
ffiffiffiffiffiffi
4π

p
ϕþ θÞ∶; ð2:5Þ

whereH0 is the free theory Hamiltonian from Eq. (2.4), and
c depends on the definition of the creation and annihilation
operators which are to be normal ordered [71].
We consider the massive Schwinger model placed on

a finite circle of length L (which ensures that the spectrum
is discrete). On the circle, gauge fields must satisfy peri-
odic boundary conditions, but fermion fields can satisfy
ψðt; xÞ ¼ eiδψðt; xþ LÞ. Since δ can be changed using a
type of gauge transformation [72], physical quantities
should not depend on this choice. After bosonization,
the scalar field then satisfies periodic boundary conditions.
To employ Hamiltonian truncation directly to the boson-

ized theory (without lattice discretization), we decompose
the Hamiltonian as in Eq. (2.1) and take as the solvable part
to be

H0 ¼
Z

L

0

dxH0 ¼
X∞
n¼−∞

En a
†
nan; ð2:6Þ

where we identify the momentum kn ¼ ð2πn=LÞ for n∈Z
and the energy En ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2n þM2

p
of the nth mode. The

commutation relations for the creation and annihilation
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operators take the usual form: ½an; am� ¼ ½a†n; a†m� ¼ 0

and ½an; a†m� ¼ δn;m.
The truncated basis we use is formed from the eigen-

states of Eq. (2.6), which are Fock states that take the form

jfrgi ¼
Yn¼∞

n¼−∞

1ffiffiffiffiffiffi
rn!

p ða†nÞrn j0i; ð2:7Þ

where j0i is the vacuum state satisfying anj0i ¼ 0 for all
modes n.
The interaction is the integral of the second term in

Eq. (2.5)

V ¼ −cmM
Z

L

0

dx∶ exp ½i
ffiffiffiffiffiffi
4π

p
ϕðxÞ þ iθ�∶þ H:c:; ð2:8Þ

where on the finite volume circle, the scalar field ϕ entering
Eq. (2.8) should be understood as the following sum over
modes

ϕðxÞ ¼
X∞
n¼−∞

1ffiffiffiffiffiffiffiffiffiffiffi
2LEn

p ðaneiknx þ a†ne−iknxÞ: ð2:9Þ

The sum runs over all integer mode numbers n, including
the zero modes n ¼ 0 (see [55] and references therein).
We use the dots ∶∶ in (2.8) to represent normal ordering

with respect to the bosonic creation and annihilation
operators of Eqs. (2.6) and (2.9). For simplicity, we take
the coefficient c to equal its infinite volume limiting value

c ¼ eγ

4π
; ð2:10Þ

where γ ≈ 0.57721 is the Euler-Mascheroni constant.
Using Eq. (2.9), the normal-ordered exponential

can be expanded in terms of the creation and annihilation
operators

∶ exp ½i
ffiffiffiffiffiffi
4π

p
ϕðxÞ�∶ ≔

Y∞
n¼−∞

exp

" ffiffiffiffiffiffiffiffiffi
2π

LEn

s
ie−iknxa†n

#
exp

" ffiffiffiffiffiffiffiffiffi
2π

LEn

s
ieiknxan

#
;

¼
Y∞

n¼−∞

X∞
jn;j0n¼0

1

j0n!jn!

 
i

ffiffiffiffiffiffiffiffiffi
2π

LEn

s !jnþj0n

eiknxðjn−j0nÞða†nÞj0nðanÞjn : ð2:11Þ

The matrix elements of the interaction V between basis states can then be calculated by combining Eqs. (2.7), (2.8),
and (2.11). The result is

hfr0gjVjfrgi ¼ −cmfMLeiθδr0
0
;r0

Y∞
n¼−∞

1ffiffiffiffiffiffiffiffiffiffiffiffi
r0n!rn!

p X
jn;j0n¼0

1

j0n!jn!

 
i

ffiffiffiffiffiffiffiffiffi
2π

LEn

s !jnþj0n

× h0jðanÞr0nða†nÞj0nðanÞjnða†nÞrn j0i þ H:c:; ð2:12Þ

where the product of the creation and annihilation operators is given by [73]

h0jðanÞr0nða†nÞj0nðanÞjnða†nÞrn j0i ¼
�
r0n
j0n

��
rn
jn

�
j0n!jn!ðrn − jnÞ!δr0n−j0n;rn−jnΘðrn − jnÞ: ð2:13Þ

The integral over space in Eq. (2.8) imposes momentum
conservation as an additional constraint. As a result, the
matrix element in Eq. (2.12) vanishes unless

X∞
n¼−∞

nðrn − r0nÞ ¼ 0; ð2:14Þ

where we have used the delta function in Eq. (2.13) to

eliminate the jð0Þn indices in favor of the occupation numbers

rð0Þn . In this paper, we will consider only states with
vanishing total momentum.

The final step is to build the Hamiltonian as an explicit
matrix in the basis of Fock states, defined in Eq. (2.7), with
eigenvalues of H0 less than, or equal to Emax. It has been
explicitly shown that, for QFTs defined as conformal field
theories deformed with relevant operators on a cylinder
space-time, the number of basis states grows exponentially
with the value of the energy cutoff, Emax [16,74]. Therefore,
the size of the Hamiltonian will grow exponentially with
the truncation, quickly rendering the real-time evolution of
a QFT intractable on a classical device. A qubit-based
quantum computer’s exponentially growing Hilbert space
allows for efficient information encoding. Therefore, if the
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size of the Hamiltonian grows exponentially with Emax,
then the scaling of the number of required qubits will grow
at most polynomially.
For the analysis presented in this paper, we will only take

θ ¼ 0, in which case the Schwinger model has two addi-
tional discrete symmetries: parity (P) and charge conjuga-
tion (C). In the bosonized theory, the action of C is to send
ϕðx; tÞ → −ϕðx; tÞ, and P sends ϕðx; tÞ → −ϕð−x; tÞ. We
therefore divide our truncated Hilbert space into four
subsectors of states which are even or odd under the
two symmetries, and construct separate smaller truncated
Hamiltonians in the relevant subsectors, thus simplifying
our analysis.
For quantum computing applications, it is convenient to

redefine the cutoff of the truncated Hilbert space using the
number of qubits, nq, required to represent time evolution
using the Hamiltonian (within a particular symmetry
subsector). To do this, we order the relevant states in
energy and take the first 2nq as our truncated basis, such that
the Hamiltonian has the size ð2nq × 2nqÞ.
To test our framework, we first consider the value of the

vector mass in the Schwinger model, at different fermion
mass values. This mass is simply the difference in energy
between the lowest energy states in the C even P even, and
the C odd P odd subsectors. Figure 1 shows a comparison
of the vector mass calculated using the HT approach
compared with calculations from second order perturbation
theory [75] and matrix product states [52]. To construct the
HT calculation we choose the volume ðgLÞ ¼ 8. Since
finite volume effects are exponentially suppressed for
MVL ≫ 1 [76], we expect finite volume effects to be small
with this choice.
In Fig. 1, we see that the HT method is well converged

even for small truncation values, agreeing well with both

perturbative and nonperturbative methods at small fermion
masses with a truncation of nq ¼ 5. The comparisons
between HT and the two infinite-volume methods also
confirm that finite volume effects are small for ðgLÞ ¼ 8.
We see exact agreement between all methods at a value of
ðm=gÞ ¼ 0.2, and this value will be used in Sec. III when
simulating the time evolution of the system on a quantum
device.
We note that while energy differences between states are

well converged, the ground state energy diverges as
∼m2 logEmax, just like the free massless fermion theory
when perturbed with a mass term in ð1þ 1ÞD. Divergences
that affect individual state energies but not energy
differences do not affect time evolution, or the determi-
nation of particle masses and can be renormalized away in
HT by introducing an effective Hamiltonian [42,43].

III. TRUNCATED SCHWINGER MODEL
ON A QUANTUM DEVICE

In the Hamiltonian framework, the real-time evolution of
the quantum system,

UðtÞ ¼ e−iHt; ð3:1Þ

can be naturally implemented on a quantum device by using
a product formula method based on the Trotter-Suzuki
decomposition [77–79]. Consider a Hamiltonian expressed
as a sum of noncommuting operators, H ¼Pi Hi. The
time-evolution operator, UðtÞ, can be approximated by

UðtÞ ¼
�Y

i

e−iHit=n

�
n
; ð3:2Þ

up to an error Oðt2=nÞ, where n is a positive integer. The
operator UðtÞ defines the Trotterized time evolution, which
divides the total evolution time, t, into n steps of time
δt ¼ t=n. The total time evolution is therefore achieved by
iteratively applying n so-called Trotter steps, such that the
Trotterized time evolution is exact in the limit n → ∞.
In this section, we demonstrate how the Trotterization

method can be used to simulate the real-time evolution of
the Schwinger model constructed from the HT approach on
a quantum device. We test the model’s suitability for NISQ
devices by evaluating the algorithm’s performance at
different truncations and ultimately running the simulation
on the ibm_brisbane quantum computer, which oper-
ates a 127-qubit Eagle R3 processor.

A. Time evolution via quantum simulation

To efficiently simulate the time evolution of a QFT on a
quantum device, the Hamiltonian of the model must first be
mapped onto a basis corresponding to operations native to
the quantum device. For a qubit-based quantum computer,
such as the ibm_brisbane device used for this paper, a

FIG. 1. Comparison of the vector mass, MV , for varying
fermion masses, m. The HT model shows good agreement with
perturbation theory (PT) in the quantitym=g [75] to second order,
and with matrix product state (MPS) results taken from [52].
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suitable basis of operations is constructed from tensor
products of the Pauli operators and an identity operator,
ðσ0; σ1; σ2; σ3Þ, such that

H ¼
X3

i1;…;inq¼0

αi1;…;inq
ðσi1 ⊗ � � � ⊗ σinqÞ; ð3:3Þ

where αi1;…;inq
is the coefficient of the corresponding Pauli

term, ðσi1 ⊗ � � � ⊗ σinqÞ. The exponentials of Pauli terms

can be implemented on a qubit-based quantum device
through a sequence of single-qubit rotation gates and CNOT

gates. A circuit can then be constructed for a single Trotter
step of the time evolution by calculating the form of
Eq. (3.2). The number of qubits required and the circuit
depth for a single Trotter step will grow with the size of
Hamiltonian. The time evolution of the QFT is then
simulated on a quantum device by following three steps:
(1) prepare the initial state, (2) apply the Trotter step circuit
iteratively for n-Trotter steps, and (3) measure the circuit
with respect to an observable.
Preparing the initial state is a highly nontrivial task and

has been shown to require exponential circuit depths to
construct arbitrary quantum states without ancillary qubits
[12]. Using ancillary qubits, the circuit depth scaling can be
reduced to polynomial scaling at the cost of an exponen-
tially growing number of ancillary qubits [13–15]. The final
step in the time evolution also requires a state-preparation
circuit to rotate the system into a basis such that the desired
observable can be measured. Therefore, the circuit depth
can grow very rapidly due to the state preparation schemes
that need to be implemented, and this has been identified as
one of the limiting factors of implementing lattice models
on a NISQ device.
In contrast, the HT method allows for the Hamiltonian to

be constructed such that the ground state of the free theory,
H0, corresponds exactly to the ground state of the qubit-
based quantum device, namely the zeroth state in the
computational basis. As a result, complicated and costly
state-preparation routines are not required to prepare the
ground state of the system. This approach, therefore, offers
an advantage over lattice models for simulating QFTs on
NISQ devices by reducing the circuit depth requirements
for time evolution.
The size of the Hamiltonian, and by extension, the

number of qubits required to implement the time evolution,
of the Schwinger model obtained from HT is determined by
the cutoff energy, Emax, and the volume, L. In this paper, we
will vary the cutoff energy only, setting the volume,
ðgLÞ ¼ 8, at a large enough value to approximate the
theory well. From Eq. (2.4), the scalar mass is M ¼ g=

ffiffiffi
π

p
.

The Hilbert space is bosonic and is constructed from the
eigenbasis of the free Hamiltonian in Eq. (2.4). As a result,
it is not trivial to represent the operators within the
Hamiltonian in terms of the fermion creation and

annihilation operators. Thus, the massive Schwinger model
Hamiltonian from Eq. (2.5) cannot be easily decomposed
into tensor products of Pauli operators, which are natural
operations for qubit based devices. For this model, this may
be a limiting factor for the HT approach as the number of
qubits increases because Pauli decomposition leads to an
exponentially growing number of Pauli terms in the
decomposition of the Hamiltonian. New techniques in
the construction of the Hilbert space may be needed to
achieve the true potential of this approach. In this paper, it
will be shown that systems with small numbers of qubits
are sufficient to describe the dynamics of the model and
that the approach is well suited to NISQ devices.
An interesting process to study is the postquench

dynamics of the Schwinger model. A quench is achieved
by preparing the system in the ground state of the free
theory, H0, and then instantaneously “switching on” the
potential term, V, such that the system now evolves under
the total Hamiltonian, H ¼ H0 þ V. For the Schwinger
model presented in Sec. II, this is equivalent to switching
on the fermion mass, m. To describe this process, we only
need to construct and use the Hamiltonian in the C even, P
even subsector, since our initial state lies in this subsector,
and theC and P symmetries prevent time evolution to states
outside this subsector. The state of the system after
postquench evolution is, therefore,

jψðtÞi ¼ e−iHtjψð0Þi ≈
�Y

i

e−iHit=n

�
n
jψð0Þi: ð3:4Þ

The dynamics of the model can then be examined
by establishing the probability that the system is in the
ground state of the free, m ¼ 0 theory. We define the time-
dependent observable GðtÞ, such that

GðtÞ ¼ hvacje−iHtjvaci; ð3:5Þ

where the ground state of the free Hamiltonian is defined as
jvaci ¼ j0i in the computational basis of the qubit device.
We will examine the time dependence of jGðtÞj2, and
explore the effects of truncation and Trotterization errors on
this probability, and investigate the feasibility of simulating
the model on NISQ devices.
It is important to quantify the error introduced by the

truncation by comparing the accuracy of the time-evolution
calculation at different truncations. In practice, the task is to
achieve a trade-off between the resources required to
simulate the model and the truncation error, minimizing
both as much as possible. Figure 2 shows one period of the
time-evolution of the quenched system from Eq. (2.5) with
ðm=gÞ ¼ 0.2 for different truncations. Here, the time
evolution has been calculated by brute-force exponentiation
of the Hamiltonian using a scaling and squaring algorithm
[80] available through NumPy [81]. From now on, we will
call this method the Exp-method. This method simulates the
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time evolution without Trotterization errors. The model
exhibits good convergence as the truncation increases and
performs remarkably well for small truncations, describing
the postquench dynamics well. The good convergence we
see validates our parameter choice ðm=gÞ ¼ 0.2.
Together with the truncation, another significant source

of error is the so-called Trotter error arising from approxi-
mating the time evolution operator from Eq. (3.2). This
study will use first-order Trotterization, which approximates
the time evolution up to an error Oðt2=nÞ. Therefore, to
minimize the error induced by Trotterization, one must split
the time evolution into sufficiently small time steps, δt.
However, performing many Trotter steps increases the

resource cost of simulating the time evolution, specifically
increasing the required circuit depth for quantum simula-
tions. Therefore, again, there is a trade-off between choos-
ing a small enough Trotter step and the resources used.
Figure 3 shows the time evolution of the Schwinger model
for different values of ðgδtÞ compared to the Exp-method.
The simulations have been executed with a truncation of
nq ¼ 2 and nq ¼ 6, as shown by the blue and yellow lines in
Fig. 3, respectively. The Trotterized time-evolution has been
performed using the BaseSampler quantum simulator from
Qiskit [82], which simulates a fully fault-tolerant quantum
device. We see that the model is remarkably resilient to
Trotter error and that the time evolution with ðgδtÞ ¼ 0.1

FIG. 2. Comparison of the time evolution of the Schwinger model at different truncations with ðm=gÞ ¼ 0.2. The time evolution has
been calculated by the Exp-method: brute-force exponentiation of the Hamiltonian. The HT method shows quick convergence as the
truncation increases, allowing for the dynamics to be reliably captured using only a small number of qubits.

FIG. 3. Time evolution of the Schwinger model with varying Trotter time steps compared to the brute-force exponentiation of the
Hamiltonian, so-called Exp. The Trotterized time evolution was performed on a quantum simulator that simulates a fully fault-tolerant
quantum device for truncations of nq ¼ 2 (blue) and nq ¼ 6 (yellow). The system exhibits increasing Trotter errors when taking more
time steps.
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agrees exactly with the Exp-method, even at larger evolu-
tion times. However, as the Trotter step increases, the error
is more pronounced at large evolution times. This indicates
a Trotter error, which grows cumulatively with each Trotter
step. As the time step is increased to ðgδtÞ ¼ 0.5, it is clear
that the Trotter error increases, and the distribution deviates
away from the Exp-method more quickly for both cases.
Mitigating theoretical errors whilst also remaining

within realistic resource constraints of NISQ devices is
a challenge for all quantum computing approaches to
simulating QFTs. From Fig. 2, we see that the HT method
allows for good convergence without needing many qubits.
Similarly, we see in Fig. 3 that the time evolution of the
Schwinger model via HT does not suffer greatly from
Trotter error, even for relatively large Trotter time steps.
For this reason, quantum simulation via HT is potentially
well suited to NISQ devices, which have few qubits and
short decoherence times.

B. Schwinger model on NISQ devices

To determine the feasibility of using the HT approach to
simulating QFTs on a quantum device, the time evolution of
the Schwinger model has been run on the ibm_brisbane
quantum computer, a 127-qubit device with an Eagle R3
quantum processor. The model has been constructed to use
minimal resources whilst retaining the interesting dynamics
of the postquench system. Therefore, the Hamiltonian from
Eq. (2.5) has been truncated to run on nq ¼ 2 qubits with a
ðm=gÞ ¼ 0.2 coupling. A Trotter time step of ðgδtÞ ¼ 0.3
has been chosen to limit the algorithm’s circuit depth and
mitigate decoherence. To further suppress the errors from
the quantum computer, the AI-driven error suppression

pipeline Q-CTRL [40,41,83] has been used through the Qiskit

platform [82].
Figure 4 presents the results from the quantum computer

compared to the Exp-method. Each data point has been
generated from 5000 shots on the quantum computer, and
the statistical errors are displayed. The agreement between
the distributions from the quantum computer and the Exp-
method have been quantified with a χ2=d:o:f: ¼ 1.63. The
quantum device’s performance is remarkable, showing
good agreement with the Exp-method. These results high-
light the suitability of the HT approach to quantum
simulation for NISQ devices. With the interesting physics
of the Schwinger model’s postquench dynamics being
captured using only a small number of qubits, and without
the need for complicated and costly state preparation, HT
provides a promising route towards simulating the time
evolution of QFTs on near-term quantum devices.

IV. CONCLUSION

This study demonstrates the viability of using HT
techniques to facilitate the nonperturbative, real-time sim-
ulation of QFTs on NISQ devices. By focusing on the
Schwinger model, a (1þ 1)-dimensional quantum electro-
dynamics system, we have showcased our approach’s
practicality and benefits.
Our findings indicate that HT significantly reduces the

complexity of the problem by removing the need for
complicated and costly state preparation routines, reducing
the overall circuit depth of the algorithm. Furthermore,
for the observables studied in this paper, we have shown
that the HT approach converges quickly, thus capturing the
dynamics of the system without requiring many qubits.

FIG. 4. Time evolution of the Schwinger model via HT run on the ibm_brisbane 127-qubit quantum computer. The results have
been enhanced using error mitigation and suppression routines through Qiskit [82] and Q-CTRL [40,41]. The output of the quantum device
agrees well with the brute-force exponentiation of the Hamiltonian, Exp, achieving a χ2=d:o:f: ¼ 1.63. This remarkable agreement
demonstrates the suitability of the HT approach to the simulation of QFTs on NISQ devices.
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Combined, these attributes of HT make it feasible to
implement on NISQ devices, which have limited qubits
and coherence times.
We demonstrate the suitability of the HT approach for

NISQ devices by running a time-evolution algorithm on the
ibm_brisbane quantum computer using only two
qubits. We employed the Trotter-Suzuki decomposition
to approximate the time-evolution operator, facilitating the
implementation of real-time dynamics on the quantum
device. Our results show good agreement with the classical
brute-force exponentiation of the Hamiltonian, the Exp-
method, achieving a χ2=d:o:f: ¼ 1.63, even when executed
on hardware with inherent noise and operational con-
straints, as shown in Fig. 4. Despite the small number
qubits, the system gives a good qualitative description of
the underlying physics.

In conclusion, our work highlights the potential of HT as
a viable pathway for simulating QFTs on quantum hard-
ware. It encourages more complex simulations and offers a
scalable and efficient approach for leveraging quantum
devices in nonperturbative field theory research. Future
work will extend this approach to more complex models
and explore its applicability to a broader range of quantum
simulations.
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