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ABSTRACT
Manual gesture plays an important role in Indian classical singing, and one of its func-
tions is to support, illustrate or communicate aspects of raga melody. We explore the
relationship between handmovements andmelodic elements in Indian classical vocal
performances, using kinematic data to classify stable notes and raga-specific phrases.
Our findings reveal consistent gestural patterns across singers, with potential applica-
tions in gesture-based music analysis.
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1 INTRODUCTION

Manual gesturing by singers is an integral part of
vocal music performances in the Indian classical tradi-
tions. The range of functions of singing-accompanying
gesture overlaps with those identified in speech-
accompanying gesture, although it has some distinctive
aspects (Clayton, 2005). Indian singers’ gestures have
several distinct referents: for example, they may relate
to the rhythmic structure of the music (marking a steady
beat or tala cycle) or play a role in signalling to co-
performers or audience members, as well as appearing
to accompany or illustrate aspects of the melody being
sung. In the latter case, hand movements sometimes
appear to correspond to pitch height (i.e. ascending pitch
co-occurs with one or both hands rising and/or moving
to one side). At other times, they relate to other aspects
of melody, such as the tension felt while sustaining cer-
tain notes, or the image or abstract design visualised
by the performer (Clayton, 2007; Leante, 2009, 2013,
2018; Rahaim, 2012). Gesturing is an aspect of perfor-
mance often remarked on by audiences that may play
an important role in communicating the structure and
affect of the music; it also seems to play an important
role in teaching, even if ‘how to gesture’ is rarely taught
explicitly (the use of gesture in teaching is explored in
the Karnatak tradition by Pearson (2013); Karnatak or
South Indian singing is related to but distinct from the
Hindustani or North Indian tradition considered by most
of these authors). There is much still to be explored in the
relationship between movement and audio features of
Indian singers, which can reveal much about the music’s
underlying principles and the cognitive processes
involved.

Computational studies on gesture-to-audio corre-
spondence in vocal performances of Indian art music
have recently come to the fore. Paschalidou (2022) car-
ried out research on a motion capture dataset of solo
alap recordings in the dhrupad genre, looking at a range
of movement and audio features in relation to the con-
cept of ‘effort’: although she found correspondences,
generalising across performers proved challenging. The
relationship between acoustics and gesture kinemat-
ics was studied in recent work by Pearson and Pouw
(2022) using inertial-motion-capture-based tracking of
the wrists in 35 performances by four Karnatak vocalists.
Theymanually segmented gesture tracks and studied the
correspondence of various kinematic extrema with tem-
porally aligned changes in the acoustics [fundamental
frequency (F0) and amplitude envelope]. They found that
sudden changes (more in F0 rather than in amplitude)
tended to occur around peaks in wrist speed and accel-
eration. A correspondence was established between the
magnitudes of local peaks in acceleration and changes
in F0, in line with previous work in co-speech gesturing by
Jenkins and Pouw (2023). They also report a consistent

temporal lag/lead in the F0 change instant with refer-
ence to positive/negative peaks in acceleration. Although
every singer was somewhat internally consistent, there
was considerable variability in the gesture–vocal cou-
pling across singers. They discuss the implications of the
nature of the coupling, attributing it to both physiological
and aesthetic influences. The prominence of F0 in the
acoustic–kinematic relation is consistent with the
fact that the melody, or variation of the singing
pitch, dominates the sonic experience of a music
listener.

In a shift towards linking gesture to high-level musi-
cal characteristics such as raga identity, Clayton et al.
(2024) explored the use of movement data to classify
12-second (s) excerpts drawn from a corpus compris-
ing three singers’ performances of alaps (3-minute solo
presentations) and pakads (briefer summaries of key
melodic phrases) of nine common Hindustani ragas in
the khyal genre. (The use of solo alaps meant the ges-
tures could not refer to either metric structure or interac-
tion with co-performers, and thus relate predominantly
to the melody of the ragas being presented.) Singer and
raga classification tasks were attempted using move-
ment data extracted using both two-dimensional (2D)
and three-dimensional (3D) pose estimation from a sin-
gle camera view. Singer classificationwas successful, and
raga classification achieved better than chance results,
but also confirmed a high degree of dependence on the
singer (i.e. singer idiosyncrasy), somethingwhich hadpre-
viously been noted in qualitative studies. Clayton et al.
(2022) explored the same dataset, bringing in both audio
and video modalities to the solution for the first time
(the research was in fact carried out later). An incep-
tion block preceded by independently trained convolu-
tion layers for audio (represented by the normalised F0
contour) and gesture (represented by the raw 2D posi-
tion coordinates of each of the wrists) time series clas-
sification provided the best performance in the con-
text of singer-dependent raga classification, especially
reducing the confusion betweenmelodically similar ragas
with respect to the otherwise high-performing audio-only
classification.

The work presented here seeks to build on qualita-
tive and ethnographic research describing and interpret-
ing Indian singers’ manual gestures. In other words, we
go beyond the tasks of raga and singer identification to
exploremanual gesture in relation tomusicallymeaning-
ful performance segments. From the audience’s perspec-
tive, gestures appear to ‘match’ the singing they accom-
pany, and often appear to relate in interpretable ways:
for example, a singer may move her hands skywards
to accompany a quickly ascending melody, move faster
or slower along with the perceived speed of melodic
movement – even holding still on sustained notes – or
somehow express the varying degrees of tension, effort
or excitement inherent in the music. To what extent
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can these observations be backed up by empirical
analysis? If they are robust, then in principle we should
be able to identify and classify melodic events from
gestural information. However, we also know that ges-
tures are observed to be idiosyncratic, with singers of
the same stylistic tradition – even those belonging to the
same family – gesturing in quite distinctive ways. Since
gesturing is not explicitly taught, it is also plausible that
each singer’s mapping between sound and gesture may
bedistinctive, inwhich case such classificationwould only
work well when trained on data from the singer in ques-
tion. Discovering which aspects of gesturing show consis-
tency across singers and which do not would be of great
benefit in understanding singing-accompanying gesture.

We therefore aim to explore the complementarity of
melody and gesture in the context of specific, musically
meaningful cases at the finer time scales of the raga
melody building blocks. In particular, we explore the use
of gesture information to classify short excerpts of the
alap performances that have been identified from the
audio material as representing either (a) stable notes or
(b) particular melodic phrases typical of the ragas in the
dataset. These are not the only possible candidates: we
could have looked, for example, at specific ornamenta-
tions or distinctive vocal techniques such as gamak (shak-
ing, oscillating). For this first investigation we chose to
look at stable notes because this is both a simple feature,
easy to define and search in the audio, and also musi-
cally significant (for example, which notes can be held
is an important feature of a raga). For the second task,
we move on to look at some specific melodic phrases,
choosing some which are typical of ragas in our dataset
since they are likely to be repeated numerous times.
Raga grammar requires the characteristic phrases to rep-
resent the raga unambiguously, leading to their rela-
tively unchanging form across singers and performances
(Ganguli and Rao, 2021). It is also possible that phrases
regarded as typical of the raga will be treated with par-
ticular attention in the performance, and that singers
may have developed distinctiveways of performing them
which also reflect the perceivedmood or character of the
raga. This is explored by Leante (2009) in the case of r/P in
Shree, which is one of the examples chosen for this study.
Apart from r/P, the selection is arbitrary. Four motifs are
sufficient for an exploratory analysis, and the choice is
based on the following factors: r/P is referenced in the
literature as being particularly clear and distinctive; gMD
and P\฀R are clear examples of ascending and descending
phrases, respectively; and nDN is an example of a phrase
common to two ragas.

The main objective of the research, then, is to dis-
cover whether segments of a raga performance can
be categorised as (a) stable notes or (b) examples of
a specific phrase, and to what extent this categorisa-
tion depends on the system having been trained on the
particular singer. Our hypothesis is that in each case

there is enough consistency, even across singers, for
prediction to score above chance, but that stable note
detection will be easier than motif recognition and that
somemotifs will be more distinctive than others; further-
more, we expect unseen-singer performance to be sig-
nificantly poorer than seen-singer ones, reflecting singer
idiosyncrasy.

We work with a considerably enlarged corpus with
eight additional performers, collected following a simi-
lar methodology, to allow a wider exploration of varia-
tion of gestures between singers. Nadkarni et al. (2023)
studied this expanded corpus of solo alap recordings
to investigate correspondences between singers’ move-
ments (captured in the time series for the x- and y-
coordinates of their wrist positions) and the melodies
they sing (represented as F0 contours). Since the same
set of nine ragas is performed by all 11 singers, they
could explore commonalities in the gestures used by
different singers for particular raga-specific melodic
movements. Selected ragamotifs were segmented auto-
matically from the audio recordings by searching using
manually identified templates from the pakads. That is,
in contrast to the body of previous work, they used musi-
cally motivated units, implied by the raga melodic struc-
ture, to group the representations ofmelody and gesture.

In the present paper, we further explore these tasks
with the audiovisual alap data of Nadkarni et al. (2023).
New contributions reported for the first time in this work
are as follows: (i) We enhance the audiovisual pipeline
to process all the three available camera views to obtain
a reliable depth dimension coordinate. (ii) We explore
the use of position coordinates in addition to veloc-
ity and acceleration, and the addition of elbow joints
to wrists, testing the relative success of classification
using different subsets of the resulting movement data.
(iii) We strengthen the links to previous work on the
sonic–kinematic link in Pearson and Pouw (2022) by car-
rying out similar correlation analyses of the synchronised
audio and visual time-series. (iv) We introduce singer-
dependent classification that demonstrates a significant
increase in the computed sonic–gesture correspondence.
(v) We introduce a new motif to the three used for
the previous work, to illustrate the behaviour of simi-
lar melodic sequences in two distinct ragas in terms of
potential gestural distinctions.

2 DATASET AND PROCESSING

Our work is based around the publicly available audio-
visual dataset of North Indian vocal alap performances
by 11 professional musicians. Each singer performs two
alaps of each of nine ragas, accompanied only by the
tanpura (drone). The ragas and their tonal material are
listed in Table 1. The ragas were selected to cover a wide
range in terms of not only tonal material but also mood,
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speed of presentation, favoured melodic range (upper
versus lower tetrachord) and type of melodic motion
(i.e. direct versus wandering).

Each alap is about 3 minutes long. The singers also
contributed shorter ‘pakad’ recordings, rendering someof
the key phrases of each raga in a brief format of a few
seconds. The total duration of this dataset is about 11
hours. Each raga comprises 22 alaps and 12 pakads (one
extra pakad) as sung across the 11 singers of whom five
are male (AK, CC, MG, MP and NM) and six female (AG, AP,
RV, SCh, SM and SS). While each alap is labelled only by
singer and raga, we carry out further manual annotation
of the pakad audio files for selected raga phrases as used
in this study. That is, all the pakads of a given raga across
the 11 singers are searched for instances of the desired
phrase (e.g. gmD in raga Bageshree).

Each performed piece was recorded using three syn-
chronised video cameras (placed front, left and right,
respectively) and a separate high-quality microphone.
Figure 1 presents the salient aspects of the processing
pipeline with its two stages in parallel for the audio and
video components of the audiovisual recording, leading

Raga Tone material

Bageshree (Bag) S R g m P D n

Bahar S R g m P D n N

Bilaskhani Todi (Bilas) S r g m P d n

Jaunpuri (Jaun) S R g m P d n

Kedar S R G m M P D N

Marwa S r G M D N

Miyan ki Malhar (MM) S R g m P D n N

Nand S R G m M P D N

Shree S r G M P d N

Table 1 Details of the nine ragas which are present in our
dataset. The 12 notes in the octave (separated by 1 semitone =
100 cents) are denoted by S r R g G m M P d D n N.

eventually to the synchronised acoustic and kinematic
time series. The complete details of the recordings and
processing algorithms are available in the repository.¹

Of interest to us are the melodic features extracted
from the audio, namely the singer F0 contour, and the
kinematic parameters from video pose estimation given
by position, velocity and acceleration of the wrist and
elbow joints in 3D. We use the master files, already pro-
vided in the repository, corresponding to the 3D coor-
dinates from VideoPose3D for this study. The master
file has synchronised F0 and gesture information at 10
ms intervals – the gesture information includes posi-
tion (in normalised coordinates) as well as computed
velocity and acceleration, all for 3D (x, y, z), for each
of the two wrists and elbows. The F0 contour is pro-
vided in cents after singer–tonic-based normalisation.
Further, silent and unvoiced intervals of less than 400
ms have been linearly interpolated. The resulting contin-
uous F0 segments (separated by intervals greater than
400 ms) are termed silence-delimited segments (SDS) in
the rest of this work. Figure 2 presents an example of a
10 s excerpt with the time-aligned contours of F0, posi-
tion (x,y,z) and the absolute magnitudes of velocity and
acceleration.

3 RELATING F0 WITH KINEMATIC
CHANGES

As reviewed in Section 1, Pearson and Pouw (2022) report
a correspondence between peaks in the temporal tra-
jectories of the kinematic (speed and acceleration) and
acoustic (F0) parameters for wrist movements obtained
by motion capture from four Karnatak vocalists in per-
formance. We attempt to replicate their study for our
Hindustani alaps across the 11 singers in our dataset
using wrist keypoints obtained via our pose estimation
directly from video. We employ a different set of ana-
lytical techniques to the same end, and also compute
correlations across entire trajectories, unlike Pearson and
Pouw (2022), who manually eliminated the preparatory

Figure 1 Overall pipeline for preprocessing to get the audiovisual time series. The green path indicates audio processing, the blue path
indicates video processing and the red path indicates their combination.
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and retraction phases of the movements to isolate ges-
ture events.

Temporal changes in F0 are captured by the trajec-
tory of |ΔF0| obtained by the differentiation of F0 and
implemented via a 31-point biphasic filter (that is, oth-
erwise similar to the one used in the data repository
for the gesture time series). The larger filter bandwidth
(compared with that used for the kinematic parameters)
accounts for the fact that F0 fluctuations are more rapid
than kinematic fluctuations. In the experiments reported
here, we consider the following kinematic parameters,

Figure 2 An excerpt from an alap recording of raga Shree
performed by the singer AG showing the extracted F0 and right
wrist gesture contours. We note a silence (at about 82 s)
separating two singing segments.

also studied by Pearson and Pouw (2022): vertical veloc-
ity (Vy), speed (S) and acceleration (A) for each of the two
wrists.

Local maxima are detected in the kinematic con-
tour, and those above a threshold equal to the contour
mean value are retained with a minimum separation of
0.5 s between the retained peaks. For each such kine-
matic peak location in time, the |ΔF0| contour is searched
for the highest local maximum in a neighbourhood of
+/− 0.5 s. The magnitude and location of the |ΔF0| peak
are stored (with zero assigned to magnitude if a peak is
not found in the mentioned temporal neighbourhood).
Figure 3 illustrates this process via an example of wrist
acceleration and the time-synchronised |ΔF0| trajectory.
The magnitude and temporal coupling are determined
across the alap through the Pearson correlation coef-
ficient involving the magnitude and time-lag parame-
ters, respectively, for each identified pair of kinematic and|ΔF0| peaks. In Table 2, we present the magnitude cou-
pling results for each singer and kinematic variable. We
observe variations across singers in terms of the mag-
nitude coupling strengths across the different kinematic
parameters. In most cases, the coupling strength is high-
est for acceleration, especially of the right wrist. Thus, our
results appear consistent with Pearson and Pouw (2022)
in that the kinematic feature that is most strongly cou-
pled with vocal F0 is indeed the acceleration, an observa-
tion that is explained by the direct correspondence with
biomechanical force. We did not observe any significant
temporal coupling with a more or less uniform spread of
time lag/lead of the |ΔF0| peak with respect to the kine-
matic peak as demonstrated by the plots provided in the
supplementary material. Accordingly, we assume tem-
poral synchrony in the remainder of our work on the cor-
respondence between acoustic and kinematic events.

Figure 3 A sample segment from AG_alap1_Bag showing the processing of positive kinematic peaks for the gesture–vocal coupling
study. From the gesture contour of right wrist acceleration (top), peaks above the threshold are captured. A window of duration 1 s is
taken around the peak location, and the maximum of the |ΔF0| contour (bottom) in that window is stored as the corresponding value
for the data point in linear regression.
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Singer RWVy LWVy RWS LWS RWA LWA

AG 0.32 0.20 0.27 0.17 0.40 0.22

AK 0.17 0.12 0.11 0.10 0.19 0.12

AP 0.06 0.15 0.02 0.12 0.09 0.12

CC 0.29 0.37 0.27 0.36 0.40 0.39

MG 0.02 0.05 −0.01 0.02 0.10 0.07

MP 0.08 0.15 0.05 0.16 0.09 0.19

NM −0.01 0.14 0.03 0.08 0.19 0.09

RV 0.14 0.14 0.13 0.12 0.16 0.16

SCh 0.25 0.20 0.20 0.16 0.29 0.14

SM 0.08 0.16 0.03 0.09 0.12 0.18

SS 0.11 0.12 0.02 0.06 0.14 0.12

Table 2 Average correlation coefficient between the log of
kinematic magnitude trajectory peaks (both positive and nega-
tive peaks included; for speed, this is peaks and valleys) and the
corresponding peak magnitude of |ΔF0|. The reported averages
are across the alaps and pakads of each singer for the Vy, S and
A of their left (L) and right (R) wrist (W). For the highest coeffi-
cient in each row (indicated in bold), p < 0.001.

4 F0-BASED SEGMENTATION AND
LABELLING

The segmentation of our audiovisual alap, as repre-
sented by the set of extracted acoustic and kinematic
time series, involves the F0-contour-based identification
of melodic events such as notes and specific melodic
movements. While the melody itself occupies a continu-
ous pitch space with discrete notes approached through
smooth trajectories, ragas are identified by their tonal
material and melodic motifs. A meaningful approach to
melodic segmentation is then to label the gestalts corre-
sponding to steady notes and to raga motifs.

We start with the silence-delimited segments (SDS) as
derived in Section 2. Within each SDS, we extract stable
note regions. We also obtain the temporal locations of
raga-specific motifs through comparison with the previ-
ously extracted F0 templates for each of the phrases. In
this section, we present the details of the F0 contour seg-
mentation.

4.1 DETECTING STABLE NOTE SEGMENTS
A “stable note” is a part of the singing where the F0 value
is (ideally) constant with respect to time. We aim to seg-
ment such regions from the F0 contour and thereby gain
insights from the corresponding time-aligned gestures.
The continuous F0 contour that corresponds to an SDS
is examined for occasions when the same note (svara)
is sustained for more than 250 ms. This choice of the
minimum duration is supported by previously reported

Figure 4 A silence-delimited segment (SDS) with identified
stable notes (shaded regions of blue F0 contour) and pitch class
distribution (on the left) computed from the entire alap audio
with detected svara locations highlighted.

subjective listening tests (Vidwans et al., 2012), where
250 ms was observed to be the minimum required dura-
tion in musicians’ annotation of a sung segment to be
considered “khada svara” (standing or stable note) in
raga performance recordings. Rather than rely on an
equi-tempered grid, we employ a finely binned pitch class
distribution to identify svara (raga note) positions accu-
rately (Ganguli and Rao, 2018). We define a stable note
as a regionwhere the F0 is located continuouslywithin 50
cents (+/− 25 cents) of one of these identified positions.

The subsequent step is merging stable note regions
pertaining to the same svara that are separated by a gap
less than 100 ms. Non-stable regions are defined as any
piece of the F0 contour occurring in an SDS but not in the
detected stable note region.

The steps involved in stable note segmentation, as
illustrated by Figure 4, are summarised here:

1. The pitch class distribution (PCD) is computed for
each alap to find the central pitches of the notes
(svara) in the corresponding raga, through peaks in a
finely binned histogram from the F0 contour.

2. Stable notes are found from the pitch contours
according to the “rule”: each stable note should have
its pitch contour lie entirely within ±25 cents of a PCD
note location. The segmentation is carried out using
an algorithm that iterates sample-by-sample over
the pitch contour with start and end flags to define
windows for which the “rule” needs to be checked.

3. Every continuous region belonging to an SDS but not
within a stable note is labelled as a non-stable
segment. The pitch contour and gesture time series
corresponding to each stable note segment, and each
non-stable segment is stored for feature extraction.

The duration distributions for stable note and non-
stable segments in our dataset are shown in Figure 5. We
have noticed that most of the stable notes are of short
duration (less than 1 s long), while the non-stable seg-
ment durations are more uniformly spread.
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Figure 5 Distributions of duration for stable note (left) and
non-stable segments (right) in our dataset, shown up to a
maximum duration of 5 s.

4.2 TEMPLATE MATCHING FOR PHRASE
DETECTION
As depicted in Table 3, the raga motifs selected for our
exploration include a distinctive upward slide of an aug-
mented fourth in Shree, a falling slide of a fourth in Nand,
a three-note ascending phrase in Bageshree, and a three-
note phrase with a falling and then rising contour, as
occurs in the two ragas Miyan ki Malhar and Bahar. The
expected constancy of the melodic shape within and
across singers prompts the question ofwhether their ges-
ture executions also bear some measurable similarity.

The manually extracted pakad phrases serve as tem-
plates for the phrase-level segmentation of the corre-
sponding raga alaps across the 11 singers. We obtain one
or more templates of the given phrase from each of the
11 singers’ pakads. (As for the phrase nDN, however, the
phrase was not found in the pakad for singers AP, MG and
MP for raga MM, and for AP and MG for raga Bahar, which
limited our singer-specific gesture investigations to fewer
singers for this particular phrase.) The set of templates
represents the diversity in the realisation of the phrase
across and within singers. Figure 6 presents examples
that illustrate the diversity in melodic shape for each of
the phrases chosen for the current study. For the phrase
segmentation in the alaps, we restrict the number of dis-
tinct templates to six to limit the search complexity.

In Figure 6, we observe that the simple notation used
to represent the up (/) or down slide (\) belies the com-
plexity of contour shapes defined by raga grammar.
The nDN phrase shows distinctions in the melodic
shape across the two ragas. This is consistent with the
fact that a note sequence such as nDN is a simple
representation, while in practice the motifs are gov-
erned by more subtle raga-specific constraints such
as the relative prominence given to each note or the
speed of transition between them. We note promi-
nent differences in phrase duration within each phrase
class, while the essential aspects of the melodic pro-
gression are preserved across the instances of the
class. This indicates the need for a flexible distance

Raga Svara (Notes) Phrase

Bageshree (Bag) S R g m P D n gmD

Shree S r G M P d N r/P

Nand S R G m M P D N P\R

Miyan ki Malhar (MM) S R g m P D n N nDN

Bahar S R g m P D n N nDN

Table 3 The ragas and phrases used in the phrase detection
experiment. The svaras S r R g G m M P d D n N correspond to
the 12 notes of theWestern chromatic scale, with S representing
the tonic. The symbols / and \denote the upward and downward
slide, respectively (Rao and van der Meer, 2012; Kulkarni, 2017).

Figure 6 Sample templates for each of the raga characteristic
phrases: (a) gmD (purple), r/P (blue) and P\R (violet) and (b) nDN
from raga MM (brown) and nDN from raga Bahar (red).

metric, such as dynamic time warping (DTW), which
captures shape similarity in the face of possibly non-
uniform temporal expansion/compression (Müller, 2015).
We use the DTAI-Distance package of Python (Meert
et al., 2016) to carry out the DTW subsequence
search.

The following steps (the first two of which are pre-
sented in the flowchart of Figure 7) lead to the desired
segmentation and labelling of each SDS in the alap audio
files for the given raga phrase. Our objective is to find
the best-matched subsegment, within this SDS, to that
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Figure 7 The pipeline for F0-based segmentation of alap using
manually labelled pakad phrases. For warping the pakad phrase
templates, a window size of 100 and a penalty of 200 was
chosen, while for the subsequence alignment, K = 20 and
penalty = 0.1 were chosen (Meert et al., 2016). Segments
shorter than 0.5 s were discarded as invalid.

phrase as represented by its reference templates, and
next determine whether the SDS indeed contains the
phrase of interest on the basis of the quality of thematch.

1. The six phrase templates from across the pakads are
warped to the same target length (that of the third
template in increasing length order in the set). This
helps to ensure that the subsequence DTWmatching
costs can be meaningfully compared across the
templates. The warped audio templates and
subsequence search is illustrated with an example of
the phrase gmD from raga Bageshree in Figure 8.

2. The DTW-based subsequence search is carried out
across the F0 contour of the SDS separately with
each of the six warped audio templates (WAT).
An important consideration influencing the
algorithmic parameters is to avoid pathological
warping paths that can result in unusually low
distance values for mismatched queries. This is
achieved using a penalty parameter that constrains
the search space by discouraging large deviations
from the diagonal path. For each WAT, the
lowest-cost match is obtained that satisfies a
duration criterion (> 0.5 s) to further eliminate invalid
matches resulting from pathological warping. The
resulting matches are accepted as valid and stored
with the cost, temporal boundaries and WAT index.
In a case wherein no valid match is returned (in the
top 20 retrieved responses) for a particular template,
that SDS–template pair is not considered further. This
step leaves us with between one and six
best-matched segments per SDS along with the

associated DTW costs. We then pick the single lowest
cost for each SDS across those obtained from the six
templates, and use this as a representation of raga
phrase match for the given SDS.

3. The next stage involves assigning a target label to
each SDS, indicating whether or not it contains the
raga phrase in question. This is implemented in a
completely unsupervised manner as indicated in the
following. Figure 9 presents an example of the
distribution of SDS cost across all the 22 alaps (11
singers × 2 instances) of Raga Nand. We observe a
roughly bimodal distribution and exploit this to obtain
the labelling of the alap SDS. A kernel density estimate
(KDE) is fitted to the distribution of costs (Chiu, 1991).
The cost value coinciding with the lowest point in the
valley between the two peaks is found, and 0.5 of this
value is used as a cost threshold to label each SDS as
one of the two classes: ‘Like’ (i.e. similar to the raga
motif) and ‘Unlike’ (different from the raga motif).
The choice of 0.5 of the minimum cost was based on
a check by an expert listener who confirmed that the
so-selected Like instances were indeed perceptually
similar to the phrase templates and Unlike-labelled
instances largely dissimilar. This rule serves well
across the different raga phrases except for Bahar
nDN, where the KDE fit is dominated by a single
mode. In this case, we found that a cost threshold of
0.1 times the minimum was more realistic. The
supplementary material presents the KDE plots and
thresholds selected for each of the raga motifs.

Finally, with each SDS’s audio subsegment (both Like
andUnlike) identified,we extract the corresponding time-
aligned gesture time series. We store the index of the
WAT that achieved the best match for the given SDS.
Note that the SDS and WAT may not belong to the same
singer.

In the next section, we report our experiments on test-
ing various kinematic features on the segmented ges-
ture time series to see whether (i) the stable/non-stable
segment labels can be predicted, and (ii) the Like/Unlike
labels for each SDS can be predicted from the DTW dis-
tance computed between the segmented gesture time
series of the SDS and that of its matched WAT.

5 GESTURE-BASED CLASSIFICATION
EXPERIMENTS

The set of gesture time series comprises position (x, y
and z coordinates), velocity (x, y and z components and
magnitude) and acceleration (x, y and z components
and magnitude) for each audio segment of interest. Our
gesture-based classification task then involves predict-
ing a label from features computed solely on the gesture
time series, where the target labels have been previously
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Figure 8 An example of DTW-based subsequence search of an SDS to identify an instance that best matches the phrase gmD using
pakad reference templates. Each of the six warped audio templates is used as a query in the subsequence search, and the query (Q)
resulting in the minimum cost is stored. The image on the left shows the audio templates for the phrase gmD. In this example, Q1 is
the lowest-cost query arising from the subsequence alignment shown with respect to the full SDS in the bottom right.

Figure 9 Distribution of the DTW subsequence cost across the
SDS of all singer alaps for the best-matched audio phrase
template for P\R of raga Nand. The grey vertical line shows the
location of the minimum derived from the kernel density
estimate (KDE) fit (dashed red contour), from which the
threshold for labelling the SDS as Like and Unlike with reference
to the template phrase is derived. This threshold cost marked
by the black vertical line is set as half of the location of the
minimum of the KDE fit.

assigned in the audio-based segmentation. Figure 10 pro-
vides a high-level view of our approach, using the phrase-
level task as an example, to the overarching question
of whether melodic similarity implies gestural similarity.
Next, we present the feature computation and classifica-
tion method for each of our two categories of melodic
events.

5.1 STABLE NOTE DETECTION
As discussed in Section 4.1, stable note regions were
labelled in a musicologically motivated manner linked to
the extent of F0 variation across the segment relative to
the nominal position of the raga note. We wish to explore
kinematic features that capture gestural consistencies, if
any, across segments that are labelled as stable note. The
effectiveness of the different features can be then tested
within the classification framework depicted in Figure 11.
With a hypothesis drawn from informal observations that
a singer is relatively stationary during the singing of stable
notes, we investigate a set of features representing the
extent of variation in the kinematic quantities of veloc-
ity and acceleration across the segment. We extend the
feature set of Nadkarni et al. (2023) to include the depth
dimension and also new keypoints such as the right and
left elbow joints. We test different combinations of fea-
tures spanning a wide range in dimensionality.

Using a support vector machine (SVM), we implement
binary classification, training and testing on the dataset
of labelled stable notes and the (complementary) non-
stable segments where the training and test data are
both drawn from across singers and ragas. Although
250 ms regions of stable pitch qualified as stable notes,
as depicted in the distribution of segment durations in
Figure 5, we restricted the examples of both categories
used in this experiment to those with duration in the
range [0.5, 5] s to ensure that the training dataset was
relatively balanced.
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Figure 10 Explaining F0-based segmentation and labelling (top) to obtain segment boundaries and target labels per SDS for use in the
subsequent gesture-based Like/Unlike prediction task (bottom). The shaded regions on the right represent the SDS subsegment
associated with the F0-based match. The corresponding time-aligned gesture time series is used to compute the gesture-based
similarity with respect to the pakad (i.e. reference) template time series using multidimensional DTW.

Figure 11 The framework for the evaluation of kinematic
features computed from the gesture time series corresponding
to stable note and non-stable segments as detected from the
F0 contour.

We carry out feature extraction from the stable note
and non-stable segments as follows. We find the mean
and standard deviation of the position (left and right
wrist; x, y and z coordinates), component-wise veloci-
ties and accelerations, and magnitudes of velocity and
acceleration. This gives the features: {Position x, Posi-
tion y, Position z, Velocity x, Velocity y, Velocity z, Veloc-
ity magnitude, Acceleration x, Acceleration y, Accelera-
tion z, Acceleration magnitude} × {mean, standard devi-
ation} × {Left, Right} × {Wrist, Elbow}, a total of 11 ×
2 × 2 × 2 = 88 features. We create distinct groups of
features that can facilitate an understanding of the role

Abbreviation Dimensions Features

VA-Mag-W 8 {|v|, |a|} × {m, sd} ×{L, R} × {W}
VA-W 24 {V,A} × {x, y, z} ×{m, sd} × {L, R} × {W}

PVA-W 36 {P,V,A} × {x, y, z} ×{m, sd} × {L, R} × {W}
PVA-E 36 {P,V,A} × {x, y, z} ×{m, sd} × {L, R} × {E}

PVA-WE 72 {P,V,A} × {x, y, z} ×{m, sd} × {L, R} × {W, E}
Table 4 Details of the features used in all variants of the exper-
iment on stable note classification (M, mean; sd, standard devi-
ation; L, left; R, right; W, wrist; E, elbow).

of absolute magnitude versus raw 3D coordinates, and
the influence of including position coordinates and elbow
joints.

Five different combinations are studied (both means
and standard deviations in each) as described here and
summarised in Table 4:

1. VA-Mag-W: Magnitudes of velocity and acceleration,
for wrists (eight-dimensional feature vector)

2. VA-W: Component-wise velocity and acceleration, for
wrists (24-dimensional feature vector)

3. PVA-W: Component-wise position coordinates,
velocity and acceleration for wrists (36-dimensional
feature vector)
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4. PVA-E: Component-wise position coordinates,
velocity and acceleration for elbows (36-dimensional
feature vector)

5. PVA-WE: Component-wise position coordinates,
velocity and acceleration for both wrists and elbows
(72-dimensional feature vector)

For training the SVMs, we can choose to train on
the segments of one particular singer, a combination of
singers or all of the singers. We carry out the following
types of experiments:

• Singer-specific classification: Segments from every
singer are considered separately, and a 10-fold cross-
validation is carried out within each singer’s data set.

• Across-singer classification: The cross-validation for
the entire data is done in three different ways to
investigate singer dependence and raga dependence
of gestures:

1. Uniform singer splits: Segments from all singers
are distributed uniformly across the folds for
10-fold cross-validation, ensuring the even spread
of the labels as well as raga identity.

2. Unseen singer splits: An 11-fold cross-validation
is carried out, where, in each fold, one singer’s
tokens are kept in the testing data, while those
from the other 10 are kept in the training data.

3. Unseen raga splits: A nine-fold cross-validation is
carried out, where, in each fold, one raga’s
instances are kept in the testing data, while those
from the other eight are kept in the training data.

The cross-validation is carried out with grid search, using
the Python library scikit-learn (Pedregosa et al., 2011) to
identify the best hyper-parameters for the SVM (tuning
done on hyper-parameters C and 𝛾) which give the max-
imum F1 score (mean cross-validation F1 score). Since
some of the singers have an imbalance between counts
of stable and unstable notes, the F1 score is a better
metric than accuracy. The radial basis function (RBF) ker-
nel is used. On the training data in each cross-validation
split, a standard scaler normalisation is applied (sub-
tracting from each feature its mean and dividing by the
standard deviation). The cross-validation F1 score corre-
sponding to themodel with the best hyper-parameters is
reported.

5.2 RAGA PHRASE DETECTION
Our goal is to determine whether the Like and Unlike tar-
get labels (that were assigned based purely on melodic
shape proximity with respect to raga phrase templates
as discussed in Section 4.2) can be predicted by gesture
alone at better than chance and, if so, which kinematic
features aremost useful in this task. In the context of our
alap gesture time series, already segmented on the basis

of the audio phrase matching, we compute the similarity
between the twomultidimensional kinematic time series
corresponding to the phrase template and the candidate
being tested, respectively. As in the audio-matching case,
we turn to DTW for a similarity measure that consid-
ers optimising temporal alignment in the cost computa-
tion. Multidimensional time series, however, present us
with some distinct options for the distance computation.
Two obvious approaches are DTW-independent (DTW-I)
and DTW-dependent (DTW-D) depending onwhether the
individual time series are each warped independently
and then the costs combined or whether they are all
forced into a single warping path in higher dimensional
space (Shokoohi-Yekta et al., 2017). Given that the veloc-
ity and acceleration contours are derived from the cor-
responding position time series of the wrists, the DTW-D
is a meaningful option as well. Furthermore, decoupling
the left and right wrists in DTW-D gives us DTW-LR with a
feature vector of length 2. Similar to F0-contour match-
ing, in the interest of avoiding pathological warps, we
look for techniques that restrain theDTWpath fromstray-
ing too far from the diagonal path. In the context of
multidimensional DTW,weuse the available Sakoe–Chiba
band constraint for DTW in comparing the kinematic con-
tours, with a Sakoe–Chiba radius of 100 samples (1 s) to
prevent any warping significantly away from the main
diagonal of the DTW cost matrix.

With each of the time series being independently
warped, we also consider the option of retaining the indi-
vidual costs in the form of a single feature vector rep-
resenting the overall similarity. This leads to a 36-dim
feature vector of costs ({P,V,A} × {x, y, z} × {L, R} × {W, E})
termed DTW-Ind. Retaining the individual time-series
costs could potentially lead to the classifier learning to
suppress less informative features. To study the loss, if
any, from the use of wrists alone, we have DTW-Ind-W by
dropping the elbow keypoints from DTW-Ind. The above
set of five distinct feature vector choices comprising the
DTW costs is utilised in the gesture-based binary classifi-
cation of the alap instance into Like/Unlike categories for
a given raga phrase.

Similar to our experiments with stable note detec-
tion, we pool all the tokens across singers, separately for
each raga phrase, for classification experiments explor-
ing different criteria for the train–test splits. With the
uniform distribution of singers across folds in cross-
validation testing, both train and test sets in each of
the splits contain instances belonging to each of the
singers. We implement this uniform-singer classifica-
tion [similar to Nadkarni et al. (2023)] using 10-fold
cross-validation (CV) in a logistic regression classifier
to arrive at performance metrics for each feature set.
The overall process is illustrated by Figure 12. We note
that the gesture DTW distance is computed between
a given alap instance segmented via the audio subse-
quence search and its best matched query (of the set
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Figure 12 The overall framework for the raga phrase-based classification. The audio and visual components of a candidate audiovisual
(AV) segment (i.e. an SDS from an alap) are separately compared with the respective audio and visual components of a reference
phrase segment (from a pakad) to see whether they are together consistent in their estimate of similarity with the reference phrase.
We note that the gesture time series (T.S.) is multidimensional, while the audio T.S. is a unidimensional sequence of F0 samples.

of pakad reference templates across singers), potentially
pairing two different singers. The unseen singer is sim-
ilar to the uniform singer in terms of feature computa-
tion that uses the template gesture time series based on
the best-matched audio template; it differs only in the
manner that the subsequent CV splits are constructed,
with no singer common to both train and test sets at
any time.

Given the relatively small number of tokens per singer
per phrase, we report singer-specific and unseen-singer
phrase detection performances only for the phrase with
the most data, namely r/P of raga Shree. In the singer-
specific case, however, the gesture DTW is restricted to
alap instances and queries of the same singer. That is, for
every instance segmented on the basis of audio match-
ing, we take the reference gesture time series from a
reference instance of the same singer. This accounts for
singer dependence when it comes to gestures and is
expected to improve the Like/Unlike classification perfor-
mance. In some cases, the available pakad of a singer
does not contain the particular phrase which we are con-
sidering, in which case we decided to omit the singer in
our analysis of that phrase.

As noted in Section 1, we present an additional experi-
ment that tests gesture-based discrimination of very sim-
ilar motifs between two related ragas. This more chal-
lenging scenario involves predicting whether the raga
Miyan ki Malhar (MM) nDN motif can be reliably detected
from a set of tokens comprising all candidate instances
from MM and Bahar pooled. The same experiment is
reported with the Bahar motif (i.e., predicting the raga
Bahar nDN motif from the set of tokens drawn from both
ragas).

6 RESULTS AND DISCUSSION

We present the detection performance for the melodic
events of interest from features computed on the kine-
matic time series. In each testing scenario discussed in
the last section, multi-fold CV is applied as appropriate
to obtain the performance in terms of the detection F1
score computed across the predictions on the entire set
of tokens, each of which appears once in the test set.
That is, for each type of melodic event, the prediction
performances of the different kinematic time series are
provided in the context of the following distinct train–test
data splits: uniform singer, unseen singer, singer-specific
and, in the case of stable note experiments, unseen raga
as well.

6.1 STABLE NOTE DETECTION
Table 5 presents the details of the singer-specific experi-
ments for stable note detection. We see a wide variation
across singers in the count of instances aswell as the pro-
portion of stable notes. The percentage of stable notes
is viewed as the chance F1 score pertaining to a model
that predicts a segment as a stable note with a probabil-
ity equal to the percentage of stable notes. We see that
the classification scores greatly surpass the chance lev-
els for all our experiment variants. We note that the all-
feature model (PVA-WE) outperforms the other variants
for all singers other than NM and SCh (where it compares
favourably with the wrists-only PVA-W).

The performance increase across the rows is linked to
the increasingly more complex features, as we replace
kinematic parameter magnitudes with the individual x,
y, and z components, include position coordinates and,
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AG AK AP CC MG MP NM RV SCh SM SS

Total count 1778 2146 2485 2965 1928 2252 1846 1720 973 2328 2064

Percentage of
stable notes (%)

53.8 45.3 47.5 35.3 57.4 56.2 40.0 39.6 52.8 45.8 31.3

VA-Mag-W 80.3 77.5 75.2 71.5 80.7 81.2 75.4 69.7 83.2 76.6 61.7

VA-W 91.3 87.9 85.2 83.7 87.7 86.1 88.1 80.3 91.2 82.8 74.4

PVA-W 92.9 90.4 87.1 84.5 90.1 89.1 90.3 84.9 94.0 85.9 76.4

PVA-E 91.6 86.5 85.3 82.5 86.8 86.9 84.5 80.6 89.7 84.6 71.2

PVA-WE 93.7 90.5 89.8 85.4 91.3 89.6 89.7 84.9 93.8 88.1 77.3

Table 5 Singer-specific counts and F1 scores (%) for stable note detection from segmented gesture time series across the set of
instances in the duration range [0.5, 5] s. The segments from all alaps and pakads for each singer are included with the total count
provided together with the percentage of segments with stable note labels as obtained from F0-based labelling. For all the experiment
variants, the F1 scores are significantly better than the chance F1 scores (p < 0.001). Bold font indicates the best value per singer.

finally, incorporate kinematic features from the elbow
keypoints as well. The large improvement from VA-Mag-
W to VA-W (i.e. replacing magnitudes with component-
wise velocities and accelerations) highlights the
importance of retaining the directionality information
in movements. Adding position data to velocity and
acceleration (PVA-W as compared with VA-W) further
improves the performance, showing that the actual
position in normalised coordinates space of the singer’s
wrists also plays a direct role in determining whether
the sung note is stable or not. This somewhat surprising
outcome is supported by video examples in the supple-
mentary material showing a singer raising their hands to
a more or less fixed height on stable notes, unrelated to
the pitch height of the note.

Comparing PVA-WE with PVA-W, we see that adding
the elbow joint features brings a small increase in the
stable note detection performance. In contrast, eliminat-
ing the wrist features and using only the elbow (PVA-E)
leads to a more substantial performance drop for most
singers. This is as expected because the wrist move-
ments, although coupled to elbowmotion, are more free
and of larger magnitude. An observation (not reported in
the table) was that, for most singers, the performance
with right-wrist-only was similar to that with left-wrist-
only, with both values exceeded when the two wrists
were tracked.

In Table 6, we present the detection F1 scores aggre-
gated across singers. The performance drop is rela-
tively large from uniform-singer splits (86.1%) to unseen
singer (80.5%) when comparedwith that for unseen raga
(84.4%). This indicates that the raga dependence of sta-
ble note related gestures is not as high as the singer
dependence. We also compare these F1 scores with the
count-weighted mean F1 score for the singer-specific
experiment (PVA-WE) row from Table 5, which comes out
to be 88.2%.

Singer-
specific

Uniform
split

Unseen
raga

Unseen
singer

Folds (#) 10 10 9 11

F1 (%) 88.2 86.1 84.4 80.5

Table 6 F1 scores (%) for the different stable-note-detection
experiments. The “singer specific” score indicates the count-
weighted average of F1 scores for PVA-WE in Table 5. Next, we
carry out cross-validation in three different types: uniform split
(10-fold CV), unseen singer split (11-fold CV) and unseen raga
split (9-fold CV). The features PVA-WE were used in all cases.
The total number of segments classified is 22,485 (all alaps and
pakads across all 11 singers and nine ragas), with the percent-
age of stable notes at 45.3%.

6.2 RAGA PHRASE DETECTION
We present the results of the motif detection experi-
ments in the different testing contexts, uniform singer,
singer-specific and unseen singer. For the last two, we
present only the r/P phrase, with the details for the other
phrases provided in the supplementary material. The F1
scores are computed for each type of the DTW cost fea-
ture vector discussed in Section 5.2, covering the dis-
tinct ways of representing the gestural similarity between
themultidimensional reference phrase template and test
segment extracted from the alap SDS.

Table 7 presents the motif detection performance for
all the considered raga phrases, including the homony-
mous phrases associated with the two ragas MM and
Bahar, with the singers distributed uniformly across the
10 folds (i.e. the uniform-singer split). The total number of
Like and Unlike segments is given by the ‘count’. It is less
than the total number of SDS because some SDS return
invalid segments (i.e. too short in duration) in the audio-
based DTW. The eliminated segments are observed to
be non-phrase-containing where the collapse of the DTW
path in the course of the subsequence search stems from
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Phrase Raga #SDS Count Like (%) DTW-D (1) DTW-I (1) DTW-LR (2) DTW-Ind (36) DTW-Ind-W (18)

r/P Shree 505 415 50.1 69.0* 70.5* 64.7* 65.9* 66.4*

gmD Bageshree 489 331 53.2 59.9 65.4* 65.1* 64.6* 65.2*

P฀R Nand 435 301 45.9 30.5 22.9 66.4* 74.6* 75.8*

nDN MM 429 155 54.2 77.3* 77.3* 66.8* 79.3* 71.4*

nDN Bahar 433 257 48.6 68.9* 67.4* 54.8 71.8* 74.3*

nDN MM, Bahar 862 396 21.2 2.4 4.6 54.3* 52.1* 44.6*

nDN Bahar, MM 862 438 28.5 15.0 1.6 46.4* 46.4* 43.1*

Table 7 F1 scores (%) for motif detection for each of the raga phrases computed with the uniform-singer splits in 10-fold CV across the
different DTW cost feature vector choices. The final two rows pertain to the prediction of the first-mentioned raga’s phrase when the test
set contains the pooled instances of both ragas. The best performance in each row is in bold font. The * indicates the value is statistically
significant (p < 0.05) when compared with a chance classifier which predicts ‘Like’ with a probability equal to the percentage of like
segments..

the particularly large mismatch with the query motif.
With the consequent loss of these (essentially highly
unlike) segments, we end upwith a similar number of Like
and Unlike segments.

In the top five rows of Table 7, we see the F1 scores
for the detection of the given phrase across all the valid
instances of the 22 alaps of the same raga. We observe
F1 scores that are significantly higher than chance across
all the phrases for at least one of the DTW cost feature
vector choices. In the case of r/P (raga Shree), with its
relatively high count of instances, we have consistently
high F1 scores across all the different feature vectors,
pointing to the overall reliability of gesture-based predic-
tion for this phrase. The gmD phrase (raga Bageshree)
also exhibits a uniform but slightly lower detection per-
formance. The remaining three phrases have lower total
counts. They all showhigh F1 scores for the higher dimen-
sional feature vectors.

Moving on to the raga pair experiment, we note from
the final two rows of Table 7 that we can, to a signifi-
cant extent, separate a raga motif from its homonymous
counterpart in a different raga on the basis of DTW dis-
tance. In the “MM, Bahar” and “Bahar, MM” rows, the
Like segments of the first raga are put in the Like cate-
gory (say, Class ‘1’), whereas the other class (Class ‘0’)
contains Like segments of the opposite raga, Unlike seg-
ments of the same raga and Unlike segments of the
opposite raga. For instance, the MM-Bahar row presents
detection scores for the MM nDN phrase from the entire
set of instances drawn from all MM and Bahar alap SDS
pooled. We obtained a performance significantly better
than chance (which stands at 21.2%) for the DTW-LR fea-
tures, indicating that the gesturing style does play a role
in differentiating the singing of the two ragas.

The above-noted MM-Bahar raga-based gestural dis-
tinction appears consistent with the audio-based char-
acteristics as depicted in Figure 13. We see that dura-
tion is a prominent acoustic difference between the

Figure 13 Left: Comparing the duration distributions of the
‘Like’ instances for the ragas MM and Bahar. Right: Histogram of
DTW costs (across each of the MM and Bahar alaps) for the
F0-contour subsequence search with respect to reference
templates of phrase nDN from pakads of raga Miyan ki
Malhar (MM).

homonymous phrases. The distribution of the F0-based
DTW cost further reveals that the nDN motifs of Bahar,
while melodically close to the MM reference phrases (rel-
ative to non-nDNBahar andMM segments), evince a clear
offset in the distribution peak.

Table 8 allows us to study the predictability of any par-
ticular singer’s r/P phrase from a classfier trained solely
on the data of the other 10 singers. We see that all the
singers show, for at least one choice of the feature vec-
tor, a prediction-performance better-than-chance level
indicating the presence of common gestural cues across
singers for this highly characteristic upward slide. This
would be consistent with the qualitative analysis pre-
sented in Leante (2009). Singers AP, AG and SCh demon-
strated particularly high performances, while singer SS
was least well predicted. Furthermore, there were sev-
eral singers who showed a drop in scores with elbows
included over wrists alone. This may be attributed to
occasionally unreliable data from elbow tracking owing
to clothing-linked occlusions.
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AG AK AP CC MG MP NM RV SCh SM SS

Count 31 38 41 52 28 27 30 47 36 36 49

Like (%) 71 57.9 43.9 30.8 50 48.1 56.7 61.7 38.9 61.1 42.9

DTW-D (1) 82.6 60.4 68.3 56.1 64.7 77.4 68.3 76.5 68.3 78.4 60.0

DTW-I (1) 83.7 56.0 74.4 56.1 68.6 81.3 68.3 75 68.3 80.9 60

DTW-LR (2) 50.0 64.0 81.1 40.8 58.3 42.1 68.8 61.8 77.8 76.2 59.7

DTW-Ind (36) 62.9 62.8 76.9 48.8 61.5 63.6 64.5 56.0 76.5 74.4 62.5

DTW-Ind-W (18) 66.7 59.6 75 55.3 64.5 57.1 70.6 51.1 85.7 77.3 63.8

Table 8 F1-scores for the detection of raga Shree r/P with unseen-singer splits (i.e. leaving one singer out of CV) across the different
DTW cost feature vectors. Bold fonts indicate the highest obtained performance for each singer.

AG AK AP CC MG MP NM RV SCh SM SS

Count 31 38 41 52 28 27 30 47 36 36 49

Like (%) 71 57.9 43.9 30.8 50 48.1 56.7 61.7 38.9 61.1 42.9

DTW-D (1) 83 71.2 0 11.8 80.0 48.3 74.4 76.3 81.5 75.9 0

DTW-I (1) 88.0 73.3 0 40.0 59.3 23.5 73.7 76.3 63.6 75.9 0

DTW-LR (2) 76 71.2 48 43.5 76.9 43.5 72.2 76.3 92.3 75 58.8

DTW-Ind (36) 81 78.0 77.8 85.7 82.8 69.6 82.4 74.6 85.7 74.4 66.7

DTW-Ind-W (18) 87.0 60.5 77.8 78.6 75.9 64 74.3 73.3 89.7 78.3 42.9

Table 9 F1-scores for the detection of raga Shree r/P with singer-specific splits (i.e. 10-fold CV entirely within the individual singer’s
data set) across the different DTW cost feature vectors. Bold fonts indicate the highest obtained performance for each singer.

Table 9 reports phrase r/P detection performances
when the DTW comparison in gesture as well as cross-
validation testing was done within a singer’s data set.
We carried out training and testing using 10-fold CV
within each singer’s set of r/P Like/Unlike tokens. For
most singers, DTW-Ind obtains the best performance,
followed closely by DTW-Ind-W. We observe particularly
high detection performance (relative to chance) for the
singers AG, SCh and CC, implying self-consistency in
their gesturing associated with r/P. Singer SS, in con-
trast, exhibits poor gesture-based detection. The singer-
specific performances for the other raga motifs are
reported in the supplementary material.

Table 10 displays the performances for the differ-
ent train–test split conditions aggregated across all
11 singers. We present results for two of the DTW
cost vectors, the high-dimensional DTW-Ind and low-
dimensional DTW-LR. Together these serve to illustrate
the interaction of feature dimensionality with achiev-
able separation in the limited training data context. The
singer-specific training data are relatively low, as seen
from the counts in Table 9, while unseen-singer data

Singer-
specific

Uniform
split

Unseen
singer

Folds (#) 10 10 11

DTW-Ind (36) 77.9 65.9 63.9

DTW-LR (2) 65.7 64.7 61.8

Table 10 F1 scores (%), aggregated across the 11 singers,
for the detection of the phrase r/P under each of the listed
train–test split conditions. Results are presented for two DTW
cost feature vector choices.

utilises all the tokens of 10 singers to make predictions
regarding the test singer. A general trend is a fall in detec-
tion performance from singer-specific to unseen singer,
as also borne out by the direct comparison of the scores
of individual singers AK, MG, NM, RV and SCh across Table
8 and 9. Singer SM, in contrast, displays a similar perfor-
mance in both contexts. This reinforces the singer depen-
dence of gestureswhile also acknowledging the similarity
across singers in the gesture realisation of the r/P motif.
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7 CONCLUSIONS

As noted in the introduction, computational analysis such
as the work presented here seeks to build on quali-
tative and ethnographic research describing and inter-
preting Indian singers’ manual gestures. Together with
Nadkarni et al. (2023), this is the first study on ges-
tural similarity using musicologically motivated melodic
motifs. We started by verifying for our data set of Hindus-
tani alaps, previous research on the correlations between
raw acoustic and kinematic time series as reported from
motion capture data of Karnatak music performances.
We then described methods for the unsupervised
segmentation of the audio recording for stable notes
and for selected raga motifs (in the latter case, using a
small number of manually labelled reference templates).
The corresponding temporally alignedmovement data of
singers’ wrists and elbows were used to derive features
for the prediction of the presence of a stable note or the
melodic phrase of interest.

As expected, we were able to identify stable note
segments with a high degree of accuracy, scoring sig-
nificantly better than chance across all singers. Feature
models including raw position data for the wrists and
elbows as well as velocity and acceleration scored best,
leading to the conclusion that not only the (presumably
reduced) speed ofmovement but also the spatial position
of the hands is significant in terms of the accompaniment
of stable notes. Observation of video examples suggests
that the key factor that is pertinent heremay be the phys-
ical height of the hand position.

Looking at the raga motifs, the picture is more mixed.
The Shree r/P is an example previously highlighted as sim-
ple (it comprises a single upward slide in pitch), charac-
teristic of the raga, and linked to the meanings associ-
ated with the raga. This motif can be picked out using
the movement information across the different singers.
In this case, a strong, characteristic and focused upward
melodicmovement is frequently accompanied by a rising
hand movement. The other motifs were selected on the
basis of musical knowledge but without clear previous
analysis highlighting distinctive movements; thus, the
analysis was more exploratory. In fact, the detection
scores were lower for the other motifs, although still
above chance. Looking at the motif nDN (shared by MM
and Bahar) as an example, prediction is harder because
the melody is mapped onto more diverse movements
whose similarity appears hard to capture. We observe
that the gestures have something in common – a high
degree of mobility and an oscillatory movement from n
down to D, then back up to N – but the movements occur
in a different plane andwith different hand positions, pre-
sumably making it challenging to capture the similarity.
However, the kinematic information does help distinguish
between the two ragas (consistent with the idea that the
two ragas have different speeds and moods).

Our analysis confirms both the high degree of idiosyn-
crasy in gesturing and the fact that nonetheless there
are commonalities across singers in the way movements
match melodies. In each case, prediction rates fall off in
unseen-singer conditions, although this drop-off is less
marked in the stable note detection (although singer
dependence is more significant than raga dependence in
this task). Stable note identification shows that the cor-
relation of these segments with relatively stable raised
hand positions is strong enough that stable notes can be
reliably identified as such fromgesture information alone.
Raga phrase motifs, with their more complex melodic
shapes and the scope for variation, posemore challenges
to gesturemodelling, as borne out by ourmotif detection
results as well as the video examples included in the sup-
plementary material.

How consistently, then, is melodic content mapped
onto gesture, as revealed by the examples selected
here? The headline findings are of a significant degree
of consistency and above-chance classification alongside
significant singer-dependency. Consideration of misclas-
sified examples, as, for example, in the supplementary
material, enriches this picture. For instance, we showed
an example of a stable note accompanied by moving
rather than stationary hands, which we noted may sig-
nify a ‘stretching out’ of the steady note along a line or
a stable plane. We shared an example of the descend-
ing P฀R motif accompanied by a rising hand gesture, con-
trasting with the more typical falling gesture, which we
interpreted as signifying the resistance of the melody to
a further fall to the tonic S. We further noted that, in
the case of nDN, very different gestures may have fea-
tures in common but be difficult to classify because they
are presented on a different plane. Taking these exam-
ples together, we can see that what determines ges-
ture is not simply correlation between pitch and physical
movement, but between movement and intention. We
noted in the introduction that gesture maps onto differ-
ent referents (e.g. melody, rhythm and inter-performer
communication). When referring tomelody, gesturemay
refer not simply to F0 but to dynamics or timbre –
factors not covered in this study. Even when gesture
appears linked most closely to pitch movement, how-
ever, the result depends not simply on the pitch move-
ment but on the intention. For example, gesture may
communicate “Having moved to this note I am now
holding it steady, which means I am continuing to
expend effort, as I would to hold my hand up”, or
“The melody is falling to the second degree, so it
feels like the natural thing to do is to fall further to
the tonic, but see how I am resisting this fall”. Raga
melodies are not simply sets of pitch sequences but
structures of movement with intrinsic patterns of ten-
sion and relaxation which the singer works with and
against. In our interpretation, gesture allows the patterns
of movement to be actualised in the body as well as,
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for example, ways in which a singer feels herself to be
resisting certain possibilities to create tension. Melodic
movement can moreover be translated by the body
in different ways – in the vertical or horizontal or
some other plane, by one hand or both, and so on –
and this is not standardised through explicit teaching.
This is why we find enough consistency in the map-
ping to enable better than chance prediction, while
also finding singer-dependency and a significant num-
ber of segments that cannot be classified – not just
because the amplitude of movement is too small or
because they lie in an unexpected plane but because
the logic of the gesture is different to that of other
tokens of the type. This may present a practical limit
on the possibilities for melody detection from gestu-
ral information, although computational classification
alongside human interpretation could be musicologically
productive.

The discussion above points to the potential of further
improvements with higher abstraction levels to model
gestures. Movement similarity can then be measured in
the model space rather than through distances calcu-
lated directly between time series. Further benefits can
come from the inclusion of finger joints in gesture track-
ing. Finally, as with the stable note detection of this
work, future research can extend to other more generic
pitch contour elements such as glides and oscillations,
greatly widening the scope of the study. Other dimen-
sions of singing that could be relevant – beyond pitch
F0 – include timbre, dynamics and vowel sounds. The
outcomes can be fruitfully exploited in designing for
human interaction with synthetic instruments in ecolog-
ically valid ways, and the animation of visual avatars
for vocal performance. Apart from contributing to the
broad sub-discipline of cultural informatics, this study
bears out the idea that, in exploring musical gesture,
computational analysis informed by musical knowledge
and qualitative observation will lead to knowledge not
accessible by musically blind, purely data-driven explo-
ration. Iterative analysis in which computational results
are further reflected on qualitatively, in turn suggesting
new computational approaches, is likely to be particularly
fruitful.

8 REPRODUCIBILITY

Supplementary figures, tables and video examples, as
well as the code to reproduce the work, are available
at: https://github.com/DAP-Lab/Audio-Gesture-Correspo
ndence-TISMIR-2024.
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