
MNRAS 535, 1449–1474 (2024) https://doi.org/10.1093/mnras/stae2236 
Advance Access publication 2024 No v ember 13 

The impact of the cosmological constant on past and future star formation 

Daniele Sorini , 1 , 2 , 3 ‹ John A. Peacock 

2 and Lucas Lombriser 3 
1 Institute for Computational Cosmology, Department of Physics, Durham University, South Road, Durham DH1 3LE, UK 

2 Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh EH9 3HJ, UK 

3 D ́epartement de Physique Th ́eorique, Universit ́e de Gen ̀eve, 24 quai Ernest Ansermet, CH-1211 Gen ̀eve 4, Switzerland 

Accepted 2024 September 17. Received 2024 September 13; in original form 2023 September 22 

A B S T R A C T 

We present an extended analytical model for cosmic star formation, with the aim of investigating the impact of cosmological 
parameters on the star formation history within the � CDM paradigm. Constructing an ensemble of flat � CDM models where 
the cosmological constant varies between � = 0 and 10 

5 times the observed value, � obs , we find that the fraction of cosmic 
baryons that are converted into stars over the entire history of the universe peaks at ∼ 27 per cent for 0 . 01 � �/� obs � 1. We 
explain, from first principles, that the decline of this asymptotic star formation efficiency for lower and higher values of � 

is dri ven, respecti vely, by the astrophysics of star formation, and by the suppression of cosmic structure formation. Ho we ver, 
the asymptotic efficiency declines slowly as � increases, falling below 5 per cent only for � > 100 � obs . Making the minimal 
assumption that the probability of generating observers is proportional to this efficiency, and following Weinberg in adopting 

a flat prior on � , the median posterior value of � is 539 � obs . Furthermore, the probability of observing � ≤ � obs is only 0.5 

per cent. Although this work has not considered recollapsing models with � < 0, the indication is thus that � obs appears to 

be unreasonably small compared to the predictions of the simplest multiverse ensemble. This poses a challenge for anthropic 
reasoning as a viable explanation for cosmic coincidences and the apparent fine-tuning of the Universe: either the approach is 
invalid or more parameters than � alone must vary within the ensemble. 

Key words: methods: analytical – galaxies: formation – galaxies: star formation – cosmological parameters – cosmology: the- 
ory. 
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 I N T RO D U C T I O N  

alaxies are the most obvious tracers of large-scale structure in the 
ni verse, and understanding ho w they emerge and e volve through-
ut cosmic history has been a longstanding goal of cosmology 
nd astrophysics. The � CDM paradigm approaches this via the 
ravitational collapse of dark matter haloes from an initial quasi- 
omogeneous Universe. This process is well understood, thanks to 
arly analytical models of halo assembly (Lacey & Cole 1993 ), 
hich were subsequently validated numerically with full N -body 

imulations (Springel et al. 2005 ; Klypin, Trujillo-Gomez & Primack 
011 ; Angulo et al. 2012 ; Fosalba et al. 2015 ). Ho we v er, man y of
he detailed baryonic processes that go v ern the build-up of galaxies,
uch as gas accretion, star formation, and outflows, are not yet fully
nderstood. A successful theory of galaxy formation needs to account 
or these processes in order to predict the main observed properties 
f galaxies. In particular, reproducing the observed efficiency of star 
ormation, both locally within individual galaxies and globally o v er 
 cosmologically representative volume, constitutes a crucial test for 
ny model of galaxy formation (see the re vie w by Madau & Dickin-
on 2014 ). In this paper, we consider predictions for this efficiency
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nd how it depends on cosmological parameters, specifically the 
osmological constant. 

Early fully analytical models of star formation were based on 
imple prescriptions for the cooling time for the gas within galaxies
nd the typical time-scale for converting it into stars (e.g. Hernquist & 

pringel 2003 ), while following the growth of structures with well-
stablished analytical forms for the halo mass function (Press & 

chechter 1974 ; Sheth & Tormen 1999 , 2002 ). Ho we ver, these
nsightful models neglected more sophisticated mechanisms such 
s feedback processes driven by stars or active galactic nuclei 
A GNs). W ith a slightly different approach, White & Frenk ( 1991 )
mplemented the effect of subg alactic ph ysics through a series of
pproximate formulae, while keeping the treatment of structure 
ormation nearly analytical. This seminal work set the stage for a
equence of refinements of the modelling (e.g. Kauffmann, White & 

uiderdoni 1993 ; Cole et al. 1994 , 2000 ; Guiderdoni et al. 1998 ;
auffmann et al. 1999 ). Further extensions included the assembly 
f the central black hole, which enabled a description of the co-
volution of galaxies and quasars (e.g. Kauffmann & Haehnelt 2000 ;
omerville et al. 2008 ; Henriques et al. 2015 ; Lacey et al. 2016 ).
ther semi-analytical techniques followed the formation of dark 
atter haloes in full N -body simulations, coupled with analytical 

ecipes for the baryonic physics (e.g. Croton et al. 2006 ; Henriques
t al. 2020 ). 
is is an Open Access article distributed under the terms of the Creative 
h permits unrestricted reuse, distribution, and reproduction in any medium, 
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Full hydrodynamical simulations incorporate several physical
rocesses into the modelling and follow the evolution of baryons and
ark matter from first principles. Several cosmological simulations
e.g. Schaye et al. 2010 ; Dubois et al. 2014 ; Hopkins et al. 2014 ;
ogelsberger et al. 2014 ; Luki ́c et al. 2015 ; Schaye et al. 2015 ;
av ́e, Thompson & Hopkins 2016 ; McCarthy et al. 2017 ; Pillepich

t al. 2018 ; Dav ́e et al. 2019 ), often based on different numerical
pproaches (Springel, Yoshida & White 2001a ; Springel et al. 2005 ,
021 ; Almgren et al. 2013 ; Bryan et al. 2014 ; Hopkins 2015 ),
enerally managed to reproduce a plethora of observations to a
atisfactory level of accuracy. Ho we ver, feedback processes are
mplemented via various different numerical ‘subgrid’ prescriptions,
hose parameters are tuned to reproduce certain observations. It is

herefore important to ask if the predictions of these calculations
re robust, or whether they are fine-tuned to our Universe and have
 high sensitivity to model parameters. While a substantial body
f literature has focused on the effect on star formation history of
arying the subgrid parameters (see the re vie w by Somerville &
av ́e 2015 ), the impact of changing the cosmological parameters
as historically received less attention. This may partially reflect the
remendous progress in constraining the parameters of the � CDM
aradigm (e.g. Planck Collaboration VI 2020 ; but see also Verde,
reu & Riess 2019 for a discussion on recent tensions). Ho we ver,
tudying the predictions of hydrodynamical simulations regarding
he star formation history in counter-factual cosmological models
ould constitute an interesting ‘stress-test’ of our understanding of
alaxy formation. 

There is also a more fundamental reason to explore this question.
lthough the � CDM model is highly successful in many ways, it
as theoretical issues that are hard to ignore (see e.g. the re vie w
y Bull et al. 2016 ). While the cosmological constant � is required
o explain the accelerating expansion of the universe, there is no
onsensus on its physical meaning. If � is a manifestation of the
nergy of the quantum vacuum, then one can estimate its value
y integrating over the zero-point energy of all possible modes.
dopting a cut-off energy E v yields a vacuum density of E 

4 
v in

atural units; but the observed � requires a cut-off at rather low
nergies, E v ∼ 1 meV , in gross conflict with the scale of new physics
t perhaps 10 TeV or abo v e (Martin 2012 ). This common calculation
s in fact deeply flawed as it is non-relativistic and yields the wrong
acuum equation of state (Koksma & Prokopec 2011 ): a more
ophisticated calculation yields a vacuum density of order M 

4 , in
erms of the particle mass. Ho we ver, since particles exist with M 

ear to the TeV scale (0.17 TeV for the top quark), the discrepancy in
he estimated � is much the same as in the naive approach. For a more
etailed discussion of this ‘cosmological constant problem’ see, for
xample, Weinberg ( 2000a ) or Abel, Bryan & Norman ( 2002 ). 

Many attempts have been made to move beyond the idea of �
epresenting a simple vacuum density, and to hypothesize some more
eneral ‘dark energy’ contributing to an ef fecti ve � that may vary
ith time. Ratra & Peebles ( 1988 ) proposed that a dynamical scalar
eld could cause the accelerating expansion of the universe. While

he scalar field proposed by Ratra & Peebles ( 1988 ) was not moti v ated
y fundamental physics, later models tried to connect it to extensions
f the standard model of particle physics. In practice, the kinetic
r potential terms of the Lagrangian of the scalar field depend on
ome fundamental mass scale (e.g. Zlatev, Wang & Steinhardt 1999 ;
rmendariz-Picon, Mukhanov & Steinhardt 2001 ). An alternative
iew is that the cosmic acceleration in fact shows the need for some
odified theory of gravity (see e.g. Joyce, Lombriser & Schmidt

016 ). Other approaches include mechanisms that prevent vacuum
nergy from gravitating (Kaloper & Padilla 2014 ). Ho we ver, all these
NRAS 535, 1449–1474 (2024) 
odels ef fecti v ely mo v e the problem of the value of the � to the fine-
uning of some other parameter of the theory, such as the mass scale
ssociated with the scalar field (see e.g. Amendola & Tsujikawa
010 ). There is also a more radical position asserting that the debate
n the physical nature of the cosmological constant is moot, and that
 is simply a fundamental constant emerging within the theory of
eneral Relativity (Bianchi & Ro v elli 2010 ). 
Regardless of the physical interpretation of the cosmological

onstant, the oddly small non-null value of � gives rise to a number
f coincidences that cry out for an explanation. Perhaps the most
ell-known of these is that the Universe became � -dominated at
 ≈ 0 . 39, near to the formation time of the Sun. We therefore appear
o live near the unique era when � transitions from being negligible
o dominating the Universe: this is the ‘why-now problem’ (Velten,
om Marttens & Zimdahl 2014 ). A further time coincidence is
hat recombination occurred at the same time of baryon-radiation
quality. In addition, Lombriser & Smer-Barreto ( 2017 ) pointed out
hat the equality between � and radiation occurs around the mid-
oint of cosmic reionization. All these time-scale puzzles are in
rinciple distinct from the cosmological constant problem described
arlier (but see also the discussion in Lombriser 2023 ). 

A possible explanation for the ‘why now’ problem was suggested
y Weinberg ( 1987 ). He noted that if the cosmological constant
ad been much larger than observed, the accelerating expansion
f the Universe would have set in at earlier times, freezing out the
rowth of structure before galaxy-scale haloes had been able to form.
hus the star formation in galaxies that is necessary for the creation
f observers would not occur if � was substantially larger than
he observed value. Such an argument is an example of anthropic
easoning (Carter 1974 ), which ef fecti vely considers the existence
f observers (such as ourselves) as a ‘data point’ and explores the
mplications for the cosmological parameters conditional on this
nformation. 

To make this Bayesian argument (probability of � given that it is
bserved), we need there to be some physical mechanism that allows
 to vary. It is also common to invoke a multiverse: an ensemble

f dif ferent uni verses. The probability calculus is the same whether
r not the members of the ensemble actually exist, or merely have
he potential to do so. Ho we ver, the idea of a concrete multiverse
nderlying Weinber g’s ar gument was given stronger moti v ation by
he theory of inflation. Here, a multiverse of causally disconnected
bubble universes’ arises in models of stochastic inflation where
nflation proceeds eternally (Vilenkin 1983 ; Linde 1986 ; Guth
007 ; Freivogel 2011 ). All causally disconnected bubbles evolve
s independent universes, each characterized by a different set of
onstants, including � . The advantage of this picture is that for a
ufficiently large ensemble there are guaranteed to exist universes
uitable for the formation of structure. Thus, that would explain the
xistence of our Universe, no matter how atypical it is within the
nsemble. 

Anthropic arguments often encounter significant resistance, with
any physicists arguing that efforts should be focused on finding

olutions to cosmological puzzles from first principles (e.g. Kane,
erry & Zytkow 2002 ). Of course, such efforts should al w ays be
ursued. Ho we ver, we can note that anthropic approaches pervade
ther fields of astronomy, without generating contro v ersy. A prime
xample is the concept of circumstellar ‘habitable zone’, which is
efined based on the conditions that can sustain life on a planet (see
.g. Kasting, Whitmire & Reynolds 1993 ). Of course, unlike with
xoplanets, there is only one Universe that can actually be observed
although see Aguirre & Kozaczuk 2013 ; Wainwright et al. 2014 ;
ohnson et al. 2016 ). As such, anthropic arguments cannot be tested in
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he Galilean sense ingrained in the scientific method. Ho we v er, the y
an still be tested, since we can in principle predict the probability
istribution of observed values of cosmological parameters o v er the 
nsemble. This prediction can be compared with the single ‘data 
oint’ of our Universe, and a sufficiently large deviation from the 
v erage serv es to rule out the model on which the prediction was
ased. 
After the initial formulation given by Weinberg ( 1987 ), investiga- 

ions of the anthropic approach became progressively more refined. 
einberg ( 1989 ) extended his argument by noting that observer 

election does not require � to be exactly zero, and thus a small non-
ero (in principle even negati ve) v alue of � would be anthropically
redicted. A critical element of this argument is the idea that the
rior distribution of � should be flat because � = 0 is not a spatial
oint, and therefore any continuous prior must be treatable as a 
onstant in a narrow range near zero. Efstathiou ( 1995 ) revisited the
rgument by making more detailed estimates of the abundance of 
alaxies in universes with � ≥ 0, subject to the constraint that the
bserved temperature of the cosmic microwave background (CMB) 
s equal to 2 . 73 K. He concluded that anthropic arguments may
xplain a value of � close to the one that is observed. Later works
llowed for more than one cosmological parameter to vary. Garriga, 
ivio & Vilenkin ( 1999 ) considered simultaneous variations of � and 

he density contrast at the time of recombination. Peacock ( 2007 )
xplored anthropic arguments treating both the CMB temperature 
nd � as free parameters, and further allowing � to assume ne gativ e
alues. Bousso & Leichenauer ( 2010 ) also considered the variation of
ultiple cosmological parameters, as well as ne gativ e values of � . In

heir work, the generation of observers is tied to the global efficiency
f star formation in the different members of the multiverse ensemble.
he star formation history is predicted with a semi-analytical model, 
nder the assumption that the astrophysics of star formation does 
ot vary throughout the multiverse (Bousso & Leichenauer 2009 ). 
ther semi-analytical work by Sudoh et al. ( 2017 ) showed that

ncorporating the astrophysics of galaxy formation in anthropic 
easoning can affect the range of the anthropically fa v oured values
f � by almost an order of magnitude. 
More recently, progress in numerical power has enabled the 

esting of anthropic reasoning with full hydrodynamical simulations, 
xploring the simulated past and future star formation history for 
 wide range of � (Barnes et al. 2018 ; Salcido et al. 2018 ; Oh
t al. 2022 ). While such simulations include several astrophysical 
rocesses (albeit in an approximate parametrized form), it is hard 
o probe a wide parameter space, or to explore the far future of
he universe (beyond ∼ 100 Gyr cosmic time), without a massive 
ommitment of computational resources. 

Analytic models of star formation therefore represent an attractive 
omplementary approach as they are not subject to the same limi-
ations as hydrodynamical simulations. While inevitably simplified 
n terms of astrophysics, they are an efficient technique that can 
ffer a more intuitive picture of the evolution of star formation 
e.g. Rasera & Teyssier 2006 ; Dav ́e, Finlator & Oppenheimer 2012 ;
harma & Theuns 2019 ; Salcido, Bower & Theuns 2020 ; Fukugita &
awasaki 2022 ). Recently, Sorini & Peacock ( 2021 ) generalized the
ernquist & Springel ( 2003 ) model of cosmic star formation such

hat it can be applied to arbitrarily large times. In this work, we
urther adapt the Sorini & Peacock ( 2021 ) formalism to explore the
mpact of different values of � on past and future star formation.
he main result of our study will be that values of � in the

ange 0 . 01 � �/� obs � � obs maximize the global efficiency of star
ormation. Ho we ver, the interesting question is ho w ef fecti vely star
ormation is truncated by large values of � . If this suppression
s not ef fecti ve until � is vastly beyond the observed value, then
einberg’s flat prior will mean that the observed Universe risks 

eing an implausibly rare outlier. The main aim of this paper is to
uantify just how unusual our Universe is in this respect. 
This manuscript is organized as follows. In Section 2 , we give an

 v erview of the formalism in Sorini & Peacock ( 2021 ) and impro v e it
y introducing extra features. In Section 3 , we explain how we adapt
t to � CDM models with arbitrary non-ne gativ e values of � and
iscuss the impact of changing the cosmological constant on the halo
ass function and on the efficiency of star formation within haloes.

n Section 4 , we present our predictions for the long-term efficiency
f star formation for different values of � . In Section 5 , we discuss
he implications of our results for anthropic reasoning. We mainly 
ocus on the cosmological constant problem but also marginally 
onsider the why-now problem. We also compare our results with 
revious literature on the subject and discuss the limitations of our
odel. Finally, in Section 6 we summarize the main conclusions of

ur work and discuss the future developments of our line of research.
Throughout this work, unless otherwise indicated, units of distance 

re understood to be proper units. Comoving units are designated 
ith a ‘c’ prefix (e.g. ckpc, cMpc). 

 FORMALI SM  

n this work, we aim to exploit the analytical model for cosmic star
ormation developed by Sorini & Peacock ( 2021 ) – hereafter SP21.

e therefore summarize the main aspects of the formalism in Section
.1 . In Section 2.2 , we will show how we extended the SP21 model to
btain greater accuracy in the predictions of the late-time behaviour 
f star formation. As we will explain, this generalization will be
rucial in answering the main scientific questions addressed in this 
ork. 

.1 Summary of the SP21 model 

he SP21 model predicts the cosmic star formation rate density 
CSFRD) from first principles, generalizing the seminal work by 
ernquist & Springel ( 2003 ) – hereafter HS03. The basic idea of

he formalism is that the CSFRD is obtained by integrating the star
ormation rate (SFR) in all haloes within a given comoving volume,
eighted by the halo multiplicity function: 

˙∗( z) = ρ̄0 

∫ 
s( M , z) 

d F ( M , z) 

d ln M 

d ln M , (1) 

here the ρ̄0 is the comoving mean matter density of the universe
nd d F ( M, z) / d ln M is the halo multiplicity function, with F ( M, z)
eing the collapsed mass fraction in haloes with total mass > M .
hese quantities encode the impact of background cosmology and of 

he growth of large-scale structure on the CSFRD. The specifically 
strophysical component of the CSFRD is encapsulated in the 
erm s( M, z) = SFR /M , which represents the average SFR over
 population of haloes of mass M at redshift z, normalized by the
otal halo mass M . We will refer to s( M, z) as ‘normalized SFR’
nSFR). 

In this work, we follow SP21’s choice of modelling F ( M, z) via
he Sheth–Tormen formalism (Sheth & Tormen 1999 , 2002 ). We also
dopt the same definitions of the virial radius, mass, and temperature
s in SP21. The virial radius R of a halo of virial mass M at redshift
 is defined as the radius of the sphere that contains a matter density
qual to � ρc ( z), where ρc ( z) is the critical density of the universe
MNRAS 535, 1449–1474 (2024) 
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nd � a suitable multiplying factor: 

 = � 

4 

3 
πR 

3 ρc ( z) ; (2) 

P21 adopted � = 200. One can then define a characteristic virial
elocity 

 

2 = 

GM 

R 

, (3) 

here G is the universal gravitational constant. We additionally
efine the virial temperature T such that 

 

2 = 

2 k B T 

μ
, (4) 

here k B is the Boltzmann constant and μ is the mean molecular
eight. We assume that μ ≈ 0 . 6 m p , which is a valid approximation

or a fully ionized plasma of primordial composition. From equations
 2 )–( 4 ), it follows that 

 = 

√ 

2 

� 

1 

GH ( z) 

(
2 k B T 

μ

) 3 
2 

. (5) 

Although the CSFRD in equation ( 1 ) is expressed as an integral
 v er the halo mass, it may be at times more convenient to switch
he integration variable to the virial temperature. In particular, within
he HS03 formalism, the nSFR is more naturally expressed for a
opulation of haloes at given T , as we shall now explain. 
At an y giv en z, the nSFR is set by a characteristic time-scale.

t high redshift, haloes are denser and hence gas cooling is more
fficient. The bottleneck of star formation is therefore represented
y the typical time-scale that go v erns the conv ersion of cool gas into
tars. This ‘average gas consumption time-scale’, 〈 t ∗〉 , is assumed to
e a constant, with no dependence on the virial temperature of the
alo or on the cosmological epoch. This assumption was originally
ntroduced by HS03 following the results of full hydrodynamical
osmological simulations (Springel & Hernquist 2003a , b ), but really
sserts that 〈 t ∗〉 is a time-scale set by the local microphysics of
olecular clouds. The same prescription was adopted by SP21, who

etermined a physically reasonable range of 〈 t ∗〉 by matching their
redictions of the Kennicutt–Schmidt law (Kennicutt 1998 ) with
easurements by Genzel et al. ( 2010 ). The value of 〈 t ∗〉 that best

eproduces the observations was found to be 2 . 39 Gyr, but values
n the range (1 . 63 − 3 . 87) Gyr are consistent with the data within
 σ . SP21 showed that values of 〈 t ∗〉 within this range can predict
he CSFRD at high redshift within a factor of two, and we adopt
he same prescription for the average high-redshift nSFR of a halo
opulation at given virial temperature: 

 high ( T , z) = 

(1 − β) xf gas ( T , z) 

〈 t ∗〉 , (6) 

here x is the fraction of cold gas clouds, β is the mass fraction
f massive ( > 8 M 	) short-lived stars, and f gas ( T , z) is the mass
raction of gas within the haloes considered. Following the same
hoice as in HS03 and SP21, we set x = 0 . 95. This value is again
oti v ated by the subgrid model for star formation by Springel &
ernquist ( 2003b ), which was utilized in hydrodynamical simula-

ions by Springel & Hernquist ( 2003a ). As in SP21, we set β = 0 . 21.
his is determined by assuming a Chabrier ( 2003 ) initial mass

unction (IMF) o v er a stellar mass range between 0 . 1 and 80 M 	. 
At low redshift, haloes are less dense and gas cooling thus proceeds
ore slowly. The nSFR is then no longer dictated by an internal time-

cale, but is limited by the supply of new cold gas, which is set by
he cooling time-scale t cool . This quantity depends on the local gas
NRAS 535, 1449–1474 (2024) 
ensity, which is assumed to follow a spherically symmetric power-
aw profile: 

gas ( r) = (3 − η) 
M gas 

4 πR 

3 

(
R 

r 

)η

, (7) 

here M gas is the total gas mass enclosed in the halo and the slope
is a free parameter of the model. Clearly, one must have η < 3

o prevent the halo gas mass from diverging. We also assume that
> 0, so that density falls with radius. The assumption of a power-

aw gas density profile is generally supported by full cosmological
imulations (e.g. Sorini et al. 2024b ), but more complex models
ay provide a more realistic physical picture (see e.g. Mathews &
rochaska 2017 ; Prochaska & Zheng 2019 ; Khrykin et al. 2024 ;
orini et al. 2024a ). 
The cooling time at distance r from the centre of the halo is given

y 

 cool = 

3 k B T ρgas ( r) 

2 μn H ( r) 2 C( T ) 
, (8) 

here n H is the number density of hydrogen and C( T ) is the cooling
unction. As in HS03 and SP21, we assume a primordial cooling
unction (Sutherland & Dopita 1993 ), ef fecti v ely ne glecting metal
ooling. Ho we ver, this limitation is expected to alter the CSFRD at
ow redshift in a manner that does not significantly affect conclusions
egarding the long-term star formation history (see the discussion in
P21 and HS03), so that metallicity evolution is unimportant for

he scope of this work. The cooling function depends purely on
emperature, so there is some advantage in considering the evolution
f the nSFR for haloes with given T rather than given M . 
The cooling rate of gas within haloes of virial temperature T 

t a given time is then estimated by following the expansion of a
ooling front from the centre of the halo outwards. At any time t ,
he cooling front reaches the cooling radius r cool ( t), defined by the
riterion t cool ( r cool ( t)) = t . The gas mass M cool within r cool cools down
nd remains cool thereafter. The cooling rate is then determined by
olving the equation 

d M cool 

d t 
= 4 πρgas ( r cool ) r 

2 
cool 

d r cool 

d t 
. (9) 

ere, the meaning of the time t needs to be defined quite carefully. In
rinciple, this would be the time since the formation of the halo, i.e.
ince the last major merger. In the matter-dominated era, low-mass
aloes have a life span comparable to the age of the universe, whereas
igh-mass haloes beyond the exponential cut-off survive for shorter
imes. Ho we ver, massi ve haloes are rare, so one can ef fecti vely make
he reasonable assumption that t (and t cool ) are comparable to the
osmic time. Ho we ver, it has been suggested that t cool should be of
he order of the dynamical time of the halo t dyn = R/V , as it is on
his time-scale that the gas profile reacts to pressure losses, and hence
hould set the extent of the cooling radius (Springel et al. 2001b ).
ecause this prescription provides good agreement with simulations

Yoshida et al. 2002 ), HS03 solved equation ( 9 ) imposing t cool = t dyn .
o we ver, SP21 noted that this assumption breaks down in the far

uture, when the universe becomes � -dominated. In this regime,
erging eventually ceases and haloes are isolated. Therefore, haloes

an in principle cool down for arbitrarily large times. Thus, SP21
dopted the prescription 

 cool ( t) = f dyn t dyn 

[
1 − E + 

(
t 

f dyn t dyn 

)m 

] 1 
m 

, (10) 
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here 

 = 

( 

2 

3 f dyn 

√ 

� 

2 

) m 

. (11) 

y construction, equation ( 10 ) yields t cool ≈ f dyn t dyn for t 
 t dyn ,
here f dyn is a constant of order unity, and t cool ≈ t for t � t dyn .
P21 showed that the values of the parameters f dyn and m have
inimal impact on the predicted CSFRD. We will then adopt their 
ducial values, f dyn = 1 and m = 2. 
In a flat � CDM universe, the correspondence between redshift 

nd cosmic time can be obtained analytically outside the radiation- 
ominated era: 

( t) = 

(

m 


� 

) 1 
3 
[

sinh 

(
3 

2 

√ 


� 

H 0 t 

)] 2 
3 

, (12) 

here H 0 , 
m 

, and 
� 

are the Hubble parameter and density 
arameters of matter and � at z = 0, respectively. A principal interest
f this paper is the impact of changing the value of � , which
hen alters the expansion history of the universe and changes all 
osmological parameters. We discuss below how to handle these 
hanges in a consistent fashion. Combining equation ( 12 ) with 
quations ( 9 ) and ( 10 ), one can then obtain the cooling rate as a
unction of the virial temperature and redshift. Using the cooling 
ate as a proxy for the low-redshift nSFR, SP21 found 

s low ( T , z) = 

˜ S ( T ) 

(
H ( z) 

H 0 

f gas ( T , z) 

f b 

) 3 
η (

1 − E + A ( z) m 

) 3 −η
mη −1 

[ 

A ( z) m −1 + (1 − E) 
3 f dyn 

2 

√ 

2 

� 

(
H 0 

H ( z) 

)2 


m 

(1 + z) 3 
] 

, (13) 

here 

 ( z ) = 

2 

3 f dyn 

√ 

� 

2 
� 

H ( z ) 

H 0 
arcsinh 

( 

√ 


� 


m 

(1 + z) 3 

) 

(14) 

nd ˜ S ( T ) is a temperature-dependent proportionality factor with the 
nits of an SFR per unit mass. 
Clearly, to determine the nSFR both at high and low redshift,

t is crucial to have an expression for f gas ( T , z). SP21 adopt the
pproximation f gas ( T , z) ≈ f b , halo ( T , z), where f b , halo ( T , z) is the
aryon mass fraction in haloes of temperature T at redshift z. This is
n turn determined by studying the balance between the gravitational 
orce and outward pressure e x erted by superno v a-dri ven winds on
 gas parcel within the virial radius, as a function of its distance
rom the centre. One can then define a critical radius within which
aryons are bound to the halo and escape otherwise. The question is
hether such a critical radius falls within the cooling radius, which is

he region of the halo that can produce stars in the simplified picture
onsidered by SP21 and HS03. SP21 show that abo v e a certain critical
irial temperature T crit ( z) the critical radius falls outside the cooling
adius, hence all haloes retain their cosmic share of baryons. Below 

 crit ( z), this approach yields a baryon mass fraction enclosed in the
alo that scales as a power of its virial temperature: 

 b , halo ( T , z) = 

⎧ ⎨ 

⎩ 

(
T 

T crit ( z) 

) 3 −η
2( η−1) 

f b if T < T crit ( z) 

f b otherwise 
. (15) 

he transition between the two-temperature regimes is smoothed 
ith a suitable analytic function. Equation ( 15 ) ef fecti v ely pro vides
 prediction for the baryonic Tully–Fisher relationship (bTFR), an 
mpirical correlation between the baryonic mass and total mass of 
aloes. Comparing the predicted bTFR with observations of the 
TFR by Lelli, McGaugh & Schombert ( 2016 ), SP21 conclude that
alues of η in the range 1 . 9 − 2 . 4 are compatible with the data within
 σ . The same values are simultaneously compatible, within a similar
evel of precision, with the Genzel et al. ( 2010 ) observations of the
ennicutt–Schmidt relationship. 
The final expression of the nSFR as a function of time is then

btained by simply interpolating the high-redshift (equation 6 ) and 
ow-redshift solutions (equation 13 ) with a smooth function, such 
hat 

( T , z) = 

s high ( T , z) s low ( T , z) 

( s high ( T , z) m + s low ( T , z) m ) 
1 
m 

. (16) 

P21 set m = 2, although they showed that the impact of this
arameter on the predicted CSFRD is minimal. Equation ( 16 ),
ombined with the Sheth–Tormen formalism for the halo multiplicity 
unction, allows one to obtain an analytic expression for the CSFRD
iven by equation ( 1 ). 

.2 Improving the accuracy of the SFR at late times 

s explained in Section 2.1 , one simplifying assumption adopted in
P21 is that the baryon mass fraction in haloes is roughly equal to

he gas mass fraction. This approximation can be easily justified at
igh redshift, shortly after the onset of star formation. Ho we ver, this
ssumption can be too strong at later times, when the stellar mass
raction of haloes is not negligible with respect to their gas mass
raction (e.g. McGaugh et al. 2010 ). This could become an even
ore important issue when considering the future of the universe. 
ince the major focus of this work is understanding the impact of �
n both the past and future star formation history, we need to first
xtend the SP21 formalism by keeping f gas ( T , z) and f b , halo ( T , z)
istinct. 
One would be tempted to compute f gas from equation ( 15 ),

eplacing the cosmic baryon mass fraction with f b − f ∗( T , z), where
 ∗( T , z) is the stellar mass fraction for a halo with virial temperature
 at redshift z. The stellar mass fraction is related to the time integral
f the nSFR provided by equation ( 16 ). The trouble is that the nSFR
epends on f gas , while f gas in turn depends on the nSFR. 
To break this circularity, we adopt the follo wing iterati ve method

o calculate the nSFR: 

(i) we assume that, at any fixed virial temperature, f gas ( T , z) ≈
 b , halo ( T , z) at a sufficiently high redshift z in , and compute the
orresponding nSFR following the original SP21 model; 

(ii) we obtain the stellar mass fraction as a function of redshift by
ntegrating the nSFR over time, or, in terms of redshift: 

 ∗( T , z) = 

1 

M( T , z) 

∫ z in 

z 

M( T , z ′ ) s( T , z ′ ) 
(1 + z ′ ) H ( z ′ ) 

d z ′ ; (17) 

(iii) we compute the cooling radius as a function of redshift from
he criterion t cool ( r cool ( t)) = t explained in Section 2.1 ; the cooling
ime is given by equation ( 8 ), with the gas density given by equation
 7 ), where we further impose that M gas ( T , z) = ( f b − f ∗( T , z)) M .

e then compare the evolution of the cooling radius with that of
he critical radius described in the previous section to determine 
he critical temperature T crit ( z) (see the appendix in SP21 for more
etails); 
(iv) we update f gas ( T , z) via equation ( 15 ), where we now replace

 b with f b − f ∗( T , z); 
(v) we use the new gas mass fraction to re-calculate the nSFR via

quations ( 6 ), ( 13 ), and ( 16 ); 
(vi) we repeat the abo v e protocol restarting from point (ii). 
MNRAS 535, 1449–1474 (2024) 
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To ensure that the iterative procedure described above produces
onv erging results, we e xamined the nSFR, stellar mass fraction, and
ritical temperature computed at each iteration. We plot the evolution
f these quantities in Fig. 1 . The nSFR and stellar mass fraction
efer to a halo with virial temperature T = 10 5 K in our � CDM
niv erse. F or all quantities plotted, convergence is achieved very
uickly – within five iterations. As expected, a non-null stellar mass
raction reduces the gas available for star formation, so that the nSFR
s reduced. This in turns makes the cooling radius smaller: haloes
hat were at the critical temperature in the SP21 work are therefore
ow abo v e the critical temperature so that the critical temperature is
owered with respect to the original formalism. 

As we can see in the middle panel of Fig. 1 , the stellar mass fraction
symptotes to a constant in the far future. That is a consequence of
he decay in the nSFR, which tends to zero in the limit of infinitely
arge cosmic time. We will discuss this in detail in Section 4.1 .
he stellar mass fraction is a monotonic function of time, because

he nSFR is al w ays positiv e. There is no e xplicit mechanism in
he model that remo v es stars that hav e gone superno va or became
tellar remnants. The contribution of short-lived and massive stars
o the nSFR is remo v ed through the β factor in equations ( 6 )
nd ( 13 ), but all other stars are ‘eternal’ once formed. This is a
easonably good approximation, since the time-scale for white dwarfs
o turn into black dwarfs has been estimated to be ∼ 10 5 Gyr (Dyson
979 ; Adams & Laughlin 1997 ; Caplan 2020 ); we will discuss the
ubsequent implications for anthropic reasoning in Section 5.1 . 

We verified that convergence is achieved in the range of interest
or this study, that is 10 4 K < T < 10 10 K (as explained in SP21, the
ontribution of haloes with T > 10 10 K to the CSFRD is negligible;
e verified that this holds also for the cosmological models consid-

red in this work). At higher temperatures, convergence is faster: at
 = 10 7 K, two iterations are sufficient. For all quantities shown in
ig. 1 , we chose z in = 20 as the initial redshift, but we verified that

he exact value is unimportant as far as our analysis is concerned (see
ection 4.1 for a more detailed discussion). 
To assess whether the stellar mass fractions predicted by our

evised SP21 method are physically sensible, let us consider the
ass of the Milky Way. Recent estimates point to a stellar mass

f (6 . 08 ± 1 . 14) × 10 10 M 	 (Licquia & Newman 2015 ) and a
irial mass of 1 . 54 + 0 . 75 

−0 . 44 × 10 12 M 	 (Watkins et al. 2019 ). There-
ore, the stellar-to-total mass ratio is expected to be in the range
 . 2 − 6 . 6 per cent . Applying equation ( 5 ), we can derive the virial
emperatures corresponding to the virial mass found by Watkins et al.
 2019 ), and then compute the corresponding stellar mass fraction at
 = 0 via equation ( 17 ), obtaining 6.7 per cent. Thus, the predictions
f our model are compatible with the upper bound of the stellar-to-
otal halo mass range provided by the observations. Considering the
implifications made in the formalism, this is a reassuring result. 

The key quantity under study in this paper is the CSFRD, so it is
mportant to see how this is affected by the changes in normalized
FR shown in Fig. 1 , which result from our generalization of the
P21 model. In the upper-left panel of Fig. 2 we show the CSFRD in

he redshift range 0 < z < 10, computed both with the original and
evised formalism. It is clear that our procedure yields a slightly lower
SFRD at low redshift, with little change in the slope at late times.

n the upper-right panel, we show the behaviour of the two models
n the future of the Universe. As future times correspond to ne gativ e
edshifts, and the CSFRD approaches zero as time tends to infinity,
he scale of both axes switches from logarithmic to linear when

oving from the upper-left to the upper-right panel. We quantify
he relative difference between the original SP21 model and our
pdated formalism in the lower panels of Fig. 2 (dashed black line).
NRAS 535, 1449–1474 (2024) 
he differences are at the per cent level for z > 5, and then grow
rogressively, reaching ∼ 10 per cent at the peak of star formation
nd ∼ 20 per cent at z = 0. The discrepancy gro ws slo wly but steadily
n the far future of the Universe, stopping short of 30 per cent in
he limit t → ∞ . Such differences are subdominant with respect
o the uncertainties of the parameters of the model. The original
P21 model is thus still suitable for rapidly predicting the past star
ormation history of our Universe, but our generalization becomes
ndispensable for the future star formation history. This is even more
mportant when one considers larger values of the cosmological
onstant: we verified that the relative difference with respect to the
P21 model grows as � increases. 
In the upper-left panel of Fig. 2 , we also show the compilation of

bservational data provided by Madau & Dickinson 2014 , alongside
heir empirical fit to the data. Both data and fitting function have been
roperly rescaled from a Salpeter ( 1955 ) to a Chabrier ( 2003 ) IMF,
or consistency with the SP21 formalism and the model presented
n this work (the data points were not rescaled in this way in
he SP21 paper). The relative difference between the SP21 model
nd the Madau & Dickinson ( 2014 ) fit are quantified in the lower-
eft panel, confirming that the SP21 predictions reco v er the fitting
unction within a factor of ∼ 2 for 0 < z < 10. Since our updated
ormalism deviates from SP21 by at most 20 per cent in the same
edshift range, we can conclude that our model also matches the

adau & Dickinson ( 2014 ) fit within a factor of ∼ 2. This level
f agreement is remarkable, considering the simplicity of the SP21
odel. As a reference, sophisticated hydrodynamic cosmological

imulations, while providing an overall better agreement with the
ata, exhibit discrepancies of a factor of ∼ 2 or larger around cosmic
oon (McCarthy et al. 2017 ; Dav ́e et al. 2019 ) and within a factor
f ∼ 1.6 at z � 3 (Salcido et al. 2018 ). Ho we ver, other state-of-the-
rt cosmological simulations, such as IllustrisTNG (Pillepich et al.
018 ), achieve a significantly more accurate match with observations
f the CSFRD (Weinberger et al. 2017 ). Thus, whereas the SP21
odel manages to broadly reproduce both observed and simulated

rends of the CSFRD (Scharr ́e, Sorini & Dav ́e 2024 ), there is
ertainly room for further impro v ement. A detailed discussion on
he limitations of the SP21 model and the resulting impact on the
redicted CSFRD can be found in Sorini & Peacock ( 2021 ). 
It is also worth noting that the data in the Madau & Dickinson

 2014 ) compilation might be affected by biases introduced by the
arametric models underlying the estimation of the CSFRD from
bservations of galaxy spectral energy distributions (Carnall et al.
019 ). Additionally, subsequent estimates of the CSFRD deviate
rom the Madau & Dickinson ( 2014 ) fit, both at high (Gruppioni
t al. 2015 ; Rowan-Robinson et al. 2016 ) and low (Gruppioni et al.
015 ) redshifts. Other measurements exhibited a lower normalization
or the CSFRD at the peak of star formation (Liu et al. 2018 ), or a
lateau at cosmic noon (Traina et al. 2024 ). The spread of some
f the data points from these more recent measurements is generally
omparable to, or even larger than, the discrepancy between the SP21
odel and the Madau & Dickinson ( 2014 ) fit. Given this range of

redictions, the precision of the CSFRD given by the SP21 model
eems satisfactory for the purpose of the present investigation. 

As for the performance of the model in predicting the future star
ormation history, we note that the shape of the future CSFRD is
ssentially dictated by the evolution of the cooling radius and of
he critical temperature (see Appendix A for a detailed deri v ation
f the asymptotic scaling of the CSFRD). The normalization of the
SFRD for z < 0 will follow the o v erall normalization of the CSFRD
t earlier times. Thus, given a factor of ∼ 2 uncertainty in the past
tar formation history at z ≈ 0, we can reasonably expect a similar
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Figure 1. Redshift evolution of the nSFR ( left panel ) and stellar mass fraction ( middle panel ) for a halo with virial temperature T = 10 5 K, as predicted at 
every iteration of our updated version of Sorini & Peacock ( 2021 ) described in Section 2.2 . The right panel shows the prediction for the redshift evolution of 
the critical temperature. The black lines labelled ‘iteration 0’ refer to the predictions of the original SP21 model with f ∗( T , z) = 0; thus no black line appears 
in the middle panel, which adopts a logarithmic scale on the y-axis. For all quantities plotted in this figure, full convergence is achieved after five iterations. 

Figure 2. Upper panels : CSFRD, as computed with our extension of the SP21 model (dashed black line) and as given by the original SP21 model (dot–dashed 
red line). In the left panel, we further show with the empirical fit (dotted black line) to a compilation of observational data provided by Madau & Dickinson 
( 2014 ) (grey data points). The right panel shows the behaviour of the SP21 model and our extended formalism in the future of the Universe. As future times 
correspond to ne gativ e redshifts, and the CSFRD becomes asymptotically null at arbitrarily large times, both axes switch from logarithmic to linear scale when 
moving from the left to the right panel. The grey hatched shaded area in the right panel excludes the non-physical region corresponding to ρ̇∗ < 0. Lower panels : 
Relati ve dif ference between the two models sho wed abo v e (dashed black line), and between our formalism and the fit from Madau & Dickinson ( 2014 ) (dotted 
black line). The latter comparison is available only for positive redshifts (i.e. past cosmic times), as the fit represents a purely empirical fit to the data, and not a 
predictive theoretical model. The SP21 model agrees well with the improved method introduced in this work at high redshift, but overestimates the CSFRD at 
lower redshift and in the future. In the redshift range 0 < z < 10, both the original SP21 model and our updated formalism agree with the empirical fit within a 
factor of ∼ 2 . 
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ystematic imprecision in the future CSFRD. As it will become 
pparent in Section 4.1 , the future behaviour of the CSFRD may
ontribute significantly to the o v erall production of stars in the entire
istory of the uni verse. Ho we ver, as we will sho w, the dif ferences in
he total stellar mass produced in the universe for different values of
he cosmological constant can span several orders of magnitude, thus 
ur main conclusions will be largely unaffected by an uncertainty of
 factor 2 in the CSFRD. 

We also highlight that our analysis is relative, i.e. based on the ratio
f the star formation histories produced in different cosmologies, 
nd will not depend on the absolute value of the star formation
fficiency in a single cosmology. Of course, our posterior for � will
MNRAS 535, 1449–1474 (2024) 
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till be subject to accepting the underlying simplified astrophysical
odel for cosmic star formation. We discuss the impact of these

imitations of our study, and prospects for their future amelioration,
n Section 5.4 . 

 I M PAC T  O F  C H A N G I N G  � 

aving introduced the basic formalism in the previous section, we
ill now explain how varying � would affect the star formation
istory. Changing the cosmological constant obviously affects the
volution of large-scale structure; this is the subject of Section 3.1 .
o we ver, a dif ferent v alue of � can also directly af fect the cooling

ate within haloes. The astrophysical impact of changing � will be
iscussed in Section 3.2 . 

.1 Cosmological impact 

o begin with, we need to understand how the empirical z = 0
osmological parameters such as H 0 are altered when we vary � .
e will restrict our discussion to arbitrary flat � CDM universes only
implicitly assuming an inflationary multiverse. In addition, all the

imensionless parameters of the � CDM model are assumed to be
nchanged: the horizon-scale amplitude A s , the ratio of baryonic
nd CDM densities, and the ratio of photon and baryon number
ensities. The consequence is that all model universes under study are
ndistinguishable copies of our own Universe at very high redshifts
here � is dynamically unimportant. Ho we ver, in endo wing them
ith different values of � , the histories of these copies become
iverse at later times. The reason for this restriction is the measure
roblem: for � we can appeal to Weinber g’s ar gument for a flat prior,
ut if other parameters were to vary then we have little idea what
he appropriate prior would be. Therefore, we concentrate on this
implest ensemble. 

It is convenient to quantify these alternative models using the
tandard set of parameters for the � CDM model: 
m 

, 
� 

, etc.
e will add the subscript ‘ref’ when we indicate the corresponding

arameters in our own Universe. This requires a definition of
he ‘present’, which we take to be the point at which the CMB
emperature equals the standard value ( T 0 = 2 . 7255 K; see Planck
ollaboration VI 2020 ). We normalize the scale factor such that
 = 1 at this point, so that the radiation density in all models scales
 a −4 , with the identical constant of proportionality in all cases.
o we ver, changing the value of � means that the time corresponding

o T = T 0 and the Hubble parameter at that point take values that are
ifferent from those in the observed Universe, as we now explain. 
We start by noting that the Friedmann equation for a flat universe

pplies in all cases, so at times rele v ant for star formation we have 

 

2 = H 

2 
0 ( 
m 

a −3 + 
� 

) . (18) 

e preserve the matter density and re-scale the vacuum density by
 factor α� 

= �/� ref , where � ref is the cosmological constant in
he reference cosmology, so that ρm 

= ρm , ref and ρ� 

= α� 

ρ�, ref in
ll universes. The Hubble parameter in the generic universe of the
nsemble can be then be re-written as 

 

2 = H 

2 
0 , ref 
m , ref a 

−3 + α� 

H 

2 
0 , ref 
�, ref . (19) 

riting the ratio of the two terms on the right hand side of equations
 18 ) and ( 19 ), and remembering that flatness al w ays ensures 
� 

=
 − 
m 

, we deduce 


m 

1 − 
m 

= 


m , ref 

α� 

(1 − 
m , ref ) 
. (20) 
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o we ver, the unchanged matter density tells us that H 

2 
0 =

m , ref H 

2 
0 , ref /
m 

, so that 

 

2 
0 = H 

2 
0 , ref [ α� 

+ (1 − α� 

) 
m , ref ] . (21) 

ence, we readily obtain the new Hubble parameter and density
arameter at a = 1, for a given scaling of � . The cosmic baryon
ass fraction is taken as unchanged. Similar reasoning was given by
h et al. ( 2022 ). 
This argument applies for any sign of α� 

, but rescaling to ne gativ e
alues complicates things. The expansion ceases at some maximum
alue of a and the universe subsequently undergoes recollapse. In
rinciple, the SP21 code should be able to handle such changes,
lthough in practice it will require amendment in order to cope with
 non-monotonic a( t) relation. Ho we v er, in an y case, the physical
ffect on the CSFRD of a ne gativ e � is qualitatively different to that
f a positive value. In the latter case, a large value of � is expected
o suppress star formation because structure growth ceases before
alaxy-scale haloes can be generated. The main aim of this paper is
o make a quantitative estimate of this suppression. In recollapsing

odels, ho we ver, gro wth does not freeze out and the rele v ant question
s how much star formation can occur in the limited time before the
ig crunch. We aim to consider this question elsewhere. 
In Fig. 3 , we show the resulting redshift evolution of the Hubble

arameter for different values of α� 

. As expected, for larger values of
 the Hubble parameter reaches its asymptotic value H → H 0 

√ 


� 

t earlier redshifts, and this value increases with � . This reflects the
act that the early phase of all models is Einstein–de Sitter (EdS),
ith H ∝ a −3 / 2 , while H freezes out at the value of the EdS model

t the point where � comes to dominate. 
Calculating the new value of σ8 and its scaling with α� 

is more
omplicated: σ8 is affected both by the new 
m 

, which changes
he power spectrum shape and evolution, and by the new Hubble
onstant, which changes the scale 8 h 

−1 cMpc. These effects can
e allowed for by recalling that conditions at very high z are the
ame in all models, so that σ (8 h 

−1 
ref cMpc ) is known at z � 1. We

hen compute the scale-dependent correction numerically, using the
ode CAMB (Lewis, Challinor & Lasenby 2000 ; Lewis & Challinor
011 ). This dependence of σ8 on � was studied by Oh et al. ( 2022 ),
ho showed that as the universe approaches an EdS solution, σ8 

xhibits an asymptotic behaviour (see their fig. 1). For a Planck-
018 cosmology, the asymptotic value of σ8 for low values of � is
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Figure 4. Sheth–Tormen halo mass function at different redshift, represented 
by different colours, and for different values of � (different line styles). For a 
given redshift, larger values of � result in a mass cut at smaller halo masses. 
In an EdS universe, the mass cut grows indefinitely in the future ( z < 0). This 
is not the case for � > 0, where the mass cut approaches an asymptotic value 
as z → −1 (i.e. t → ∞ ). This is a consequence of the freeze out of structure 
formation in the � CDM model. 
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.6786 (Oh et al. 2022 ). If one increases the value of � with respect
o the fiducial one, σ8 reaches a maximum of σ8 ∼ 0 . 9 at around
� 

∼ 8. For larger values of � , it keeps declining. As a reference,
or α� 

= 1000 one obtains σ8 ≈ 0 . 5. 
We are now fully equipped to study the impact of � on the

SFRD. The most obvious effect of altering � is a modification of the 
osmological term in the integrand of equation ( 1 ), i.e. the halo mass
unction. A larger cosmological constant causes the � -dominated 
ccelerating phase to begin earlier. Consequently, the freeze-out 
f structure formation would also occur earlier, thus shifting the 
runcation of the halo mass function to smaller halo masses, and 
ecreasing the merger rate. This is exactly what we observe in Fig. 4 ,
hich plots the halo multiplicity function for dif ferent v alues of α� 

nd redshift. For a cosmological constant 100 times larger than the 
bserved value (dashed lines), the cut-off in the HMF drops by two
rders of magnitude at z = 0. For reduced values of � , the trend is
pposite. At any given redshift, models with α� 

< 1 overproduce 
assive haloes relative to the reference cosmology. In the limit of an
dS universe (not plotted in the figure), there is no freeze-out and

he halo mass cut-off becomes arbitrarily large at sufficiently great 
imes. 

To summarize, lo wer positi ve v alues of � promote structure forma-
ion. Ho we ver, it would be premature to assume that the probability
f generating observers is solely dependent on the collapsed mass 
raction in the universe, and thus to conclude that the EdS model is
nthropically fa v oured. Rather, we must consider the effect of � on
he astrophysical processes that go v ern cosmological star formation. 
his will be the focus of the next section. 

.2 Astrophysical impact 

ltering � affects the astrophysics of star formation because both 
he gas mass fraction in haloes and the gas cooling rate depend
n the virial quantities of haloes, which in turn are sensitive to the
ackground cosmology via the Hubble parameter (see Section 2 ). In
his section, we will illustrate these points in detail. 
In this work, we will fix the astrophysical parameters to the ‘best-
tting’ choice in SP21, i.e.: η = 1 . 9, 〈 t ∗〉 = 3 . 87 Gyr and T min =
0 4 . 5 K. 

.2.1 Cooling rate 

s we recalled in Section 2 , within the SP21 model the low-redshift
FR is set by the gas cooling rate. This is in turn determined by

he extent of the cooling radius r cool . We will now analyse how the
irial temperature of the halo affects the cooling radius, and how this
volves depending on the cosmological model. A particular emphasis 
ill be given to the asymptotic behaviour of the cooling radius for

rbitrarily large cosmic times. 
We can express the cooling radius in terms of the cooling time by

btaining the gas density at r cool via equation ( 7 ), and then inserting
t into equation ( 8 ): ( r cool 

R 

)η

= 

(3 − η) μX 

2 C( T ) M gas 

6 πk B T m 

2 
H R 

3 
t cool . (22) 

o obtain an explicit dependence of r cool on redshift, we can simply
eplace t cool with the prescription for the ‘ef fecti ve cooling time’
iven by equation ( 10 ), making use of the cosmic time-redshift
elationship defined by equation ( 12 ). We can further apply the
efinition M gas = f gas ( T , z) M , and then express all virial quantities
n terms of T through equations ( 2 )–( 5 ). 

( r cool 

R 

)η

= 

√ 

� 

2 

(3 − η) X 

2 μ

6 πk B Gm 

2 
H 

C( T ) 

T 
f gas ( T , z ) H ( z ) 

×
[

1 − E + 

(
t( z) 

f dyn t dyn ( z) 

)m 

] 1 
m 

. (23) 

e can therefore follow the redshift evolution of r cool ; this is shown
n Fig. 5 for different virial temperatures and different values of � . 

For a fixed value of � , r cool /R decreases with increasing virial
emperature. In haloes abo v e the critical temperature T crit (see
ection 2 ), this behaviour can be readily understood from equation
 23 ). If T > T crit , then the gas mass fraction in haloes reaches its
MNRAS 535, 1449–1474 (2024) 
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M

Figure 6. Redshift evolution of the critical virial temperature T crit abo v e 
which the baryon mass fraction in haloes saturates to the cosmic value 
f b = 
b /
m 

, according to the SP21 model, for different values of the 
cosmological constant (see colour bar). The scaling of T crit with redshift 
mirrors the relationship between cosmic time and redshift. In an EdS universe, 
the long-term behaviour resembles a power law. As � increases, T crit ( z) 
deviates from a power law at progressively earlier redshifts (see Section 3.2.2 
for further details). 
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aximum value, and no longer depends on the virial temperature.
he cooling radius is then simply proportional to ( C( T ) /T ) 1 /η. For
 � 10 6 K, a Sutherland & Dopita ( 1993 ) cooling function for an
/He plasma with primordial abundances scales approximately as
 T 1 / 2 . Therefore, r cool /R ∝ T −1 / 2 η, so the cooling radius decreases
ith temperature in the re gime considered. F or T < T crit , there is an

xtra temperature-dependence carried by the f gas ( T , z) factor, but
e verified that this does not qualitatively impact the scaling of r cool 

ith temperature. 
We can now examine the redshift evolution of r cool /R for a fixed

irial temperature, for different cosmological models. To begin with,
e restrict the discussion to universes with � > 0. At high redshift,

he ef fecti ve cooling time is approximately equal to the dynamical
ime (see equation 10 ). Thus, the factor containing the cosmic time
n equation ( 23 ) is very close to unity. Also, the critical temperature
rops at sufficiently high redshift (see SP21 and Fig. 6 ). Therefore,
t early times, we have that f gas ≈ f b , halo ≈ f b , so that the evolution
f the cooling radius is dictated primarily by the Hubble parameter
n equation ( 23 ). In this regime, the universe is dominated by matter,
hus the cooling radius scales as H ( z) 1 /η ∝ (1 + z) 3 / 2 η. Recalling
hat we set η = 1 . 9, we would then expect that the redshift-evolution
f r cool /R to be a power law with index close to 3 / 4 at high redshift,
here all models are matter dominated. This is exactly what we
bserve in Fig. 5 . 
Conversely, as the universe becomes dominated by � , the ef fecti ve

ooling time given by equation ( 10 ) approaches the cosmic time,
o that the cooling radius scales as ∝ ( f gas t) 1 /η. To determine the
volution of the cooling radius, we then need to understand how f gas 

cales with redshift or, equi v alently, cosmic time. Because for � > 0
he critical temperature is monotonically increasing with cosmic
ime after the point of � -domination (see Fig. 6 ), there is al w ays
 sufficiently late cosmic time after which the virial temperature
f a halo drops below T crit ( z). Thereafter, the gas mass fraction
ithin haloes of a given virial temperature scales with T /T crit ( z)

s in equation ( 15 ). 
The redshift evolution of T crit ( z) needs to be computed numerically,

ut we can find an analytical approximation by simplifying the
utherland & Dopita ( 1993 ) cooling function with a piece-wise
ower law. Under this assumption, the critical temperature itself
NRAS 535, 1449–1474 (2024) 
cales as a power of cosmic time, hence so does the cooling radius
see Appendix A2 for details). We verified that the index of the power
aw is positive and below unity, explaining why the cooling radius
ncreases after the onset of � -domination, while its time deri v ati ve
attens out to zero. This is indeed the trend that we observe in Fig. 5
t z < 0 for all models with � > 0. F or a fix ed redshift and virial
emperature and after the point of � -domination, r cool /R becomes
arger as � increases. To prevent the cooling radius from o v erflowing
eyond the virial radius, we cap the ratio r cool /R to unity with a
uitably smooth function, similar to the one used for the nSFR in
quation ( 16 ). 

The behaviour that we just described descends from the definition
f the boundaries of haloes: for a given virial temperature, it follows
rom equations ( 2 )–( 5 ) that both the virial radius and virial mass of
 halo scale as 1 /H ( z). Thus, in a universe with a larger value of � ,
aloes of a given temperature become more concentrated (see Fig. 3 ).
herefore, the gas density becomes o v erall larger, and consequently
ooling becomes more ef ficient. Ho we ver, in the far future of the
niverse structure formation freezes out, and haloes become isolated.
ventually, the SP21 framework assumes that haloes will expel their
aryon content through feedback processes, progressively becoming
evoid of gas and unable to form stars (see Fig. 1 ). 
To summarize, we saw that in a universe with � > 0 the cooling

adius decreases as a power of time at high redshift, but that it
ventually switches to evolve in the opposite direction. The point
f turnaround between these two regimes occurs at the transition
o � -domination, when the ef fecti ve cooling time in equation ( 10 )
witches from being approximated by the dynamical time to tracking
he cosmic time. As can be seen in Fig. 5 , increasing � mo v es the
urnaround of the cooling radius to earlier redshifts. In contrast, there
s no such turnaround in an EdS universe, and the cooling radius (in
nits of the virial radius) shrinks indefinitely as time goes by. Because
here is no lower limit to the Hubble parameter, the size of haloes
ith a given virial temperature can become arbitrarily large. This
akes the diffuseness of haloes and consequent inefficiency of gas

ooling more dramatic than in any universe with positive � . 

.2.2 Gas mass fraction in haloes 

s explained in Section 2 , the SP21 model assumes that the baryon
ass fraction in haloes scales with the virial temperature below a

ertain critical threshold T crit , and saturates to f b abo v e this value. In
ur impro v ed variation laid out in Section 2.2 , the gas mass in haloes
bo v e the critical temperature saturates to f b − f ∗( T , z), where
 ∗( T , z) is the stellar mass fraction of a halo of virial temperature T 
t redshift z. In either case, the physical significance of the critical
emperature is the same. 

In haloes with T < T crit , the gaseous component is gravitationally
ound only within a certain critical radius r crit . Beyond this scale, the
omentum injected by supernov a-dri ven winds into the surrounding

as is sufficient to o v ercome gravity and eject the gas. In practice
hen, T crit is the temperature at which r crit coincides with the boundary
f the star-forming region within the halo. At high redshift, this is
he entirety of the halo, so that T crit is determined by the condition
 crit < R. At low redshift, star formation is cooling-driven, and the
ele v ant condition is r crit < r cool . 

Since the cosmological model affects both the virial radius and
he cooling radius (see Section 3.2.1 ), the critical temperature is also
ensitive to the cosmological parameters. In particular, in Fig. 6 we
how the redshift evolution of T crit for different values of α� 

. The late-
ime behaviour of the critical temperature can be understood starting
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rom the condition r crit = r cool , which defines T crit . As discussed in
he previous section, the cooling radius explicitly depends on the 
ooling time; in the far future of the universe, r cool corresponds to the
oint at which the cooling time is approximately equal to the cosmic
ime. 

In a universe with � > 0, under the reasonable approximation 
f the cooling function as a piece-wise power law, the critical 
emperature scales as a power of cosmic time in the limit t → ∞ (see
ppendix A2 for details). We verified that the index of this power

a w is positiv e in all physically rele v ant cases. Thus, for � > 0, the
ritical temperature increases at arbitrarily large times. The mapping 
etween the scale factor and cosmic time becomes exponential for 
 → ∞ in models with � > 0. Therefore, in the far future, the critical
emperature scales with redshift as a power of − ln (1 + z), and that
s why the increase of T crit with redshift is rather slow (see Fig. 6 ). 

In an EdS universe, we observe a qualitatively different behaviour 
or the critical temperature, which decreases rather than increasing 
t late times. This can be understood by considering that for a fixed
irial temperature, the virial radius scales ∝ H ( z) −1 = (1 + z) −3 / 2 ,
ence diverging for z → −1. Therefore, all haloes of a given T 
ecome arbitrarily large in the far future, so that their baryonic mass
raction must eventually match the cosmic value. Within the SP21 
ormalism, this means that all haloes must asymptotically exceed 
he critical temperature. This condition is achieved if T crit → 0 for
 → ∞ , in accord with our numerical results. 

At the high-redshift end of Fig. 6 , all models start out with the same
 crit ( z) relation, because all universes are matter dominated at early

imes. As we saw in Section 3.2.1 , r cool in the far future increases
or larger values of � (see Fig. 5 ). The critical temperature increases
ccordingly for α� 

≤ 100. For α� 

> 100, the critical temperature 
ppears to invert this trend, and although it still increases at later
imes, its value is o v erall lower than in universes with a smaller
osmological constant. The reason is that in universes with α� 

�
, haloes reach o v erall higher densities: for a fix ed halo mass M 

or, equi v alently, for a fixed virial temperature at future times), the
irial radius scales as R ∝ M 

1 / 3 H ( z) −2 / 3 ∝ M 

1 / 3 α
−1 / 3 
� 

. A higher gas
ensity makes the cooling process more efficient (see equation 8 ), so
hat the cooling radius extends to the virial radius. This means that in
ractice the condition for determining the critical temperature, r crit < 

 cool , translates to r crit < R. It easily follows that T crit ( z ) ∝ H ( z ) −2 ,
egardless of the value of η. At late times, H ( z) 2 ∝ α� 

, therefore the
ritical temperature diminishes as � increases (see Fig. 3 ). 

The behaviour of T crit shown in Fig. 6 directly affects the nSFR
oth at high and low redshift, as it affects the evolution of the baryon
ass fraction in haloes. Piecing together the discussion in Section 

.2.1 and in this section, we gain two important physical insights into
he astrophysical impact of � on the SFR. For small values of � ,
here is a larger gas mass fraction available in haloes at earlier times,
ut a progressively smaller fraction will cool down at later times. 
or larger values of � , there is an overall smaller mass fraction of
as that resides within haloes at later times, but a larger fraction will
ool down as time goes by. These features will play a prominent role
n shaping the dependence of the cosmic star formation efficiency as
 function of � , as we will discuss in Sections 4.1 and 4.2 . 

 RESULTS  

.1 Long-term efficiency of star formation 

n this section, we will show our results for the star formation
istory for different values of � , focusing especially on the long-term
ehaviour of star formation. Determining the asymptotic behaviour 
f the nSFR will tell us whether there is a well-defined final
umulati ve ef ficiency of cosmic star formation – both in individual
aloes and in the universe as a whole. 
Let us then start with the evolution of the nSFR. In the original

P21 formalism, the nSFR is most naturally expressed for a fixed
irial temperature, as that is the independent variable in the cooling
unction. Nevertheless, as we explained earlier in Section 2 , the
heth–Tormen formalism for the clustering of haloes allows us 

o convert straightforwardly between the fixed- T and the fixed- M 

iews, making use of the definitions expressed in equations ( 2 )–
 5 ). For the remainder of this paper, the fixed- M view will be more
onvenient. 

In the upper panels in Fig. 7 , we show the time evolution of the
SFR for populations of haloes at given virial mass. From left to
ight, we show the results for a typical dwarf galaxy (10 10 M 	), a

ilky Way-like galaxy (10 12 M 	), and a galaxy cluster (10 14 M 	),
espectively. The main independent variable in the plot is cosmic 
ime; the upper x-axis shows the redshift that would be measured
y an observer in the r efer ence Universe for a given cosmic time.
herefore, it applies only to the case α� 

= 1. 
We note that for all halo masses and all cosmologies, the nSFR

ends to a uni versal v alue at suf ficiently early times. This happens
ecause, for a given virial mass, the virial temperature increases at
arlier times, while the critical temperature is lower (see Fig. 6 ).
here will thus al w ays be a sufficiently early time when the
aryon mass fraction within haloes saturates to f b . Equation ( 6 )
hen tells us that the nSFR reaches a fixed constant value in this
egime. 

Since all universes in our ensemble are identical and matter- 
ominated at a sufficiently high redshift, they are naturally indis- 
inguishable at early times. But for all halo masses considered, the
SFR drops steeply in the future, and the departure from the EdS
olution occurs earlier for universes with a larger value of � . The
symptotic behaviour can be deduced by studying each factor in 
he r.h.s. of equation ( 13 ). As discussed in Section 3.2 , the main
hallenge is understanding the late-time behaviour of the critical 
emperature, which needs to be determined numerically. Ho we ver, 
nder the reasonable assumption of a piece-wise cooling function, 
his asymptotic behaviour can be approximated analytically with a 
ower of time. The index of the power law depends on the virial
emperature of the halo and on the slope of the gas density profile.
t is then possible to pro v e that the time integral of the nSFR at
xed mass (i.e. the stellar mass fraction) is convergent (although the
rgument is relatively detailed, and is presented in Appendix A ).
his convergence holds both in an EdS universe and for � > 0, and

s seen in Fig. 7 , where the cumulative stellar mass fraction reaches
 plateau at late times. We plot this asymptotic stellar mass fraction,
 ∗∞ 

, as a function of halo mass in Fig. 8 . 
For all values of � considered, we notice that f ∗∞ 

increases
ith mass for very low masses. For α� 

< 1, the efficiency then
eaks at M ≈ 10 11 M 	, and then decreases for larger halo masses,
ith the drop being faster in an EdS uni verse. Ho we ver, e ven for

till relatively small values of � , such as α� 

= 0 . 1, the asymptotic
fficiency decreases more slowly after reaching its maximum, and for 
 ≈ 10 18 M 	 it is almost one order of magnitude larger than in an

dS univ erse. F or � at the observed level or above, the initial decline
n efficienc y abo v e M = 10 11 M 	 is rather slow, with a plateau of
early constant ef ficiency, follo wed by an eventual sharper drop.
n the case of α� 

= 10 4 , f ∗∞ 

exhibits little variation o v er the nine
ecades of halo mass shown in Fig. 8 . In such an extreme cosmology,
he freeze out of structure formation occurs very early and the critical
emperature is so low (see Fig. 6 ) that most haloes retain their cosmic
MNRAS 535, 1449–1474 (2024) 
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M

Figure 7. Upper panels : Time evolution of the SFR, normalized by the total halo mass. Each panel refers to a population of haloes with fixed virial mass M , 
as annotated in the figure. Different colours refer to different values of � in units of the observed value � obs , as reported in the colour bar. The lower x-axis 
reports the cosmic time, while the upper x-axis the corresponding redshift that would be observed in our Universe ( � = � obs ). The break in the upper x-axis 
indicates that the ticks are omitted for z > −1 + 10 −10 , since the exponential growth of the scale factor in the future makes it increasingly hard to represent the 
redshift on a meaningful scale. Regardless of the halo mass, the normalized SFR tends to zero in the limit of t → ∞ . Lower panels : Fraction of the stellar mass 
produced up to a certain cosmic time, with respect to the total halo mass, for haloes with fixed virial mass. This is the time integral of the quantity shown in 
the corresponding upper panels. The colour coding and the upper and lower x-axes are the same as in the upper panels. In all haloes and cosmological models 
considered, the cumulative stellar mass fraction reaches an asymptotic value for t → ∞ . 

Figure 8. Asymptotic value (i.e. in the limit t → ∞ ) of the stellar mass 
fraction for a halo population with given total mass M . Different colours 
refer to different values of � , as indicated in the colour bar. Even for large 
values of � , massive haloes can still be very efficient (see Section 4.1 for the 
detailed explanation). 
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hare of baryons; thus they are al w ays efficient at forming stars,
egardless of their mass. 

The absence of a sharp peak in the stellar mass fraction and
ubsequent steep decline at the higher mass end might seem puzzling,
t least for the case α = 1, as it appears to contradict the current
aradigm of galaxy formation (see e.g. Behroozi et al. 2019 ).
o we ver, we stress that Fig. 8 shows the asymptotic stellar mass

raction (i.e. in the limit t → ∞ ), whereas the consensus on the
ass dependence of the stellar mass fraction is based on observations

nd models of the past star formation history. We verified that
ur formalism would also predict a sharper peak and a steeper
ecline of the stellar mass fraction for M � 10 12 M 	 at z = 0,
NRAS 535, 1449–1474 (2024) 
n qualitative agreement with the accepted framework for galaxy
ormation. Therefore, Fig. 8 tells us that, according to our model,
igh-mass haloes produce a larger fraction of their asymptotic stellar
ass in the future of the universe compared to low-mass haloes.
igher mass haloes appear to be especially efficient at forming

tars in cosmologies with larger values of � , where haloes of a
iven virial mass are overall denser, hence more efficient at cooling
see Section 3.2.2 ). While this argument provides us with a basic
nderstanding of the trend observed in Fig. 5 , one should bear
n mind that gas cooling is not the only rele v ant process for star
ormation, even at late times. While we incorporate the SP21 model
f supernov a-dri ven winds (see their Appendix A) in our calculations,
e do not include an explicit self-regulation mechanism due to
GNs. This may have a noteworthy impact on the future SFR.
e will discuss the subsequent implications for our conclusions

n Section 5.3 . 
It is important to bear in mind that Fig. 8 ignores the cosmology

ependence of halo multiplicities. We then need to weight the
f ficiencies sho wn in Fig. 8 by the HMF. If we then further integrate
 v er halo mass, that gives us the stellar mass density (SMD) of all
tars formed up to time t from the time corresponding to the onset
f star formation t in . This quantity is by definition the time integral
f the CSFRD or, in terms of redshift: 

∗( z) = 

∫ z in 

z 

ρ̇∗( z ′ ) 
(1 + z ′ ) H ( z ′ ) 

d z ′ (24) 

here ρ̇∗( z) is given by equation ( 1 ). To study the asymptotic
ehaviour of ρ∗( z), we should thus study the convergence of the
ntegrand, which depends both on the nSFR and the HMF. We have
lready discussed the convergence of the nSFR for � > 0 above,
nd we now focus on the behaviour of the HMF for t → ∞ . In a
niverse with � > 0, the asymptotic behaviour of σ ( M, z) is a non-
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ull constant, for any M . Therefore, the integral in equation ( 24 )
onverges as long as the stellar mass fraction converges – and we 
ave already seen that this quantity does indeed asymptote to a finite
onstant in the far future. In an EdS model, the HMF continues to
v olve indefinitely, b ut in fact the total stellar density still converges
see Appendix A1 for the detailed argument). 

The asymptotic study of the CSFRD described abo v e also allows
s to define physically moti v ated analytic approximations for how 

he CSFRD approaches its asymptotic value in the far future (see 
ppendix A for details). The results of this e x ercise are shown in

he upper panel of Fig. 9 , plotting the stellar density as a function
f time for v arious v alues of α� 

. In an EdS universe, the asymptotic
MD is reached at t ∼ 100 Gyr; but as � is increased from zero the
symptotic SMD becomes larger, because now the cooling radius 
ill not shrink indefinitely at late times, hence increasing the star

ormation efficiency of haloes. However, for α� 

> 0 . 1, the trend is
eversed. This might seem somewhat at odds with Fig. 8 , which
hows that the stellar mass fraction within haloes keeps increasing 
or α� 

> 0 . 1. Ho we ver, Fig. 8 focuses on isolated haloes, without
ccounting for their multiplicity. Instead, the stellar production needs 
o be weighted by the HMF when computing the SMD. Thus, Fig. 9
ells us that the lower asymptotic SMD for large values of � is a
onsequence of the suppression of structure due to the cut-off of the
MF occurring at lower masses. 
In the lower panel of Fig. 9 , we normalize the SMD by the

symptotic value. For the observed value of � (green line), about 
2 per cent of the stellar mass that will ev er e xist in our Universe
as already been formed. In the original SP21 paper, this quantity 
as quoted to be close to 50 per cent, but in that case the SMD
as computed differently . Namely , SP21 did not go through the
etailed convergence study undertaken here, but simply integrated 
he CSFRD up to z = −0 . 9999, which corresponds to t ∼ 200 Gyr
n our Universe; Fig. 9 teaches us that this is not al w ays sufficiently
ate to reach the true asymptotic stellar mass density. 

For small positive � , the fractional SMD in the lower panel of
ig. 9 departs from the EdS solution much earlier than for the SMD
 volution sho wn in the upper panel, reflecting the larger asymptotic
alues reached for 0 < � < 0 . 1. Thus, similar values of the SMD at
arly times can still differ considerably in fractional terms. Instead, 
or large values of � , haloes are more efficient at producing stars,
herefore the asymptotic SMD is reached earlier. Fig. 8 shows that 
or � � 10 3 , star formation is driven by higher mass haloes. For
xtreme cosmologies such as α� 

= 10 4 , haloes are at nearly full
tar formation efficiency irrespective of their mass, but the cut-off 
f the HMF at late times occurs at M ∼ 10 9 M 	. Recalling that we
onsider only haloes with T > 10 4 . 5 K as eligible for star formation,
his means that stars are produced only by haloes in the narrow mass
ange 10 8 M 	 � M � 10 9 M 	. Therefore, it takes longer to reach
he asymptotic SMD. 

In conclusion, if � is higher, halo formation ceases at early times:
aloes are unable to attain masses as large as in our Universe (see
ection 3.1 ), and are less efficient at forming stars. The dominant
raction of stars is formed in the future (i.e. at ne gativ e redshift),
hen haloes are isolated and efficient at forming stars due to their

arger cooling rate with respect to their counterparts in our own 
niverse (see Section 3.2.1 ). This long-term future of star formation 

s expected to play an important role in determining the asymptotic 
fficiency of star formation in universes with a large cosmological 
onstant. 
.2 Cosmic star formation efficiency 

n the previous section, we showed that the comoving stellar mass
ensity produced in a universe with � ≥ 0 asymptotes to a constant
n the limit t → ∞ . We now want to understand how this asymptotic
ensity, ρ∗∞ 

, varies as a function of � . In practice, we consider the
osmic star formation efficiency, defined as ε = ρ∗∞ 

/ ̄ρb , where ρ̄b 

s the mean comoving baryon density in the universe. 
We plot this cosmic stellar efficiency in Fig. 10 , where we see the

triking result that the peak of cosmic star formation efficiency occurs 
ithin one order of magnitude of � obs . At the peak efficiency, � ≈
 . 1 � obs , the model predicts that about 27 per cent of the baryonic
ass in the universe will eventually be converted into stars. In our
niverse, this figure is 23 per cent. For larger values of � , the cosmic

fficiency declines, becoming negligibly small as α� 

approaches 10 5 . 
It might seem surprising that the cosmic stellar efficiency does not

all monotonically as � increases. A larger cosmological constant 
ould raise the acceleration of the cosmic expansion at earlier times,
ence suppressing the gravitational collapse of galaxy-scale haloes; 
igher values of � thus correspond to smaller fractions of matter
n collapsed structures (e.g. Weinberg 1987 ; Martel, Shapiro & 

einberg 1998 ). Ho we ver, the picture is more complicated when
onsidering the impact of � on the fraction of baryonic rather than
otal matter within haloes (see e.g. the discussion in Page 2011 ).
urthermore, in Fig. 10 we are concerned with the stellar component
nly, which is subject to the complex interplay of astrophysical 
rocesses and the evolution of the large-scale structure of the 
niverse. 
The suppression of the star formation efficiency at high � cannot

e attributed to astrophysical processes, since Fig. 8 shows that 
igh-mass haloes remain highly efficient at producing stars, even 
or large values of � . Therefore, the small ε found for large �
ust be caused by the cut-off of the HMF at small halo masses

see Section 3.1 ). Ultimately, this is a consequence of the earlier
reeze-out that results from a large cosmological constant. In short, 
ur model predicts that haloes are generally efficient at forming 
tars when � is high, but their number density is then so low
hat the o v erall effect is a reduction in the cosmic star formation 
fficiency. 

For small values of � , the opposite is true. There is now stronger
lustering and haloes can attain larger masses. Ho we ver, for a gi ven
irial mass, lower values of � correspond to a larger virial radius,
iven that R ∝ M 

1 / 3 H 

−2 / 3 
0 and H 0 is smaller for lower values of

� 

(see equation 21 and discussion in Section 3.2.2 ). Thus, a halo
f a given virial mass has a lower internal density in a universe
ith a smaller cosmological constant. This reflects the continued 
rogress of mergers, which dilute the internal density of haloes to a
ultiple of the cosmic density, up to the point where � dominates.
he reduced gas density results in a smaller cooling rate, making star

ormation less efficient at late times. The cosmic stellar efficiency at
o w v alues of � in Fig. 10 is therefore suppressed for astrophysical
easons. 

These astrophysics-driven and cosmology-driven suppression ef- 
ects on star formation balance out around α� 

∼ 0 . 1. Fig. 10 suggests
hat the observed value of � is somewhat peculiar, in the sense that
t is close to the optimal value for maximum cosmic star formation
f ficiency. Ho we ver, this is not the same as saying that it is the most
ikely value of � for observers to experience. In the next section, we
ill address the implications of Fig. 10 for such anthropic issues. 
MNRAS 535, 1449–1474 (2024) 
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M

Figure 9. Upper panel : Cumulative stellar mass produced in a unit comoving volume up to a certain cosmic time. Different lines correspond to different values 
of � , as indicated in the colour bar. The upper x-axis shows the redshift that corresponds to the cosmic time, for the reference cosmology. Therefore, the 
correspondence between the upper and lower x-axes applies only to the case � = � obs . The break in the upper x-axis indicates that the ticks are omitted for 
z > −1 + 10 −10 , since the exponential growth of the scale factor in the future makes it increasingly hard to represent the redshift on a meaningful scale. Lower 
panel : Same as in the upper panel, but normalized to the total stellar mass density produced o v er the entire history of the universe. The stellar mass fraction 
produced up to present time in our Universe is ∼ 32 per cent, hence we are typical observers. Ho we ver, in general the mid-point of star formation history does 
not coincide with � -domination in other universes, meaning that the ‘why-now’ problem is specific to � = � obs (see discussion in Section 5.1.1 ). 
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 DISCUSSION  

.1 Implications for anthropic arguments 

.1.1 Typicality and the ‘why now’ problem 

he first aspect of anthropic arguments that we will address concerns
he so-called why-now problem, i.e. the fact that we live at an
sual epoch when the density of matter and dark energy are of
he same order of magnitude. The ‘weak’ anthropic approach to
his puzzle asserts that typical observers should live when the age
NRAS 535, 1449–1474 (2024) 
f the universe corresponds roughly to the lifetime of Sun-like
tars, assuming these to be necessary for forming and sustaining
abitable planets (Carter 1974 ). We can test this principle to some
xtent, by asking how typical we are as observers. Consider the
raction of stellar mass density produced up to present time in
ur own Universe only (green line in Fig. 9 ): this predicts that
oughly 32 per cent of all the stars that will ever exist are already
n place, so it appears that the present time is indeed typical, lying
either at the beginning nor at the end of the cosmic star formation
istory. 
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Figure 10. Right panel : Fraction of baryonic mass (per unit comoving volume) that is converted into stars o v er the entire history of the universe, as a function 
of � . This global stellar efficiency peaks around 1/10 of the observed value of � (thin black vertical line), and becomes negligibly small for large values of � . 
This is due to the suppression of cosmological structure formation caused by the earlier and larger acceleration of the expansion of the universe. The horizontal 
thin black line represents the global stellar efficiency in an EdS universe, which is smaller than in our Universe. The decrease in the cosmic star formation 
efficiency at small positive � is driven by astrophysical rather than cosmological factors: haloes of a given virial mass become larger as � decreases, and the 
consequent reduction in internal gas density diminishes the gas cooling rate, which in turn determines the SFR at low redshift (see discussion in Section 4.2 ). 
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Ho we v er, this argument ne glects the question of how long intel-
igent life may to take to emerge following the formation of a star.
his is an issue on which cosmologists are unlikely to have a reliable
pinion. Ho we ver, we can note that if the emergence of life is rare,
hen indeed an offset of the order of the typical stellar lifetime might
e expected, and this is the basis of the standard anthropic argument
or the current age of the Uni verse. Alternati vely, we can follow
eacock ( 2007 ) and eliminate the biological element by noting that

he Sun formed at z ≈ 0 . 45. From our results, we find that ∼ 25
er cent of the asymptotic stellar density was in place at that point,
o the Sun is a slight ‘early adopter’ but by no means atypical. 

The Sun thus formed almost exactly at the point of matter- �
quality, and the interesting question is whether this coincidence 
ould still have held for a typical star if � had taken a very different
alue. It is apparent from the predictions in Fig. 9 that the observed
oincidence is not to be expected in all cases. For α� 

= 100, the 50
er cent point of stellar production is reached at t ≈ 20 Gyr. That
orresponds to 1 + z ≈ 10 −6 in that universe, at which point the
ensity from � exceeds that of matter by a factor of approximately
0 14 . We also note that the predicted CSFRD is not so very different
rom the observed one when we carry out the prediction for the EdS
niverse. In that case, there is still a well-defined typical era of star
ormation, which is clearly not dictated by the cosmological constant. 

Our conclusion is then that the why-now puzzle is specific to the
ctual value of � . Weak anthropic selection that biases observers
o wards li ving at a special time in the universe would not have
roduced such a coincidence in general. We are therefore driven 
o ask if there is some more general selection effect that fa v ours the
bservation of this particular value of � . 

.1.2 Ensembles and the observed value of � 

he multiverse approach to � considers an ensemble of different 
niverses, each with its own cosmological constant, and argues that 
nly the universes that have a small enough value of � would be
ble to host observers. As was emphasized by Efstathiou ( 1995 ), this
ituation can be analysed in a Bayesian framework. If we consider
he existence of observers as the ‘data’, then the posterior on � is 

( � | O) ∝ p(O | � ) p( � ) . (25) 

n the equation abo v e, p(O | � ) is the likelihood, i.e. the probability
f observers to emerge for a given value of � , and p( � ) is the prior
n � . 
Both the prior on � and the likelihood are non-trivial to determine.

he main conceptual difficulty is that one would need to choose a
ell-defined measure for weighting different members of the ensem- 
le. Ho we ver, for an inflationary multiverse, the bubble universes are
ormally of infinite volume, and it is therefore not clear how to define
he measure (see, e.g., Wenmackers 2024 ). Ho we ver, if � is the sole
arameter that varies across the ensemble, then the problem can be
 v aded follo wing Weinberg ( 1987 , 1989 , 2000a , b ), who pointed out
hat there is no known physical mechanism that preferences � = 0.
herefore, the prior on � should be flat at least in a neighbourhood
f � = 0. W e will adopt W einberg’s con vention of a flat prior , and
xtend it to the full range of values of � considered in our work, i.e.
 ≤ α� 

≤ 10 5 . 
Regarding the likelihood p(O | � ), we will adhere to the view

xpressed in the previous section that stars are a precondition 
or observers. Thus, we will simply assume that the likelihood is
roportional to the cosmic star formation efficiency ε. We stress
hat we are agnostic concerning the time at which observers appear,
nlike in the previous section: ε is an integrated quantity o v er the
ntire history of the universe. 

We can now write the posterior probability density in the interval
 �, � + d � ) as: 

d p( � | O) 

d � 

∝ ε( � ) (26) 

r, more conveniently, as the distribution of ln � : 

d p( � | O) 

d ln � 

∝ α� 

ε( α� 

) . (27) 
MNRAS 535, 1449–1474 (2024) 
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his probability distribution is shown in the left panel of Fig. 11 (see
lso Sorini 2022 ). We notice immediately that the peak corresponds
o α� 

≈ 800: the most likely order of magnitude of � , weighted
y observer number across the multiverse, is vastly greater than
he observed value. Furthermore, α� 

= 1 (indicated with a vertical
lack line in the plot) appears to be an outlier of the distribution.
o quantify this more precisely, we also show the corresponding
umulative probability distribution in the right panel of Fig. 11 –
mphasizing once again that this neglects the entirely distinct case of
ecollapsing models. We then find that the probability of observing a
osmological constant equal to or below the value of � observed in
ur Universe is around 0.5 per cent. Thus, with our stated assumptions
f (1) the extension to the SP21 model of cosmic star formation
resented in this work; (2) a flat prior on � ; and (3) assuming a
irect proportionality between the cosmic star-forming efficiency
nd the likelihood of generating observers at a given � , the simplest
ulti verse frame work is not able to account naturally for the small

bserved value of � . 

.2 Alternati v e anthropic assumptions 

he abo v e failure to account for the magnitude of � can mean one of
hree things: (i) there is no multiverse; (ii) members of the ensemble
ary in a more complicated way than simply altering � ; and (iii)
ome of our basic assumptions are inappropriate. 

Undoubtedly, it is interesting to consider a more complex multi-
erse ensemble, where more fundamental parameters are varied at the
ame time (up to 31: Tegmark et al. 2006 ). Indeed, other works have
tudied the simultaneous impact of varying two or three cosmological
arameters on the star formation history (Cline, Frey & Holder 2008 ;
ousso & Hall 2013 ). For instance, a universe with both a larger
alue of � and a larger amount of matter may well be evolving in
 similar fashion as our o wn Uni verse, as the increased acceleration
f the expansion induced by a higher cosmological constant would
e compensated by a stronger clustering of matter. More radically,
e may consider altering other fundamental parameters, such as

he gravitational constant. Increasing G would obviously fa v our the
ollapse of structures, and may counteract the effect of a larger � .
t the same time, such a change would also affect the structure
f haloes and subsequently the cooling rate. If one changes other
oupling constants, such as the fine structure constant, then the
icture becomes increasingly more complex. That would affect the
ery structure of matter, and modify cooling rates in unusual ways. A
omprehensive discussion on how star formation would proceed in
uch exotic scenarios is provided by Adams ( 2019 ). We will explore
hese generalizations and other matters in future work. 

The problem with all these more elaborate ensembles is the
ifficulty in deciding on the prior for the additional parameters. We
ave adopted Weinberg’s prior on � , arguing that it is a special
ase. Nevertheless, it is interesting to consider what would happen
f Weinber g’s ar gument was in error, since a prior that gives more
eight to lower values of � could radically change the conclusions. A
rior that is flat in ln ( α� 

) would yield by construction a posterior for
 that is identical to the cosmic efficiency ε, properly renormalized.
o we ver, a logarithmic prior cannot be applied if we allow for � = 0,

et alone if we accept that � < 0 is possible. A power-law prior on
 would be allowed if we insist that � ≥ 0, and we show posteriors

n � for v arious po wer-law slopes in Fig. 12 . As the power law
ecomes steeper, the probability distribution becomes broader, and
he peak mo v es towards smaller values of α� 

. 
Of particular interest is the case of a prior in the form α−0 . 75 

� 

. If
ne assumes that the cosmological constant is set by the energy of
NRAS 535, 1449–1474 (2024) 
he vacuum E v , then � ∝ E 

4 
v . One might then opt for a flat prior on

 v , corresponding to a prior on � in the form α−0 . 75 
� 

. In this case
ur model would yield a probability of observing � ≤ � obs of 39
er cent, very well consistent with observ ation. Ho we ver, the prior
hould be moti v ated by a priori theoretical considerations, rather
han being chosen in order to achieve by construction some preferred
onclusion. At present, we do not have a compelling argument that
ould justify a uniform prior in E v , nor for the associated assumption

hat � > 0. 
There have been several attempts at solving the cosmological

onstant problem that predict a non-ne gativ e value. Supersymme-
ry generates a strictly positive vacuum energy density if it is
pontaneously broken (see e.g. Martin 2012 ). Kaloper & Padilla
 2014 ) proposed a reformulation of General Relativity whereby
ll vacuum energy is sequestered from the matter sector. This
revents the vacuum energy from sourcing spatial curvature and
redicts a positive cosmological constant, which is expressed as the
pace-time average of the trace of the energy–momentum tensor.
o we ver, the model requires the universe to end in order to produce
 positive � . This is not necessary in a later generalization of
he sequestering model by Lombriser ( 2019b ), who revisited the
ork of Kaloper & Padilla ( 2014 ) by explicitly modelling the effect
f collapsed structures. A positive � is also predicted by models
ttempting to solve the cosmological constant problem by varying
he Planck mass (Lombriser 2019a ; Sobral-Blanco & Lombriser
020 , 2021 ), at least in their simplest incarnation. The basic idea
s to vary the Einstein–Hilbert action with respect to both the metric
nd the Planck mass o v er a manifold. The resulting cosmological
onstant can be expressed in terms of the average energy–momentum
ensor, and can be interpreted as a ‘backreaction’ of structures on
he e xpanding univ erse. Assuming the typical size of collapsed
tructures, the model predicts 
� 

= 0 . 704, very close to the observed
alue. Recently, Gazta ̃ naga ( 2021 ) proposed that � represents a zero-
ction boundary term in the Einstein–Hilbert action. It can be derived
hat � is proportional to the average density of the universe and is
hus a non-ne gativ e quantity. 

There are, ho we ver, other strong theoretical grounds for consid-
ring a ne gativ e cosmological constant. In supergravity, the vacuum
nergy can be ne gativ e (Martin 2012 ). In the landscape of string
heory, ne gativ e values of � emerge naturally, and predicting a small
ositi ve v alue remains a challenge (see e.g. Lerh Feng et al. 2021 ,
emirtas et al. 2022 ). These scenarios would then not be compatible
ith a power-law or logarithmic prior on � . 
Lastly, our conclusions would certainly be subject to change if

e were to alter the model of cosmic star formation. We next
iscuss how the limitations of our present modelling could affect
ur conclusions in Section 5.3 . In Section 5.4 , we will then make a
etailed comparison of our findings with other related works in the
iterature. 

.3 Limitations of our study 

his paper is based on the SP21 model of cosmological star
ormation. This aimed to retain the physical transparency of the
riginal Hernquist & Springel ( 2003 ) model, which comes at the
rice of some simplifications. Chief among these is the fact that the
odel formalism does not explicitly include AGN feedback, but only

upernov a-dri ven winds. Ne vertheless, the parameters underlying the
tellar feedback model in the SP21 formalism are tuned to reproduce
bservations of the baryonic Tully–Fisher relationship (McGaugh
t al. 2000 ) and of the Kennicutt–Schmidt relationship (Kennicutt



Impact of � on star formation history 1465 

Figure 11. Left panel : probability of generating observers in a given universe, at any point in time, as a function of � , assuming a direct proportionality to 
the stellar efficiency shown in Fig. 10 (right panel) and imposing a flat prior on � . The peak occurs around � ≈ 800 � obs . The observed value of � (thin 
black vertical line) is an outlier in the distribution. Right panel : cumulative probability function of the distribution shown in the left panel. The probability that 
� ≤ � obs is ∼ 0.5 per cent, meaning that this value is not anthropically fa v oured. 

Figure 12. Same as in the left panel of Fig. 11 , but for different priors on � . 
The red line corresponds to the flat prior, and is therefore the same quantity 
plotted in the left panel of Fig. 11 . The other lines refer to a power-law 

prior, as reported in the le gend. A power-la w prior with an index in the range 
( −1 , −0 . 9] would strongly fa v our the observed value of � , but of course such 
a prior would need to be moti v ated by a theory and not chosen a posteriori in 
order to validate anthropic reasoning (see discussion in the main text). 
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998 ) in our Universe, which does harbour AGN feedback. Thus,
he effect of AGN feedback is implicitly allowed for, as in the
ase of cosmological simulations that contain stellar feedback only, 
ut which calibrate the parameters of their subgrid prescriptions to 
eproduce observed data. This approach was followed, for example, 
y Oh et al. ( 2022 ), who analysed the impact of � in a suite of hy-
rodynamical simulations that extended up to t = 97 Gyr, including 
nly stellar feedback. They argued that any energy fed back into the
nvironment by black holes at late times will happen on a time-scale
orrelated to the feedback from star formation. Then, even without 
ncluding an AGN feedback model, their feedback parameters would 
apture the global energy input that would be expected from both 
tar formation and black holes. The empirical correlation of stellar 
ass and black hole mass in galaxies is commonly taken as evidence
or co-evolution of these two populations (see e.g. Kormendy & 

o 2013 ; Heckman & Best 2014 ), and the neglect of explicit AGN
eedback here is justifiable as long as co-evolution holds exactly. 

Ho we ver, se veral hydrodynamical simulations do indicate that 
GN-driven jets are an important mechanism in the quenching 
f star formation after z = 2 (see e.g. Vogelsberger et al. 2013 ;
einberger et al. 2017 ; Pillepich et al. 2018 ; Sorini et al. 2022 ;

charr ́e et al. 2024 ). While other groups found a more limited
mpact of AGN feedback on the low-redshift CSFRD (McCarthy 
t al. 2017 ; Salcido et al. 2018 ; see also the discussion in Salcido
t al. 2020 ), the general consensus is that AGN feedback should be
xplicitly included in realistic models of the star formation history. 
ndeed, the total energy input from feedback processes is not the
ole important factor in determining the quenching of star formation. 
osmological simulations show that the way such energy propagates, 

or example through diffuse winds or collimated AGN-driven jets, 
as a potentially significant impact on the star formation history and
he diverse gaseous phases within haloes (e.g. Weinberger et al. 2017 ;
orini et al. 2022 ; Scharr ́e et al. 2024 ; Yang et al. 2024 ). Ho we ver,
uch considerations are beyond the scope of this work, and their
ncorporation would require a major expansion of the SP21 model. 

As SP21 pointed out, the introduction of AGN feedback in their
ormalism could plausibly diminish the low- z CSFRD and hence also
he long-term efficiency of star formation. Because most of the stellar

ass in universes with large values of � is formed in the far future
see Fig. 9 ), AGN feedback may suppress the cosmic star formation
fficiency at the high- � end more rapidly. This would in turn increase
he probability of observing a value of � that is ≤ � obs , reducing
he discrepancy with observation. It remains to be seen whether the
xplicit inclusion of AGN feedback would significantly alter the 
onclusions in our work regarding the anthropically fa v oured value
f � , or whether its impact would be sub-dominant. We leave this
mportant analysis, which requires incorporating a first-principles 
odel of AGN feedback within our formalism, for future work. 
Other potentially important physical ingredients omitted from the 

P21 model are chemical evolution and metal enrichment of the 
nterstellar and intergalactic media. Following the evolution of the 
etallicity of stars and gas within and outside haloes would alter the

ooling function o v er time. At later times, and reasonably also in
MNRAS 535, 1449–1474 (2024) 
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he future of the universe, the metallicity would increase. For virial
emperatures abo v e T = 10 4 K, which are those of interest for the
P21 model, the cooling function becomes larger as the metallicity

ncreases (see Sutherland & Dopita 1993 ). Hence, in the future of the
niverse the cooling rate would become higher, increasing the star
ormation efficiency. 

We also acknowledge that more exotic effects might become
ignificant in the far future of the univ erse. F or instance, gas cooling
ia inverse Compton scattering of CMB photons might become an
mportant additional cooling mechanism in the far future (Adams &
aughlin 1997 ; Bousso & Leichenauer 2010 ; Bousso & Hall 2013 ).
s a further example, Adams & Laughlin ( 1997 ) argued that grav-

tational instabilities within galaxies could deviate the trajectory of
tars from their orbits, so that stars either collapse towards the centre
f the galaxy, or drift away from it, becoming isolated and unbound
bjects. In the former scenario, there can be a secondary spark of
tar formation, triggered by the clash between brown dwarfs around
he galactic centre. Such exotic possible channels of star formation
ccur in the extreme far future, t ≈ 10 15 Gyr. The ejection of stars
rom the galaxy due to the accumulation of stellar encounters would
ccur on a smaller, but still colossal, time-scale, t ≈ 10 10 − 10 11 Gyr
Adams & Laughlin 1997 ). These processes occur well after the point
here our calculations of star formation have converged, and there

s no reason to believe that they will dominate over previous activity
n terms of total stellar production. 

One can also ask whether it is reasonable to believe that ‘con-
entional star formation’ proceeds all the way up to the 10 10 Gyr
ime-scale represented in Fig. 9 . Adams & Laughlin ( 1997 ) argued
hat, based on the life-time of typical red dwarfs, ‘conventional’
tar formation should halt on a time-scale of t ∼ 10 4 Gyr. If we
mposed such a cut-off in the star formation history, that would
ead to a lower star formation efficiency in universes with lower � .
n the contrary, it would not affect as significantly universes with
igher � , where the bulk of star formation occurs at earlier times
see Fig. 9 ). Therefore, the posterior on � would be more skewed
owards higher values, hence making the anthropic prediction even
ess consistent with observ ation. Ho we ver, arguments on the time-
cales of different channels of star formation in the far future of the
niv erse are themselv es fairly uncertain. We therefore opted for not
ntroducing an additional ill-defined parameter in our model, and
imply integrated the star formation history up to t → ∞ . 

Throughout this work, we have assumed that generation of ob-
ervers is simply proportional to the cosmic star formation efficiency.

ore realistically, we might consider what is known about statistics
f exoplanets as a function of stellar mass. This variation would
ot matter provided the IMF was invariant, but given that the
ypical density and temperature of star-forming gas is likely to
hange with epoch, there is ample scope for the IMF to alter.
e hav e ne glected this complication, as hav e most authors in this

rea. 
Another option could be to weight the CSFRD by the metallicity

f the stars formed. Indeed, Dayal et al. ( 2015 ) argued that the
tellar mass, total metal mass, and SFR all conspire in enhancing the
abitability of galaxies such as metal-rich giant elliptical galaxies.
urthermore, accounting for the effect of radiation on the emergence
f life on potentially habitable planets (e.g. Totani et al. 2019 ; Gobat
t al. 2021 ) could bring in the structure of the galaxy as a rele v ant
 actor. Indeed, recent w orks defined a ‘galactic habitable zone’
Gobat & Hong 2016 ), in analogy to the circumstellar habitable zone
Huang 1959 ; Kasting et al. 1993 ). Ho we ver, these v ariations in the
eneration of observers within and between galaxies are not a concern
or the main focus of this paper, which is on the global production
NRAS 535, 1449–1474 (2024) 
f observers summed over the universe and over all cosmic time.
herefore, it seems reasonable to neglect such issues for the present.
In conclusion, our model can certainly be impro v ed in different

ays, and we hope to address some of them in the future. Ho we ver,
espite its simplicity the model is capable of capturing the main
hysical processes that are rele v ant for a sound description of the
tar formation history in the universe, both in the past and the future,
nd in different cosmologies. 

.4 Comparison with previous work 

.4.1 Posterior on � and anthropic considerations 

n this section, we will discuss our results on the posterior distribution
n � and the implications for anthropic arguments in the context of
re vious rele v ant work in the literature. 
Oh et al. ( 2022 ) ran a suite of hydrodynamical simulations based on

he ENZO code (Bryan et al. 2014 ), for an EdS universe and for � CDM
ni verses with dif ferent v alues of � , up to 100 times the observed
alue. The simulations included a subgrid model for stellar feedback
Oh et al. 2020 ), but no AGN feedback. This model was shown to
ield physically sensible results even when run up to a cosmic time
f 100 Gyr (Oh et al. 2021 ). Using the same assumptions adopted
n this work concerning the probability of generating observers
n a given universe, Oh et al. ( 2022 ) found that the median of
he posterior distribution on � corresponds to 8 . 0 � obs , with 95
er cent of the distribution spanning the range α� 

= 0 . 32 − 105, and
hus consistent with the observed � . They find that the probability
hat � ≤ � obs is 12.9 per cent. Oh et al. ( 2022 ) also consider the
raditional assumption for the anthropic weighting, based on the
ingle-scale approximation for the collapsed fraction of matter in
alaxy-scale haloes (see Peacock 2007 ). Under this assumption, the
edian of the posterior distribution on � rises to 12 . 6 � obs , and the

orresponding probability of an observer measuring � ≤ � obs is 8.2
er cent. The o v erall conclusions from the detailed modelling in Oh
t al. ( 2022 ) are thus not hugely different from the simple single-
cale approach. These conclusions are qualitatively in accord with
ur own, to the extent that the observed value of � is a low outlier in
he ensemble. Ho we ver, we find an unacceptably small probability
f � ≤ � obs – whereas Oh et al. ( 2022 ) find a probability that, while
mall, does not strongly rule out the multiverse hypothesis. 

An earlier example of a large ‘multiverse simulation’ is given by
arnes et al. ( 2018 ). They ran a suite of variants of the EAGLE
ydrodynamical simulation (Schaye et al. 2015 ), for values of α� 

in
he range 0 − 300, until cosmic time t = 20 . 7 Gyr. These simulations
nclude recipes for both stellar feedback and AGN feedback. Barnes
t al. ( 2018 ) consider three possible models for the generation of
bservers: 

(i) Observers are generated following the formation of stars, after
 fixed delay of 5 Gyr, which would represent the time-scale for the
volution of intelligent life; 

(ii) The rate of generation of observers at a given time around a
ertain stellar population is proportional to the fraction of stars that
re still on the main sequence, to account for the fact that life appears
o be a rare phenomenon in the universe, and therefore should occur
owards the end of the main-sequence lifetime of a star (Carter 1983 ;
arrow & Tipler 1986 ); 
(iii) The rate of generation of observers at a given time is

roportional to the metallicity of the fraction of stars that are still on
he main sequence for the stellar population considered, to reflect the
rgument that life would more easily emerge on rocky planets, which
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ould be more likely to form around stars with higher metallicity 
Gonzalez 1997 ; Fischer & Valenti 2005 ; but see also Buchhave &
atham 2015 ; Wang & Fischer 2015 ). 

The main impact of these different choices is to change when 
he observers form, rather than the total eventual numbers, which is
ur main concern. The results for all these models are reported in
able 1 , in correspondence of the cells in the second column, labelled
star formation + delay’, ‘star formation + lifetime’, and ‘star 
ormation + metals’, respectiv ely. F or each of the aforementioned 
odels, Barnes et al. ( 2018 ) further considered three possible ways

f constructing a measure in the multiverse: 

(i) a mass-weighted measure, whereby a given mass element in 
he universe can inhabit a region with any value of � with equal
robability; 
(ii) a causal-patch measure, in which regions of the universe that 

av e equal como ving volume of their causal patch at a certain
osmic time host the same number of observers, for any value of
 considered; 
(iii) a causal-diamond measure, analogous to the previous mea- 

ure, except that the comoving volume of the region (at given cosmic
ime t) that is enclosed by a photon that departs from a world line at
eheating and returns at t is considered instead of the volume of the
ausal patch. 

It is important to note that in all cases described abo v e Barnes et al.
 2018 ) consider a flat prior on � . Thus their posterior on � is the
roduct of the measure times the weighting based on star formation. 
he mass-weighted measure is essentially what we adopt in this 
ork. 
The results that Barnes et al. ( 2018 ) obtain for all observer

eneration models and all multiverse measures are listed in Table 1 .
he mass-weighted measures yields a median of the posterior 
istribution on � of 45 or 59, depending on the observer generation
rescription. The 84 th percentile of the distribution can reach values 
s large as 194 � obs . On the other hand, the causal patch and causal
iamond measures mo v e the median � to much smaller values, and
l w ays below � obs . Consequently, the mass-weighted measure would 
redict a significantly smaller probability of observing � ≤ � obs (1.9 
er cent–2.5 per cent) than the other two measures (73 per cent–93
er cent). Thus, the choice of the measure appears to be crucial. 

Ho we ver, the measure is not a degree of freedom that can
e adjusted at will (see the discussion in Barnes et al. 2018 ).
e confess that we find the moti v ation for the causal measures

bscure: in our own Universe there are definitely pairs of galaxies 
hat are causally disconnected (those in opposite directions on the 
ky at high redshift), and yet each can potentially host observers.
arnes et al. ( 2018 ) mention theoretical moti v ations for choosing the
ausal patch and diamond measures in the context of the quantum 

eroxing paradox (Susskind, Thorlacius & Uglum 1993 ; Bousso 
006 ; Bousso, Freivogel & Yang 2006 ) and holographic probability 
n eternal inflation (Bousso 2006 ). Ho we ver, it seems to us that the
esults are biased, and systematically exclude potential observers at 
arly times when the horizon is small. We will therefore compare 
ur predictions with the results in Barnes et al. ( 2018 ) arising from
heir mass-weighted measure only. 

We can see that our results predict a median value of � that
s 9 − 12 times larger than that of Barnes et al. ( 2018 ), and our
robability for � ≤ � obs is about ∼ 4 − 5 times smaller. Ho we ver,
e integrate the CSFRD all the way to t → ∞ , whereas Barnes

t al. ( 2018 ) halt at 20 . 7 Gyr in all cases. Nevertheless, we verified
hat even if we stopped our integration at this same early time, the
robability of measuring � ≤ � obs increases only slightly to 0.7 
er cent. This increase does not qualitatively affect our conclusions. 

Anthropic calculations have also been pursued using semi- 
nalytical methods. Sudoh et al. ( 2017 ) adopted the semi-analytical
odel of galaxy formation by Nagashima & Yoshii ( 2004 ), coupled
ith a Monte Carlo calculation for the merger history of dark matter
aloes. Adopting a flat prior on � and using stellar mass density as
 proxy for observer weighting, they obtained a median value of �
n the range α� 

= 9 . 1 − 12, depending on the exact details of their
odel. Overall, the distribution is broad, and their probability of 

bserving � ≤ � obs is between 6.7 per cent and 9.7 per cent. Such
alues are in agreement with the results by Oh et al. ( 2022 ), but are
n tension with our conclusions and with Barnes et al. ( 2018 ). It is
ot surprising that Sudoh et al. ( 2017 ) obtain a lower median α� 

ompared with us. Rather than integrating the mass of cool gas that
s converted into stars o v er the entire history of the univ erse, the y
stimate the number of observers by calculating the total stellar mass
ensity at the fixed cosmic time t = 15 Gyr. The authors argue that
his is a reasonable approximation, but it is not an assumption that
s supported by our model: rather, we predict that in universes with
 large value of � the majority of stars form at t � 15 Gyr (see e.g.
ig. 9 ). 
To summarize, a common feature of all work on the simplest

nthropic ensemble is that the posterior probability distribution on 
 is broad, with a median that is substantially larger than � obs . The

xact value is heavily dependent on the underlying star formation 
odel and the probability measure, but in all works considered the

bserved value of the cosmological constant seems to be located 
n the tail of the posterior for � (except for the causal patch
nd diamond measures in Barnes et al. 2018 ). Nevertheless, in
he previous literature discussed here the probability of measuring 
 ≤ � obs is still of the order of a few per cent or even ∼ 10 per cent,

hus failing to reject the multiverse model. In contrast, our results
ose a challenge in this respect, given that this probability is only 0.5
er cent. The viability of Weinberg’s simple anthropic explanation for 
 thus depends on which of these calculations is closest to a correct

hysical prediction of star formation in counter-factual universes. All 
 xisting studies hav e limitations, and ours is definitely no exception.
o we ver, in yielding a result that is so far from the observed level
f � , it raises the moti v ation for continuing to seek a more realistic
reatment of this problem. 

.4.2 Dependence of the cosmic stellar efficiency on � 

he conclusions on the posterior distribution of � reached by the
ifferent works discussed in the previous section are predicated 
n the dependence of the comic star formation efficiency on � .
nalysing this key quantity is informative regardless of any anthropic 

onsideration, as it explores the predictions of different cosmic star 
ormation models outside the canonical values of the underlying 
osmological parameters. In this section, we will discuss similarities 
nd discrepancies of our results on the cosmic star formation 
fficiency (Fig. 10 ) with respect to the results from direct simulations.

Fig. 13 shows the cosmic star formation efficiency predicted by our
odel, i.e. the same as in Fig. 10 , in comparison with the efficiencies

btained with the Eagle simulations by Barnes et al. ( 2018 ) and
he Enzo simulations by Oh et al. ( 2022 ). For � > � obs , there is
eneral qualitative agreement, with all works considered showing a 
uppression of the cosmic star formation efficiency for high values of
 . Our model predicts a peak at � ≈ 0 . 1 � obs , and lo wer ef ficiencies

s we approach an EdS universe. By contrast, the fitting functions
MNRAS 535, 1449–1474 (2024) 
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M

Table 1. Median, 16 th and 84 th percentiles of the posterior distribution on α� 

for different choices of the prior on � or of the measure of observers in the 
multi verse, and for dif ferent models. The table also sho ws the probability of observers measuring a v alue of � equal to or smaller than � obs . Unless otherwise 
explicitly stated in the main text, results from other works are quoted directly from the respective manuscripts, or derived from fitting formulae therein. 

Star formation model Observers model Prior/measure 16 th percentile Median 84 th percentile p( � ≤ � obs ) 

This work Star formation Flat in α� 

73 539 2306 0.52 per cent 
α−0 . 1 

� 

44 389 1868 1.0 per cent 
α−0 . 75 

� 

0.041 2.8 84 39 per cent 
α−0 . 9 

� 

6 . 9 × 10 −4 0.18 12 65 per cent 
Oh et al. ( 2022 ) Star formation Single-scale approximation 2.3 12.6 43 8.2 per cent 

Simulation 1.4 8.0 34 12.9 per cent 
Barnes et al. ( 2018 ) Star formation + delay Mass weighted 10 59 194 1.9 per cent 

Causal patch 0.04 0.34 0.96 86 per cent 
Causal diamond 0.13 0.65 3.15 73 per cent 

Star formation + lifetime Mass weighted 10 59 194 1.9 per cent 
Causal patch 0.009 0.089 0.849 90 per cent 

Causal diamond 0.01 0.25 0.96 86 per cent 
Star formation + metals Mass weighted 8 45 163 2.5 per cent 

Causal patch 0.004 0.07 0.71 93 per cent 
Causal diamond 0.01 0.17 0.87 90 per cent 

Figure 13. Same as Fig. 10 , for the model presented in this work (red line), and the cosmological simulations by Barnes et al. ( 2018 ) and Oh et al. ( 2022 ) 
(blue circles and purple squares, respectively). The corresponding fitting formulae to the numerical results, proposed by Oh et al. ( 2022 ), are represented with 
blue and purple solid lines, respectiv ely. Inte grating the CSFRD giv en by our model up to the same finite cosmic time as in the simulations ( t max = 20 . 7 Gyr 
and t max = 97 Gyr for Barnes et al. 2018 and Oh et al. 2022 , respectively) improves the agreement with the numerical results (dashed and solid salmon lines, 
respectively). The match with Barnes et al. ( 2018 ) is further impro v ed by properly changing the slope of the gas density profiles within haloes, η, which is a free 
parameter in our model (dotted salmon line; see discussion in Section 5.4.2 for details). 
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o the numerical results appear to indicate a monotonic increase in
he asymptotic cosmic star formation efficiency as � → 0. While
his trend is qualitatively different from our result, no simulations
ctually co v er the range 0 < � < � obs . It would be interesting to
un further simulations in this range in order to establish whether the
imulated dependence of the cosmic star formation efficiency on �
s genuinely monotonic. 

Nevertheless, assuming that the fitting functions proposed by Oh
t al. ( 2022 ) do represent the actual trend of the efficiency in the range
 < � < � obs , it is worth speculating on the possible origins of the
ifferent result that we obtain. We should, however, first make sure
hat we make a fair comparison across all models considered. The
imulations are inevitably stopped at some finite future time; for our
osmology and an EdS universe, this maximum time is t max = 97 Gyr
nd t max = 20 . 7 Gyr in Barnes et al. ( 2018 ) and Oh et al. ( 2022 ),
NRAS 535, 1449–1474 (2024) 
espectively. To account for the star formation history at arbitrarily
arge times, Barnes et al. ( 2018 ) extrapolate the time evolution of the
SFRD beyond t max with a decaying exponential, and conclude that

he contribution from times t > t max to the total cosmic star formation
fficiency is negligible. Therefore, for a fairer comparison between
ur model and the Oh et al. ( 2022 ) fitting formula to the Barnes et al.
 2018 ) simulations (blue line in Fig. 13 ), we should re-compute our
osmic star formation efficiencies by integrating the CSFRD up to
 max = 20 . 7 Gyr, and not in the limit t → ∞ . 

The result is represented by the dashed salmon line in Fig. 13 ,
hich considerably impro v es the agreement with the fitting formula

o the Barnes et al. ( 2018 ) results. Our model reco v ers the cosmic
fficiency in the Barnes et al. ( 2018 ) simulations within 50 per cent
or an EdS universe, and yields an excellent match at the high- � end.
he largest discrepancy occurs for � ≈ 0 . 3 � obs , and amounts to less
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han a factor of ∼ 3. This deviation is smaller than the discrepancy
etween Barnes et al. ( 2018 ) and Oh et al. ( 2022 ). Ho we ver, the non-
onotonic dependence of the cosmic star formation efficiency on � 

or � < � obs does not disappear by simply imposing a cut-off in the
ime integral of the CSFRD. Ho we ver, the peak becomes much less
rominent, and the discrepancy with the numerical results is reduced. 
If we apply the same reasoning for a fair comparison between 

ur model and the Oh et al. ( 2022 ) simulations, we reach o v erall
imilar conclusions. To estimate the integral of the CSFRD in the 
imit t → ∞ , Oh et al. ( 2022 ) extrapolated their numerical results
eyond t max by fitting their CSFRD with the same functional shape 
sed by Madau & Dickinson ( 2014 ). This analytical formula allowed
s to subtract the contribution from cosmic times t > t max from the
osmic star formation efficiencies computed by Oh et al. ( 2022 ), and
e verified that the change would be in any case negligible. We can

hen simply cut the time integral of the CSFRD at t max = 97 Gyr. The
esult is given by the salmon solid line in Fig. 13 . The peak is less
onspicuous, and the agreement with the fit to the numerical results
purple line) impro v es. Ho we ver, the decay at large values of � is
ess steep compared to Oh et al. ( 2022 ) work, and the efficiency in
he EdS universe is recovered within a factor of ∼ 4.5. 

Without adding any new physics to our model, we can check 
hether a change in the underlying parameters would yield a better 
atch with cosmological simulations. This can be done by consider- 

ng the late-time behaviour of the CSFRD. As mentioned earlier, Oh 
t al. ( 2022 ) showed that their CSFRDs can be well described with
he same fitting formula adopted by Madau & Dickinson ( 2014 ). We
erified that this is the case for the Barnes et al. ( 2018 ) CSFRDs too.
t late times, the Madau & Dickinson ( 2014 ) curve can be in turn

pproximated with a power-law scaling of the CSFRD with (1 + z).
ur model also predicts a power-law scaling in an EdS universe at

ate times, with an index that depends on the slope of the gas density
rofile within haloes, η (see Appendix A1 ). We can therefore find 
he value of η that yields the same late-time power-law scaling in an
dS universe as in Barnes et al. ( 2018 ) and Oh et al. ( 2022 ). 
In the first case, we find that the desired value is η = 2 . 75. We

hen run our model for such value of η, while leaving all other
arameters the same. We integrate the CSFRD for any value of � up
o t max = 20 . 7 Gyr, and obtain the cosmic star formation efficiency.

oving from η = 1 . 9 to η = 2 . 75 further reduces the prominence of
he peak in the cosmic star formation ef ficiency. Ho we ver, the overall
greement with Barnes et al. ( 2018 ) does not significantly impro v e.
lso, the value η = 2 . 75, while mathematically acceptable, would 

all outside the range that provides a consistency within 3 σ with 
bservational constraints from the Kennicutt–Schmidt relationship 
nd the baryonic Tully–Fisher relationship (see SP21 for details). 
f we apply the same logic to the Oh et al. ( 2022 ) simulations, we
ould find η = 3 . 21. This is not even mathematically acceptable in
ur formalism, as values of η > 3 would cause the gas mass of haloes
o diverge (see equation 7 ). Therefore, we cannot fine tune η to match
he late-time behaviour of the CSFRD found by Oh et al. ( 2022 ) for
n EdS universe. 

To summarize, the qualitative discrepancy between the cosmic 
tar formation efficiency predicted by our model and by analytical 
ts to cosmological simulations is considerably mitigated once a 
ut-off time is taken into consideration, for a fair comparison with 
he numerical results. Where possible, the significance of the peak in 
he cosmic star formation efficiency predicted by our model can be 
urther reduced by regulating the value of η to match the late-time 
ehaviour of the simulated CSFRD in an EdS uni verse. Ho we ver, the
eak does not disappear completely, therefore some change in the 
hysics included in our model may be necessary in order to obtain a
osmic star formation efficiency that monotonically decreases with 
 . 
The residual qualitative discrepancies between our model and 

umerical simulation occur in the range 0 < � < � obs . Within
ur formalism, the asymptotic stellar mass produced in a halo 
f a fixed virial mass M � 10 11 M 	 does not vary appreciably
ith the cosmological constant for � < � obs . Ho we ver, for the

ame cosmologies, the stellar mass produced in high-mass haloes 
 M � 10 11 M 	) can vary by up to one order of magnitude (see Fig. 8 ).
herefore, the treatment of star formation within high-mass haloes 

s probably the main reason behind the discrepancies between our 
odel and simulations. In this respect, an obvious missing piece of

hysics in our model is AGN feedback, as discussed in Section 5.3 .
n explicit AGN feedback mechanism could reduce the contribution 
f high-mass haloes to the star formation history, and may bring the
osmic efficiency at 0 < � < � obs closer to that of an EdS universe.

It is worth noting that Oh et al. ( 2022 ) predict a decreasing
f ficiency e ven in the absence of AGN feedback. There may therefore
e other ways to achieve the same qualitative trend without (or in
ddition to) AGN feedback. For example, one may include chemical 
volution models, or an explicit shutdown of star formation at very
ate times, as detailed in Section 5.3 . We intend to address these
ssues in future work. At the same time, we point out that it would
e very informative to run cosmological simulations in the range 
 < � < � obs , which is the range where our predictions differ from
he fits to the numerical results by Barnes et al. ( 2018 ) and Oh et al.
 2022 ). 

 C O N C L U S I O N S  A N D  PERSPECTIVES  

e have improved the SP21 analytical model for cosmic star 
ormation (Sorini & Peacock 2021 ), which was itself based on
he work by Hernquist & Springel ( 2003 ). We have then used this
odel to predict the cosmic star formation history in flat � CDM

osmological models where the cosmological constant is varied 
etween � = 0 and � = 10 5 � obs . This ensemble of universes was
esigned so that all members are indistinguishable at high redshift, 
ut later part company as their different cosmological constants come 
o dominate. 

The CSFRD is obtained by integrating the SFR within haloes o v er
he halo mass function. We assumed that the same astrophysical 
rocesses operate in each member of the ensemble as in our own
niverse. At high redshift, the SFR is determined by the typical time
aken to convert cool gas into stars, whereas at low redshift it is set
y the cooling time. We were then able to compute the total stellar
ass generated by a given time, as a fraction of the total baryonic
ass, per comoving volume. We showed that this cumulative star 

ormation efficiency tends to a well-defined limit as t → ∞ , and
e determined the dependence of this asymptotic efficiency on the 
alue of � . We then investigated the implications of our results for
nthropic attempts to explain the observed value of � . Our main
onclusions are as follows: 

(i) The SP21 formalism predicts a converging total comoving 
tellar mass density as the cosmic time tends to infinity. In our
niverse, about 32 per cent of the eventual stellar mass has been
ormed by z = 0 (Fig. 9 ). Thus, we are typical observers in terms
f the cosmological epoch in which we live, which is marginally � -
ominated. Ho we ver, we find that this coincidence between typical
ras of star formation and � -domination does not hold for other
alues of � ; hence single-universe anthropic arguments do not 
ccount for the ‘why-now’ problem. 
MNRAS 535, 1449–1474 (2024) 
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(ii) Our model predicts that the cosmic star formation efficiency
eaks at around 27 per cent for � ≈ 0 . 1 � obs (Fig. 10 ). In an Einstein–
e Sitter universe with � = 0, the efficiency is approximately
 factor of 3 lower than this; but the efficiency is much more
trongly suppressed at high values of � . The decline is, ho we ver,
elati vely slo w, and the ef ficienc y only becomes ne gligibly small as
 approaches 10 5 � obs . 
(iii) F or a giv en � , there is a characteristic halo mass abo v e which

he stellar efficiency within haloes is maximized (Fig. 8 ). A halo
ith a given virial mass is smaller in universes with larger � , so

hat its typical density is higher. This in turn makes gas cooling, and
ubsequently star formation, more efficient. Thus, the suppression of
he cosmic star formation efficiency at high � must be cosmological
n nature, and not astrophysical: it is induced by the cut-off in the
alo mass function occurring at lower halo masses. Conversely, the
eason for the reduced cosmic star formation efficiency at low � is
strophysical: haloes are more diffuse as the cosmological model
pproximates an Einstein–de Sitter universe, so that the cooling
ate is reduced. Thus, according to our model, astrophysics fa v ours
tar formation in those haloes that exist when � is high, whereas
osmology increases the abundance of haloes when � is low. The
bserved value of the cosmological constant finds itself near the
weet spot of these two opposite trends (Fig. 10 ). Ho we ver, that does
ot imply that the generation of observers is maximized around the
ame value of � . 

(iv) Assuming a flat prior on � and that the observer weighting of
 universe with a given � is proportional to the cosmic star formation
fficiency in that universe, the peak of the posterior on � occurs at
 ≈ 800 � obs (Fig. 11 ). The median of the distribution is � = 539,

nd the 16 th − 84 th percentile range corresponds to � = 73 − 2306
Table 1 ). The probability that an observer measures a value of the
osmological constant � ≤ � obs is ∼ 0.5 per cent. Thus, Weinberg’s
nthropic reasoning would be disfa v oured by the SP21 model, under
he given assumptions. 

It is striking that the observed value of � is within one order
f magnitude of the optimal value that maximizes the cosmic star
ormation efficiency. We also succeed in providing an explanation
or why this is the case, based on calculations from first principles.
o we ver, we also found that this asymptotic efficiency of star

ormation declines rather slowly as � increases, falling below 1/10
f the peak value only for � > 500 � obs (Fig. 10 ). Hence, with
einberg’s assumption of a uniform prior on � , it is inevitable

hat typical observers would expect to experience values of � much
reater than the one we observe, and this is why we find that values
f � as small as observed are highly unlikely. In principle this
ules out the simple anthropic ensemble considered here, subject
o the assumptions of our model. But we have re vie wed alternati ve
alculations and found that some give a less severe disagreement –
lthough there is unanimity that the observed � is unusually small
t some level. 

Future progress on this question requires more detailed and realis-
ic modelling: we will endea v our to generalize our model of cosmic
tar formation by including features such as chemical evolution of the
nterstellar/intergalactic medium and AGN feedback. In particular,
he absence of an explicit AGN feedback mechanism may lead to
n o v erproduction of stars in massiv e haloes, which, according to
ur model, are especially efficient in universes with a high value
f � . Whether or not this is important depends on the applicability
f exact co-evolution between black holes and stellar content in
alaxies. If this concept holds exactly, the modelled ef fecti ve energy
eedback from star formation may be able to capture the effect of
NRAS 535, 1449–1474 (2024) 
GN feedback. Ho we ver, if co-e volution does not hold exactly, then
he inclusion of separate AGN feedback in our formalism might alter
he resulting conclusions on the anthropically fa v oured range of � .

e plan to address this question in future work. 
One would also like to see further direct calculations via sim-

lations. Ho we ver, hydrodynamical simulations are expensive to
un, especially beyond z = 0, thus it is important to invest the
omputational resources to study models that promise to bring the
ost valuable physical insights. Our analytical model enables a

ast exploration of the dependence of star formation history on
he cosmological parameters, so it can aid in designing a suite
f simulations exploring cosmological models that differ from the
ducial � CDM cosmology in especially interesting ways. 
Eventually, we can hope for a convergence of these studies and a

onsensus on the viability of Weinberg’s anthropic explanation for
 . Ho we ver, e ven if the verdict is negative, this would be far from a

ejection of anthropic reasoning in general. This manuscript focuses
n changing only one fundamental parameter, i.e. the cosmological
onstant – and even there we have restricted ourselves to the case of
 ≥ 0, leaving the whole topic of recollapsing models for a further

nv estigation. Be yond this, one should in principle vary multiple
arameters simultaneously, and explore their joint impact on star
ormation history and the generation of observers. We are already
orking on this kind of study (Lombriser et al., in preparation). 
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PPENDIX  A :  D E R I VAT I O N  O F  T H E  

SYMPTOTIC  B E H AV I O U R  O F  STAR  

O R M AT I O N  HISTORY  

n Section 4.1 , we showed that the stellar mass fraction in haloes
ith fixed mass M asymptotes to a constant in the far future of the
niverse. This means that the corresponding nSFR, and consequently
he CSFRD, tend to zero in the limit t → ∞ . These conclusions result
rom the numerical implementation of the iterative procedure that we
ntroduced to extend the SP21 analytic model (see Section 2.2 ). In this
ppendix, we will show that, under well-moti v ated approximations,

t is possible to derive the asymptotic behaviour of the nSFR and
SFRD analytically . Crucially , this will enable us to pro v e that the
MD, which is the time integral of the CSFRD, converges in the

imit t → ∞ . 
Since the CSFRD depends on the HMF and the nSFR at fixed
 (see equation 1 ), we will first need to study the limit of these

wo quantities for arbitrarily large cosmic times. Once we obtain
he asymptotic behaviour of the CSFRD, it will be straightforward
o study the convergence of the SMD. We will need to distinguish
etween the two qualitatively different cases of � = 0 and � > 0.
NRAS 535, 1449–1474 (2024) 
ll computations in this section have been verified with the software
ATHEMATICA (Wolfram Research, Inc. 2023 ). 

1 Einstein–de Sitter uni v erse 

1.1 Normalized SFR 

he evolution of the nSFR of a halo with fixed virial temperature
 in the low-redshift regime is given by equation ( 13 ). In an EdS
ni verse, the ef fecti ve cooling time coincides with the dynamical
ime at any cosmic epoch (see equation ( 10 )). Therefore, equation
 13 ) can be simplified to 

 low ( M, z) ≈ ˜ S ( T ( M, z )) 

(
H ( z ) 

H 0 

f gas ( T ( M, z ) , z ) 

f b 

) 3 
η

, (A1) 

witching from fixed virial temperature to fixed virial mass as the
ndependent variable. Thus, the first term in the r.h.s of the equa-
ion abo v e acquires a redshift dependence, which can be determined
y replacing the virial temperature in SP21 equation ( 25 ) with the
 xpression giv en by equation ( 5 ). Recalling the definition of ˜ S ( T )
rom SP21, 

˜ 
 ( T ) = 

1 

η

[ √ 

� 

2 

(3 − η) f dyn f b X 

2 μH 0 C( T ) 

6 πGm 

2 
H k B T 

] 

3 
η 6 πGm 

2 
H k B T 

f 2 dyn X 

2 μC( T ) 
, 

(A2) 

t becomes obvious that this task is complicated by the presence of
he cooling function C( T ), which has a non-trivial dependence on
emperature. Ho we ver, we can reasonably approximate the Suther-
and & Dopita ( 1993 ) cooling function for a plasma of primordial
omposition, in the temperature range of our interest ( T > 10 4 . 5 K),
ith a piece-wise power law: 

( T ) ∝ T θ , where 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

θ = 10 . 75 if T < 10 4 . 5 K 

θ = −1 . 5 if 10 4 . 5 K < T < 10 4 . 7 K 

θ = 1 . 7 if 10 4 . 7 K < T < 10 5 K 

θ = −1 if 10 5 K < T < 10 6 K 

θ = 0 . 5 if T > 10 6 K 

. 

(A3) 

ithin this approximation, and considering that in an EdS universe
 ( z) ∝ (1 + z) 3 / 2 , it follows that 

˜ 
 ( M( T , z)) ∝ (1 + z) 

2( θ−1)(3 −η) 
3 η . (A4) 

Let us now turn to the second factor in the r.h.s. of equation ( A1 ).
s discussed in Section 3.2.2 , the critical temperature decreases with

osmic time in an EdS universe. Recalling that for the computation
f the CSFRD we only consider haloes abo v e a certain virial temper-
ture threshold (in this work, 10 4 . 5 K), it is apparent that all haloes
hat contribute to the CSFRD will exceed the critical temperature at
 sufficiently late time. Thus, f gas will asymptotically reach a non-
ull constant, so that the only remaining redshift dependence in the
.h.s. of equation ( A1 ) is H ( z) 3 /η ∝ (1 + z) 9 / 2 η. Combining it with
quation ( A4 ), it follows that s low ( M, z) ∝ (1 + z) ζ , with 

= 

27 + 4( θ − 1)(3 − η) 

6 η
. (A5) 

The nSFR then converges as z → −1 (or, equi v alently, t → ∞ ),
s long as ζ > −1. In the physically rele v ant range 3 / 2 < η < 3,
his condition is satisfied for all values of θ quoted in equation ( A3 ).

http://dx.doi.org/10.1093/mnras/stac2214
http://dx.doi.org/10.1093/mnras/stab2845
http://dx.doi.org/10.1038/nature03597
http://dx.doi.org/10.1046/j.1365-8711.2003.06207.x
http://dx.doi.org/10.1046/j.1365-8711.2003.06206.x
http://dx.doi.org/10.1093/mnras/stab1855
http://dx.doi.org/10.1046/j.1365-8711.2001.04912.x
http://dx.doi.org/10.1016/S1384-1076(01)00042-2
http://dx.doi.org/10.1093/mnras/stw2401
http://dx.doi.org/10.1103/PhysRevD.48.3743
http://dx.doi.org/10.1086/191823
http://dx.doi.org/10.1103/PhysRevD.73.023505
http://dx.doi.org/10.1089/ast.2018.1895
http://dx.doi.org/10.1051/0004-6361/202347048
http://dx.doi.org/10.1140/epjc/s10052-014-3160-4
http://dx.doi.org/10.1038/s41550-019-0902-0
http://dx.doi.org/10.1103/PhysRevD.27.2848
http://dx.doi.org/10.1093/mnras/stu1536
http://dx.doi.org/10.1093/mnras/stt1789
http://dx.doi.org/10.1088/1475-7516/2014/10/024
http://dx.doi.org/10.1088/0004-6256/149/1/14
http://dx.doi.org/10.3847/1538-4357/ab089f
http://dx.doi.org/10.1103/PhysRevLett.59.2607
http://dx.doi.org/10.1103/RevModPhys.61.1
http://dx.doi.org/10.1103/PhysRevD.61.103505
http://dx.doi.org/10.1093/mnras/stw2944
http://dx.doi.org/10.1086/170483
https://www.wolfram.com/mathematica
http://dx.doi.org/10.1093/mnras/stad3223
http://dx.doi.org/10.1046/j.1365-8711.2002.05661.x
http://dx.doi.org/10.1103/PhysRevLett.82.896


Impact of � on star formation history 1473 

A

W
t

w
fl  

N  

c

y

w  

a  

y

f

I  

(

A

T
o  

c
t  

f  

f  

A
f  

a  

d
 

i
b  

a  

i  

s  

W  

e
S
n

A

T  

w  

s  

f

A

I  

b  

T
S  

fi

s

I  

a  

e  

f  

c  

r
t
f  

T  

o  

t

s

W  

l
 

a
e  

c  

c  

n
t

 

t  

t  

t

w  

a  

v  

p

a

T

I  

t  

f  

u  

(  

c  

T
 

η  

d  

o  

a  

a
 

e  

w  

t  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/535/2/1449/7896079 by guest on 02 D
ecem

ber 2024
1.2 Halo mass function 

ithin the Sheth–Tormen formalism (Sheth & Tormen 1999 , 2002 ), 
he halo multiplicity function is 

dF 

d ln M 

= − 2 N √ 

π

d ln σ0 ( M) 

d ln M 

y 
(

1 + 

√ 

2 y 
)− 3 

5 
exp 

(−y 2 
)

, (A6) 

here σ0 ( M) is the linear-theory fractional variance of matter density 
uctuations averaged over spheres containing a mass M at z = 0, and
 is a normalization constant chosen such that all cosmic mass is

ontained in haloes. We also defined 

 = 

δc 

2 
3 
4 D( z) σ0 ( M) 

, (A7) 

here D( z) is the growth function, which, in an EdS universe, scales
s D( z) ∝ (1 + z) −1 . Therefore, the scaling of y with redshift is
 ∝ (1 + z). 
It follows that the redshift dependence of the halo multiplicity 

unction is given by 

d F 

d ln M 

∝ (1 + z)[1 + 

√ 

2 (1 + z)] −
3 
5 exp 

[−(1 + z) 2 
]

. (A8) 

n the limit z → −1, the scaling abo v e reduces to d F / d ln M ∝
1 + z). 

1.3 Stellar mass density 

he convergence of the CSFRD depends on the asymptotic behaviour 
f the integrand in equation ( 1 ). As explained in Section 3.2.2 , the
ritical temperature becomes arbitrarily low at large times, therefore 
he rele v ant regime in our piece-wise approximation of the cooling
unction is T crit < 10 4 . 5 K, which corresponds to θ = 10 . 75. If we
urther set η = 1 . 9, we obtain that ζ ≈ 6 . 1. We saw in Section
1.2 that the asymptotic redshift dependence of the halo multiplicity 

unction in equation ( 1 ) is ∝ (1 + z). Therefore, the integrand scales
pproximately as (1 + z) ζ+ 1 ≈ (1 + z) 7 . 1 . This is then the redshift-
ependence of the CSFRD in the far future. 
The SMD is simply the time integral of the CSFRD. Changing the

ntegration variable from cosmic time to redshift, the SMD is defined 
y equation ( 24 ). For an EdS model, the integrand in that equation is
pproximately proportional to ρ̇∗( z)(1 + z) −5 / 2 ∝ (1 + z) 4 . 6 , which
s convergent for z → −1. This proves that the mass density of
tars formed o v er the entire history of an EdS universe is finite.
e therefore used the scaling ρ∗( z) ∝ (1 + z) ζ−1 / 2 ≈ (1 + z) 5 . 6 to

xtrapolate the SMD in the far future and compute the asymptotic 
MD. We verified that the analytic approximation matches the 
umerical results at z � −0 . 99. 

2 Positi v e cosmological constant 

o study the convergence of the SMD in a universe with � > 0, we
ill still follow a similar logic to the one outlined in the previous

ection. We will highlight the differences in the reasoning that stem
rom having a positive rather than null cosmological constant. 

2.1 Normalized SFR 

n the case � > 0, it is more convenient to consider the asymptotic
ehaviour of the nSFR in terms of cosmic time rather than redshift.
his can be straightforwardly obtained by adapting equation (15) in 
P21 such that haloes are taken at a fixed virial mass instead of a
xed virial temperature: 

 low ( T ( M, z ) , z ) = 

S( T ( M, z)) 

M 

(
f gas ( T ( M, z) , z) 

f b 

) 3 
η

(
H ( z) 

H 0 

) 6 
η −3 

( H 0 t cool ) 
3 
η −2 d t cool 

d t 
. (A9) 

n a universe with � > 0 the Hubble parameter asymptotes to
 positive constant, so we can ignore any H ( z) factor in the
quation abo v e for our conv ergence study. From equation ( 4 ), it also
ollows that haloes with a fixed mass will have an approximately
onstant virial temperature in the far future, so we can disregard any
edshift dependence originating from the relationship between virial 
emperature and virial mass. Finally, we notice that our prescription 
or the cooling time (equation 10 ) yields t cool ∼ t in the far future.
herefore, we can immediately remo v e the last factor on the r.h.s.
f equation ( A9 ). Its asymptotic behaviour in the limit t → ∞ is
herefore 

 low ( T ( M, z ) , z ) ∝ 

(
f gas ( T ( M, z) , z) 

f b 

) 3 
η

t 
3 
η −2 

. (A10) 

e then need to study the scaling of f gas with cosmic time in this
imit. 

Our numerical results in Fig. 6 suggest that the critical temper-
ture increases with time once � dominates. Therefore, there will 
ventually be a time when the virial temperature falls below the
ritical temperature. At this point, the scaling for f gas is set by the
ritical temperature – see the case T < T crit in equation ( 15 ). We then
eed to determine the asymptotic time dependence of the critical 
emperature. 

As mentioned in Section 3.2.1 , the critical temperature is the virial
emperature abo v e which haloes retain a baryon mass fraction equal
o the cosmic value f b . At low redshift, this temperature is the one
hat satisfies the following condition (see SP21): 

(−η2 + 4 η − 2 

η

GM 

f w βxR 

2 

) 2 η−3 
η−1 

= 

(3 − η)( f b − f ∗ ∞ 

) μX 

2 MC( T ) 

6 πk B T m 

2 
H R 

3 
t cool , (A11) 

here we make the implicit assumption that the stellar mass fraction
symptotes to a constant in the far future. This assumption will be
alidated a posteriori, when we will show that the formalism does
redict a converging stellar mass fraction. 
Taking t cool ≈ t and approximating again the cooling function as 

 piece-wise power law (see equation A3 ), we obtain: 

 crit ( t) ∝ t 
2( η−1) 

2(2 −θ ) η+ 2 θ−5 . (A12) 

t can be verified that, if 1 . 5 < η < 3, the exponent in the equa-
ion abo v e is positiv e for θ � 1 . 4. Our numerical results show that
or η = 1 . 9, the critical temperature is abo v e 10 5 K at late times in
niverses with � > 0 (see Fig. 6 ). In this temperature range, equation
 A3 ) returns θ = −1 or θ = 0 . 5. In either case, this satisfies the
onditions for which the exponent in equation ( A12 ) is positive.
herefore, the critical temperature keeps increasing with time. 
One might wonder whether this result is specific to the value of
= 1 . 9 adopted here. Ho we ver, SP21 sho wed that, for � = � obs , a

if ferent v alue of η would change the late-time critical temperature
nly within a factor of ∼ 2 − 3. Thus, our considerations on the
symptotic behaviour of T crit in a universe with � > 0 should not be
ltered if we changed the value of η. 

Inserting the time scaling of the critical temperature abo v e in
quation ( 23 ), it can be easily seen that the cooling radius also scales
ith t as a power law in the far future, with a positive index smaller

han unity. This pro v es that the cooling radius increases with cosmic
MNRAS 535, 1449–1474 (2024) 
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nras/article/535/2/1449/7896079 by gu
ime, but does so progressively more slowly, as its time derivative
attens to zero as t → ∞ (see the discussion in Section 3.2.1 ). 
If we now insert the scaling given by equation ( A12 ) in the T <

 crit case of equation ( 15 ), and use the resulting time dependence for
 gas in equation ( A10 ), we deduce that s low ( T ( M, z ) , z ) ∝ t ξ , with 

= 

4( θ − 2) η2 + 5(5 − 2 θ ) η + 6( θ − 4) 

η[2(2 − θ ) η + 2 θ − 5] 
. (A13) 

e find that, for the value η = 1 . 9 that we are adopting, ξ < −1
or −0 . 3 � θ � 1 . 5. This includes θ = 0 . 5, which corresponds to
 crit > 10 6 K, a condition that is certainly satisfied asymptotically.
ence, our analysis would predict that the nSFR converges in the

imit t → ∞ . 
Having thoroughly tested our results by a comparison of numerics

ith the approximate analytical approach presented in this Appendix,
e are therefore confident of the robustness of our findings regarding

he convergence of the total stellar mass within haloes. 

2.2 Stellar mass density 

n a universe with � > 0, the growth function asymptotes to a
onstant, so that the halo multiplicity function follows the same
symptotic behaviour for a fixed halo mass (see also Section A1.2 ).
he time dependence of the CSFRD is then simply obtained by inte-
rating the nSFR o v er all halo masses, weighted by the asymptotic
ultiplicity function. Ho we ver, there is a complication: not all haloes

ie below the critical temperature threshold at an y fix ed cosmic time.
ome will therefore follow the time-dependence for the nSFR found

n the previous section, which applies to the case T < T crit , while
thers will yet have to enter that regime. Therefore, the asymptotic
ime dependence of the nSFR cannot be simply extracted from the
ntegral in equation ( 1 ), and the late-time behaviour of the CSFRD
ill deviate from that. 
We empirically verified that the a good analytical approximation

f the late-time CSFRD is given by 

ln 

(
ρ̇∗( t) 

U 

)
= ln 

(
ρ̇∗( t l ) 

U 

)(
t 

t l 

)φ

, (A14) 

here t l is a sufficiently late cosmic time and φ is the exponent
hat minimizes the residuals with the CSFRD that we computed
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umerically. In the abo v e, we defined U = 1M 	 yr −1 cMpc −3 , so that
he argument of the logarithms is dimensionless. We verified that our
tting formula yields an accuracy of a few per cent at 1 + z � 10 −5 ,
or all cosmological models considered. The values of the fitting
arameters depended very weakly on the choice of t l . 
The fitting function allows us to calculate the asymptotic SMD

nalytically, as we shall no w sho w. The SMD at any time t > t l is
iven by: 

∗( t) = ρ∗( t l ) + 

∫ t 

t l 

ρ̇( t ′ )d t ′ ≈ ρ∗( t l ) + U 

∫ t 

t l 

exp 

[ 

P 

(
t ′ 

t l 

)φ
] 

d t ′ , 

(A15

here we defined P = ln ( ̇ρ∗( t l ) / U). With the substitution t ′ → 

˜ t =
P ( t ′ /t l ) φ , we obtain 

∗( t) ≈ ρ∗( t l ) + 

t l U 

φ( −P ) 
1 
φ

∫ −P 
(

t 
t l 

)φ

−P 

˜ t 
1 
φ −1 exp ( −˜ t ) d ̃  t 

= ρ∗( t l ) + 

t l U 

φ( −P ) 
1 
φ

[ 

γl 

( 

1 

φ
, −P 

(
t 

t l 

)φ
) 

− γl 

(
1 

φ
, −P 

)]

(A1
here γl is the lower incomplete gamma function. We note that
ecause the CSFRD decays with time, one can al w ays choose a large
nough t l such that P < 0. For t > t l , the logarithm of the CSFRD
s ne gativ e and increases in absolute value, so that ln ρ̇∗( t) / ln ρ̇∗( t l )
ncreases with time. Thus, φ > 0 and the lower incomplete gamma
unction in equation ( A16 ) is al w ays well defined. In the limit t →
 , the abo v e e xpression conv erges to 

∗∞ 

= ρ∗( t l ) + 

t l U 

φ( −P ) 
1 
φ

γu 

(
1 

φ
, −P 

)
, (A17) 

here γu is the upper incomplete gamma function. This is the
xpression that we used to compute the asymptotic SMD in universes
ith � > 0. 
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