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ABSTRACT
With the aim of describing compressible viscous flows bymeans of a variational principle that takes into account heat conduction,
a recently proposed Lagrangian is subjected to a detailed linear wave analysis that stems directly from the Lagrangian. The
accompanying thermodynamic equation of state employed leads to a natural decomposition of the conduction term into three
contributions, with the importance of each accessed through a detailed analysis employing a recently developed perturbation
methodology giving rise to a favorable system of governing Jacobi equations. In addition to the model Lagrangian itself,
three potential model scenarios—based on different combinations of the contributions forming the Lagrangian—are rigorously
evaluated and appraised, regarding the occurrence, or otherwise, of dissipation recognizable by an attenuation of harmonic waves.
Results reveal that two of the four models are suitable candidates, and suggest one in particular.

1 Introduction

Classical Lagrange formalism has its origins in the developments
of the 18th century, being subsequently rebadged analytical
mechanics following Hamilton in the 19th century, where the
research focus was purely on conservative mechanical systems
and the Lagrangian was strictly defined as the difference of
kinetic and potential energy. This remains the current standing as
evidenced in recent standard textbooks [1]. However, beginning
with the 20th century, serious research began to extend the
concept of variational principles to dissipative systems, beginning
with Bateman’s early work [2] and later advancements reported,
for example, by Vujanovic and Jones [3], where variational
formulations for heat transfer in incompressible flows, of a
boundary layer type and non-Newtonian nature, are proposed

using the method of vanishing parameters. Later, Anthony [4,
5] formulated a detailed construct of the thermodynamics of
irreversible processes taking thermal degrees of freedom into
consideration, such that the total energy1 is still conserved
according to Noether’s theorem, while including dissipation in
the wider sense of an irreversible transfer of mechanical energy
(kinetic energy) to thermal (inner) energy.

More recently, a rigorous analysis of Galilean symmetry and asso-
ciated Noether densities and fluxes, by Scholle [6], established a
general scheme for Lagrangians, providing in addition a deeper
justification for the representation of the velocity field in terms
of Clebsch variables [7–10]. In this context, it is shown that
Seliger and Whitham’s Lagrangian [11] for inviscid flow, being
undoubtedly amilestone in the field of fluid dynamics employing

Abbreviations: ATM, all-terms model; CM, continuous model; LES, linear equation set; MM, minimalistic model; RDM, reduced discontinuous model.
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variational methods, accords with the above. Another essence of
Seliger andWhitham’s work (and similar earlier work of Lin [12])
is the use of another potential field 𝜗 fulfilling:

{
𝜕𝑡 + �⃗� ⋅ ∇

}
𝜗 = 𝑇, (1)

where 𝑇 denotes temperature. This additional thermal degree
of freedom is frequently referred as thermasy [13] or thermal
displacement [14–16].

As an advancement of Seliger and Whitham’s work [11], the
Lagrangian of Zuckerwar and Ash [17] includes volume viscosity
and therefore dissipation. However, the price for this is the
occurrence of a nonclassical feedback of the thermasy/thermal
displacement 𝜗 to the flow [18, 19] that cannot be understood
within the framework of conventional thermodynamics with the
assumption of a local equilibrium.

By reformulating the two thermal degrees of freedom occurring
in Zuckerwar andAsh’s Lagrangian, the specific entropy 𝑠 and the
thermasy/thermal displacement in terms of Anthony’s thermal
excitation [4, 5, 20] as

𝜒 =
√
𝑐0𝑇0 exp

(
𝑠
2𝑐0

− i𝜔0 exp

(
− 𝑠
𝑐0

)
𝜗
𝑇0

)
, (2)

with an additional parameter 𝜔0 occurring alongside the refer-
ence values 𝑐0 = 𝑐𝑉(𝜚0, 𝑇0) and 𝑇0 for specific heat and tempera-
ture, respectively, the above issue can be addressed by reducing
the nonclassical feedback terms to order 𝜔−1

0 ; whereby discon-
tinuities inevitably occur due to the logarithm of the thermal
excitation [21]. On eliminating the discontinuities by time, or
ensemble, averaging [22, 23] the nonclassical contributions are
reduced to order 𝜔−2

0 . In this context, the parameter 𝜔0 can
be interpreted as a relaxation rate toward thermodynamic equi-
librium. Further advancements relating to shear viscosity and
heat conduction have also been reached in the aforementioned
papers.

In contrast to the above, the work reported here focuses on
thermal conduction and its crucial role in dissipative processes
in compressible flow. In Section 2 the Lagrangian proposed in
previous work [23] is considered with regard to a particular
thermodynamic equation of state, leading naturally to a decom-
position of the heat conduction term into three parts. To assess
the impact of each of these three contributions on the system,
a recently established variational perturbation approach [24] is
applied in Section 3, resulting in a system of linearized evolution
equations for small perturbations to the rest state. Obtaining
solutions in the form of harmonic waves, a dispersion relation
results which is carefully analyzed for four different scenarios
regarding the heat conduction component of the Lagrangian
considering: (i) only the leading term as proposed in prior work
[23]; (ii) neglect of the discontinuous term; (iii) the leading and
the discontinuous term; and (iv) all terms. In the discussion
which follows, Section 4, attention is directed to dissipation, that
is, the irreversible transfer of kinetic energy to inner energy and,
in particular, the role of the discontinuous term with respect to
the latter. In Section 5, conclusions are drawn and future research
avenues discussed.

2 Modeling Approach

2.1 Proposed Lagrangian

2.1.1 General Lagrangian Considering Both Viscosity
and Thermal Conduction

For the compressible viscous flow of a Newtonian fluid with
thermal conduction, the following Lagrangian [23] is proposed in
terms of the density 𝜚, the Clebsch variables 𝜑, 𝛼, 𝜉, the velocity
�⃗�, and the thermal excitation 𝜒, which can be conveniently
subdivided into three parts:

𝓁 = 𝓁rev + 𝓁visc + 𝓁cond, (3)

𝓁rev = −𝜚
[{
𝜕𝑡 + �⃗� ⋅ ∇

}
𝜑 + 𝛼

{
𝜕𝑡 + �⃗� ⋅ ∇

}
𝜉

+ 1
𝜔0
ℑ
(
�̄�
{
𝜕𝑡 + �⃗� ⋅ ∇

}
𝜒
)
− �⃗� 2

2
+ 𝑒

]
, (4)

𝓁visc =
1
i𝜔0

ln

√
�̄�
𝜒

[
𝜂

4
tr
[
∇⊗ �⃗� +

(
∇⊗ �⃗�

)𝑡]2
+
𝜂′

2

(
∇ ⋅ �⃗�

)2]
,

(5)

𝓁cond = − 𝜆∇𝑇 ⋅ ∇

(
𝜗
𝑇

)
= − 𝜆

i𝜔0𝑐0
∇ℜ

(
𝜒
𝜕𝑒
𝜕𝜒

)

⋅ ∇

(
�̄�𝜒 ln

√
�̄�∕𝜒

ℜ(𝜒𝜕𝑒∕𝜕𝜒)

)
; (6)

a reversible part, 𝓁rev, for an inviscid flow without thermal
conduction equivalent to the classical Lagrangian of Lin [12] and
Seliger and Whitham [11], a viscous part, 𝓁visc, with shear and
volume viscosity 𝜂, 𝜂′, and a conductive part, 𝓁cond, with thermal
conductivity 𝜆. Denoting the specific inner energy of the fluid by
𝑒 = 𝑒 (𝜚, 𝑠) the temperature is given by

𝑇 = 𝜕𝑒
𝜕𝑠
. (7)

The presence of the logarithm term ln
√
�̄�∕𝜒 in 𝓁visc and 𝓁cond

signifies the discontinuous nature of the Lagrangian.

2.1.2 Reduced Lagrangian Considering Only Thermal
Conduction

For the purpose of solely evaluating the impact of heat conduction
the viscous part, 𝓁visc, can be ignored, playing no further role in
the subsequent analysis; however, for completeness it is subse-
quently reintegrated into the finally suggested Lagrangian—see
Equation (42). This enables the number of fields to be reduced
as a favorable secondary feature: followed by considering the
Euler–Lagrange equation with respect to �⃗�:

𝜚�⃗� − 𝜚∇𝜑 − 𝜚𝛼∇𝜉 − 𝜚
1
𝜔0
ℑ(�̄�∇𝜒) = 0⃗,
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the velocity can be expressed in terms of the other fields in a
Clebsch-type [10] form:

�⃗� = ∇𝜑 + 𝛼∇𝜉 + 1
𝜔0
ℑ(�̄�∇𝜒), (8)

which after insertion into (4) leads to the following reduced form
of 𝓁rev:

𝓁rev = −𝜚
[
∂𝑡𝜑 + 𝛼∂𝑡𝜉 +

1
𝜔0
ℑ(�̄�∂𝑡𝜒)

+1
2

(
∇𝜑 + 𝛼∇𝜉 + 1

𝜔0
ℑ[�̄�∇𝜒]

)2

+ 𝑒

]
. (9)

2.2 Thermodynamic State Equations,
Euler–Lagrange Equations, and Decomposition

The following state equation for the specific inner energy is
considered:

𝑒 = 𝑐0𝑇0

[
1 + 1

𝛽
ln

(
𝜚

𝜚0

)]
exp

(
𝑠
𝑐0

)
+ 𝑒2(𝜚)

= �̄�𝜒 +
�̄�𝜒

𝛽
ln

(
𝜚

𝜚0

)
+ 𝑒2(𝜚) (10)

consisting of a purely thermal part, �̄�𝜒, followed by a thermome-
chanical contribution with coupling parameter, 𝛽, and finally a
purely hydroelastic part, 𝑒2 (𝜚).

The Euler–Lagrange equations resulting from the Lagrangian
(3) with the above state equation and in the absence 𝓁visc are
computed in Appendix A.3, and consist of a continuity equation,
a generalized Bernoulli’s equation, an evolution equation for
the thermal excitation, and two transport equations for the
Clebsch variables.

As a consequence of (10), the relationship

𝜒
𝜕𝑒
𝜕𝜒

= �̄�𝜒 +
�̄�𝜒

𝛽
ln

(
𝜚

𝜚0

)
holds, allowing (6) to be rewritten as

(11)

consisting of three contributions: (i) a purely thermal one 𝓁th,
(ii) a continuous thermomechanical one 𝓁th-mech, and (iii) a
discontinuous one 𝓁discont.

In an earlier paper, Scholle et al. [23] suggested 𝓁cond ≈ 𝓁th as a
simple approximation for the conductive part of the Lagrangian;
however, this was not followed up with any analysis to prove
his hypothesis since the focus of the paper was the influence
of the viscosity on acoustic waves. It is therefore the aim of the
present work to subject this unproven hypothesis to a critical
examination and, in the case of a negative finding, to work out an
alternative proposal for an approximation to the conductive term
in the Lagrangian by exploring the influence of heat conduction
on acoustic waves. For this purpose and to aid the reader, as in
(11), different terms in subsequent equations are highlighted in
color in order to better understand their individual effects on the
results of the wave analysis performed.

The outcome of this investigation is by no means restricted
to acoustic wave propagation. On the contrary, it is a valuable
undertaking as to the suitability of an approximated Lagrangian
for the modeling of compressible flow problems in general.

3 Linear Wave Analysis

3.1 Brief Description of the Method

In a recent article [24], a method is outlined allowing for a linear
and weakly nonlinear wave analysis stemming directly from a
Lagrangian: if 𝜓𝑖 , 𝑖 = 1, … ,𝑁 are the fundamental fields entering
the Lagrangian 𝓁 = 𝓁 (𝜓𝑖, 𝜕𝛼𝜓𝑖), for a given reference state 𝜓0𝑖 a
perturbed state:

𝜓𝑖 = 𝜓0𝑖 + �̃�𝑖

is considered where �̃�𝑖 represents the small perturbation
involved. With the objective of undertaking a linear stability
analysis, a Taylor expansion of the Lagrangian with respect to
�̃�𝑖 up to quadratic order is performed, leading to a perturbation
Lagrangian of the form

Ω ∶= 1
2

𝜕2𝓁
𝜕𝜓𝑖𝜕𝜓𝑗

|||||0�̃�𝑖�̃�𝑗 +
𝜕2𝓁

𝜕(𝜕𝛼𝜓𝑖)𝜕𝜓𝑗

|||||0
(
𝜕𝛼�̃�𝑖

)
�̃�𝑗

+ 1
2

𝜕2𝓁

𝜕(𝜕𝛼𝜓𝑖)𝜕
(
𝜕𝛽𝜓𝑗

) |||||0
(
𝜕𝛼�̃�𝑖

)(
𝜕𝛽�̃�𝑗

)
; (12)
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a collection of all the quadratic contributions from the Taylor
expansion. By variation with respect to �̃�𝑖 , the Jacobi equations
[4, 25, 26] result:

𝜕Ω

𝜕�̃�𝑖
− 𝜕𝛼

(
𝜕Ω

𝜕
(
𝜕𝛼�̃�𝑖

)) = 0 (13)

as the evolution equations for the perturbations. These are in
fact theEuler–Lagrange equations of the perturbationLagrangian
Ω and automatically linear due to Ω being quadratic. After
prudent manipulation with the aim of reducing the number of
equations and to establish an equation with the character of
a wave equation while neglecting nonclassical terms of order
𝜔−2
0 (after time/ensemble averaging), solutions in the form of

harmonic waves are assumed, implying a homogenous linear
equation set (LES), the determinant of which has to vanish
for nontrivial solutions, leading finally to an implicit form of
dispersion relation.

3.2 Application to the Lagrangian

3.2.1 Associated Perturbation Lagrangian

By taking the rest state, 𝜚 = 𝜚0, 𝜑 = 𝛼 = 𝜉 = 0, and 𝜒 = 𝜒0(𝑡) =√
𝑐0𝑇0 exp (−i𝜔0𝑡) as a reference state and making the following

substitutions:

𝜁 ∶=
�̄�0�̃�
𝑐0𝑇0

=
�̃�
𝜒0
, (14)

Φ ∶= 𝜑 +
𝑐0𝑇0
𝜔0

ℑ𝜁, (15)

the resulting perturbation Lagrangian is

(16)

consisting of four constituent parts in accordance with the
associated Lagrangian 𝓁. 𝑎20 = 2𝜚0𝑒

′
2 (𝜚0) + 𝜚20𝑒

′′
2 (𝜚0) denotes the

square of the signal speed for the reversible case (the absence of
viscosity and thermal conduction).

3.2.2 Dimensional Analysis

Dimensionless groupings allow the order of magnitude of the
individual terms in equations to be estimated for many problems.

It therefore makes sense to utilize this method for the Lagrangian
(16) in order to estimate the three contributions to the heat
conduction term, Ωth, Ωth-mech, and Ωdiscont in relation to each
other, as shown in Appendix A.4. As it turns out, since all three
contributions have the same prefactor, this consideration does not
lead to any findings of significance.

3.2.3 Jacobi Equations

The Jacobi equations (13) resulting from the perturbation
Lagrangian (16) are

𝛿Φ̃ ∶ 0 =𝜕𝑡�̃� + 𝜚0∇
2Φ, (17)

(18)

(19)

(20)

𝛿�̃� ∶ 0 = − 𝜚0𝜕𝑡𝜉, (21)

𝛿�̃� ∶ 0 =𝜚0𝜕𝑡𝛼. (22)

From the last two equations, it follows that no vorticity is
generated based on the linear approximation. Thus, the Cleb-
sch variables 𝛼 and 𝜉 can be considered to be zero. Tak-
ing the time derivative of (18) and substituting −𝜕𝑡�̃�∕𝜚0 =
∇2Φ according to (17), the following extended wave equation
results:

4 of 10 Studies in Applied Mathematics, 2025
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By averaging (time or ensemble), the rapidly fluctuating terms
containing ln

√
�̄�0∕𝜒0 are reduced to contributions of order


(
𝜔−2
0

)
, which are due to a thermodynamic nonequilibrium [22,

23]. These are neglected subsequently. It is also expedient to
decompose (19) into real and imaginary part in order to achieve
separate evolution equations for 𝜁′ ∶= ℜ𝜁 and 𝜁′′ ∶= ℑ𝜁. In this
way, the remaining set of equations are

𝜕𝑡�̃� + 𝜚0∇
2Φ = 0, (23)

(24)

(25)

𝜕𝑡𝜁
′′ + 𝜆

𝜚0𝑐0
∇2𝜁′′ +

𝜔0�̃�

𝜚0𝛽
= 0. (26)

3.2.4 Harmonic Wave Analysis

Solutions in the form of planar harmonic waves are achieved by
substituting

Φ⟶ Φ̂exp
(
i
[
𝑘 ⋅ �⃗� − 𝜔𝑡

])
, �̃� ⟶ �̂� exp

(
i
[
𝑘 ⋅ �⃗� − 𝜔𝑡

])
,

𝜁′ ⟶ 𝜁′ exp
(
i
[
𝑘 ⋅ �⃗� − 𝜔𝑡

])
, 𝜁′′ ⟶ 𝜁′′ exp

(
i
[
𝑘 ⋅ �⃗� − 𝜔𝑡

])
into Equations (23–26) and multiplying each by
exp

(
−i

[
𝑘 ⋅ �⃗� − 𝜔𝑡

])
. The outcome is a homogeneous LES

for the four complex amplitudes Φ̂, �̂�, 𝜁′, 𝜁′′. On introducing the
nondimensional groupings

𝑍 ∶= 𝜆𝑘2

𝜚0𝑐0𝜔
, �̃� ∶= 𝜆𝜔

𝜚0𝑐
2
0𝑇0

, 𝑊 ∶=
𝑎20
𝑐0𝑇0

, 𝜀 ∶= 𝜔
𝜔0
,

(27)

the resulting LES can be written in matrix form as

(28)

For nontrivial solutions, the determinant of the matrix in (28)
has to vanish; leading, after multiplication by 𝛽�̃�, to a dispersion
relationship in its most general implicit form

(29)
If all terms are considered, the dispersion relation (29) is a quartic
equation with respect to 𝑍. However, on neglecting either the
continuous thermomechanical coupling terms (highlighted red)
or the discontinuous ones (highlighted blue), or both, it reduces
to an equation of lower order, as shown subsequently.

Remarkably, 𝜀 does not appear in (29), while 𝛽 occurs in combi-
nations with �̃� and 𝑍 only, such that only three nondimensional
products enter (29), namely, 𝛽2�̃�, 𝑍, and 𝛽2𝑊. Consequently, the
solutions of (29) can be written as

𝑍 = 𝑍𝑖
(
𝛽2�̃�; 𝛽2𝑊

)
.

While 𝛽2�̃� and𝑍 are dimensionless representatives of the angular
frequency and the wavenumber, respectively, the combination

𝛽2𝑊 =
𝛽2𝑎20
𝑐0𝑇0

(30)

5 of 10
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turns out to be the only dimensionless parameter in the problem.
In the case of the fluid being an ideal gas, it is shown in
Appendix A.2 that it depends solely on the adiabatic exponent.

4 Results and Discussion

4.1 Explicit Dispersion Relations for Four
Models

With reference to Equation (11), four different combinations of
the contributions 𝓁th, 𝓁th-mech, and 𝓁discont are considered for
modeling thermal conduction, 𝓁cond, as follows: (i) a minimalistic
model (MM) 𝓁cond = 𝓁th, which includes only the thermal excita-
tion; (ii) a model that includes all continuous terms according to
𝓁cond = 𝓁th + 𝓁th-mech; (iii) a reduced discontinuous model (RDM)
𝓁cond = 𝓁th + 𝓁discont; and (iv) the consideration of all contribu-
tions according to 𝓁cond = 𝓁th + 𝓁th-mech + 𝓁discont. The implicit
form of the dispersion relation for the latter case is already given
by (29), those for the remaining threemodel scenarios result from
omitting the associated red and/or blue highlighted terms.

In each case, either a cubic or a quartic equation must be
solved to obtain the explicit form of the dispersion relation
requiring identification, from among 3 or 4, of the solution that
tends toward the linear dispersion relationship, 𝑘 = 𝜔∕𝑎0, in the
low-frequency limit.

4.1.1 MM

The simplestmodel scenario, proposed by Scholle [23], is based on
neglecting both continuous and discontinuous thermomechani-
cal coupling terms, with only the purely thermal conduction term
𝓁th remaining. In which case, the dispersion relation (29) reduces
to

(
1 + 𝑍2

)
(�̃� −𝑊𝑍) = 0

having solutions 𝑍1,2 = ±i and 𝑍3 = �̃�∕𝑊. The latter implies,
after making use of the groupings in (27), perfect linear disper-
sion, 𝑘 = 𝜔∕𝑎0, and therefore wave motion without attenuation.
This means that despite the occurrence of thermal conduction
as an irreversible effect, this model does not take dissipation
into account.

4.1.2 Continuous Model (CM)

If the discontinuous contribution to the Lagrangian, 𝓁discont, is
omitted, the general dispersion relation (29) takes the form of a
cubic equation

𝛽2
(
1 + 𝑍2

)
(�̃� −𝑊𝑍) + 2𝑍3 = 0 (31)

having at least one real-valued solution, which can be conve-
niently represented by its inverse function �̃� = �̃�(𝑍) as follows:

𝛽2�̃� =
(
𝛽2𝑊 − 2𝑍2

1 + 𝑍2

)
𝑍. (32)

The sign of 𝑍 is decisive as to whether the wave number 𝑘 result-
ing from its root via (27) is purely real-valued or purely imaginary.
For this reason, inAppendixA.2 it is proven that𝛽2𝑊 = 𝛾∕(𝛾 − 1)
for an ideal gas with adiabatic exponent 𝛾, leading for a diatomic
ideal gas to 𝛽2𝑊 = 7∕2 and to always a positive value for the
bracketed expression in the above, and therefore to positive 𝑍 and
𝑘, excluding attenuation per se. In the case of media other than
ideal gases, which theoretically can have adiabatic exponents
greater than 2, the sign of the bracketed expression can change,
enabling wave attenuation for large wave numbers, but waves
with smaller wave numbers remain undamped. Thus, it can
be concluded that wave propagation without dissipation occurs
within the continuousmodeling approach, refuting the optimistic
assessment in Scholle’s [23] earlier paper.

Although in contrast to theMMabove, dispersion is recognizable,
the CM model allows for undamped waves as an unphysical
feature as does the MMmodel.

Two further solutions of the cubic equation (31) exist but are not
investigated here. Nevertheless, the solution (32) proves to be the
one leading to linear dispersion in the low-frequency limit.

4.1.3 RDM

Complementary to the above analysis, the discontinuous contri-
bution to the Lagrangian, 𝓁discont, is now taken into account, with
the continuous thermomechanical contribution 𝓁th-mech omitted.
In which case, the dispersion relation (29) reduces to(

1 + 𝑍2
)[
i𝛽2(�̃� −𝑊𝑍) − 2𝑍2

]
= 0 ;

a quartic equation. As in the case of the MM, the factor 1 +
𝑍2 associated with the two nonwave solutions 𝑍1,2 = ±i can be
dropped. For the quadratic equation,

𝑍2 +
i𝛽2𝑊

2
𝑍 −

i𝛽2�̃�

2
= 0, (33)

that remains, the two solutions are

𝑍1,2 =
i𝛽2𝑊

4

[
±

√
1 − 8i�̃�

𝛽2𝑊2
− 1

]
. (34)

As before, only the solution that leads to the case of linear
dispersion in the low-frequency limit is of interest. To find out
which of the above solutions fulfills this criterion, a Taylor
expansion of the square root above:√

1 − 8i�̃�
𝛽2𝑊2

≈ 1 − 4i�̃�
𝛽2𝑊2

+ 8�̃�2

𝛽4𝑊4

leads to the approximate solutions:

𝑍1 ≈
�̃�
𝑊

(
1 + 2i�̃�

𝛽2𝑊2

)
, (35)

𝑍2 ≈
i𝛽2𝑊

4

[
−2 + 4i�̃�

𝛽2𝑊2
− 8�̃�2

𝛽4𝑊4

]
(36)
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revealing that 𝑍1 tends to linear dispersion for low frequency as
required. Back substitution, making use of (27), yields

𝑘2 ≈
𝜔2

𝑎20

(
1 +

2i𝑇0𝜆𝜔

𝛽2𝜚0𝑎
4
0

)
,

which, after taking the square root and applying a Taylor
expansion again, the approximate solution

𝑘 ≈
𝜔
𝑎0

√
1 +

2i𝑇0𝜆𝜔

𝛽2𝜚0𝑎
4
0

≈
𝜔
𝑎0

(
1 +

i𝑇0𝜆𝜔

𝛽2𝜚0𝑎
4
0

)
(37)

for the wave number 𝑘 is obtained, revealing a frequency-
dependent attenuation coefficient ℑ𝑘 > 0, as is to be expected
classically [27, 28]. Therefore, dissipation occurs confirming that
the occurrence of a discontinuous contribution to the Lagrangian
is inevitable for this to be the case.

4.1.4 All-TermsModel (ATM)

When considering all contributions in the Lagrangian, the
following quartic equation:

𝑍4 + i
(
𝛽2𝑊 − 3

)
𝑍3 +

(
2 − i𝛽2�̃�

)
𝑍2 + i𝛽2𝑊𝑍 − i𝛽2�̃� = 0

results which, on substituting 𝑍 = i𝑥, takes the more convenient
form:

𝑥4 +
(
𝛽2𝑊 − 3

)
𝑥3 −

(
2 − i𝛽2�̃�

)
𝑥2 − 𝛽2𝑊𝑥 − i𝛽2�̃� = 0. (38)

According to Cardano’s Ars Magna [29], a closed-form solution
of quartic equations is available; its construction is shown in
detail in Appendix A.1. For the exemplary choice 𝛽2𝑊 = 7∕2
for a diatomic ideal gas, all four solution branches prove to be
complex-valued, implying nonvanishing attenuation. Also, one
of the four branches tends toward a linear dispersion in the
low-frequency limit. Like the RDM, the ATM correctly reflects
the absorption of acoustic waves caused by heat conduction and
the associated dissipation. A quantitative comparison of all four
models is provided below.

4.2 Visualization and Discussion of the Results

By defining

𝜔c ∶=
𝜚0𝑐

2
0𝑇0

𝛽2𝜆
(39)

as a critical angular frequency, the nondimensional product 𝛽2�̃�
can be written as the dimensionless angular frequency

𝛽2�̃� = 𝜔
𝜔c
.

Alternatively, a dimensionless wavenumber results from

√
𝛽2𝑍�̃� =

√
𝜆𝑘2

𝜚0𝑐0𝜔

𝛽2𝜆𝜔

𝜚0𝑐
2
0𝑇0

=
𝛽𝜆𝑘

𝜚0𝑐0
√
𝑐0𝑇0

= 𝑘
𝑘c
, (40)

with an associated critical wavenumber

𝑘c ∶=
𝜚0𝑐0

√
𝑐0𝑇0

𝛽𝜆
. (41)

Since two of the four models deliver complex-valued wave
numbers, dispersion (𝑘′ = ℜ𝑘) and attenuation (𝑘′′ = ℑ𝑘) are
plotted in two separate diagrams in Figure 1 against the frequency
ratio, 𝜔∕𝜔c, for the particular case of a diatomic ideal gas, 𝛽2𝑊 =
7∕2.

All models, except the MM, show dispersion above the critical
angular frequency, 𝜔 > 𝜔c. The RDM does not differ significantly
from the ATM, while the CM exhibits remarkable differences.

The attenuation is predicted to be weaker for the RDM compared
to the ATM, but there is very good agreement for frequencies
below the critical frequency, 𝜔 < 𝜔c. Both the MM and the CM
do not include attenuation.

The above study identifies theRDMas themost appropriate of the
fourmodels analyzed, as it is simplified compared to theATM, but
still takes into account the phenomenon of dissipation based on
the subtle interaction of heat conduction with thermomechanical
coupling. Overall, and considering the prior work related to
viscosity [22, 23],

𝓁 = 𝓁rev + 𝓁visc + 𝓁th + 𝓁discont
⏟⎴⎴⏟⎴⎴⏟

𝓁cond

(42)

can therefore be regarded favorably as a suitable Lagrangian
for compressible viscous flows with both viscosity and thermal
conduction effects accounted for.

5 Conclusions

Of the four different model scenarios explored for the consid-
eration of heat conduction in compressible flows by means of
a variational formulation, the two simplest variants are proved
not to exhibit dissipation, since they produce solutions that
are undamped acoustic waves; the other two model variants,
both including a discontinuous term 𝓁discont in the Lagrangian,
correctly reproduce the phenomenon of wave attenuation, in
accordance with classical theory, as a function of the square
of the frequency in the low-frequency limit and thus include
dissipation. This provides further evidence that dissipation in
the framework of the Lagrangian formalism can be taken into
account by a strict2 variational principle, thus complementing
earlier work [17, 21, 22] which has already shown this in the case
of viscosity.

In view of the fact that the RDM, for frequencies below a critical
frequency, provides an almost identical dispersion and absorption
as the ATM, the continuous thermomechanical coupling term
𝓁th-mech seems to be generally dispensable. However, each of the
four model variants with different levels of complexity can be
justified, dependent on which physical effects need to be taken
into account and which can be neglected when solving problems
of interest.
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FIGURE 1 Plots of dispersion and attenuation for the four different model scenarios, with 𝛽2𝑊 = 7∕2 (diatomic ideal gas).

Looking ahead, it would prove worthwhile to augment the
present study with a weakly nonlinear analysis via a Taylor
expansion of the Lagrangian up to cubic terms, leading by
variation to quadratic equations for the perturbations [24, 30],
and to compare it with existing work [31, 32], where the currently
neglected non-classical terms of order 𝜔−2

0 are also of interest.

The primary objective and outcome of the present study is not
limited to soundwaves alone; rather, their analysis serves the pur-
pose of identifying the best possible Lagrangian for compressible
viscous flows with heat conduction among various alternatives.
This could form the basis for the development of new solution
methods, both semianalyticalmethods using theRitzmethod and
numerical methods based on finite element techniques.
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Endnotes
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Appendix A: Calculations

A.1 Solution of the Quartic Equation

First, the dispersion relation (38) can be written in the form

𝑥4 + 𝐵𝑥3 + 𝐶𝑥2 − (𝐵 + 3)𝑥 − 𝐶 − 2 = 0, (A1)

with coefficients

𝐵 = 𝛽2𝑊 − 3,

𝐶 = −2 + i𝛽2�̃�.

Following the classical algorithm for finding roots of a quartic equa-
tion [29], the following auxiliary quantities are introduced:

𝑎 = 𝐶 − 3
8
𝐵2 , 𝑏 = 𝐵3

8
− 𝐵𝐶

2
− 𝐵 − 3 ,

𝑃 = 2 + 𝐶 − 𝐶2

12
−
𝐵(𝐵 + 3)

4
, 𝑄 = −𝑎

3

27
− 𝑎𝑃

3
− 𝑏2

8
,

𝑈 =

(
−𝑄
2
+
√

𝑄2

4
+ 𝑃3

27

)1∕3

, 𝑧 = 𝑏

2

√
2𝑈 − 2𝑎

3
− 2𝑃
3𝑈

.

Finally, the four roots of the quartic equation result as

𝑥𝑗 = 1
2

[
𝑠𝑗

√
2𝑈 − 2𝑎

3
− 2𝑃
3𝑈

− (−1)𝑗
√

2𝑃
3𝑈

− 4𝑎
3

− 2𝑈 − 4𝑠𝑗𝑧

]
− 𝐵
4
,

𝑗 ∈ {1, 2, 3, 4} (A2)

with 𝑠1 = 𝑠2 = 1 and 𝑠3 = 𝑠4 = −1. The above algorithm has been
implemented in Python.

A.2 Parameters 𝜷,𝑾, and 𝜷𝟐𝑾 for an Ideal Gas

From the state equation (10), the temperature is obtained via (7) as

𝑇 = 𝜕𝑒
𝜕𝑠

= 𝑇0

[
1 + 1

𝛽
ln

(
𝜚

𝜚0

)]
exp

(
𝑠
𝑐0

)
.

By taking the derivative with respect to 𝜚 and evaluating the expression
for the equilibrium state, 𝑠 = 0, 𝜚 = 𝜚0, the relationship

𝜕𝑇
𝜕𝜚

||||0 = 𝑇0
𝛽𝜚0

(A3)

is obtained. For an ideal gas, the state equation 𝑝∕𝜚 = 𝑅𝑇∕𝑀 with
universal gas constant 𝑅 and molar mass𝑀 applies:

𝜕𝑇
𝜕𝜚

||||0 = 𝑀
𝑅

(
1
𝜚

𝜕𝑝

𝜕𝜚
−
𝑝

𝜚2

)|||||0 =
𝑀
𝑅

(
𝐾0
𝜚20

−
𝑝0
𝜚20

)
= 𝑀

𝑅

𝑎20
𝜚0

−
𝑇0
𝜚0
, (A4)

where𝐾0 = 𝜚0𝑎
2
0 is the compressionmodulus. Finally, the speed of sound

for an ideal gas fulfills the relationship

𝑎20 = 𝛾
𝑝0
𝜚0

= 𝛾
𝑅
𝑀
𝑇0, (A5)

where 𝛾 is the adiabatic exponent. By inserting (A5) into (A4) and
comparing the outcome with (A3), the thermomechanical coupling
coefficient results as

𝛽 = 1
𝛾 − 1

. (A6)

Reconsidering (A5), the parameter𝑊 defined in (27) yields

𝑊 =
𝑎20
𝑐0𝑇0

= 𝛾
𝑅𝑇0
𝑀𝑐0𝑇0

= 𝛾
𝑅
𝑐𝑚

= 𝛾(𝛾 − 1), (A7)

where 𝑐𝑚 = 𝑅∕(𝛾 − 1) is the molar heat capacity of the gas. Finally, the
decisive parameter 𝛽2𝑊 turns out to be

𝛽2𝑊 =
𝛾

𝛾 − 1
. (A8)
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As an example, for a diatomic gas (𝛾 = 7∕5) the parameter values turn out
to be: 𝛽 = 5∕2,𝑊 = 14∕25, and 𝛽2𝑊 = 7∕2.

A.3 Euler–Lagrange Equations

Using the abbreviation 𝜅 = 1 + ln (𝜚∕𝜚0) ∕𝛽, the Euler–Lagrange equa-
tions associated to (3), with 𝓁visc neglected, read:

𝛿𝜑 ∶ 0 =𝜕𝑡𝜚 +∇ ⋅
(
𝜚�⃗�

)
, (A9)

𝛿𝜚 ∶ 0 =
𝓁rev
𝜚

−
�̄�𝜒

𝛽
− 𝜚𝑒′2(𝜚) +

𝜆 ln
√
�̄�∕𝜒

i𝜔0𝑐0𝜚𝛽𝜅2
∇2(𝜅�̄�𝜒), (A10)

𝛿�̄� ∶ 0 = −
𝜚

i𝜔0

{
𝜕𝑡 + �⃗� ⋅ ∇

}
𝜒 − 𝜚𝜅𝜒

+
𝜆𝜅𝜒

i𝜔0𝑐0

[
∇2

(
ln

√
�̄�∕𝜒

𝜅

)
+
∇2(𝜅�̄�𝜒)

2𝜅2�̄�𝜒

]
, (A11)

𝛿𝛼 ∶ 0 = − 𝜚
{
𝜕𝑡 + �⃗� ⋅ ∇

}
𝜉, (A12)

𝛿𝜉 ∶ 0 =𝜕𝑡(𝜚𝛼) +∇ ⋅
(
𝜚𝛼�⃗�

)
, (A13)

where the state equation (10) has been considered, and consist of the
continuity equation (A9), a generalized Bernoulli’s equation (A10) [10,
33], an evolution equation (A11) for the thermal excitation (variation with
respect to 𝜒 delivers its complex conjugate) considering both convection
and conduction, and transport equations (A12), (A13) for the Clebsch
variables, the latter being related to the vortex dynamics and conservation
of circulation [8–10, 33].

A.4 Dimensionless Form of the Perturbation Lagrangian

By introducing the dimensionless fields

𝜚∗ ∶=
�̃�

𝜚0
, Φ∗ = 𝜔Φ

𝑐0𝑇0
, 𝜉∗ =

𝜔𝜉
𝑐0𝑇0

, (A14)

and the dimensionless differential operators

𝜕∗𝑡 = 1
𝜔
𝜕𝑡, ∇∗ ∶= 𝑘−1∇, (A15)

the perturbation Lagrangian (16) can be written in the following
dimensionless form:

(A16)

containing the parameters defined in (27) as nondimensional scales. Since
all three contributions to heat conduction (second line) have the same
scale 𝜀𝑍 as prefactor, no decision can be made on the basis of the above
dimensional analysis as to which contribution(s) might be negligible
compared to the others.
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