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a b s t r a c t 

The properties of classical panel data estimators including fixed effect, first-differences, 

random effects, and generalized method of moments-instrumental variables estimators in 

both static as well as dynamic panel data models are investigated under sample selection. 

The correlation of the unobserved errors is shown not to be sufficient for the inconsistency 

of these estimators. A necessary condition for this to arise is the presence of common 

(and/or non-independent) non-deterministic covariates in the selection and outcome equa- 

tions. When both equations do not have covariates in common and independent of each 

other, the fixed effects, and random effects estimators in static models with exogenous co- 

variates are consistent. Furthermore, the first-differenced generalized method of moments 

estimator uncorrected for sample selection as well as the instrumental variables estimator 

uncorrected for sample selection are both consistent for autoregressive models even with 

endogenous covariates. The same results hold when both equations have no covariates in 

common but are correlated once we account for such correlation. Under the same circum- 

stances, the system generalized method of moments estimator adding more moments from 

the levels equation has moderate bias. Alternatively, when both equations have common 

covariates the appropriate correction method is suggested. Serial correlation of the errors 

being a key determinant for that choice. The finite sample properties of the proposed esti- 

mators are evaluated using a Monte Carlo study. Two empirical illustrations are provided. 

© 2023 The Author(s). Published by Elsevier B.V. on behalf of EcoSta Econometrics and 

Statistics. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

 

1. Introduction 

The problems of self-selection, non-response and attrition are common in datasets containing economic variables. Their 

presence is well researched in cross-section studies. However, correlated heterogeneity together with endogenous attrition, 

non-response or sample selection complicate matters with unbalanced panel data ( Baltagi, 2021 ). The increasing availability 

of large longitudinal databases has produced many studies simultaneously dealing with unobserved heterogeneity and se- 

lectivity. Moreover, the development of new methods make these approaches more likely to be used in the future. In this

context, we believe that it is important to highlight the advantages and disadvantages of various commonly used panel data 

estimators and to draw the researchers’ attention to potential pitfalls in using them in empirical studies. 
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In this paper we focus on the estimation of a very general class of panel data sample selection models. We consider a

variety of cases for the outcome of interest and a simple form for the selection equation. We also allow for a very general

correlation structure in the error components of both equations. Departing from the simplest situation, we present an exer- 

cise which includes some important features in the model to test their individual and joint effects on the bias of some of

the classical estimators (fixed effects -FE-, random effects -RE-, and first differences -FD-) as well as the generalized method 

of moments (GMM) estimators. 

In more detail, we consider four cases of increasing complexity: (a) panel data sample selection models without common 

covariates, and independent on each other; (b) models without common covariates, but dependent on each other; (c) models 

with at least one common covariate but not serially cross-correlated time-variant errors; and, (d) models with at least one 

common covariate and time variant serially cross-correlated errors. 

The first two cases are less common than others. They typically involve sample selection related to involuntary factors, 

not linked to the individual characteristics (the Covid-19 crisis or the increasingly common empirical studies based on an 

experimental or quasi-experimental designs, for example). In this context, the determinants at the extensive margin are 

completely different from those at the intensive margin. Some examples of standard economic models imposing identifi- 

cation restrictions that exclude from the observability rule variables included in the outcome equation include ( Rochina- 

Barrachina, 1999 ), or ( Knoef and Been, 2015 ). Under these assumptions, sample selection corrections are not necessary for

consistent estimation of the parameters of interest. However, sample selection corrections ( a la Heckman , Heckman (1979) )

are necessary in the last two more common cases. Finally, correlation between the unobserved components can also cause 

endogenous sample selection. 

For cases (a) and (b) we distinguish between static and dynamic sample selection models. In the static model without 

common (and independent) covariates between the outcome and the selection equations (let us call them x and z respec- 

tively), we show that the classical panel data estimators (FE, FD, RE GLS and GMM) are all consistent. Similarly, in dynamic

models without common time-varying covariates such as the purely AR(1) as well as the Monte Carlo study in Raymond

et al. (2007) , the GMM estimator proposed by Arellano and Bond (1991) as well as the less efficient ( Anderson and Hsiao,

1982 )(AH) estimators, both uncorrected for sample selection, are consistent regardless of the exogenous or endogenous na- 

ture of the selection. An immediate implication of this result is that GMM estimators are not consistent in the uncorrected 

model when the lagged outcome is part of the selection equation. 

Furthermore, we show that the additional orthogonality restrictions implied by the system GMM estimator ( Arellano 

and Bover, 1995; Blundell and Bond, 1998 ) are not valid under endogenous selection. However, the bias of the system GMM

estimator is small especially when the time-invariant heterogeneous components in the outcome and selection equations are 

not correlated. This also applies to models with exogenous, predetermined or endogenous covariates, which are, in turn, not 

present in the selection equation. 

For models with at least one common covariate (case (c)), which could be the lagged outcome as in Gayle and Viauroux

(2007) , we unify and extend some of the most popular approaches. In particular, we propose an extension of Wooldridge

(1995) and Rochina-Barrachina (1999) based on either the simple estimation of year-by-year probits or the adjustment of 

bivariate probits to build the corrections since our model, contrary to Wooldridge (1995) and Rochina-Barrachina (1999) , 

is dynamic and the selection imposes the condition on three consecutive positive events to have a usable observation. In 

static models in levels, we follow Wooldridge (1995) and correct for selection bias by adding the current selection term. 

In first-differenced models and, in general, in dynamic models, the complexity of the correction critically depends on the 

serial correlation of the errors. In the simplest case (no serial correlation and stationarity) we show that the Wooldridge’s 

proposal can be applied and, more importantly, extended to dynamic models with the necessary adjustments. 

Finally, when both equations have common covariates and the time varying errors are serially cross-correlated (case (d)), 

we suggest, following Rochina-Barrachina (1999) , a multivariate correction adapted to the dynamic case. In models with 

predetermined or endogenous covariates the selection terms need to be instrumented accordingly. 

Testing between the alternative cases described above is not complicated. For example, a simple t-test or Wald test allows 

checking for the significance of x in the selection equation. In case it is not detected, a test of the E(x | z) checks for the need

to correct for the correlation between x and z. Finally, to distinguish between (c) and (d) we can test the correlation between

the time-varying errors in the outcome and the lagged (once and twice if necessary) time-varying errors in the selection 

equations. 

The performance of these estimators is evaluated using Monte Carlo methods, relaxing or imposing a variety of assump- 

tions. In models without common covariates in both equations, our results suggest that there is no need for correcting the

classical panel data static estimators or the first-differences dynamic panel AB estimates in the selected sample. In models 

with common covariates, we show that our suggested estimator is able to control for selection bias. This paper highlights 

the advantages and disadvantages of various methods. This should prove useful for applied work in this area. 

Our work contributes to the literature in several dimensions. First, it shows that it is unnecessary to correct for selectiv-

ity (even with a high degree of correlation) when both equations do not have common time-varying covariates. Second, it 

suggests simple methods to correct the outcome equation when both equations have common covariates. Combining these 

contributions, we conclude that a key factor of the necessity of sample selection correction a la Heckman is the presence of

common covariates in both equations along with correlation of the errors and not whether the errors of both equations are

correlated alone. Overall, we believe that these results could be especially relevant for practitioners in cases involving sam- 

ple selection of unknown form, when the selection process is difficult to model, when exclusion restrictions are not avail- 
2 
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able, or in experimental or quasi-experimental settings where the selection and outcome equations contain different sets of 

determinants. 

The outline of the paper is as follows: Section 2 presents a general framework and the estimation strategies. 

Section 3 shows under what conditions many standard panel data estimators remain consistent under sample selection. 

The performance of the proposed estimators is studied in Section 4 . We present Monte Carlo results showing the finite

sample average bias in many relevant cases. In Section 5 , we present two empirical applications to illustrate several features

or our theoretical and simulation results. Section 6 concludes. 

2. A general framework 

In this section, we consider a flexible framework that nests all the cases we study. We focus a dynamic panel data

model with unobserved heterogeneity. We must note that the first proposals appeared in a static context (see Verbeek and

Nijman (1992) ; Wooldridge (1995) ; Rochina-Barrachina (1999) and Kyriazidou (1997) , for models with strict exogeneity and 

Vella and Verbeek (1998) , and ( Semykina and Wooldridge, 2010 ) allowing for endogenous explanatory variables). In another

strand of research, theoretical papers have explored bias-corrected estimators for the static case Fernández-Val and Vella 

(2011) . More recently, Sasaki (2015) discussed non-parametric identification of panel data selection models and Lai and Tsay 

(2018) proposed maximum simulated likelihood methods in a static set-up. In particular, we consider the following model: 

y∗
it = ρy∗

it−1 + βxit + αi + εit , (1) 

for i = 1 ,..., N and t = 1 ,..., T , where y∗ is the latent outcome, which is observed when d∗, the observability criteria (defined

below) is greater than zero. Furthermore x is a vector of covariates which, for ease of exposition, we simplify as a single

covariate, that can be either exogenous, predetermined or endogenous, and αi is an individual heterogeneous component 

independent of the idiosyncratic error εit but potentially correlated with x . A model like (1) appeared for the first time

in Arellano et al. (1999) and Kyriazidou (2001) . More recently, Semykina and Wooldridge (2013) introduced new two-stage 

random effects strategies for estimating panel data models in the presence of endogeneity, dynamics and selection. 

Different values of ρ and β lead to different models. For example, ρ = 0 leads to a static panel data model; | ρ| < 1 and

β = 0 yield a purely stationary AR(1); of course, when both parameters are different from zero we have an autoregressive

model with covariates. 

We assume the following process for x : 

xit = ρx xit−1 + φx ℘it + αx 
i + εx 

it , (2) 

where −1 < ρx < 1 , ℘ is a strictly observed exogenous covariate, αx 
i 

is a heterogeneity component and εx 
it 

is a time-variant

error component. Note that the process for x can be easily generalized without affecting any fundamental result in this 

paper. In case x is exogenous both error components are uncorrelated with other errors components in the model; when x

is predetermined we allow correlation with εit−1 ; and finally, when x is endogenous we allow correlation between the error 

components in (1) and (2). 

In the case of selection, the variable of interest is partially observed, and it is usual to specify an observability or selection

rule of the form: 

d∗
it = zit γ + δxit + ηi + uit , (3) 

where ηi is a term capturing unobserved individual heterogeneity that can be correlated with both z and x , zit is a vector

of strictly exogenous regressors including a constant and xit is the same (vector of) regressor(s) that appears also in the 

outcome equation. Our framework also allows the case where x is the lagged outcome yt−1 . While this makes identification

more difficult, it fits well in our general argument. Regarding the correlation structure of the covariates, we assume that z

and x do not have variables in common and so, z represents exclusion restrictions. For ease of exposition, we assume that z

and x are not correlated with ηi . However, none of the main results of the paper are affected in case we allow correlation

of z or x with ηi or x with αi (as we show in Appendix B, if there is correlation, we can express ηi = g(zi , xi ) and add this

function as additional regressors following either Mundlak (1978) , or Chamberlain (1984) ). Finally, uit is a time varying error.

The observed indicator dit is given by: 

dit = 1[ d∗
it > 0] = 1[ zit γ + δxit + ηi + uit > 0] , (4) 

such that dit = 1 if y∗
it 

= yit , when the latent outcome is observed, and zero otherwise. 

The error components in Eq. (1) are related to the error components in the selection equation as follows: 

αi = α0 
i + θ0 ηi , (5) 

and 

εit = ε0 
it + ϑ0 uit + ϑ1 uit−1 + ϑ2 uit−2 , (6) 

where, for simplicity, α0 
i 

and ε0 
it 

are assumed to be normally distributed and θ0 and ϑ j ; j = 0 , 1 , 2 are the parameters intro-

ducing correlation. In case they are all zero, there is exogenous sample selection. Alternatively, when any of them is different
3 
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from zero, there is endogenous sample selection. We distinguish between two cases: A) the contemporaneous correlation 

case, when ϑ0 � = 0 and ϑ j = 0 ; j = 1 , 2 ; and, B) the more complex case of serial cross-correlation, when ϑ j � = 0 ; j = 0 , 1 , 2 . 

It is well known that in the absence of endogenous selection and for the typical situation of N large and T small, the

outcome equation can be estimated with standard methods. In the static case, ( ρ = 0 ), with exogenous regressors, FE and RE

estimators are consistent under the additional assumption that αi and x are not correlated. In case x and αi are correlated,

i.e., αi = g(xi ) + α∗
i 

where α∗
i 

is an error term independent of xi , we can, following Wooldridge, add to (1) the control

function g(xi ) . Alternatively, for the purely AR(1) or the dynamic model with covariates, these are consistently estimated 

using IV methods including Anderson and Hsiao (1982) ; Arellano and Bond (1991) ; Arellano and Bover (1995) and Blundell

and Bond (1998) . 

2.1. Estimation of the model 

2.1.1. The static case, ρ = 0 

Estimation in levels: Equation (1) could be estimated in levels by RE. In the case xit is strictly exogenous, a sufficient

condition for the RE estimator to yield consistent estimates is the following: 

E(αi + εit | xit , dit = 1) = E(αi | xit , dit = 1) + E(εit | xit , dit = 1) = 0 ∀ t. (7)

As a general rule, RE estimates on the selected subsample are inconsistent if selection is non-random, and/or if there is

correlated individual heterogeneity. 

Estimation in time differences: Again, if xit is strictly exogenous, a sufficient condition for the differenced estimator to be 

consistent is the following: 

E(εit − εit−s | xit , xis , dit = dis = 1) = 0 s < t. (8) 

If condition (8) is satisfied, the differenced estimator (also the within-groups estimator which also wipes out the individ- 

ual effects) provide consistent estimates. Alternatively, if this condition is violated consistent estimation requires considering 

the selection process. In this sense, Dustman and Rochina-Barrachina (2007) compare the methods proposed by Wooldridge 

(1995) , Kyriazidou (1999) and Rochina-Barrachina (1999) in the estimation of static females’ wage equations. 

2.1.2. The AR(1) and dynamic cases 

In the small T dynamic case, IV methods are in general necessary (as is well-known, when T is sufficiently large, we can

consistently estimate the parameters of the model using the within-groups estimator, see Nickell (1981) ). As pointed out 

above, we consider the following estimation options: 2SLS-IV (AH: Anderson and Hsiao (1982) ) and, more generally, GMM 

(AB: Arellano and Bond (1991) System GMM: Arellano and Bover (1995) ; Blundell and Bond (1998) ). All of these estimators

require first differencing the data (and using also the equations in levels in the case of the system GMM estimator). They

also use internal instruments lagged at least twice, which implies that the selected sample is conditional on observing the 

outcome for at least three consecutive periods ( dit , dit−1 , dit−2 = 1 ). Although the AH and AB estimators are two well-known

methods, the system GMM ones deserves further explanations, first, because it is not as common in empirical applications 

and, second, to relate the four IV methods used. 

Arellano and Bond (1991) propose a dynamic panel data estimator that generalizes the Anderson and Hsiao (1982) es- 

timator by using more orthogonality conditions that exist between the lagged values of the dependent variable and the 

error component disturbances. Both estimators difference the model to eliminate the unobserved heterogeneity, see Baltagi 

(2021) (pp.189-191) for details. 

Arellano and Bover (1995) stack a system of equations, one averaged over time and hence a levels equation, on top 

of a forward orthogonalized equation eliminating the individual error component and generalize the Hausman and Tay- 

lor (1981) estimator to obtain an efficient GMM estimator of a dynamic panel data model using more moments than the

Arellano and Bond estimator, see Baltagi (2021) (pp.194-198) for details. 

Blundell and Bond (1998) exploit an additional mild stationarity restriction on the initial conditions to generate a system 

GMM estimator that uses more moment conditions than Arellano and Bond (1991) . Essentially, they use lagged levels of 

the dependent variable as instruments for the equation in first differences as in Arellano and Bond (1991) . Additionally, the

stationarity restriction on the initial condition allows the use of lagged differences of the dependent variable as instruments 

for an equation in levels, see Baltagi (2021) (pp. 201-203) for details. 

For the AH and the AB to be consistent, we need the following orthogonality condition to hold: 

E(εit yit−2 | dit = dit−1 = dit−2 = 1) = 0 , (9) 

which is stronger than the orthogonality condition imposed in the standard case. Note that when this restriction holds, it 

also holds for t − 3 and backward lags. For the consistency of the system GMM estimator, we need the following condition:

E[(αi + εit )yit−1 | dit = dit−1 = dit−2 = 1)] = 0 , (10) 

which is also stronger than the orthogonality condition imposed in the standard case. 

Arellano et al. (1999) proposed the estimation of sample selection models conditioning on exogenous positive past out- 

comes for at least three consecutive previous periods and showed that the degree of selection is significantly reduced in 

economic models with persistence. 
4 
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Table 1 

Models considered under endogenous sample selection: Cases and solutions1 

Model AR x in x x in Correction Estimation 

param outcome endog selection needed methods 

Static ρ = 0 Yes No No No FE, RE(GLS)2 , FD 

Static ρ = 0 Yes Yes No No FD-IV, FD-GMM 

Static ρ = 0 Yes No Yes Yes FE, RE(GLS)2 , FD 

Static ρ = 0 Yes Yes Yes Yes FD-IV, FD-GMM 

AR(1) | ρ| < 1 No — nr No FD-IV, FD-GMM 

Dynamic | ρ| < 1 Yes No No No FD-IV, FD-GMM 

Dynamic | ρ| < 1 Yes Yes No No FD-IV, FD-GMM 

Dynamic | ρ| < 1 Yes No Yes Yes FD-IV, FD-GMM 

Dynamic | ρ| < 1 Yes Yes Yes Yes FD-IV, FD-GMM 

Notes. 1. We assume x ⊥ z. When this assumption does not hold and x is not present in the selection equation we will follow a control function approach to 

consider this correlation. 2. Consistency of the GLS estimator relies strongly on the assumption that cov (xi , αi ) = 0 . When this assumption does not hold 

we follow either Chamberlain (1984) or Mundlak (1978) approach to account for the correlation between x and α or ss as well as the correlation of z and 

ss . 

 

 

 

2.2. Estimation under endogenous sample selection 

In the presence of endogenous sample selection in the standard static case, researchers usually proceed using the method 

developed by Wooldridge (1995) . It is worth mentioning that his estimator for static linear unobserved components panel 

data models allows correlation between the unobserved component (FE) and observable explanatory variables, without im- 

posing distributional assumptions on the unobserved effect. The idiosyncratic errors in the regression equation can have 

serial dependence of unspecified form. Wooldridge (1995) estimator goes a step further than previous methods, which con- 

sidered RE under the assumptions of normality and serial independence of the idiosyncratic errors in both the selection and 

regression equations, and the time-constant unobserved effects in the selection and regression equations. The latter are as- 

sumed to be normally distributed (see Verbeek and Nijman (1992) ). First, one corrects the problem of endogenous selection

induced by the correlation of the errors in both equations, and, then, one estimates the outcome equation. Since, contrary 

to Wooldridge (1995) , we also propose dynamic models, we need to distinguish between two cases: 

A. When there is some feedback between the (time variant non-deterministic) covariates (when the common covariates 

are deterministic or time-invariant there is no need to correct estimates in first-differences and, as we will see later 

on, little necessity to correct estimates in levels), in the outcome and the selection equation. The need for sample

selection correction varies with the sampling condition and the correlation structure of the errors in both equations. 

We consider two cases: 

A1. Contemporaneous correlation: ϑ0 � = 0 and ϑ j = 0 ; j = 1 , 2 ; 

- Step 1. Following Wooldridge (1995) , we estimate year-by-year probit models and compute univariate correc- 

tion terms (Heckman’s lambda). 

- Step 2. Add the appropriate selection terms as additional regressor(s) to the relevant outcome equation. 

In Appendix B we show that when the errors are not serially correlated, univariate corrections are suf- 

ficient regardless of the observability condition: one observation in static level models (see Eq. (A12) in 

Appendix B), two and three consecutive observations in, respectively, first-differenced static models (see 

Rochina-Barrachina (1999) ) or dynamic models ( Eq. (A9) in Appendix B). We estimate the equation of in- 

terest including the appropriate correction(s) using one of the methods described in Table 1 . 

For example, in the case of a pure AR(1) model, the sample has to be selected in three consecutive periods to

have a usable observation in the current period. Then, the appropriate correction involves the current lambda 

in the equation in levels and the first-differenced lambda in the first-differenced equation (see Jiménez- 

Martín (1999) ; Jiménez Martín (2006) ). Under contemporaneous correlation, standard software can be used 

(see, for instance, Roodman (2006) ). Corrected standard errors need to be computed anyway. This can be 

done by means of the delta method or bootstrapping. 

We must also note that Rochina-Barrachina (1999) , in the context of a static model, proposed an estimator 

that relaxes some of the assumptions in the Wooldridge (1995) method. Specifically, the estimator allows 

for an unknown conditional mean of the individual effects in the main equation. This allows the use of 

an alternative set of identifying restrictions to overcome the selection problem. In particular, the estimator 

imposes that the joint distribution of the time differenced regression equation error and the two selection 

equation errors, conditional upon the entire vector of (strictly) exogenous variables, is normal. 

A2. Cross serial correlation: ϑ j � = 0 ; j = 0 , 1 , 2 ; 

- Step 1. When the correlation structure of the errors is complex, a more sophisticated bivariate or trivariate 

correction is required, either in static models with endogenous regressors or in dynamic models. Following 

Rochina-Barrachina (1999) and Jiménez Martín et al. (2009) , we propose estimating bivariate and trivariate 

probit models of, respectively, the probability that dit = dit−1 = 1 and dit = dit−1 = dit−2 = 1 (see Appendix B). 
5 
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- Step 2. Under stationary correlation and exchangeability (Kiriadizou, 1997), the first-differenced equations re- 

quire two correction terms obtained, under normality, from the previous estimated trivariate probit model 

( Eq. (A8) in Appendix B). Alternatively, the equation in levels requires also two correction terms but, in this 

case, obtained from a bivariate probit ( Eq. (A11) in Appendix B). Note that, since the equations in first differ-

ences and levels require different corrections, we suggest either using the Stata gmm routine. 

B. When there is no feedback between the outcome and the selection equations, i.e., when x ⊥ z and x is not part of

the selection equation. This is the case of the purely AR(1) model as well as models of attrition or missing variables

where the reason for selecting the sample is correlated with the object of study but unrelated to other determinants 

of the model. These assumptions are not going to be maintained in labor supply models, wage equations, etc. In this

context the following results hold: 

• Result 1: Under endogenous selection and absence of feedback from the outcome equation to the selection 

equation it is feasible to show that the AH and the AB estimators are both consistent. In fact, for the AB esti-

mator 

E[εit yit−k | dit , dit−1 , dit−2 = 1] = 0 k > 1 , 

and, for the AH estimator 

E[εit yit−2 | dit , dit−1 , dit−2 = 1] = 0 . 

Furthermore, the AH and the AB estimators are consistent (with the same asymptotic distribution as the original 

AH and AB estimators) in the model with either exogenous, predetermined or endogenous covariates. 

An implication of Result 1 is that it applies to the case in which a deterministic or time-invariant covariate x is

included in the selection equation. 

• Result 2: Under the same conditions above (correlation of the time-variant and time-invariant error compo- 

nents) the system GMM estimator is not consistent since 

E[ εit yit−1 | dit , dit−1 , dit−2 = 1] � = 0 . 

However, our Monte Carlo results show that the bias is small, especially when the individual heterogeneous 

components are not correlated. Moreover, in the model with covariates, the system GMM estimator has a small 

bias under the same conditions, regardless of the nature of the covariates. 

Follow-up to result 2: To correct the bias of the system GMM estimator, we need to correct for selection only

in the levels equation. If the correlation between the time-invariant error components is zero and there is no 

feedback between both equations, the bias of the system GMM estimator is small (but not zero). So, when the 

AB estimator does not work well (small N, large autoregressive coefficient), the system GMM estimator is highly 

recommended. 

• Result 3: The previous results can be extended to static panel data models regardless of the nature of the 

covariates. This implies that, when there is no feedback between the outcome and the selection equations ( x ⊥ z

and x is not part of the selection equation), we can recover consistent estimates using either FE, FD or RE (GLS)

methods (consistency of the GLS estimator requires a preliminary step in order to account for the possibility 

that cov (xi , αi ) � = 0) ). 

• Result 4: When x is not present in the selection equation but is not independent from z it is still possible to

avoid bias correction a la Heckman by accounting for the relation between x and z, E(x | z) say, in the outcome

equation. 

In Table 1 we summarize all the cases considered and the suggested solutions. We distinguish between four static and 

five dynamic models. As we show in the next section, when there are no common covariates between both equations and

they are independent, there is no need to correct for sample selection for the static estimators and some of the dynamic

ones (AH and AB). In case they are not independent, a control function approach (based on the E(x | z) ) can account for any

potential bias induced by the selection process. Alternatively, when at least a time-varying covariate is included in both 

equations sample selection corrections (either univariate or multivariate, depending on the serial cross-correlation of the 

errors) are required to get consistent estimates. 

3. Consistency under endogenous sample selection 

In this section we analyze the consistency of potential estimators as a function of a key factor: the presence of common

time-varying covariates in the outcome and selection equations. We show that many standard estimators are consistent 

regardless of the correlation between the errors in the selection and the outcome equations when there are no common 

covariates between them. For example, for dynamic models the AH and AB estimators are consistent when the outcome 

and selection equations have no regressors in common, i.e., when all the regressors in the selection equation are exclusion 

restrictions. The system GMM estimator is an exception and has a small bias, mainly induced by the correlation between 

the time-invariant heterogeneous components in the outcome and the selection equation. 
6 
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Table 2 

Average bias, RMSE and CICR in the purely AR(1) model. T = 7 (after discarding the first 13 generated observations); 500 replications. 

Estimates with the full sample Estimates with the selected sample 

AB estimator system AB estimator system 

ρ av. bias RMSE CICR1 av. bias RMSE CICR av. bias RMSE CICR av. bias RMSE CICR 

Panel A: N = 500 

0.25 -0.0057 0.0407 0.940 0.0005 0.0320 0.940 -0.0141 0.7660 0.954 -0.0034 0.7546 0.938 

0.50 -0.0117 0.0560 0.944 0.0020 0.0368 0.936 -0.0317 0.5372 0.950 -0.0082 0.5108 0.944 

0.75 -0.0425 0.1014 0.944 0.0084 0.0445 0.922 -0.1003 0.3742 0.870 -0.0091 0.2670 0.950 

Panel B: N = 5000 

0.25 -0.0013 0.0119 0.952 -0.0003 0.0094 0.956 -0.0011 0.7513 0.946 -0.0037 0.7538 0.942 

0.50 -0.0020 0.0163 0.946 -0.0001 0.0113 0.946 -0.0025 0.5031 0.940 -0.0095 0.5097 0.930 

0.75 -0.0045 0.0290 0.938 0.0007 0.0137 0.946 -0.0086 0.2620 0.942 -0.0182 0.2689 0.880 

1. CICR. 95 % Confidence intervals coverage rates, ie. CICR = 

∑ 

S 1 ( ˆ a − 1 . 96 ∗ s.e. ( ˆ a ) < a < ˆ a + 1 . 96 ∗ s.e. ( ˆ a )) /S, where S is the number of simulations, a is the 

true parameter and ˆ a is the estimate of a in each simulation. 

 

 

 

 

 

 

3.1. Consistency in the pure autoregressive model 

Let us start with a minor modification of the AR(1) model presented in equations (1) and (2): 

y∗
it = αi + ρ0 y

∗
it−1 + εit , (11) 

dit = 1(ηi + γ0 zit + uit > 0) , (12) 

αi = α0 
i + θ0 ηi , (13) 

and 

εit = ε0 
it + ϑ0 uit . (14) 

The exogenous random variables zit , α
0 
i 

, ε0 
it 

, ηi , and uit are assumed to be i.i.d. and independent of each other with finite

second moments. We assume that E(ε0 
it 
) = E(uit ) = 0 . The observed data is the set of y∗

it 
for which dit = 1 . 

Let εit (ρ) = y∗
it 

− ρy∗
it−1 

. The natural moment conditions to consider would be E(y∗
is 
εit (ρ)) = 0 for s + 2 ≤ t iff

ρ = ρ0 . However, because y∗
it 

is not always observed, the moment cannot be estimated. The next best option is to show

E(sist y
∗
is 
εit (ρ)) = 0 iff ρ = ρ0 , where sist is defined as 

sist = dit dit−1 dit−2 dis . (15) 

Thus, sist = 1 if and only if all y∗
is 

and εit (ρ) are observed. 

E(sist y
∗
is εit (ρ)) = E(sist y

∗
is (y∗

it − ρy∗
it−1 )) 

= E(sist y
∗
is (ρ0 y∗

it−1 + εit − ρy∗
it−1 )) 

= (ρ0 − ρ) E(sist y
∗
is y∗

it−1 ) + E(sist y
∗
is εit ) . (16) 

Identification requires that E(sist y
∗
is 
y∗

it−1 
) � = 0 and E(sist y

∗
is 
εit ) = 0 . A classic sufficient condition that ensures exogene-

ity is E(εit | sist , y
∗
is 
) = 0 . However, it is not feasible to verify this condition in our context. A simpler sufficient condition

derived in the Appendix A is the following 

E(dit dit−1 dit−2 εit | dis , y
∗
is ) = 0 . (17) 

To see that this condition holds, substitute into εit and write 

E(dit dit−1 dit−2 εit | dis , y
∗
is ) = E(dit dit−1 dit−2 (ε0 

it + ϑ0 uit ) | dis , y
∗
is ) 

= E(dit dit−1 dit−2 ϑ0 (uit − uit−1 ) | dis , y
∗
is ) . (18) 

because ε0 
it 

is independent of dit , dit−1 , dit−2 , dis , and y∗
is 

and therefore it is independent of dit , dit−1 , and dit−2 , conditional

on dis and y∗
is 

. Now, conditioning additionally on ηi and dit−2 , 

E(dit dit−1 dit−2 εit | dis , y
∗
is ) = ϑ0 E (dit−2 E (dit dit−1 (uit − uit−1 ) | ηi , dit−2 , dis , y

∗
is ) | dis , y

∗
is ) . (19) 

Notice that dit dit−1 (uit − uit−1 ) is independent of dit−2 , dis , and y∗
is 

conditional on ηi . Therefore, E(dit dit−1 (uit −
uit−1 ) | ηi , dit−2 , dis , y

∗
is 
) = E(dit dit−1 (uit − uit−1 ) | ηi ) . It suffices then to show that E(dit dit−1 (uit − uit−1 ) | ηi ) = 0 . Using condi-

tional independence again, we obtain 

E
(
dit dit−1 (uit − uit−1 ) | ηi 

)
= E

(
dit dit−1 uit | ηi 

)
− E

(
dit dit−1 uit−1 | ηi 

)
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= E
(
dit uit | ηi 

)
E
(
dit−1 | ηi 

)
− E

(
dit | ηi 

)
E
(
dit−1 uit−1 | ηi 

)
= 0 , (20) 

because E
(
dit uit | ηi 

)
= E

(
dit−1 uit−1 | ηi 

)
and E

(
dit | ηi 

)
= E

(
dit−1 | ηi 

)
. We have proven that 

E(sist y
∗
is εit (ρ)) = (ρ0 − ρ) E

(
sist y

∗
is y∗

it−1 

)
. (21) 

Thus, we will have identification if and only if E
(
sist y

∗
is 
y∗

it−1 

)
� = 0 , that is, the same identification restriction as in the

AB setting, except that here attention is restricted to observed data. 

In sharp contrast with the case of the AB estimator, the system GMM estimator is not consistent. To illustrate this, we

consider the unfeasible level moment conditions E((y∗
it 

− ρ0 y
∗
it−1 

)y∗
it−1 

) = 0 . The feasible analogue is E(dit dit−1 dit−2 (y∗
it 

−
ρ0 y

∗
it−1 

)y∗
it−1 

) and we cannot guarantee that the expected value conditional on dit = dit−1 = dit−2 = 1 equals 0. This con-

dition implies that in the first stage equations ssi + γ0 zit + uit > 0 , ssi + γ0 zit−1 + uit−1 > 0 and ssi + γ0 zit−2 + uit−2 > 0 . This

implies that ηi and uit , uit−1 , uit−2 , and, therefore, αi and εit , εit−1 , εit−2 are correlated. 

Since dit are discrete 0 − 1 variables, the events { dit = 1 , dit−1 = 1 , dit−2 = 1 } and { dit dit−1 dit−2 = 1 } are equivalent,

and we have: 0 = E[(y∗
it 

− ρ0 y
∗
it−1 

)y∗
it−1 

] = E [ E [(y∗
it 

− ρ0 y
∗
it−1 

)y∗
it−1 

| dit dit−1 dit−2 ] = E[(y∗
it 

− ρ0 y
∗
it−1 

)y∗
it−1 

| dit dit−1 dit−2 = 

1] P { dit dit−1 dit−2 = 1 } + E[(y∗
it 

− ρ0 y
∗
it−1 

)y∗
it−1 

| dit dit−1 dit−2 = 0] P { dit dit−1 dit−2 = 0 } . So, the expectation takes value 0

through a weighted combination of E[(y∗
it 

− ρ0 y
∗
it−1 

)y∗
it−1 

| dit dit−1 dit−2 = 1] and E[(y∗
it 

− ρ0 y
∗
it−1 

)y∗
it−1 

| dit dit−1 dit−2 = 

0] , with probabilities P { dit dit−1 dit−2 = 1 } and P { dit dit−1 dit−2 = 0 } as weights. Although the weighted combination is 0, we

cannot ensure that any of its components is 0, so we cannot provide a bound for the bias of the estimator. 

Our Monte Carlo experiments show that this is generally not equal to zero. However, these simulation exercises also 

show that E(dit dit−1 dit−2 (y∗
it 

− ρ0 y
∗
it−1 

)y∗
it−1 

) is, for all reasonable combination of the parameters of the model, very small 

and so is the induced bias (see Table C1 for an illustration). 

The previous results for the AB estimator in the pure autorregressive model provide validity to the orthogonality restric- 

tions of the first differenced equations, E(εit yit−s /zi , dit = dit−1 = dit−2 = 1) = 0 ; f or s ≥ 2 . If we test the orthogonality

restrictions of the level equations E((αi + εit )yit−1 /zit , dit = dit−1 = dit−2 = 1) = 0 , we have a standard Hansen/Sargan (see

Hansen (1982) and Sargan (1988) ) to check for sample selection. 

3.2. Consistency in the dynamic model with covariates when δ = 0 

3.2.1. An exogenous covariate 

We extend the previous AR(1) model to a model with a single exogenous covariate not included in the selection equation.

The result can be straightforwardly generalised to many covariates. 

y∗
it = αi + ρ0 y

∗
it−1 + β ′ 

0 x
∗
it + εit . (22) 

The exogenous random variables x∗
it 

, zit , α
0 
i 

, ε0 
it 

, ηi , and uit are assumed to be i.i.d. and independent of each other with

finite second moments. As before, we assume that E(ε0 
it 
) = E(uit ) = 0 . The observed data is the set of y∗

it 
and x∗

it 
for which

dit = 1 . 

Now, define εit (ρ, β) = y∗
it 

− ρy∗
it−1 

− β ′ x∗
it 

and write 

E(sist y
∗
is εit (ρ, β)) = (ρ0 − ρ) E(sist y

∗
is y∗

it−1 ) + (β0 − β)′ E(sist y
∗
is x∗

it ) + E(sist y
∗
is εit ) , (23) 

and 

E(si v t x
∗
i v εit (ρ, β)) = (ρ0 − ρ) E(si v t x

∗
i v y∗

it−1 ) + (β0 − β)′ E(si v t x
∗
i v x∗

it ) + E(si v t x
∗
is εit ) . (24) 

It is clear that identification requires that for some t and some v , the matrix [
E(sist y

∗
is 
y∗

it−1 
) E(sist y

∗
is 
x∗

it 
) , 

E(si v t x
∗
i v y∗

it−1 
) E(si v t x

∗
i v x∗

it 
) . 

]

is non-singular. 

We have already shown that E(sist y
∗
is 
εit ) = 0 . It remains to show that E(si v t x

∗
i v εit ) = 0 . Now, 

E(si v t x
∗
i v εit ) = E(dit dit−1 dit−2 di v x

∗
i v (ε0 

it + ϑ0 uit )) 

= E(dit dit−1 dit−2 di v x
∗
i v ϑ0 uit ) 

= E(dit−2 di v x
∗
i v ϑ0 E(dit dit−1 uit | ηi , dit−2 , di v , x

∗
i v )) 

= E (dit−2 dis x
∗
i v ϑ0 E (dit dit−1 uit | ηi )) = 0 . (25) 

The first equality follows from the independence of ε0 from all other variables. The second equality is obtained by con- 

ditioning on predetermined variables. The third equality follows from the conditional independence of dit dit−1 uit from 

(dit−2 , dis , xis ) conditional on ηi . The final equality has already been established above. 
8 
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3.2.2. A predetermined covariate 

Now, suppose that x∗ is predetermined so that x∗
it 

is independent of ε0 
it+1 

, ε0 
it+2 

, . . . , uit+1 , uit+2 , . . . , and zit+1 , zit+2 , . . . but 

not necessarily independent of contemporaneous or past values of these variables. Then, exogeneity may still be satisfied if 

v ≤ t − 2 . If we can further assume that xi v is independent of εi v , ui v , and zi v , then exogeneity will be satisfied with v = t − 1

as well. 

3.2.3. An endogenous covariate 

Finally, suppose x∗ is endogenous and we have at our disposal a vector of instruments ξ . Then, we may use the following

moment conditions 

E(sist y
∗
is εit (ρ, β)) = (ρ0 − ρ) E(sist y

∗
is y∗

it−1 ) + (β0 − β)′ E(sist y
∗
is x∗

it ) + E(sist y
∗
is εit ) , (26) 

and 

E(sit ξi εit (ρ, β)) = (ρ0 − ρ) E(sit ξi y∗
it−1 ) + (β0 − β)′ E(sit ξi x∗

it ) + E(sit ξi εit ) . (27) 

where sit = dit dit−1 dit−2 . Thus, we need [
E(sist y

∗
is 
y∗

it−1 
) E(sist y

∗
is 
x∗

it 
) , 

E(si v t x
∗
i v y∗

it−1 
) E(si v t x

∗
i v x∗

it 
) . 

]

to be non-singular, and we need E(sist y
∗
is 
εit ) = 0 and E(sit ξi εit ) = 0 . 

3.3. Consistency in the static model 

All the aforementioned results hold when ρ = 0 and x ⊥ z. In particular when x is exogenous, there is no need to use an

IV strategy and either the FE, FD or RE (GLS) estimators are consistent provided cov (αi , xit ) = 0 . The proofs for the FE and

FD estimators are straightforward, but we need to justify it for the RE estimator. Estimation of the uncorrected RE is carried

out in the following selected sample: 

y∗
it = αi + βxit + εit if dit = 1 , (28) 

where, under endogenous selection, E(αi + εit | dit = 1) = 0 , provided that x ⊥ z, x is independent of any transformation of z,

in particular λ(z) . So, omission of the sample selection correction term does not affect the consistency of the estimate of β ,

a result which also applies to cross-sectional analysis. 

In this static model we consider the extension in which x is not present in the selection equation but x �⊥ z. The un-

corrected estimators are still consistent provided we control for the relationship between x and, say, � , the covariates in z

related to x . So, let us consider the following control function approach similar to Olsen (1980) solution for sample selection

in static models. 

• Consider a vector of covariates � ∈ z such that cov (x, �) � = 0 . Then, under standard assumptions, adding E(x | �) [or

more generally E(x | z) ] to the outcome equation corrects the bias. So, for the case of the static model estimated in

levels, we adjust Eq. (28) as follows: 

yit = αi + β ′ xit + φE(xit | zit ) + mit if dit = 1 , 

where mit = εit + φE(xit | zit ) . 

• A simple test of the coefficient of E(x | z) , φ, evaluates the necessity of the correction. 

This result can be applied to all models in which the covariates in both equations are distinct but not independent. 

3.4. Consistency in models with covariates and δ � = 0 

When at least one covariate is included in both the outcome and the selection equations, the uncorrected estimator 

is biased in the presence of endogenous sample selection. As suggested by Wooldridge (1995) , bias correction induced by

endogenous sample selection implies adding univariate selection terms if the sample is conditional on only one observation. 

Result: Under the set of assumptions B1 to B3 for the first differenced equations and B1 to B3’ for the level equa-

tions (see Appendix B), Wooldridge’s strategy can be extended to samples conditional on two observations (first-differenced 

models) and even to samples conditional on three consecutive observations (dynamic models) if the correlation structure is 

stationary and the time-variant errors are only contemporaneously correlated. 

Alternatively, when these conditions fail to hold (also shown in Appendix B), we have to add bivariate corrections ob- 

tained from a bivariate probit model (first-differenced in static models and level equations in dynamic models) or from a 

trivariate probit model (first-differenced in dynamic models). 
9 
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3.4.1. The correction procedure 

We summarize the correction procedures in two steps (see Appendix B for details): 

• Step 1. Estimation of the selection equation 

(i) Errors contemporaneously correlated only under stationary correlation. Under the assumption of normal- 

ity of the errors in the selection equation, we estimate year-by-year probit models following the Mund- 

lak/Chamberlain/Wooldridge approach and compute univariate correction terms. When x is fully exogenous, the 

specification includes the covariates z and x . We can solve any problem of correlation between these covariates 

and the heterogeneity component by following either Mundlak or Chamberlain strategy, basically adding a cor- 

rection for such correlation namely g(zi , xi ) . Alternatively, when x is endogenous we replace x with current and

lagged values of z. 

(ii) Serially cross-correlated errors. We estimate bivariate probit models to correct equations in levels and first- 

differences for static models, or trivariate probit models to correct dynamic models. The order of the appropri- 

ate correction needed increases accordingly in AR( p ) models (see Appendix B for details). 

Important result: A follow up from cases where there is no need to correct is the fact that omission of any

regressor in the selection equation, � ∈ z, such that �⊥ x , does not affect the consistency of the corrected

estimates. 

• Step 2. Estimation of the outcome equation 

(i) Errors are only contemporaneously correlated. In this case, assuming normality, all the estimators consid- 

ered in this paper (FE, FD, RE, for the static model, and AH, AB, system GMM for the dynamic model) require

corrections derived after adjusting univariate year-by-year probits. In the RE strategy and level equations of 

the system GMM estimator the corrections are introduced in levels. In first-differenced models, the corrections 

are introduced in first-differences. Finally, for the FE estimator, the correction is introduced using the within- 

transformation. For example, under the assumption that xit ⊥ ηi , for level and first-differences equations in the 

dynamic case we have (see Appendix B for details and notation): 

yit = ρyit−1 + xit β + σλ( Hit ) + eit . (29) 

yit = ρyit−1 + xit + σ (λ( Hit ) − λ( Hit−1 ) ) + eit , (30) 

where Hit = zit γ + δxit + z̄i θ and eit = εit + λ( Hit ) . 

(ii) Serially cross-correlated errors under stationary correlation. As described in Appendix B, in static models 

estimated by GLS (RE) we only need to add a single correction; in static models estimated by FD we need to

add two correction terms obtained from a bivariate probit (evaluating the expectation of the first-differenced 

error conditional on two errors of the selection equation). In dynamic models estimated using the AH or the 

AB estimator, we need to add at least two correction terms obtained from a trivariate probit (evaluating the 

expectation of the first-differenced error conditional on the errors of the selection equation in the current, 

lagged and lagged twice periods). Finally, when obtaining the system GMM estimator we combine the solution 

for the AB estimator (trivariate corrections) with the solution offered for the level model estimated in first 

differences. This means that the correction to the level and first differenced equations is not the same, so the 

estimator cannot be obtained using standard software (as xtabond2 in Stata, for instance). 

We provide the corrections needed for the system GMM estimation as an example. We note that when x is 

endogenous the corrections need to be instrumented using the same lag order used to instrument the covariate 

(details are provided in Appendix B). 

yit = ρyit−1 + xit β + w̄i ψ + σ0 λ
(
Hit , Hit−1 , �t ,t −1 

)
+ σ−1 λ

(
Hit−1 , Hit , �t ,t −1 

)
+ eit . (31) 

yit = ρyit−1 + xit + σ̄ (λ
(
Hit , Hit−1 , Hit−2 , �t ,t −1 , �t ,t −2 , �t −1 ,t −2 

)
−λ

(
Hit−1 , Hit , Hit−2 , �t ,t −1 , �t ,t −2 , �t −1 ,t −2 

)
) 

+ σ̄−2 λ
(
Hit−2 , Hit−1 , Hit , �t ,t −1 , �t ,t −2 , �t −1 ,t −2 

)
+ eit , (32) 

where �t ,t −s denotes the correlation between errors in period t and t − s and the functions involving H and �
(the selection corrections) are defined in Appendix B. 

In all cases, it is necessary to compute corrected standard errors. This can be done by means of the delta method or

bootstrapping. Finally, one can use a standard t-test for the significance of the correction term, or a Wald test in case of

multiple lambda’s ( Wooldridge (1995) ). 

3.4.2. Construction of the corrections 

For a typical static selection model, as described in equation (2), and assuming, for simplicity, normality of ηi + uit = νit ,

we estimate a probit for each period and then compute the well-known selection term 

ˆ λ (w ˆ γ ) . When we allow correlation
it it 

10 
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between wit ( w stands for the combination of z and x ) and ηi , we can rely on Mundlak (1978) and assume, for instance,

ηi = ˜ wi ϕ, where ˜ wi is the vector of individual means of wit , and we, again, can estimate a probit for each period and

compute ˜ λit (zit ̃  γ + ˜ wi ̃  ϕ ) , which is then introduced in the second step as before. 

In the case of a dynamic selection equation, the lagged observed regressor is correlated with the random effect by con-

struction. If this is the case, we need to rely either on Mundlak’s proposal or on a less restrictive one such as that of

Chamberlain (1984) . In the latter case, we can assume ηi = π1 wi 1 + π2 wi 2 + ... + πT wiT and recover the corresponding se-

lection terms. However, strictly speaking, to recover the structural parameters of the selection equation, we should estimate 

a probit model for each year based on a reduced form, where d∗
it 

is a function of all exogenous variables (i.e., z) and we

predict the index ˆ d∗
it 

. Then, in a second stage, we estimate the structural parameters by within-groups, Minimum Distance 

or GMM and compute the correction terms based on these two-stage coefficients (see Bover and Arellano (1997) , or Labeaga

(1999) ). However, to keep the exercise as simple as possible, we compute the selection terms using reduced-form estimates 

for each period. 

The previous univariate corrections do not work if the errors εit , νit , νit−1 , νit−2 are jointly normal. In this case, we can

estimate bivariate or trivariate probits in order to construct the bivariate and trivariate corrections. In Appendix B we provide 

additional details as well as semiparametric estimates of the correction that can overcome the failure of the normality 

assumption (see also Rochina-Barrachina (1999) ; Gayle and Viauroux (2007) and Jiménez Martín et al. (2009) ). 

4. Monte Carlo experiments 

For the Monte Carlo experiment, we consider the following data-generating processes. First, we assume the following 

model for the selection equation: 

d∗
it = a − zit − δxit − ηi − uit , (33) 

and 

dit = 1[ d∗
it > 0] , (34) 

where a is set so that p(d∗
it 

> 0) = 0 . 85 and zit ∼ N(0 , σz ) with σz = 1 . Note that when δ = 0 , x is not present in the selection

equation. Second, the outcome of interest is generated as follows: 

y∗
it = (2 + βxit + αi + εit ) / (1 − ρ) if t = 1 , (35) 

y∗
it = 2 + ρy∗

it−1 + βxit + αi + εit if t = 2 , ..., T , (36) 

and 

yit = y∗
it if dit = 1 . (37) 

We let ρ vary between 0 (static model), 0.25, 0.50 and 0.75. We generate all variables for T = 1 to T = 20 and discard

the first 13 observations to minimize the effects of the initial conditions. The results remain unchanged if we use these

extra 13 observations and, thus, start the observed sample with an initial condition for each individual in the sample. We

consider the following process for x : 

xit = (0 . 5 + ℘it + αx 
i + εx 

it + κ1 αi + κ2 εit )) / 0 . 5 if t = 1 , (38) 

and 

xit = 0 . 5 + 0 . 5 xit−1 + ℘it + αx 
i + εx 

it + κ1 αi + κ2 εit ) if t > 1 . (39) 

and we let κ2 vary between κ2 = 0 , that is x is fully exogenous, and κ = 0 . 5 , which implies x is either endogenous or

predetermined (in which case εit is replaced by εit−1 ). For ease of exposition, we assumed that κ1 = 0 except when esti-

mating the static level equation by GLS, where we also consider the case κ1 = 0 . 5 . We further assume that cov (xi , ηi ) = 0

and cov (zi , ηi ) = 0 . Removing these assumption (that only affect level-based estimates) does not affect any of the relevant

results in the paper. Simulations removing these assumptions are available for the static model case. 

Finally, we assume the following structure for z, ℘ as well as the errors: 

℘it ∼ N(0 , σ℘ ) with σ℘ = 1 , (40) 

zit ∼ N(0 , σz ) with σz = 1 , (41) 

η ∼ N(0 , σss ) with σss = 1 , (42) 
i 
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uit ∼ N(0 , σu ) with σu = 1 , (43) 

αi = α0 
i + 0 . 5 ηi , α

0 
i ∼ N(0 , σα0 ) with σα0 = 1 , (44) 

εit = ε0 
it + ϑ0 uit + ϑ1 uit−1 + ϑ2 uit−2 , ε

0 
it ∼ N(0 , σε0 ) with σε0 = 1 , (45) 

αx 
i ∼ N(0 , σαx ) with σαx = 1 , (46) 

and 

εx 
it ∼ N(0 , σεx ) with σεx = 1 , (47) 

where, in the case A1 of contemporaneous correlation, we set ϑ0 = 0 . 5 ;ϑ1 = ϑ2 = 0 . These assumptions imply that

cor r (εit , uit ) = cor r (αi , ηi ) = 0 . 5 /
√ 

1 + 0 . 52 = 0 . 447 . Alternatively, in the case of serially cross-correlated errors we set ϑ =
0 . 5 ;ϑ1 = 0 . 5 / 2 ;ϑ2 = −0 . 5 / 3 . 

4.1. Description of the experiments 

For each experiment, we set the initial (before selection) sample size to N = 500 or N = 50 0 0 , and for each i , we draw

up to 20 time series observations, from which the initial 13 are discarded. Once selection is applied, the unbalanced panels

are formed. In dynamic models we need at least three consecutive observations of the same regime to form an observation

of the selected panel. This implies that a large fraction of the observations do not contribute to the identification of the

parameters, even with a small degree of sample selection. For example, a 15 per cent of initial selection implies loosing

around 1/3 of the observations. In static models with exogenous regressors this loss is not important. For each combination 

of the parameters we perform 500 replications. 

Under the assumption of contemporaneous correlated errors, we simulate the following five combinations of the param- 

eters of interest, linked to the cases already described in Table 1 : 

1. Static model with an exogenous x (with and without correlation with z) not present in the selection equation: ρ = 0 ,

β = 1 δ = 0 

2. Static model with an exogenous x also present in the selection equation: ρ = 0 , β = δ = 1 

3. Purely AR(1) model: ρ = 0 . 25 , 0 . 50 , 0 . 75 , β = δ = 0 

4. Dynamic model with an endogenous covariate either present or not in the selection equation and contemporaneously 

correlated time varying errors: ρ = 0 . 25 ;ρ = 0 . 75 , β = 1 , δ = 0 or δ = 1 , ( cov (εit , uis ) � = 0 ; s < t) 

5. Dynamic model with an exogenous covariate either present or not in the selection equation and serially cross- 

correlated time varying errors: ρ = 0 . 25 ;ρ = 0 . 75 , β = 1 , δ = 0 or δ = 1 , cov (εit , uis � = 0 ; s ≤ t) 

In each case, we evaluate the performance of the appropriate estimators as described in Table 1 . In (i) and (ii) we

evaluate the FE, FD and RE estimators. In (iii) to (v) we evaluate two GMM estimators: AB and system GMM. Selection of the

instruments is done as follows: we use lags from t − 2 backwards for first-differenced equations, although we also evaluate 

the performance of the estimates with a restricted set of instruments. We use the lagged first difference of the outcome as

an additional instrument for the equation in levels as well as current values and lags of the exogenous regressors. Although

we are aware of the instrument proliferation issue analyzed by Roodman (2009) , it does not constitute a problem here given

the reduced number of periods (a maximum of 7) remaining for estimation, but we also use Roodman’s proposal to collapse

the number of instruments and we get very similar results. 

4.2. Simulation results 

Although we have simulated the five combinations previously considered, we are going to present in this section only 

the most interesting results and we relegate the rest of results to Appendix C for interested readers. 

Simulations of static models (with an exogenous regressor) either with δ = 0 and x ⊥ z, δ � = 0 and x ⊥ z or δ = 0 and

x �⊥ z, all of them under the assumption that the errors in both equations are contemporaneously correlated are given in

Table C2 in Appendix C. The results for δ = 0 and x ⊥ z, that is, in the case that correction is not needed, show that the aver-

age bias is almost zero, regardless of the sample size. According to the RMSE criterion (and also confidence interval coverage

rates (CICR)), since cov (x, αi ) = 0 , the RE (either with or without correlated covariates) is our preferred method, as expected.

In the scenario δ � = 0 and x ⊥ z we show again that the RE estimator is the preferred option, attending the RMSE criterion

(CICR as well), provided cov (x, αi ) = 0 , but the uncorrected estimates are biased because of the presence of common vari-

ables in both equations. However, the bias is small and we observe minor differences when including correction terms a 

la Wooldridge . The most interesting case (reported in panel C) in the static model arise when δ = 0 and x �⊥ z and x is not
12 
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included in the selection equation but is correlated with some variables included in the vector z, say � . All the uncorrected

estimates are biased, but instead of including correction terms a la Heckman , we get almost complete bias reduction if we

add to the outcome equation an estimate of E(x | �) , especially as the sample size grows. 

In all simulations we report the empirical rejection frequency (ERF) of the sample selection test corresponding to the 

corrected estimator under the null hypothesis that the selection term is not necessary in the outcome equation. The ERF 

computes the percentage of rejection of the null in 500 replications. When there is endogenous selection (the null is false)

and the initial N is small, we reject both the FE and the RE estimators in 95% and 99.8% of the cases, respectively, while the

rejection rate of the FD estimator is smaller, 76.8%. When the sample is large ( N is 50 0 0) we always reject the null. When

the null is true (no endogenous selection) we reject the null in between 3.8% (FE estimator and N large) and 7% (RE and N

small) of the cases. 

Another set of simulation results that deserves some explanation refer to the experiments with a pure AR(1) small- 

 (max T = 7 ) panel data model. Up to 20 observations are simulated for each case, the initial sample is obtained after

discarding the first 13 observations for each individual. See Table C3 in the appendix for simulation results using the initial

value for each individual and up to the next six observations of the process for each individual. We present in the main text,

see Table 2 , simulations for different values of the autoregressive parameter under the assumption that the errors are only

contemporaneously correlated, estimating the AB and the system GMM estimators under alternative assumptions about the 

selection process: (a) non-endogenous selection; (b) endogenous selection without correction. The initial degree of sample 

selection is 15 per cent, while the fraction of the sample lost is much larger (around 1/3 of the observations on average). In

the case of results without endogenous selection when the initial sample is small ( N = 500 ) the bias of the AB grows with

the autoregressive parameter and becomes sizable from ρ = 0 . 75 (see Blundell and Bond (1998) and Hayakawa (2007) for

analyses of the small sample bias of the AB and system GMM estimators in linear models). As we increase the sample

size ( N = 50 0 0 ), the average bias of the AB estimator is reduced substantially and remains noticeable only for ρ > 0 . 75 . The

system GMM estimator, which is consistent in this case, shows a very small bias for N = 500 (never exceeding one per cent),

and even smaller when N = 50 0 0 . Figure C1 in Appendix C confirms these results with a sample size varying from N = 200

to N = 50 0 0 in the absence of any sort of selection (estimators labeled AB all and system all). 

When endogenous sample selection is considered, we do not detect any significant change in the biases for the uncor- 

rected AB estimator for both selection models. Even when the initial sample is small, the difference between the cases with

and without selection is practically undetectable (although the smaller effective sample size in the selected sample leads to 

higher RMSE). In contrast, the system GMM estimator always shows a very small bias (between 1 per cent for ρ = 0 . 25 and

2.25 per cent for ρ = 0 . 75 ). In terms of RMSE and CICR, when the sample size is small ( N = 500 ), they favor the system

estimator. However, when the sample size grows ( N = 50 0 0 ) the choice under both criteria is reversed. In fact, with a much

large sample size ( N = 50 0 0 0 ), the choice under both criteria is much clearer. 

Some additional conclusions can be drawn when varying the sample size ( Figure C1 in Appendix C). When N = 200 , the

AB estimator shows sizable bias, which decreases as N increases. The system GMM estimator has always very small bias, 

however. For a given ρ , it remains stable (between 1 and 2.5 per cent) as N increases. We detect a threshold for N for

each combination of parameters, the average bias of the system GMM estimator being smaller below this threshold, and 

larger above it. Therefore, we conclude that for moderate and small sample sizes (say, below the range 10 0 0 − 1500 ), the

system GMM estimator is highly recommended because of the likely smaller bias as well as smaller variance. Finally, when 

αi and ηi are not correlated, the bias of the system GMM estimator tends to disappear (in comparison with the previous 

case) due to the fact that the main source of bias is the correlation between the heterogeneous components of the outcome

and selection equations ( Table C1 in the Appendix presents an analysis of the conditional expectation of the key moment

conditions of the model for different values of N, ρ and correlation between the error components and the autoregressive 

parameter). 

A large fraction of the inconsistency of the system estimator stems from the correlation between the unobserved het- 

erogeneous components in equations (1) and (2). Because many practitioners are potentially interested in estimating these 

models using the system GMM estimator (especially when the available sample size is small), one is tempted to use a simple

procedure as the one described for the static model following Olsen (1980) . However, we should emphasize that methods 

based on OLS in dynamic models can only be used as bias reduction approaches (see Han and Lee (2022) ) because as it is

well-known it does not provide consistent estimates in linear probability models as shown by Horrace and Oaxaca (2006) . 

In addition to the experiments above, we have carried out several Monte Carlo exercises with cases departing from the 

basic assumptions of the purely AR(1) model we have simulated (with the exception of the initial conditions case which is

reported in Table C3 in Appendix C, these results are not reported in the paper, but they are available upon request from the

authors). The following robust checks were performed: (a) In the first panel of Table C3 we present the same experiments

reported in Table 2 using the first seven realizations of the process for each individual (that is without discarding the first

13 observations). We also used the Han and Phillips (2010) estimator, which does not suffer from weak/many instruments 

problem and works very well regardless of the magnitude of AR(1) coefficient to check the sensitivity of our results to

alternative dynamic panel data estimators that perform well when the stationarity assumption is not satisfied; (b) varying 

the longitudinal dimension of the panel; (c) increasing the percentage of selection (from 0.15 to 0.25); (d) increasing the 

ratio of the variances to 
σ 2 
α

ρ2 
ε 

= 2 ; (e) reducing the correlation between the errors (the correlation parameter is reduced

from 0.5 to 0.25); (f) and, finally, introducing non-stationary time varying errors and correlation of the time-varying error 
13 
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components. In particular, we allow the variance of the time-varying errors in (1) and (2) to vary over time by multiplying

either εit or uit by a time-varying Bernoulli process taking the values 1 or 2. We also allow the correlation coefficient 

between the time-varying errors in (1) and (2) to vary over time by multiplying ϑ by either 0.5, 1 or 2. All these sensitivity

exercises confirm the main lessons drawn from the previous analysis: the AB (or the AH) estimator is moderately biased 

when N is small or moderate, and unbiased when N is large. These additional results by and large recommend the system 

GMM estimator for the small N case and the AB for the large N case. 

We performed additional Monte Carlo exercises for dynamic models with a covariate that is either present or absent from 

the selection equation. This variable can be either exogenous, predetermined or endogenous. The key results obtained with 

an endogenous covariate and contemporaneously cross-correlated errors are shown in the first two columns (for ρ = 0 . 25 

and ρ = 0 . 75 ) of Panels A and B in Table 3 . The small biases found for the AB estimator with N = 500 decrease as sample

size increases (they practically disappear when N = 50 0 0 ). Note that the CICR criteria also show that the AB is appropriate.

The system GMM estimator, although not consistent, has a very small bias regardless of the sample size. More importantly, 

the RMSE is smaller (and the CICR is similar in magnitude) than for the AB, even when the sample is large ( N = 50 0 0 ).

Note however, that for very large samples (say, N = 50 0 0 0 , results not reported) the latter remark is no longer true, since

the bias of the AB estimator goes to zero while the bias of the system GMM estimator does not. All these results also apply

to the case where x is predetermined or exogenous. We do not report them, but they are available upon request from the

authors. 

Next, we focus on a dynamic model with a covariate x present in both, the outcome and the selection equations (sim-

ulation results for this case when x is not present in the selection equation and is not correlated with z are available

upon request). We present both uncorrected and corrected estimates and cov (εit , uis = 0) ; s < t . The uncorrected results are

reported in the third and fourth row and the corrected ones in the next two rows of Panels A and B in Table 3 . The uncor-

rected estimates are biased regardless of the sample size, which shows the need to correct for sample selection when there

is at least a common covariate in both equations. Given that cov (εit , uis = 0) ; s < t , for GMM-IV estimators, as we show in

the Appendix B, this implies adding univariate correction terms ( a la Wooldrigde ) to each equation (first differenced cor-

rections in first differenced equations for both the AB and system estimators, and level corrections in level equations for 

the system estimator). Furthermore, since x is endogenous, these additional terms need to be instrumented using backward 

lags. The effects of sample correction on the magnitude of the bias reduction is sizable, especially for β . Reductions in the

RMSE are related to the sample size. When the sample size is small the ERF is small (around 0.50), so the sample selection

test fails to clearly detect the presence of endogenous sample selection for both estimators. As the sample size increases the

performance of the test improves substantially with an ERF close to 1. When the null is true the ERF has a range of 0.38

(highest) to 0.06 (lowest). 

The simulation exercise reported in Table 4 explores a model with a single exogenous covariate ( x and z, respectively)

in each equation and time-variant errors that are cross-serially correlated cov (εit , uis � = 0) ; s ≤ t . We want to stress the fact

that when the two equations do not have common covariates and they are independent, there is no need to correct the

estimates, even when the correlation structure is very complex. The results from this experiment are reported in the first 

two rows of panels A and B in Table 4 . In the third and fourth row of panels A and B we report the case in which x is

present in both equation and we do not correct for sample selection. The simulation results in Table 4 are in line with prior

expectations since the bias of the uncorrected estimator is sizable, especially for β , a feature shared by many of the results

we have presented so far, and it does not decrease as N grows. 

Finally, in the remaining rows of panels A and B, we report corrected estimates. First think to note is the fact in models

were the time-variant errors are cross-serially correlated, i.e., cov (εit , uis � = 0) ; s ≤ t , and they have an exogenous covariate

present in both equations, we show in Appendix B that the estimation of the model either by FD-GMM or system GMM

requires multiple correction terms. As shown in appendix B, we have to add two correction terms obtained from trivariate 

probit models for the first-differenced equations (present in both the AB and the system estimators) and two additional 

terms obtained using bivariate probit models for the equation in levels. Moreover, given the multiplicity of correction terms, 

we have to use a Wald test instead of a typical t-test to check for sample selectivity. 

When the null of endogenous selection is true (reported in rows fifth and sixth of panels A and B) the bias of the

corrected estimator is very small and decreases with N. Likewise, the CICR statistic is found around 0.95 in a majority of

cases, being the case of CIRC statistic for ρ in the corrected system estimation a notable exception. On the other hand, the

ERF of the correction terms is moderate when N is small and increases to a value close to 1 as N grows. Alternatively, when

the null of endogenous selection is not true the ERF of the sample selection test stabilizes between 0.06 ( N = 500 ) and 0.04

( N = 50 0 0 ) both for the AB and system GMM estimators. 

Our final Monte Carlo exercise compares univariate tests of selection bias presented in Panels A and B of Table 4 with

multivariate ones. In the presence of sample selection but absence of longitudinal cross-correlation between the outcome 

and the selection, i.e., cov (εit , uit � = 0) and cov (εit , uis = 0 ; s < t) , we simulate the GMM estimators with two correction terms.

Wooldridge-like corrections are adequate (Heckman’s lamdba in first differences and levels in the first-differenced and in the 

levels equations, respectively). In these cases, it is easy to show that the coefficient of the lagged twice trivariate correction

term in the first-differenced equations and the coefficient of the lagged bivariate lambda in the equation in levels should 

be zero. Then, a simple t-test for the corrected AB estimator or a Wald test for the corrected system GMM estimator stand

as checks for the longitudinal correlation between the errors in the outcome and the selection equations. We obtain the 

expected results as reported in Panel C of Table 4 . 
14 
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Table 3 

Average bias, RMSE and CIRC in the dynamic model with an endogenous covariate. ( cov (εit , uis ) � = 0 ; s < t) T = 7; 500 replications. 

AB SYSTEM 

x in Corrected value ρ β λ test ρ β λ test 

selection ρ av. bias RMSE CICR av. bias RMSE CICR ERF av. bias RMSE CICR av. bias RMSE CICR ERF 

Panel A: N = 500; endogenous selection 

No No .25 -0.0109 0.0323 .94 0.0098 0.0393 0.914 -0.0060 0.0239 .944 0.0074 0.0327 0.934 

No No .75 -0.0291 0.0591 .896 -0.0087 0.0505 0.956 -0.0051 0.0224 .952 0.0043 0.0305 0.926 

Yes No .25 -0.0236 0.0376 .868 -0.0389 0.0575 0.876 -0.0102 0.0282 .926 -0.0368 0.0551 0.848 

Yes No .75 -0.0334 0.0465 .824 -0.0551 0.0714 0.812 -0.0155 0.0357 .896 -0.0441 0.0610 0.824 

Yes Yes1 .25 -0.0344 0.0451 .76 0.0235 0.0547 0.924 0.510 -0.0184 0.0321 .896 0.0129 0.0480 0.934 0.420 

Yes Yes1 .75 -0.0387 0.0505 .768 -0.0003 0.0529 0.944 0.454 -0.0152 0.0331 .908 0.0044 0.0459 0.938 0.430 

Panel A: N = 500; exogenous selection 

Yes Yes1 .25 -0.0165 0.0383 .906 0.0007 0.0470 0.950 0.038 0.0003 0.0309 .938 0.0009 0.0388 0.966 0.040 

Yes Yes1 .75 -0.0245 0.0462 .894 -0.0132 0.0539 0.934 0.040 0.0135 0.0317 .91 0.0023 0.0392 0.960 0.052 

Panel B: N = 5000; endogenous selection 

No No .25 -0.0011 0.0101 .936 0.0007 0.0109 0.962 -0.0020 0.0078 .934 0.0007 0.0093 0.954 

No No .75 -0.0041 0.0165 .934 -0.0020 0.0148 0.964 -0.0047 0.0084 .908 -0.0014 0.0091 0.950 

Yes No .25 -0.0128 0.0158 .666 -0.0553 0.0568 0.010 -0.0053 0.0100 .898 -0.0493 0.0508 0.022 

Yes No .75 -0.0217 0.0239 .394 -0.0637 0.0651 0.004 -0.0179 0.0207 .564 -0.0562 0.0577 0.010 

Yes Yes1 .25 -0.0192 0.0212 .4 -0.0076 0.0168 0.932 1.000 -0.0114 0.0140 .666 -0.0049 0.0144 0.942 1.000 

Yes Yes1 .75 -0.0233 0.0253 .326 -0.0191 0.0248 0.772 1.000 -0.0148 0.0177 .642 -0.0100 0.0171 0.882 1.000 

Panel B: N = 5000; exogenous selection 

Yes Yes1 .25 -0.0020 0.0108 .948 -0.0005 0.0139 0.958 0.058 -0.0003 0.0088 .944 -0.0008 0.0124 0.950 0.050 

Yes Yes1 .75 -0.0028 0.0117 .954 -0.0023 0.0156 0.944 0.062 0.0018 0.0109 .95 -0.0004 0.0129 0.942 0.044 

1. In Panels A and B the correction is obtained from a year by year probit with z and ℘ as covariates. 

1
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Table 4 

Average bias, RMSE and CICR in the dynamic model with an exogenous covariate. cov (εit , uis � = 0 ; s ≤ t) T = 7; 500 replications. 

AB SYSTEM 

x in Corrected value ρ β λ’s test ρ β λ’s test 

selection ρ av. bias RMSE CICR av. bias RMSE CICR ERF av. bias RMSE CICR av. bias RMSE CICR ERF 

Panel A: N = 500; endogenous selection 

No No .25 -0.0004 0.0225 0.952 -0.0032 0.0268 0.940 0.0174 0.0274 0.876 0.0068 0.0269 0.924 

No No .75 -0.0132 0.0257 0.902 -0.0051 0.0277 0.926 0.0078 0.0198 0.910 0.0108 0.0276 0.918 

Yes No .25 -0.0193 0.0345 0.900 -0.0402 0.0506 0.750 0.0023 0.0277 0.946 -0.0316 0.0442 0.824 

Yes No .75 -0.0266 0.0377 0.824 -0.0447 0.0545 0.714 -0.0089 0.0257 0.912 -0.0354 0.0475 0.800 

Yes Yes .25 -0.0047 0.0412 0.940 -0.0020 0.0450 0.938 0.322 0.0046 0.0380 0.946 -0.0035 0.0436 0.962 0.170 

Yes Yes .75 -0.0217 0.0474 0.880 -0.0109 0.0477 0.946 0.312 -0.0175 0.0315 0.898 -0.0094 0.0442 0.966 0.154 

Panel A: N = 500; exogenous selection 

Yes Yes .25 -0.0112 0.0387 0.922 -0.0012 0.0398 0.952 0.062 0.0002 0.0335 0.940 -0.0003 0.0378 0.962 0.070 

Yes Yes .25 -0.0124 0.0384 0.920 -0.0043 0.0421 0.948 0.070 0.0052 0.0225 0.932 0.0018 0.0390 0.958 0.076 

Panel B: N = 5000; endogenous selection 

No No .25 0.0061 0.0094 0.852 -0.0015 0.0075 0.960 0.0169 0.0182 0.264 0.0065 0.0096 0.876 

No No .75 -0.0050 0.0086 0.864 -0.0019 0.0077 0.950 0.0039 0.0073 0.868 0.0095 0.0118 0.754 

Yes No .25 -0.0098 0.0129 0.784 -0.0386 0.0395 0.016 0.0024 0.0084 0.940 -0.0325 0.0336 0.044 

Yes No .75 -0.0151 0.0171 0.504 -0.0401 0.0411 0.012 -0.0158 0.0173 0.374 -0.0386 0.0396 0.018 

Yes Yes .25 0.0074 0.0137 0.918 -0.0011 0.0134 0.966 0.998 0.0004 0.0106 0.940 -0.0076 0.0153 0.912 0.962 

Yes Yes .75 -0.0043 0.0130 0.924 -0.0044 0.0144 0.940 0.998 -0.0259 0.0269 0.068 -0.0131 0.0185 0.826 0.954 

Panel B: N = 5000; exogenous selection 

Yes Yes .252 -0.0020 0.0104 0.956 0.0003 0.0113 0.958 0.048 -0.0010 0.0092 0.966 0.0003 0.0113 0.942 0.044 

Yes Yes .752 -0.0021 0.0103 0.954 -0.0003 0.0118 0.956 0.042 0.0002 0.0062 0.956 0.0003 0.0115 0.950 0.040 

Testing univariate corrections vs multiple corrections 

AB SYSTEM 

x in Corrected value ρ β xtraλ’s test ρ β xtraλ’s test 

selection ρ av. bias RMSE CICR av. bias RMSE CICR ERF av. bias RMSE CICR av. bias RMSE CICR ERF 

Panel C1: N = 500; endogenous selection but cov (εit , uis = 0 ; s < t) 

Yes Yes .25 -0.0147 0.0433 0.916 -0.0017 0.0438 0.946 0.306 -0.0025 0.0374 0.944 -0.0010 0.0418 0.952 0.090 

Yes Yes .75 -0.0195 0.0452 0.896 -0.0082 0.0468 0.934 0.318 0.0018 0.0253 0.946 -0.0014 0.0422 0.956 0.086 

Panel C2: N = 5000; endogenous selection but cov (εit , uis = 0 ; s < t) 

Yes Yes .25 -0.0030 0.0115 0.954 -0.0007 0.0132 0.954 0.990 -0.0054 0.0113 0.920 -0.0022 0.0132 0.952 0.048 

Yes Yes .75 -0.0036 0.0122 0.930 -0.0015 0.0136 0.948 0.988 -0.0053 0.0090 0.888 -0.0032 0.0134 0.948 0.038 

1: In Panels A to C the correction is obtained from trivariate probits (for FD equations) and bivariate probits (for level equations) with z, z(−1) and z(−2) as covariates (in the trivariate case) or z, z(−1) 

in the bivariate one. 

1
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Table 5 

Estimates for the dynamic log hourly earnings equation with covariates. 

(1) (2) (3) (4) (5) 

Semykina No No year by year year by year 

Wooldridge correction correction correction correction 

first dif eq all equations 

GMM AB system AB system 

Lag log 0.5740∗∗∗ 0.1047∗∗ 0.1850∗∗∗ 0.1170∗∗∗ 0.2189∗∗

hourly earnings (0.0400) (0.0374) (0.0436) (0.0379) (0.0447) 

Education 0.0290∗∗∗ — 0.0949∗∗∗ — 0.0931∗∗∗

(0.004) (0.0084) (0.0085) 

Age 0.0090∗∗∗ 0.0070 0.0375∗∗∗ 0.0269∗∗ 0.0228∗∗∗

(0.004) (0.0127) (0.0113) (0.0128) (0.0126) 

Age squared -0.0001∗∗∗ -0.0001 -0.0004∗∗∗ -0.0001 -0.0003∗∗∗

(0.000) (0.0001) (0.0001) (0.0002) (0.0001) 

Observations 5033 5033 5033 5033 5033 

Joint significance 41.3 (10) – – 11.27 (11) 14.80 (11) 

selection terms (0.000) (0.421) (0.192) 

Notes. 1. N = 550 ; 2. GMM results obtained using the estimator by Semikyna and Wooldridge (2013); 3. Annual dummies are included in all specifications; 

4. ∗∗∗ significant at 1%; ∗∗ significant at 5%; ∗ significant at 10%; 5. The standard errors have been corrected following Windmeijer (2005) ; In columns (4) 

and (5), we also report corrected standard errors following Terza (2016) . 6. The test of significance of the selection terms is a Wald test. Degrees of freedom 

and level of significance are in parentheses. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Empirical applications 

This section presents two applications of the proposed methods. The first uses well-known data from the Panel Study of 

Income Dynamics (PSID) to estimate log hourly earnings equations of US females. This dataset has been employed in several 

empirical papers with different purposes, but we use it to compare our results to alternative methods for selection models 

proposed by Semykina and Wooldridge (SW). The second uses consumption data from the Spanish Continuous Family Ex- 

penditure Survey (ECPF from now on) to adjust myopic models of tobacco consumption. This is the same dataset used by

Jones and Labeaga (2003) . They were worried about the censoring nature of the observations and how to handle it in the

framework of a rational addiction model of tobacco consumption (see Becker and Murphy (1988) ). Our objective here is to

estimate a myopic model of consumption trying to mimic our autoregressive proposal. 

5.1. Estimating female earnings equations 

In this first application, we employ the same data used in SW, which were also used by Lai and Tsay (2018) (we compare

our results with those presented by SW, but, unfortunately, we cannot compare with Lai and Tsay (2018) , because they

estimated a static sample selection model). The data consists of a panel taken from the PSID covering the period 1980-1992,

and we use the same selection rules (see Section 6 in SW). Since we discuss pure autoregressive models in the paper, we

estimate it on this data and we present the results in Table C4 of Appendix C. We extend the model in Table 5 to include

age, age squared and number of years of education. These variables together with family size are included in the selection

equation. In terms of the notation used in (3) , age, age squared and number of years of education form the vector xit and

family size, which is an exclusion restriction, is included in zit . In the case of family size, we include, as SW, zi 1 , zi 2 ,..., ziT . The

first column in Table C4 presents first-differenced IV estimates. Alternatively, column (1) in Table 5 reports the SW estimator.

Columns (2) and (3) in both tables report the AB and system GMM results obtained in the selected sample when we do

not correct the earnings equation. Alternatively, in columns (4) and (5) of Table 5 and column (4) of Table C4 we present

year-by-year probit corrections under the assumption that the errors in both equations are contemporaneously correlated. 

The results for the pure autoregressive model are in line with our simulation results. The coefficient of the lagged de-

pendent variable is estimated at 0.103 using the AB estimator and 0.18 using the system GMM estimator without correction. 

The difference between them may be attributable to the small sample size in the individual dimension. An example with 

large N (4739) small T (6) can be found in Stewart (2007) . He presents the results of the estimation of a dynamic panel data

model with unbalanced data using GMM methods (Table V). He finds that the AB and system GMM results are close. Adding

a year-by-year correction in either the equation in levels or in all equations mildly increases the autoregressive parameter. 

Note, however, that the selection terms are found to be jointly significant. 

In Table 5 , we consider the demographic variables to be strictly exogenous and we instrument the lagged log of the

dependent variable using all available instruments for both equations in levels and first-differences. The number of overi- 

dentifying restriction is 65 in the first-differenced model and 76 in the system one. We conduct a sensitivity analysis for

changes in the number of instruments and obtain very robust results ( Roodman, 2009 ). When we use up to the fourth lags

instead of all lags of the log hourly earnings, we obtain the following coefficients: 0.178, 0.093, 0.020 and -0.0 0 02 for the

lagged dependent variable, education, age and age squared, respectively. They compare with those in column 3 of Table 5 .

The autoregressive coefficient (as well as its standard error) remains very similar in the extended model in Table 5 compared

to the pure autoregressive case, and it is substantially lower than the one obtained by SW. Given that all first stage variables
17 
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are either time-invariant (education) or deterministic (age and age square) the uncorrected first differences estimates are 

consistent. 

The proposed corrections of the system GMM estimator do not imply significant changes in the key coefficients of the 

model. All in all, our estimates of the coefficient of the lag of log hourly earnings are in line with the results obtained in a

similar context by Arellano et al. (1999) using a sample of females from the PSID for the 1970-76 period, and correcting for

selectivity (see Table A.3 in Arellano et al. (1999) ). 

It is also important to note that our age and education estimates are very different from the results in SW, but they are

in line with those found in the previous literature using similar data. The coefficients of age, age squared and education

have the expected signs, with a quadratic profile of age showing increasing earnings at a decreasing rate. The return to

education is more in line with the average return to education for females for the US usually found in the literature (see

Card (1999) or Harmon et al. (2003) ). We do not detect endogenous selection due to the correlation between the time-

invariant heterogeneity components (column (5) and (6) in Table 5 ). The coefficient of lag of log hourly earnings in SW and

in our application are different. Our guess is that the specification estimated by SW does not control adequately for the

correlation between the fixed effects and the lagged dependent variable (remember that they estimate the model by pooled 

NLS or GMM). Our estimator controls for the fixed effects by first differencing. Moreover, the addition of the equation in

levels helps in identifying the effects of education, age and age squared and improves the efficiency of the estimates of

these coefficients. 

All in all, our opinion is that the similarities among the coefficients with and without correcting for selectivity are in

line with the results of our Monte Carlo experiment. A lesson for practitioners is that there is little necessity to correct for

endogenous selection in situations similar to the one studied in this paper. SW’s proposal is suitable for balanced panels 

and after making very particular assumptions about initial conditions. Although it is feasible to adapt SW’s proposal to the 

more general unbalanced panel case, there are analytical as well as computational costs, which lead us to suggest the simple

methods we presented in this paper. 

5.2. Estimating models of tobacco consumption 

The previous application is done on a small sample size in the cross-section dimension of N = 550 , similar to the case

with N = 500 in our Monte Carlo exercise. In this second application, we use a much larger sample size with N = 2500

and larger than the threshold where the difference between the AB and system GMM estimates converges to zero (see 

Figure C1 ). In more detail, we use the data in Jones and Labeaga (2003) , who estimated rational addiction models of to-

bacco consumption. We make use of the repeated observations on tobacco expenditure in the ECPF from the third quarter 

of 1986 to the fourth of 1994. This is a rotating panel survey conducted by the Spanish Statistical Office. Each quarter 3,200

individuals were interviewed, with replacement at a rate of 12.5 percent. Consequently, the maximum number of periods 

that an individual remains in the survey is eight and as an initial sample we use the balanced panel. The original size is

48,800 observations N = 6100 and T = 8 . We follow Jones and Labeaga (2003) in using sample separation information to

exclude those households who do not purchase tobacco in any of the eight observed periods since it does not induce en-

dogenous selection. It implies dropping non-smokers ( N = 1957 ). Those households who report zero and positive purchases 

may be affected by selection reflecting an intermittent sequence of quits and take-ups from smoking. 

In this subsample ( Jones and Labeaga, 2003 ) checked for some common pattern for the zeros in the smoking households’

sample, but they did not find evidence either of corner solutions or clear sequences of starters-quitters. In these circum- 

stances, they assume that the models underlying the zeros are type I Tobit specifications (i.e., zeros correspond to corner 

solutions). They estimated reduced form Tobit models, assuming normality, and to reduce the influence of distributional 

assumptions they adopted a semiparametric approach and estimated each of the T cross-section equations using ( Powell, 

1986 ) Symmetrically Censored Least Squares (SCL S). SCL S is designed to accommodate standard Tobit-type censoring. The 

final model with and without correction is estimated with a sample of N = 4041 ( NT = 22520 ), out of which 52 percent

report eight positive purchases (see Table I in Jones and Labeaga (2003) for further details). 

We do not try to compare our results with Jones and Labeaga (2003) , but we only like to compare the performance of

our methods with a much larger sample size than in the previous application. In this sense, we are only interested in myopic

models where only the lag of consumption, the price of tobacco, some time-varying demographics and time dummies enter 

the outcome equation (attending theoretical reasons, the price of tobacco does not enter the selection equation and can be 

used as an additional identification restriction). The results for the myopic model are presented in Table 6 (this is similar to

a pure autoregressive model in the sense that the price of tobacco is an exogenous variable not included in the decision to

start-quit smoking). The first column in Table 6 presents first-differenced AB myopic estimates obtained using predictions 

under censoring as in Jones and Labeaga (2003) . It is important to note that the results of Jones and Labeaga (2003) and

the results in this paper are not directly comparable. Jones and Labeaga (2003) control for non-smokers and they estimate 

a rational addiction model compared to our myopic behavior model that does not control for non-smokers. 

The rest of the columns in the table report the same estimators reported in the results of our first application. Columns

(2) and (3) present AB and system GMM estimates obtained in the selected sample, but when we do not correct the con-

sumption equation. In columns (4) and (5) we present AB and system GMM coefficients using a year-by-year correction for 

the equations in first differences (AB) and for all equations (system GMM). 
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Table 6 

Estimates of myopic models of tobacco consumption. 

(1) (2) (3) (4) (5) 

Jones No No year by year year by year 

Labeaga correction correction correction correction 

first dif eq all equations 

GMM AB system AB system 

Lag real 0.2049∗∗∗ 0.1010∗∗∗ 0.1274∗∗∗ 0.0874∗∗∗ 0.0903∗∗∗

tobacco consumption (0.0147) (0.0263) (0.0189) (0.0235) (0.0203) 

Real price -1.0041∗∗∗ -1.5900∗∗∗ -0.8497∗∗∗ -0.8828∗∗∗ -0.6409∗∗∗

of tobacco (0.0672) (0.3614) (0.2278) (0.3800) (0.2267) 

Observations 22520 22520 22520 22520 22520 

Joint significance – – – 39.88 (6) 183.61 (6) 

selection terms (0.000) (0.000) 

Notes. 1. N = 4104 ; 2. GMM results obtained in the sample of Jones and Labeaga (2003) 3. Quarter dummies are included in all specifications; 4. ∗∗∗

significant at 1%; ∗∗ significant at 5%; ∗ significant at 10%; 5. The standard errors have been corrected following Windmeijer (2005) ; In columns (4) to (6), 

we also report corrected standard errors following Terza (2016) . The test of significance of the selection terms is a Wald test. Degrees of freedom and level 

of significance are in parentheses. 

 

 

 

 

 

 

 

 

 

 

 

 

 

As usual in myopic models, we instrument lagged consumption using previous lags of consumption. However, qualita- 

tively, the results for the autoregressive coefficient appear to reproduce the same characteristics found in the Monte Carlo 

exercises. We do not find big differences between the AB uncorrected and AB corrected for selection estimates. The interval 

of the mean plus / minus two standard errors contains both estimates with very high confidence. The same result occurs 

when comparing the system GMM uncorrected and corrected for selection coefficients. These results seem to suggest little 

need to correct the model, as suggested both by our theoretical and simulation results. 

Finally, all the tests detect strong selectivity, but again correction does not seem to affect the estimate of the lag, see

columns (2) to (5). In this sense, the estimate of the lag in the model using the predicted latent variables in column (1)

reports the highest difference, as expected, since the assumption is that zero purchases are due to censoring, i.e., they are

corner solutions (see Jones and Labeaga (2003) ). When the sample size in the individual dimension is sufficiently large, the

AB and system GMM estimates are rather similar. This is true whether we correct the outcome equation for sample selection

or not. Again, this is in line with our Monte Carlo results. 

6. Concluding remarks 

This paper studied the bias and consistency of classical panel data estimators including FE, RE and GMM estimators for 

both static and dynamic panel data models subject to potentially endogenous sample selection. We show that a la Heckman 

sample selection corrections are only needed when both equations have common covariates. In models without common 

covariates (and uncorrelated), regardless of the severity and even the complexity of the selection process (either with con- 

temporaneous correlation only or with serial cross-correlation), standard estimators for the static model and the Arellano 

and Bond (1991) and the Anderson and Hsiao (1982) estimators for the dynamic model are consistent. Alternatively, the 

system GMM estimator is moderately biased regardless of the sample size. The bias is caused by the level orthogonality 

restrictions of the levels equations only, thereby implying that to correct the estimator we only need to correct those equa-

tions and not the equations in first differences. In the case the source of the bias is the correlation between the individual

heterogeneous components in the outcome and selection equations, a simple control approach can handle this bias correc- 

tion. 

Alternatively, when the outcome and the selection equation have common covariates, we show the validity of simple 

corrections based on Wooldridge (1995) ; Rochina-Barrachina (1999) and Jiménez Martín et al. (2009) . When the errors in

both equations are not serially cross-correlated we extend the proposal of Wooldridge (1995) to more complex cases, such 

as static models estimated in first differences or dynamic models. Alternatively, when they are serially cross-correlated 

( cov (εit , uis � = 0) ; s < t), we suggest using multivariate corrections. 

We evaluate the finite sample performance of the classical panel data as well as GMM estimators in a Monte Carlo

exercise. The results of our experiments confirm the theoretical predictions under a variety of assumptions. Since sam- 

ple size is crucial for the properties of the estimators and for the magnitude of the bias, we illustrate the properties of

the estimators in two empirical applications differing in the number of individuals observed each period. The first one 

( N = 550 ) estimating female earnings equations using PSID data, and the second one ( N = 2500 ) estimating myopic tobacco

consumption equations using Spanish data. Our empirical studies give results in line with the results of the Monte Carlo 

study. 

To conclude, as it is well known if the errors of the selection and outcome equations are not correlated, sample selection

is not needed even if the two equations have common covariates. Moreover, the presence of common covariates also appear 

as a key determinant of the necessity of sample selection corrections a la Heckman . We believe that our findings could be of
19 



B.H. Baltagi, S. Jiménez-Martín, J.M. Labeaga et al. Econometrics and Statistics xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: ECOSTA [m3Gsc; November 30, 2023;21:39 ] 

 

 

 

 

 

 

 

 

 

particular relevance for practitioners in situations where there are exclusion restrictions (implied by the theoretical model) 

or in increasingly common empirical studies based on experimental or quasi-experimental designs where the researcher 

have the control of factors influencing various stages of the experiment. 
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Appendix A. Consistency of the estimators when δ = 0 and x ⊥ z

Consider the linear model 

y = Y ′ θ + u, 

where Y is endogenous and y is a response scalar variable. We assume that we have an exogenous set of instruments z.

Define 

u (θ ) = y − Y ′ θ . 

The sample selection process is given by s = sz sy sY , i.e. a data point (y, Y, z) is available if and only if all three variables are

available. The classical condition for exogeneity is that 

E(u (θ0 ) | s, z) = 0 . 

See p. 795 of Wooldridge (2010). However, this condition can be difficult to verify in some contexts, particularly in a dynamic

panel setting such as the case presented in this paper. The alternative condition 

E(sy sY u (θ0 ) | sz , z) = 0 

can be much easier to verify and still leads to consistency. Recall that under the usual conditions, the consistency of the

GMM estimator of θ requires that E(szu (θ )) = 0 if and only if θ = θ0 . This is easily proven, 

E(szu (θ0 )) = E(sz zsy sY u (θ0 )) = E(sz zE(sy sY u (θ0 ) | sz , z)) = 0 , 

On the other hand, for θ � = θ0 , 

E(szu (θ )) = E(szu (θ ± θ0 )) = E(szu (θ0 )) − E(szY ′ )(θ − θ0 ) = E(szY ′ )(θ0 − θ ) . 

Therefore, it suffices to have rank (E(szY ′ )) = dim (θ ) , which is to say the instruments have a full effect on the endogenous

variables in the observed sample. 

Appendix B. Sample selection corrections for IV estimators when δ �= 0 and cov (εit , uis �= 0 ; s ≤ t) 

In this section we develop the required correction for dynamic models in which IV is strictly necessary. For static model

corrections see Wooldridge (1995) for the RE case and Rochina-Barrachina (1999) for the FD case. 

B1. Recap of a dynamic model 

Consider an outcome variable y∗, which is related to its lagged value, and other variables included in the vector x . 

y∗
it = ρy∗

it−1 + xit β + αi + εit f or ti s.t. dit = 1 ; (A1) 

where d is the selection variable and αi is an individual heterogeneity component independent of εit , the error term. ρ, β
are parameters. x can be correlated with both the individual heterogeneity component and the error term. In addition we 

define ωit = αi + εit . Finally, note that when ρ = 0 we get the static model. 

The observability of y∗ is driven by the model for d , which is given by 

d∗
it = zit γ + xit δ + ssi + uit = wit π + ηi + uit ; dit = 1

[
d∗

it ≥ 0
]

(A2) 
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where w (which combines z and x , being x ⊥ z) is a vector of strictly exogenous regressors (with respect to u once we

allow for w to be correlated with ssi ), ssi is a term capturing unobserved individual heterogeneity and uit is an error term.

Assumptions about the components of (A1) and (A2) will be given in the next subsections. 

Furthermore, in general, ssi + uit and αi + εit can be serially cross-correlated, that is cov (εit , uis ) � = 0 ; s ≤ t . 

B2. General assumptions for the selection equation 

•B1: The conditional expectation of ssi given w̄i is linear. 

Following Mundlak (1978) , it is assumed that the conditional expectation of the individual effects in the selection equa- 

tion is linear in the time means of all exogenous variables (alternatively, we can also use Chamberlain (1984) , approach):

ssi = w̄
i 
θ + ci , where ci is a random component independent of wi (recall that w represents the combination of z and x ). 

•B2: The errors in the selection equation, νit = uit + ci , are independent of wi and normal 
(
0 , σ 2 

t 

)
. 

Under B1 and B2 the reduced form selection rule of (A2) is d∗
it 

= w
it 
π + w̄ i θ + νit , dit = 1

{
w

it 
π + w̄i θ + νit ≥ 0

}
= 

1{ Hit + νit ≥ 0} . 
The reduced form selection rule d∗

it 
= w

it 
πt + w̄i θt + νit is not only compatible with B1 (to allow the w to be correlated 

with the individual effect in the selection equation) but also with a dynamic model for the selection rule such as: d∗
it 

=
ρd d

∗
it−1 

+ w
it 
πt + ssi + uit , where d∗

i 0 
= w̄

i 
π0 + ui 0 (initial condition) and ssi = w̄

i 
θ + ci (as in B1 ). In this case νit will be a

function of ui 0 , ..., uit , ci , but still independent of wi . 

B3. Bias correction 

B3.1. Correction of the first differenced (FD) equations 

Let us consider the first-differenced model: 

yit = ρ · yit−1 + xit β + εit (A3) 

We will need a sample of individuals with dit = dit−1 = dit−2 = 1 , and, therefore, in general the sample selection correc-

tion term will come from a trivariate probit: 

yit = ρ · yit−1 + xit β + E
[
εit 

∣∣wi , dit = dit−1 = dit−2 = 1 

]
+ eit . (A4) 

We follow Tallis (1961) to work it out: E
[
εit 

∣∣wi , dit = dit−1 = dit−2 = 1 
]

under a 4-variant normal distribution as- 

sumption. In fact, by assuming a linear projection of the errors in the main equation εit on the errors in the se-

lection equations in t , t − 1 and t − 2 , we do not need a 4-variant normal distribution for the errors in both equa-

tions 
[
εit , νit , νit−1 , νit−2 

]
, but only a trivariate normal distribution for the errors in the selection equation 

(
νit , νit−1 , νit−2 

)
. 

•B3: The errors 
[
εit , νit , νit−1 , νit−2 

]
ar e 4-variate normally distributed and independent of wi . 

Therefore, 

E
[
εit 

∣∣wi , dit = dit−1 = dit−2 = 1 

]
= σεt ,

νt 
σt 

λ
(
Hit , Hit−1 , Hit−2 , �t ,t −1 , �t ,t −2 , �t −1 ,t −2 

)
+σ

εt ,
νt−1 
σt−1 

λ
(
Hit−1 , Hit , Hit−2 , �t ,t −1 , �t ,t −2 , �t −1 ,t −2 

)
+ σ

εt ,
νt−2 
σt−2 

λ
(
Hit−2 , Hit , Hit−1 , �t ,t −1 , �t ,t −2 , �t −1 ,t −2 

)
. (A5) 

where His = wis π − E(ηi | wi ) for s = t, t − 1 , t − 2 , and, 

λ
(
Hit , Hit−1 , Hit−2 , �t ,t −1 , �t ,t −2 , �t −1 ,t −2 

)

=
φ( Hit ) �2 

((
Hit−1 − �t ,t −1 Hit 

)
/
(
1 − �2 

t ,t −1 

)1 / 2 
,
(
Hit−2 − �t ,t −2 Hit 

)
/
(
1 − �2 

t ,t −2 

)1 / 2 
, �t −1 ,t −2 .t 

)
�3 

(
Hit , Hit−1 , Hit−2 , �t ,t −1 , �t ,t −2 , �t −1 ,t −2 

) , 

λ
(
Hit−1 , Hit , Hit−2 , �t ,t −1 , �t ,t −2 , �t −1 ,t −2 

)

=
φ( Hit−1 ) �2 

((
Hit − �t ,t −1 Hit−1 

)
/
(
1 − �2 

t ,t −1 

)1 / 2 
,
(
Hit−2 − �t −1 ,t −2 Hit−1 

)
/
(
1 − �2 

t −1 ,t −2 

)1 / 2 
, �t ,t −2 .t −1 

)
�3 

(
Hit , Hit−1 , Hit−2 , �t ,t −1 , �t ,t −2 , �t −1 ,t −2 

) , 

λ
(
Hit−2 , Hit , Hit−1 , �t ,t −1 , �t ,t −2 , �t −1 ,t −2 

)

=
φ( Hit−2 ) �2 

((
Hit − �t ,t −2 Hit−2 

)
/
(
1 − �2 

t ,t −2 

)1 / 2 
,
(
Hit−1 − �t −1 ,t −2 Hit−2 

)
/
(
1 − �2 

t −1 ,t −2 

)1 / 2 
, �t ,t −1 .t −2 

)
�3 

(
Hit , Hit−1 , Hit−2 , �t ,t −1 , �t ,t −2 , �t −1 ,t −2 

)
where φ() is the standard normal density function, and �2 () , �3 () are the standard bivariate and trivariate normal cumu-

lative distribution functions, respectively. The �t ,t −1 , �t ,t −2 , �t −1 ,t −2 are all the possible correlation coefficients between the 

errors in the selection equation in the three time periods. 
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To construct estimates of the λ() terms, first, the coefficients in the Hs will be jointly determined with 

�t ,t −1 , �t ,t −2 , �t −1 ,t −2 , using a trivariate probit for the three time periods. Doing this we will get a predicted value for

the trivariate probability �3 

(
Hit , Hit−1 , Hit−2 , �t ,t −1 , �t ,t −2 , �t −1 ,t −2 

)
that appears in the denominator of the λ() terms. Sec- 

ond, we will get also estimates for the two arguments of the type ( His − �t,s Hit ) /
(
1 − �2 

t,s 

)1 / 2 
in the bivariate probabilities 

�2 () . Third, we will perform all the involved bivariate probabilities �2 () and estimate the partial correlation coefficients 

�t −1 ,t −2 .t , �t ,t −2 .t −1 , �t ,t −1 .t −2 for fixed Hit , Hit−1 , Hit−2 , respectively. Fourth, we will get a predicted value for the bivariate 

probabilities �2 () that are in the numerators of the λ() terms multiplied by the corresponding φ( His ) . 

Under stationarity σ
εt ,

νt 
σt 

= σ
εt−1 ,

νt−1 
σt−1 

, and we will call it σ0 . Now (A5) becomes: 

E
[
εit 

∣∣wi , dit = dit−1 = dit−2 = 1 

]
= σ0 

{
λ
(
Hit , Hit−1 , Hit−2 , �t ,t −1 , �t ,t −2 , �t −1 ,t −2 

)
−λ

(
Hit−1 , Hit , Hit−2 , �t ,t −1 , �t ,t −2 , �t −1 ,t −2 

)}
− σ

εt−1 ,
νt, 2 
σt 

λ
(
Hit , Hit−1 , Hit−2 , �t ,t −1 , �t ,t −2 , �t −1 ,t −2 

)
+ σ

εt ,
νt−1 
σt−1 

λ
(
Hit−1 , Hit , Hit−2 , �t ,t −1 , �t ,t −2 , �t −1 ,t −2 

)
+ σ

εt ,
νit−2 
σt−2 

λ
(
Hit−2 , Hit , Hit−1 , �t ,t −1 , �t ,t −2 , �t −1 ,t −2 

)
− σ

εt−1 ,
νit−2 
σt−2 

λ
(
Hit−2 , Hit , Hit−1 , �t ,t −1 , �t ,t −2 , �t −1 ,t −2 

)
(A6) 

In this equation the correlation σ
εt−1 ,

νt 
σt 

does not have to be equal to the correlations σ
εt ,

νt−1 
σt−1 

= σ
εt−1 ,

νit−2 
σt−2 

, or σ
εt ,

νit−2 
σt−2 

, 

but let us call σ
εt−1 ,

νt 
σt 

= σ+1 , σεt ,
νt−1 
σt−1 

= σ
εt−1 ,

νit−2 
σt−2 

= σ−1 , and σ
εt ,

νit−2 
σt−2 

= σ−2 under stationarity. 

Then Eq. (A6) becomes: 

E
[
εit 

∣∣wi , dit = dit−1 = dit−2 = 1 

]
= σ0 λ

(
Hit , Hit−1 , Hit−2 , �t ,t −1 , �t ,t −2 , �t −1 ,t −2 

)
− σ0 λ

(
Hit−1 , Hit , Hit−2 , �t ,t −1 , �t ,t −2 , �t −1 ,t −2 

)
−σ+1 λ

(
Hit , Hit−1 , Hit−2 , �t ,t −1 , �t ,t −2 , �t −1 ,t −2 

)
+ σ−1 λ

(
Hit−1 , Hit , Hit−2 , �t ,t −1 , �t ,t −2 , �t −1 ,t −2 

)
+ σ−2 λ

(
Hit−2 , Hit , Hit−1 , �t ,t −1 , �t ,t −2 , �t −1 ,t −2 

)
− σ−1 λ

(
Hit−2 , Hit , Hit−1 , �t ,t −1 , �t ,t −2 , �t −1 ,t −2 

)
= 

( σ0 − σ+1 ) λ
(
Hit , Hit−1 , Hit−2 , �t ,t −1 , �t ,t −2 , �t −1 ,t −2 

)
− ( σ0 − σ−1 ) λ

(
Hit−1 , Hit , Hit−2 , �t ,t −1 , �t ,t −2 , �t −1 ,t −2 

)
+( σ−2 − σ−1 ) λ

(
Hit−2 , Hit , Hit−1 , �t ,t −1 , �t ,t −2 , �t −1 ,t −2 

)
(A7) 

Further, if we assume an exchangeability condition like the one in Kyriazidou (1997) , this implies σ+1 = σ−1 (let us call

them simply σ ) and in this case Eq. (A7) becomes: 

E
[
εit 

∣∣wi , dit = dit−1 = dit−2 = 1 

]
= σ̄

{
λ
(
Hit , Hit−1 , Hit−2 , �t ,t −1 , �t ,t −2 , �t −1 ,t −2 

)
− λ

(
Hit−1 , Hit , Hit−2 , �t ,t −1 , �t ,t −2 , �t −1 ,t −2 

)}
+σ̄−2 λ

(
Hit−2 , Hit , Hit−1 , �t ,t −1 , �t ,t −2 , �t −1 ,t −2 

)
(A8) 

where σ̄ = σ0 − σ and σ̄−2 = σ−2 − σ . That means that correcting for sample selection with longitudinal correlation of the 

errors increases the dimension of regressors by two. 

Importantly, when there is no serial cross-correlation between the errors in the outcome and the selection equation, 

�t ,t −1 = �t ,t −2 = �t −1 ,t −2 = 0 , also �t −1 ,t −2 ,t = �t ,t −2 ,t −1 = �t ,t −1 ,t −2 = 0 , and we have that 

λ
(
Hit , Hit−1 , Hit−2 , �t ,t −1 , �t ,t −2 , �t −1 ,t −2 

)
= φ( Hit ) / �( Hit ) = λ( Hit ) , 

λ
(
Hit−1 , Hit , Hit−2 , �t ,t −1 , �t ,t −2 , �t −1 ,t −2 

)
= φ( Hit−1 ) / �( Hit−1 ) = λ( Hit−1 ) , 

λ
(
Hit−2 , Hit , Hit−1 , �t ,t −1 , �t ,t −2 , �t −1 ,t −2 

)
= φ( Hit−2 ) / �( Hit−2 ) = λ( Hit−2 ) , 

The corrected outcome Eq. (A5) becomes: 

E
[
εit 

∣∣wi , dit = dit−1 = dit−2 = 1 

]
= σ( εt ) ,

νt 
σt 

λ( Hit ) − σ
( εt−1 ) ,

νt−1 
σt−1 

λ( Hit−1 ) (A9) 

and the model has to include as new regressors correcting for sample selection the standard Heckman lambda terms coming 

from univariate probits in t and t-1 . Under stationarity (A9) becomes σ0 

{
λ( Hit ) − λ

(
Hit−1 

)}
. 

B3.2. Correction of the level equations 

Let us consider now the estimation of the levels equations. 

yit = ρyit−1 + xit β + z̄i ψ + E
[
ωit 

∣∣zi , dit = dit−1 = dit−2 = 1 

]
+ eit = 

ρyit−1 + xit β + z̄i ψ + σωt ,
νt 
σt 

λ
(
Hit , Hit−1 , �t ,t −1 

)
+ σ

ωt ,
νt−1 
σ

λ
(
Hit−1 , Hit , �t ,t −1 

)
+ eit 

, (A10) 
t−1 
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and consider the following assumption: 

•B3’: The errors 
[
ωit , νit , νit−1 

]
are trivariate normally distributed and independent of zi . 

Under stationarity σ
ωt ,

νt 
σt 

= σ0 and σ
ωt ,

νt−1 
σt−1 

= σ−1 , and (A10) becomes: 

yit = ρyit−1 + xit β + w̄i ψ + σ0 λ
(
Hit , Hit−1 , �t ,t −1 

)
+ σ−1 λ

(
Hit−1 , Hit , �t ,t −1 

)
+ eit (A11) 

To construct estimates of the λ() terms the coefficients in the Hs will be jointly determined with �t ,t −1 , using a bivariate

probit for each pair of time periods. 

Importantly, when the errors in the outcome and selection equations are not time-series correlated �t ,t −1 = 0 , then σ−1 =
0 , and (A10) becomes: 

yit = ρyit−1 + xit β + w̄i ψ + E
[
νit 

∣∣zi , dit = 1 

]
+ eit = ρyit−1 + xit β + w̄i ψ + σ0 λ( Hit ) + eit (A12) 

and we come back to univariate probits per each t . 

B4. Summary and empirical guidelines 

When the errors in the outcome and selection equations are (cross) serially correlated (that is, when cov (εit , uis � = 0 ; s < t)

we generally require sample selection correction terms that require estimation of a trivariate probit and we need at least 3

periods per individual. For the differences equation estimation, the relevant samples are constructed by picking up at least 

three consecutive treatment outcomes or alternatively three non-treatment outcomes per individual. When after selecting 

the observations in this way the treatment sample is not large enough to allow the identification of the relevant parameters

of the equation, we estimate this equation by levels estimation exploiting only the extra moment conditions of system GMM 

( Arellano and Bover (1995) ; Blundell and Bond (1998) ) versus GMM ( Arellano and Bond (1991) ). In the latter case we require

samples with two consecutive outcomes of the same regime. 

B4.1. Using standard software 

In the first differences model, under the assumption that cov (εit , uis = 0 ; s < t) and assuming station-

arity, (A9) can be estimated with the Stata xtabond command. In the more general stationary only 

case, (A8) can be estimated with a modified version of the xtabond command adding two regressors: 

λ(Hit , Hit−1 , Hit−2 , �t ,t −1 , �t ,t −2 , �t −1 ,t −2 ) − λ(Hit−1 , Hit , Hit−2 , �t ,t −1 , �t ,t −2 , �t −1 ,t −2 ) ; and 

λ(Hit−2 , Hit , Hit−1 , �t ,t −1 , �t ,t −2 , �t −1 ,t −2 ) . 

With System-GMM estimation, and under stationarity only, joint estimation of Eqs. (A12) and (A9) with the xtdpdsys 

Stata System-GMM command if we restrict the level sample in the same way as the first differenced one. However, the Stata

command have to be adapted to allow for different coefficients of the sample selection correction terms in the equation in

levels ( σ
ωt ,

νt 
σt 

in (A12) ) than in the equation in time differences ( σ
εt ,

νt 
σt 

in (A9) ). 

Under Simplification 1, it will be more difficult to adapt standard software because, in addition to adding dif- 

ferent regressors to the levels ( { λ(Hit , Hit−1 , �t ,t −1 ) , λ(Hit−1 , Hit , �t ,t −1 ) } ) and the differenced equations ( { λ(Hit , Hit−1 ,

Hit−2 , �t ,t −1 , �t ,t −2 , �t −1 ,t −2 ) − λ(Hit−1 , Hit , Hit−2 , �t ,t −1 , �t ,t −2 , �t −1 ,t −2 ) } , λ(Hit−2 , Hit , Hit−1 , �t ,t −1 , �t ,t −2 , �t −1 ,t −2 ) , we have to

allow for different parameters associated with the sample selection correction terms in the level and differenced equations. 

B5. Semiparametric model estimation 

B5.1. Correction of level equations 

Consider the level model: 

yit = ρyit−1 + xit β + z̄i ψ + E
[
ωit 

∣∣wi , dit = dit−1 = 1 

]
+ eit 

, where the conditional mean is now an unknown function of the selection indices Hit , Hit−1 , that is: 

E
[
ωit 

∣∣wi , dit = dit−1 = j 
]

= ϕ jt ,t −1 ( Hit , Hit−1 ) = ϕ jit ,t −1 

Errors can depend on the wi only through these indices (what is called a “double index” assumption). Now (A10) be- 

comes 

yit = ρyit−1 + xit β + z̄i ψ + ϕ jit ,t −1 + eit 

Once selection indices size has been obtained, in a first stage, by a normal, logistic or the Heckman’s lambda (inverse

Mill’s ratio) transformation, the unknown function ϕ jit ,t −1 is approximated non-parametrically by a polynomial of degree q 

on the transformation of the indices Hit , Hit−1 . In the general case of absence of stationarity, we will interact the terms of

the polynomial with time-pair dummies. 
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B5.2. Correction of first differenced equations 

Consider the first differenced model: 

yit = ρyit−1 + xit β + E
[
εit 

∣∣wi , dit = dit−1 = dit−2 = j 
]

+ eit 

where instead of giving a parametric expression for E[εit | wi , dit = dit−1 = dit−2 = j] in (A5) we write E[εit | wi , dit = dit−1 =
dit−2 = j] = ϕ jt ,t −1 ,t −2 (Hit , Hit−1 , Hit−2 ) = ϕ jit ,t −1 ,t −2 , where the conditional mean is now an unknown function of the selec-

tion indices Hit , Hit−1 , Hit−2 . Errors can depend on the wi only through these indices (what is called a “triple index” assump-

tion). 

Now (A4) becomes yit = ρyit−1 + xit β + ϕ jit ,t −1 ,t −2 + eit . The unknown function ϕ jit ,t −1 ,t −2 is approximated non- 

parametrically by a polynomial of degree q on the transformation of the indices Hit , Hit−1 , Hit−2 . Note that in the general

case of absence of stationarity, we will interact the terms of the polynomial with time-triples dummies. The identification 

of the selection indexes, or first step, can be achieved by assuming a normal or loglstic transformation. We could estimate

the first step by using a semiparametric method for binary choice with panel data. 

Besides the (parametric or semi-parametric) specification of the sample selection correction terms, the models will be 

finally estimated by GMM (AB) or system-GMM (when ρ � = 0 and/or x is endogenous) or RE,FE,FD (when ρ = 0 and x is

exogenous). 

Appendix C. Additional tables and figures 

Table C1 

Average moment conditions of simulated errors and most recent instruments. 

N = 500 E(εit yit−2 /Ait ) E((αi + εit )yit−1 /Ait ) E(εit yit−1 /Ait ) E(αi yit−1 /Ait ) 

cor r (εit , uit ) = 0 . 242 = cor r (αi , ηi ) 

ρ = 0 . 25 -.0021 .0020 .0015 .0004 

ρ = 0 . 50 -.0036 .0008 .0017 -.0009 

ρ = 0 . 75 -.0071 .0001 .0019 -.0018 

cor r (εit , uit ) = 0 . 242 ; cor r (αi , ηi ) = 0 

ρ = 0 . 25 -.0021 .0020 .0015 .0005 

ρ = 0 . 50 -.0037 .0018 .0017 .0002 

ρ = 0 . 75 -.0071 .0020 .0019 .0001 

cor r (εit , uit ) = 0 . 447 = cor r (αi , ηi ) 

ρ = 0 . 25 -.0011 .0012 .0019 -.0007 

ρ = 0 . 50 -.0025 -.0014 .0030 -.0044∗

ρ = 0 . 75 -.0057 -.0037 .0042∗∗ -.0079∗∗∗

cor r (εit , uit ) = 0 . 447 ; cor r (αi , ηi ) = 0 

ρ = 0 . 25 -.0011 .0025 .0019 .0006 

ρ = 0 . 50 -.0026 .0031 .0030 .0001 

ρ = 0 . 75 -.0057 .0042 .0042∗∗ -.0000 

N = 50 0 0 E(εit yit−2 /Ait ) E((αi + εit )yit−1 /Ait ) E(εit yit−1 /Ait ) E(αi yit−1 /Ait ) 

cor r (εit , uit ) = 0 . 242 = cor r (αi , ηi ) 

ρ = 0 . 25 .0016 -.0001 -.0001 -.0015∗∗∗

ρ = 0 . 50 .0019 -.0019∗∗ .0003 -.0022∗∗∗

ρ = 0 . 75 .0035 -.0022∗∗ .0008 -.0030∗∗∗

cor r (εit , uit ) = 0 . 242 ; cor r (αi , ηi ) = 0 

ρ = 0 . 25 .0015 -.0009 -.0001 -.0008 

ρ = 0 . 50 .0019 -.0006 -.0003 -.0009 

ρ = 0 . 75 .0034 -.0002 .0008 -.0009∗

cor r (εit , uit ) = 0 . 447 = cor r (αi , ηi ) 

ρ = 0 . 25 .0017 -.0019∗ .0014∗ -.0033∗∗∗

ρ = 0 . 50 .0022 -.0035∗∗∗ .0027∗∗∗ -.0062∗∗∗

ρ = 0 . 75 .0044 -.0051∗∗∗ .0041∗∗∗ -.0091∗∗∗

cor r (εit , uit ) = 0 . 447 ; cor r (αi , ηi ) = 0 

ρ = 0 . 25 .0016 .0005 .0014∗ -.0008 

ρ = 0 . 50 .0020 .0017∗ .0027∗∗∗ -.0010 

ρ = 0 . 75 .0041 .0030∗∗∗ .0041∗∗∗ -.0011∗

Notes. 1. 10 0 0 simulations. 2. Static selection model (A). 3. Ait = { zit , dit = dit−1 = dit−2 = 1 } . 4. ∗∗∗ significant at 1%; ∗∗ significant at 5%; ∗ significant at 10%. 
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Table C2 

Average bias, RMSE and coverage rates of C.I. in the static model. x strictly exogenous. T = 7; 500 replications. 

x in Corrected FE estimator FD estimator RE (GLS) estimator Corrected RE (GLS) estimator1 

cov ((zi , xi ) , αi ) = 0 , cov (xi , αi ) = 0 cov ((zi , xi ) , αi ) � = 0 , cov (xi , αi ) � = 0 

selection av. bias RMSE CICR2 ERF av. bias RMSE CICR ERF av. bias RMSE CICR ERF av. bias RMSE CICR ERF 

sel. term sel. term sel. term sel. term 

Panel A: N = 500; endogenous selection, cov (x, z) = 0 

No No 0.0003 0.0214 0.936 -0.0007 0.0301 0.958 0.0005 0.0160 0.952 -0.0001 0.0218 0.962 

Yes No -0.0474 0.0536 0.726 -0.0427 0.0554 0.558 -0.0642 0.0671 0.094 -0.0520 0.0583 0.482 

Yes Yes3 0.0011 0.0295 0.926 0.950 0.0010 0.0388 0.954 0.832 -0.0034 0.0245 0.938 0.998 0.0007 0.0297 0.95 0.996 

Panel A: N = 500; exogenous selection, cov (x, z) = 0 

Yes Yes3 0.0010 0.0261 0.924 0.050 0.0008 0.0349 0.944 0.098 0.0009 0.0218 0.944 0.070 0.0045 0.0294 0.942 0.060 

Panel B: N = 5000; endogenous selection, cov (x, z) = 0 

No No -0.0001 0.0070 0.948 0.0002 0.0093 0.956 0.0001 0.0052 0.942 -0.0000 0.0072 0.954 

Yes No -0.0469 0.0476 0.022 -0.0413 0.0427 0.000 -0.0640 0.0642 0.000 -0.0512 0.0519 0.000 

Yes Yes3 0.0020 0.0097 0.930 1.000 0.0023 0.0128 0.942 1.000 -0.0024 0.0081 0.930 1.000 0.0031 0.0103 0.914 1.000 

Panel B: N = 5000; exogenous selection, cov (x, z) = 0 

Yes Yes3 0.0001 0.0084 0.914 0.038 0.0005 0.0113 0.940 0.086 0.0001 0.0067 0.966 0.038 0.0041 0.0104 0.906 0.12 

Panel C: N = 500; endogenous selection, cov (x, z) � = 0 

No No -0.0253 0.0305 0.654 -0.0315 0.0399 0.628 -0.0211 0.0251 0.656 -0.0010 0.0162 0.958 

No Yes4 -0.0011 0.0177 0.918 0.978 -0.0012 0.0260 0.944 0.926 -0.0008 0.0142 0.946 0.998 0.0009 0.0163 0.944 0.986 

Panel C: N = 5000; endogenous selection, cov (x, z) � = 0 

No No -0.0253 0.0259 0.002 -0.0315 0.0324 0.002 -0.0212 0.0216 0.002 -0.0001 0.0052 0.954 

No Yes4 -0.0004 0.0055 0.916 1.000 0.0002 0.0082 0.948 1.000 -0.0004 0.0045 0.944 1.000 0.0017 0.0055 0.924 1.000 

1. In the last column (corrected GLS estimator) we add the mean of z and x as covariates in both the selection and the outcome equation to control for the correlation between z, x and ss, α. 2. CICR. 95 % 

Confidence intervals coverage rates, ie. CICR = 

∑ 

S 1 ( ˆ a − 1 . 96 ∗ s.e. ( ˆ a ) < a < ˆ a + 1 . 96 ∗ s.e. ( ˆ a )) /S, where S is the number of simulations, a is the true parameter and ˆ a is the estimate of a in each simulation. 

3. In Panels A and B the correction is obtained from a year by year probit with z, x as covariates. 4. In Panel C the correction is E(x | z) , cov (x, �) � = 0 where � ∈ z. 

2
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Table C3 

Average bias, RMSE and coverage rates of C.I. in the purely AR(1) model. T = 7; 500 replications. GMM-IV and Han and Phillips estimators. 

GMM-IV estimators. Results using the first seven generated observations 

Estimates with the full sample Estimates with the selected sample 

AB estimator system AB estimator system 

ρ av. bias RMSE CICR1 av. bias RMSE CICR av. bias RMSE CICR av. bias RMSE CICR 

Panel A: N = 500 

0.25 -0.0054 0.0435 0.930 0.0012 0.0322 0.940 -0.0168 0.7687 0.940 -0.0047 0.7559 0.936 

0.50 -0.0135 0.0591 0.916 0.0018 0.0386 0.928 -0.0275 0.5317 0.934 -0.0077 0.5101 0.932 

0.75 -0.0102 0.0388 0.936 0.0017 0.0265 0.954 -0.0212 0.2769 0.944 0.0011 0.2510 0.952 

Panel B: N = 5000 

0.25 -0.0007 0.0130 0.946 -0.0006 0.0096 0.942 -0.0021 0.7523 0.956 -0.0047 0.7548 0.928 

0.50 -0.0017 0.0163 0.936 -0.0009 0.0111 0.936 -0.0036 0.5040 0.940 -0.0086 0.5088 0.900 

0.75 -0.0010 0.0105 0.970 -0.0002 0.0080 0.950 -0.0029 0.2535 0.944 -0.0009 0.2511 0.948 

Han and Phillips LS estimators. 

T = 7 discarding the initial 13 observations 

Estimates with the full sample Estimates with the selected sample 

HP LS estimator HP LS estimator 

ρ av. bias RMSE CICR av. bias RMSE CICR 

Panel A: N = 500 

0.25 -0.0005 0.7513 0.944 0.0007 0.7504 0.960 

0.50 -0.0013 0.5025 0.950 0.0023 0.4995 0.962 

0.75 -0.0005 0.2530 0.952 0.0061 0.2479 0.956 

Panel B: N = 5000 

0.25 -0.0009 0.7509 0.960 0.0007 0.7494 0.946 

0.50 -0.0007 0.5008 0.960 0.0035 0.4967 0.950 

0.75 -0.0003 0.2505 0.956 0.0077 0.2428 0.928 

T = 7 using the first seven observations 

Panel A: N = 500 

0.25 0.0651 0.6857 0.512 0.0639 0.6872 0.644 

0.50 0.1777 0.3242 0.004 0.1789 0.3239 0.016 

0.75 0.4293 0.1835 0.000 0.4352 0.1909 0.000 

Panel B: N = 5000 

0.25 0.0630 0.6871 0.002 0.0638 0.6863 0.002 

0.50 0.1756 0.3246 0.000 0.1793 0.3210 0.000 

0.75 0.4268 0.1774 0.000 0.4347 0.1854 0.000 

1. CICR. 95 % Confidence intervals coverage rates, ie. CICR = 

∑ 

S 1 ( ˆ a − 1 . 96 ∗ s.e. ( ˆ a ) < a < ˆ a + 1 . 96 ∗ s.e. ( ˆ a )) /S, where S is the number of simulations, a is the true parameter and ˆ a is the estimate of a in 

each simulation. 

2
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Fig. C1. Average bias of the AB and system estimators in the full sample ( NT observations) and the endogenously selected sample Notes. AB all: AB GMM 

estimates using the full sample (no selection process). system all: System GMM estimates using the full sample (no selection process). AB select: Uncor- 

rected for selection AB GMM estimates on the selected sample under endogenous sample selection. system select: Uncorrected system GMM estimates on 

the selected sample under endogenous sample selection. 

Table C4 

AR(1) log hourly earnings equation. 

(1) (2) (3) (4) 

2SLS-IV No No year by year 

correction correction correction of 

lev eq. only 

AB system system 

Lag log 0.1522∗∗ 0.1029∗∗ 0.1798∗∗∗ 0.2354∗∗∗

hourly earnings (0.0489) (0.0377) (0.0434) (0.0444) 

Observations 5033 5033 5033 5033 

Joint significance 105.13 (11) 

selection terms (0.000) 

Notes: 1. N = 550 ; 2. Annual dummies are included in all specifications; 3. ∗∗∗ significant at 1%; ∗∗ significant 

at 5%; ∗ significant at 10%; 4. The standard errors have been corrected following Windmeijer (2005) . In column 

(4), we also report corrected standard errors following Terza (2016) 5. The test of significance of the selection 

terms is a Wald test. Degrees of freedom and level of significance are in parentheses. 
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