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ABSTRACT
A central aim of statistical mechanics is to establish connections between a system’s microscopic fluctuations and its macroscopic response to
a perturbation. For non-equilibrium transport properties, this amounts to establishing Green–Kubo (GK) relationships. In hydrodynamics,
relating such GK expressions for liquid–solid friction to macroscopic slip boundary conditions has remained a long-standing problem due to
two challenges: (i) The GK running integral of the force autocorrelation function decays to zero rather than reaching a well-defined plateau
value, and (ii) debates persist on whether such a transport coefficient measures an intrinsic interfacial friction or an effective friction in the
system. Inspired by ideas from the coarse-graining community, we derive a GK relation for liquid–solid friction where the force autocor-
relation is sampled with a constraint of momentum conservation in the liquid. Our expression does not suffer from the “plateau problem”
and unambiguously measures an effective friction coefficient, in an analogous manner to Stokes’ law. We further establish a link between
the derived friction coefficient and the hydrodynamic slip length, enabling a straightforward assessment of continuum hydrodynamics across
length scales. We find that continuum hydrodynamics describes the simulation results quantitatively for confinement length scales all the way
down to 1 nm. Our approach amounts to a straightforward modification to the present standard method of quantifying interfacial friction
from molecular simulations, making possible a sensible comparison between surfaces of vastly different slippage.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0238363

I. INTRODUCTION

Describing the flow of liquids at solid surfaces is essential for
understanding many physical processes of both fundamental and
technological importance, including transport through membranes
and nanopores, power generation, desalination, and electrokinetic
effects.1–3 Unlike in the bulk, fluid transport under confinement is
governed by frictional forces arising from momentum transfer at
the liquid–solid interface. Over the past decade, advances in device
fabrication4–6 have spurred increased interest in nano-confined
water, with many experimental and simulation studies reporting
exotic friction effects in “one-dimensional” (1D) nanotubes and
“two-dimensional” (2D) nanochannels.7–21 A natural consequence
of confinement is that as the confining volume is decreased, the
surface-to-volume ratio increases, which amplifies the impact of
interfacial effects on transport properties, such as friction. In addi-
tion to dissipation processes at the interface, viscous effects in the
liquid itself also contribute to the effective friction in the system.

Therefore, it is essential to distinguish these competing effects by
quantifying an intrinsic surface property that is independent of the
confining volume.

From a macroscopic perspective, such a property is the slip
length b, measuring the distance beyond the surface of the wall
at which the fluid velocity vx(z) extrapolates to zero. The slip
length enters a continuum hydrodynamics description, hereafter
referred to as “classical hydrodynamic theory” (CHT), as a boundary
condition to the Navier–Stokes equations,

∂vx

∂z
∣
z=z0

=
vs

b
, (1)

relating the velocity gradient to the slip velocity vs = vx(z0). The
z = z0 plane is where the hydrodynamic boundary position is placed.
The no-slip boundary condition b = 0 applies for surfaces that are
highly sticky, while for atomically smooth and non-wetting surfaces
where there is finite slippage at the interface, b > 0. The gradient of
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the fluid velocity is linearly related to the viscous stress of the fluid
σxz = −η(∂vx/∂z), where η is the shear viscosity (which we assume
takes its bulk value in all regions occupied by the fluid). The stress
is itself balanced by the friction force from the solid to the liquid Fx
per unit surface area A. This allows a linear relation between Fx and
vs to be written,

Fx = −λintr Avs. (2)

Equation (2) is known as Navier’s interfacial constitutive relation,22

defining an intrinsic friction coefficient λintr. Both λintr and b are
intrinsic properties of the interface and are related by

λintr =
η
b

. (3)

It has been established that in the linear response regime, b (and
therefore λintr) is independent of both the type of flow (i.e., Cou-
ette or Poiseuille) and the channel height,23 provided that the length
scale of confinement is large enough for CHT to faithfully describe
hydrodynamic transport. Quantifying “large enough” is something
that the framework we present in this Communication allows us to
directly assess with molecular simulations; generally speaking, we
find CHT works with as few as two or three layers of water.

In experiments,7–10,12 to measure transport coefficients, such
as λintr, one would drive the system of interest out of equilibrium
and measure the responding flux to the driving force. The resulting
force–flux relation obtained can then be mapped back onto predic-
tions from CHT, and b or λintr can be backed out accordingly. While
an analogous strategy can, in principle, be followed in molecular
simulations, methods using non-equilibrium molecular dynamics
(NEMD) are limited by statistical sampling and delicate issues that
arise in thermostatting the system.24

From a microscopic perspective, frictional effects coming from
dissipation in the liquid manifest through balance of forces at non-
equilibrium steady states. A natural question to ask is if one can
relate these transport coefficients to equilibrium fluctuations in
the liquid, invoking Onsager’s regression hypothesis. In this con-
text, one attempts to seek Green–Kubo (GK) expressions for a
liquid–solid friction coefficient, allowing the hydrodynamic bound-
ary conditions to be characterized from a single equilibrium molec-
ular dynamics (EMD) simulation. The seminal work by Bocquet and
Barrat25,26 (BB) proposed such a relation for λintr, given as

λBB =
β
A∫

∞

0
dt ⟨Fx(t)Fx(0)⟩, (4)

where β = 1/(kBT), kB is the Boltzmann constant, T is temperature,
and ⟨. . .⟩ indicates an ensemble average at equilibrium. Such a GK
relation involving the force autocorrelation function is similar to the
expression for friction ξ of a heavy Brownian particle immersed in
a bath of lighter particles, as derived from Langevin dynamics. In
Ref. 26, BB presented a derivation for Eq. (4) from a Langevin equa-
tion for the stochastic motion of the solid wall immersed in the
fluid.

However, two major challenges arise upon application of
Eq. (4) to measure friction at the liquid–solid interface. The first
issue is the well-documented “plateau problem,”27–34 referring to
the fact that the integral in Eq. (4) in general will decay to zero

at long time. While this behavior is often attributed to the swap-
ping of the order in which the thermodynamic and long-time limits
are taken,26,29,30,33,35 we will show—as becomes clear when employ-
ing a Mori–Zwanzig formalism to derive the appropriate Langevin
dynamics—that this is in fact a direct consequence of using real
forces rather than projected forces in Eq. (4). The plateau problem is
most severe when the surface is strongly wetting or when the liquid
film is very thin (see Fig. S2 of the supplementary material).

The second major challenge involves the intense debate
whether λBB provides a measure of the intrinsic friction coefficient
λintr or the effective friction of the entire system.35–41 From the per-
spective of Langevin theory, the friction coefficient ξ characterizes
the total dissipation associated with the motion of the Brownian par-
ticle through the solvent, rather than just the intrinsic slippage at the
particle’s surface. Therefore, directly relating Eq. (4) to the intrinsic
friction λintr is not straightforward. These issues have thus made it
difficult to faithfully assess friction under confinement across differ-
ent length scales using Eq. (4). In this context, we note the work of
Petravic and Harrowell, who pointed out that for Couette flow, the
friction measured by λBB includes contributions both from the slip at
the interface and from viscous dissipation in the fluid.36 Nonetheless,
the GK relation given by Eq. (4) continues to be widely applied in the
community.16,17,20,42–47 However, its use is often limited to surfaces
of high slippage. There is thus a significant need to establish both
a practical solution to the plateau problem and a rigorous connec-
tion between the GK transport coefficient and the intrinsic friction
defined by CHT.

In this Communication, we present a derivation of a GK rela-
tion for liquid–solid friction by considering the liquid’s stochastic
motion in the solid’s frame of reference, using the Mori–Zwanzig
projection operator formalism and linear response theory. The
resulting expression for the friction coefficient, which overcomes the
plateau problem, involves sampling the force autocorrelation func-
tion with a simple momentum conservation constraint on the liquid.
We also show that this friction coefficient measures an effective fric-
tion of the system rather than the intrinsic friction. By making an
appropriate mapping to CHT, we then nonetheless relate λeff directly
to the hydrodynamic slip length b. We use the resulting framework
to faithfully assess interfacial friction arising from water flow in 1D
tubes and 2D channels across a wide range of confining length scales,
including results from first-principles-level simulations.

II. THE GREEN–KUBO RELATION FOR FRICTION
A. Mori–Zwanzig projection operator formalism

At the heart of any friction problem is a separation of timescales
for different degrees of freedom. In the textbook problem of Brow-
nian motion, the two timescales at play are evident: one associated
with the slow motion of the heavy Brownian particle and one with
its frequent collisions with lighter solvent particles, which constitute
“the bath.” Instead of describing the complex system as a whole,
one tends to focus only on the motion of the Brownian parti-
cle as a coarse-grained variable, with the rapid collisions with the
solvent treated as a fluctuating random force. This approach under-
pins the Langevin equation, which describes the Brownian particle’s
motion using a combination of a frictional drag force and a fluc-
tuating random force. More generally, this description can also be
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applied to an arbitrary coarse-grained variable in any complex sys-
tem, provided that the variable evolves on a slower timescale than
the rest of the system. This is an important result of Mori–Zwanzig
theory,48,49 where projection operators are used to derive generalized
Langevin equations for coarse-grained variables. Detailed presenta-
tion of Mori–Zwanzig theory can be found in standard texts,50–52

and here we will review only the most salient aspects for the job at
hand.

For any phase variable A evolving under equations of motion
from a specified Hamiltonian H, its time evolution obeys the
Liouville equation,

dA(t)
dt

= iLA(t), (5)

which has the formal solution A(t) = eiLtA(0), where iL denotes
the Liouville operator associated with H. For any observable B, we
can denote its projection onto A with a projection operator P,

PB(t) = (B(t), A)(A, A)−1A, (6)

where (⋅ ⋅ ⋅ , ⋅ ⋅ ⋅) denotes a scalar product,

(B(t), A) = ∫ dΓ f 0(Γ)B(Γ, t)A∗(Γ), (7)

with f0(Γ) the equilibrium distribution of initial phase space
points Γ. The complementary operator Q = 𝟙 −P projects onto the
subspace orthogonal to A such that

(QB(t), A) = 0. (8)

The time evolution of the stochastic coarse-grained variable A
is given by the generalized Langevin equation,

dA(t)
dt

= iΩA(t) − ∫
t

0
dt′ K(t − t′)A(t′) + FR

(t), (9)

where iΩ (“the frequency”), K (“the memory function”), and FR

(“the random force”) are well-defined functions. When A is a sin-
gle coarse-grained variable, iΩ = 0. The memory function is related
to the autocorrelation of the random force,

K(t) = (FR
(t), FR

)(A, A)−1, (10)

while the random force itself is given by the projection of Ȧ
orthogonal to A,

FR
(t) = eiQLtFR

(0), (11)

where FR
(0) = QȦ(0). An important consequence of the orthogo-

nal projection in the random force is the lack of correlation between
FR and A, i.e.,

(FR
(t), A) = 0, (12)

which is at the foundation of the Onsager regression hypothesis.
When A relaxes much more slowly than the random noise,

which implicitly assumes that it is the only slow degree of freedom,

the memory function can be treated in the Markovian approxima-
tion: K(t) = 2Λδ(t). The generalized Langevin equation [Eq. (9)]
then simplifies to the Langevin equation,

dA(t)
dt

= −ΛA(t) + FR
(t), (13)

where a time-independent friction coefficient is given as

Λ = ∫
∞

0
dt (eiQLtFR, FR

)(A, A)−1. (14)

B. Applying the operator formalism
to liquid–solid friction

To describe liquid–solid friction, we will consider the problem
of a liquid droplet’s stochastic motion on a solid surface, schemat-
ically shown in Fig. 1(a). We choose this arrangement both for
conceptual simplicity and to make the connection between this
derivation and that for Brownian motion clear; the resulting frame-
work, however, is readily applied to systems comprising a fluid
confined between walls. We will work in the solid’s frame of ref-
erence so that we can consider it to be at rest. The liquid droplet
comprises N particles, whose positions and momenta are {ri, pi}

and has a total mass of M = ∑N
i=1 mi. For simplicity, we will focus

only on the droplet’s motion in the x direction, with a center-of-mass
velocity of vx.

Provided that the droplet is sufficiently large, two very differ-
ent timescales can be identified in this problem: one associated with
the slow motion of the droplet undergoing a random walk on the
surface and one associated with frequent collisions between individ-
ual liquid particles and the solid. Analogous to Brownian motion,
we therefore now treat the total linear momentum of the liquid
droplet Px =Mvx as the coarse-grained variable of interest. Its time
evolution is governed by

dPx(t)
dt

= iLPx(t) [real dynamics], (15)

for which the solution is Px(t) = eiLtPx(0), where the Liouville
operator is explicitly given as

iL =
N

∑
i=1
(

pi
mi
⋅
∂

∂ri
+ f i ⋅

∂

∂pi
), (16)

where f i is the force on each liquid particle. We will refer to the
dynamics associated with iL as the “real dynamics,” i.e., those that
result from propagating Newton’s equations of motion in stan-
dard MD simulations. Upon application of the result in Eq. (13),
which implies a Markovian approximation, the liquid motion can
be described with

M
dvx(t)

dt
= −λeff Avx(t) + FR

(t), (17)

where λeff is an effective friction coefficient. The term −λeff Avx(t)
measures the frictional drag force on the liquid droplet as a whole,
rather than the intrinsic friction due to slippage at the interface
−λintr Avs as in Eq. (2) (see Sec. III A). The random force is now
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FIG. 1. The Green–Kubo friction integral. (a) Schematic of the system setup that
we use for the derivation; a liquid droplet of total mass M moves stochastically on
a solid surface. Its center-of-mass velocity along one direction is indicated by v̄x ,
and the frictional force with the surface is Fx . For a liquid–solid interface with high
wettability (see Sec. III B), we show (b) the force–momentum correlation function,
(c) the force–force autocorrelation function, and (d) the friction GK integral. Using
real dynamics results in a plateau problem since the force is correlated with the
momentum, leading to negative correlation in the force autocorrelation; this causes
the GK integral to vanish at long times. Constrained dynamics bypasses this issue
by imitating the effect of projected forces, ensuring that the integral plateaus to a
finite value.

given by the orthogonal projection of total tangential force on the
liquid,

FR
(t) = eiQLtFR

(0), (18)

where FR
(0) = Ṗx(0) = Fx(0). Using the fluctuation–dissipation

theorem as stated in Eq. (14) and the equipartition theorem
M⟨v2

x⟩ = kBT, the friction coefficient is given as

λeff =
β
A∫

∞

0
dt (eiQLtFx, Fx). (19)

According to Eq. (19), to obtain λeff, the force autocorrelation
function should be sampled with projected dynamics propagated by
iQL. However, such a dynamical scheme is not readily realizable in
MD simulations, since, in general, it is not possible write the pro-
jection operator Q explicitly. To make progress, a common though
ad hoc assumption to make is that the random force evolves with
iL instead of iQL, i.e., FR

(t) ≈ eiLtFx(0). The BB formula given
by Eq. (4) amounts to such an approximation. Although the GK
formula in Eq. (4) can be sampled directly in a MD simulation, a
consequence of replacing iQL with iL is that the random force is

no longer uncorrelated with the coarse-grained variable Px, violat-
ing the condition stated in Eq. (12). The effect is easily seen in the
results of MD simulations. For a water film ∼2.7 nm in thickness
in contact with a strongly wetting surface (see Sec. III B), we see in
Fig. 1(b) that ⟨Fx(τ)Px(0)⟩ initially shows a large positive correla-
tion, exhibiting a weak negative correlation at longer times. Such a
correlation between the force and the momentum leads to a neg-
ative contribution to the force autocorrelation function, as shown
in Fig. 1(c), making the integral in Eq. (4) vanish at long times, as
seen in Fig. 1(d). We can also understand why the plateau problem
encountered in the use of the BB formula is most severe for sur-
faces of strong wettability or when the liquid film is very thin. In
these cases, since a large portion of momentum in the liquid can be
transferred to the solid, Fx and Px are strongly correlated in the real
dynamics, and Eq. (12) is severely violated. Moreover, the Marko-
vian approximation that relaxation of Px is much slower than all
other degrees of freedom also becomes more severe.

C. Momentum conservation constraint to overcome
the plateau problem

In fact, the plateau problem has been discussed in the coarse-
graining community, where the issues associated with replacing
projected dynamics with real dynamics, along with the limitations
of the Markovian approximation, are more widely recognized.53,54

There have also been developments of algorithms for obtaining
projected observables of the GLE directly.55–57 Here, we adopt the
strategy proposed in Ref. 53: instead of modeling the real dynamics
directly, where the Markovian approximation is only good in cer-
tain limits, we aim to construct a constrained dynamics in which the
Markovian approximation is enforced. It then becomes a modeling
question of how well the constrained dynamics represents the phys-
ical behavior of interest. In the context of liquid–solid friction, we
validate our results directly against NEMD simulations.

To make such a Markovian approximation exact, we want to
ensure a separation of timescales between the motion of the droplet
and the other degrees of freedom. To this end, we introduce a con-
straint on the system that maintains the droplet’s linear momentum
to be zero at all times. In this picture, the motion of the droplet as a
whole is infinitely slow compared to the individual microscopic pro-
cesses that each fluid particle undergoes. Since Px does not evolve in
time under the constraint, the Liouville equation is trivially

dPx(t)
dt

= iLcPx(t) = 0 [constrained dynamics] (20)

such that Px(t) = eiLctPx(0) = Px(0) = 0. The corresponding Liou-
ville operator to fix the momentum of the liquid can be
written as

iLc =
N

∑
i=1
[(

pi
mi
− μêx) ⋅

∂

∂ri
+ (f i − γmiêx) ⋅

∂

∂pi
], (21)

where êx denotes the unit vector in the x direction and the Lagrange
multipliers are μ = Px/M and γ = Fx/M. Such constrained dynamics
can be straightforwardly realized in an MD simulation: at equi-
librium, the liquid has zero initial momentum, so the constraint
should maintain Px = 0, which amounts to simply subtracting the
center-of-mass velocity of the liquid at every time step.
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An important consequence of the constrained dynamics is that
since the liquid momentum Px is conserved, all other degrees of free-
dom of the system become uncorrelated with Px. In other words,
they all lie on the subspace orthogonal to Px such that the effect of
the projection operator Q is already encapsulated, i.e.,

QiLc = (𝟙 − P)iLc = iLc. (22)

The random force is therefore now exactly the force sampled with
constrained dynamics,

FR
(t) = eiLctFR

(0), (23)

where FR
(0) = Ṗx(0) = Fx(0). As a result, we can justifiably replace

iQL with iLc in Eq. (19), giving an expression for the friction
coefficient,

λeff =
β
A∫

∞

0
dt (eiLctFx, Fx) ≡

β
A∫

∞

0
dt ⟨Fx(t)Fx(0)⟩c. (24)

In the second line, we have used ⟨. . .⟩c to denote a canonical aver-
age in the constrained system. The lack of correlation in Fx and Px
under constrained dynamics, seen in Fig. 1(b), means that Eq. (12)
is always satisfied and there is no negative contribution to the force
autocorrelation function, as seen in Fig. 1(c). Therefore, the integral
in Eq. (24) always reaches a well-defined plateau value and does not
decay to zero, as seen in Fig. 1(d). We will show in Sec. III A that
λeff measures an effective friction of the entire system and not, in
general, the liquid–solid interfacial friction.

Equation (24) is a core result of this Communication, present-
ing a GK relation for liquid–solid friction where the force autocor-
relation function is sampled with a zero momentum constraint on
the liquid. We stress that the constraint is proposed as a simple way
to ensure that the sampled force obeys the orthogonality condition
(Eq. (12)) such that the friction coefficient can be obtained from
EMD, without explicitly calculating projected forces. While this con-
strained ensemble is by no means a “physical” model of the system’s
dynamics, in addition to numerically verifying its usefulness (see
Sec. III), we can provide suggestions as to why it might retain
many physical properties relevant for describing liquid–solid fric-
tion. First, since the constraint does not change the internal energy of
the system, the hydrodynamic boundary and surface roughness14,58

remain unchanged between real and constrained dynamics, as ver-
ified by simulations (see Fig. S3). Second, when the liquid droplet
is constrained to remain at rest, its center-of-mass motion becomes
“infinitely” slower compared to the fast collisions individual liquid
particles undergo. While this effectively accelerates the microscopic
noise contributing to the random force, at the microscopic scale,
each liquid particle on average experiences the same potential energy
surface with the same thermal fluctuations, so the overall dissipa-
tion in the system should be largely unaffected, provided that liquid
droplet is sufficiently big.

III. INTERPRETING THE FRICTION COEFFICIENT
A. The effective friction coefficient
is not an intrinsic property of the interface

The friction coefficient λeff quantifies the dissipation in the sys-
tem when there is a net relative motion between the liquid and the

solid. When the liquid is pushed out of equilibrium, in general, the
velocity of the liquid will not be constant across the cross section
perpendicular to the direction of the flow. Therefore, in addition to
dissipation coming from collisions of liquid particles with the solid
at the interface, there are also contributions from viscous forces aris-
ing between adjacent layers of the fluid flowing at different velocities
away from the interface. This means that λeff will depend on the
amount of liquid present and is not an intrinsic surface property.
In fact, the effective friction will only be equal to the intrinsic fric-
tion λeff ≈ λintr either in the limit of a very thin film of liquid or when
there is perfect slip (b =∞) at the interface and the velocity profile
becomes plug-like; in such cases, the slip velocity is well approxi-
mated by the average fluid velocity, vx ≈ vs. In this limit, Eq. (17)
becomes

M
dvx(t)

dt
= −λintr Avs(t) + FR

(t). (25)

At this point, it is instructive to point out the difference in our
derivation compared to that of BB in Ref. 26. So far, we have worked
in the solid’s frame of reference and treated the liquid’s motion as the
coarse-grained variable. We have then applied the Langevin equa-
tion under the Markovian approximation and taken the limit where
the velocity profile in the fluid is a constant (plug flow) to arrive at
Eq. (25). Meanwhile, BB started out by considering the solid wall’s
motion as the coarse-grained variable, analogous to extending Brow-
nian motion to a planar geometry. In fact, the same expression for
the friction as Eq. (24) would result had we chosen to work in the
liquid’s frame of reference and written the Langevin equation as

Mw
dU(t)

dt
= −λeff AU(t) + FR

(t), (26)

where Mw and U are the mass and velocity of the solid wall, respec-
tively. When the flow profile is plug-like, U → −vx ≈ −vs and, as
discussed above, λeff ≈ λintr. In this limit, we recover the Langevin
equation as written by BB in Ref. 26.

To understand why the transport coefficient defined by the GK
relation in Eq. (24) measures an effective friction coefficient, not
the intrinsic friction coefficient λintr that enters Navier’s constitu-
tive relation Eq. (2), it is again helpful to draw analogy to Brownian
motion: a spherical particle moving with a constant velocity v in the
solvent will have a total frictional force F = −ξv, where the friction
coefficient ξ in this case depends on the slippage boundary condi-
tion at the sphere’s surface, the sphere’s radius, and the solvent’s
viscosity. While this is simply a statement of Stokes’ law, it gives an
example of a constitutive relation relating the total friction to the
velocity of the moving object, not the slip velocity at the boundary
like in Navier’s constitutive relation.

A constitutive relation associated with λeff can be obtained
using linear response theory. To this end, we imagine moving the
liquid droplet at a steady-state velocity of vx relative to the surface.
The perturbed Hamiltonian is

H′c = Hc + vxêx ⋅
N

∑
i=1

pi, (27)

where Hc is the unperturbed Hamiltonian and vxêx plays the role of
the external field that couples to the liquid momentum as the conju-
gate variable. To make a connection with λeff in Eq. (24), we consider
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the response of Fx under constrained dynamics. In this case, the
momentum conservation constraint would maintain the liquid’s lin-
ear momentum at zero (Px = 0) at equilibrium and at Px =M vx
out-of-equilibrium. Using linear response theory59 (detailed in the
supplementary material), we show that the response of the tangential
frictional force to a small but finite perturbation vxêx is

⟨Fx⟩
′
c = −β∫

∞

0
dt ⟨Fx(t)Fx(0)⟩cvx, (28)

where ⟨. . .⟩′c and ⟨. . .⟩c denote a constrained ensemble average
out-of-equilibrium and at equilibrium, respectively. By combining
Eq. (28) with the GK relation in Eq. (24), we arrive at a constitutive
relation between the frictional force and the steady-state velocity of
the liquid,

Fx = −λeff Avx. (29)

Here, we have dropped the canonical average on the force when
writing the constitutive relation. This expression is in fact analogous
to Stoke’s law, and λeff therefore depends not only on the slippage
boundary conditions and the viscosity of the liquid but also on the
size and shape of the liquid.

Applying the framework that we have derived to confined
fluids is straightforward; the total frictional force on the liquid
(Fx) now contains contributions from all solid surfaces in contact
with the fluid, while vx is simply the average flow velocity of the
fluid. To verify Eq. (29), we considered systems with water con-
fined in four symmetric channels made up of solid substrates with
attractive strengths of εwf = αε0, where the “wetting coefficients” are
α = 1, 2, 3, 4 and ε0 = 1.57 kJ mol−1. We also consider one asymmet-
ric channel with α = 1 for the top wall and α = 4 for the bottom
wall. Various channel heights between the first atomic planes of the
solids are considered, H/nm ≈ 1.4, 2.7, 5.2. Details on the systems
and molecular models can be found in the supplementary material.
Using constrained EMD simulations, we computed λeff from the GK
relation in Eq. (24). For reference NEMD simulations, we performed
simulations of Poiseuille flow by applying a body force on each oxy-
gen atom to mimic the effect of a pressure gradient. In the regime
of low driving force, the linear response predicted by λeff obtained
from constrained EMD simulations (labeled GK∗) is in excellent
agreement with vx measured from NEMD simulations, shown for
channels of different attractive strengths in Fig. 2(a) and for chan-
nels of different heights in the supplementary material. In the
supplementary material (Fig. S3), we also confirmed the equivalence
between the equilibrium and out-of-equilibrium force autocorrela-
tion, as expected from the fluctuation–dissipation theorem in the
linear response regime.

B. Connection to the hydrodynamic slip boundary
While the GK relation provides a microscopic expression for

the effective friction, more often than not, one is interested in the
intrinsic friction or the slip length of a particular interface. Since the
constitutive relation of the effective friction has been established, it is
relatively straightforward to obtain a relationship between the effec-
tive friction and the slip length from macroscopic hydrodynamics.
In particular, we can solve the Navier–Stokes equation60,61 subject
to partial slip boundary conditions like Eq. (1) at the solid wall to

FIG. 2. Connection between microscopic friction and macroscopic hydrody-
namics. (a) Verification of the constitutive relation in Eq. (29) between the total
frictional force and the mean fluid velocity for the effective friction. The data points
are from NEMD simulations of Poiseuille flow in 2D channels of water confined
with surfaces of different wetting coefficients α. The solid lines have slopes 1/λeff,
where λeff has been obtained from the GK relation with constrained EMD simula-
tions [Eq. (32), label GK∗]. (b) The slip lengths obtained from Eq. (31), using λeff
from EMD simulations [Eq. (32)], labeled GK∗+CHT, are in excellent agreement
with those using λeff from linear fits to NEMD data points in (a). Meanwhile, the
performance of the BB formula, either by taking the long time limit λBB(τ →∞)
or by taking the maximum value max[λBB], and interpreting it as an intrinsic fric-
tion coefficient [Eq. (3)], gets worse as the surface becomes more attractive. (c)
Very good agreement is also obtained for the predicted velocity profile using our
approach (GK∗ + CHT) and reference NEMD data, shown for the case α = 3 for
both Poiseuille (left) and Couette (right) flows.

obtain the Poiseuille flow profile of the fluid. From the solution,
we then obtain the fluid velocity and its frictional force per unit
area, the ratio of which gives an expression for the effective friction
coefficient. Here, we will simply state the results for the common
cases of 2D and 1D confinement, with the details presented in the
supplementary material.

For 2D confinement, the CHT result for the effective friction of
a fluid of shear viscosity η confined in a channel of height H, made
up of two separate interfaces, is
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λ2D
eff (H) =

12(H + b1 + b2)η
H2
+ 4H(b1 + b2) + 12b1b2

, (30)

where b1 and b2 are the slip lengths of each interface. To obtain a
closed expression for the slip length of a single interface, we can con-
sider the case when the channel is symmetric, i.e., b1 = b2 = b, and
rearrange Eq. (30),

b =(
η

λ2D
eff (H)

−
H
3
) +

⎡
⎢
⎢
⎢
⎢
⎣

(
η

λ2D
eff (H)

−
H
3
)

2

+H(
η

λ2D
eff (H)

−
H
12
)

⎤
⎥
⎥
⎥
⎥
⎦

1/2

.

(31)

The effective friction in a 2D channel can be computed with the GK
expression,

λ2D
eff =

β
2A∫

∞

0
dt ⟨F∥(t) ⋅ F∥(0)⟩c, (32)

from an EMD simulation with a constraint keeping the liquid’s
linear momentum zero in the in-plane (x, y) directions, where
F∥ = (Fx, Fy) denotes the in-plane lateral force on the liquid.

For 1D confinement, we consider Poiseuille flow of a fluid
through a cylindrical tube of radius R. In an analogous man-
ner, the effective friction coefficient can be obtained from classical
hydrodynamics as

λ1D
eff (R) =

4η
R + 4bR

, (33)

where the slip length bR is in general dependent on the curvature and
therefore the radius of the tube. Rearranging for bR, we obtain

bR =
η

λ1D
eff (R)

−
R
4

, (34)

where λ1D
eff can be obtained with

λ1D
eff =

β
A∫

∞

0
dt ⟨Fz(t)Fz(0)⟩c, (35)

from an EMD simulation with a constraint keeping the liquid’s
momentum zero along the axial direction (z) of the tube, where Fz
denotes the force on the liquid in the axial direction.

The pair of Eqs. (31)/(32) and (34)/(35) provides a way to
obtain hydrodynamic slippage directly from fluctuating forces in
microscopic EMD simulations. In Fig. 2(b), we validate that the slip
lengths b obtained by this method (labeled GK∗ +CHT) are in excel-
lent agreement with results from reference NEMD simulations for
surfaces of different values of wettability. (To obtain b from NEMD,
we have measured λeff and used the result in the CHT expression,
rather than attempt to fit the flow profiles directly.) In contrast, using
the BB expression in Eq. (4) combined with Eq. (3), as is typically
done in the literature, significantly overpredicts the slip length as the
wettability increases.

While sources of uncertainty in the effective friction measured
with the GK relation arise from statistical error, the value of slip
length is also impacted by the choice of hydrodynamic boundary
position z0 [which enters Eqs. (31) and (34) implicitly through H
and R]. While approaches exist for determining z0, see, e.g., Refs. 62
and 63, here we make the pragmatic choice to place z0 at the first

plane of solid atoms in contact with the liquid. With this choice,
the solution for the velocity profile from the Navier–Stokes equation
spans the total height of the channel or the diameter of the cylindri-
cal tube. However, microscopically, there is potentially an offset in
the location of the hydrodynamic boundary due to the excluded vol-
ume at each liquid–solid interface. In the supplementary material,
we assess the sensitivity of our results to such an offset. We find that,
when the fluid’s friction is dominated by viscous dissipation (i.e., in
tubes or channels that are large compared to the slip length), results
are robust to reasonable choices of z0. As H or R tends to zero, the
obtained values of b become increasingly sensitive to the choice of z0;
generally speaking, in cases where H > 1 nm, placing the hydrody-
namic boundary at the first atomic plane of the solid is a reasonable
approximation.

It is important to note that the appropriate type of flow used to
give the mapping between CHT and the effective friction is Poiseuille
flow, where the fluid has been driven by a pressure gradient or a body
force. This is because under confinement, when the liquid is in con-
tact with two separate solid substrates, the solid’s frame of reference
is only well-defined when both substrates have the same velocity as
each other. Note that the mapping to Poiseuille flow enables calcu-
lation of friction in cylindrical geometries. Meanwhile, in the case of
Couette flow, the two solid substrates are moving at different veloc-
ities in order to shear the fluid. However, as the slip length b is an
intrinsic property, once its value is known, predictions of the velocity
profile can be obtained from CHT. For example, we show the pre-
dictions for the symmetric α = 3 channel, both for Couette flow and
for Poiseuille flow in Fig. 2(c), and for other cases extensively in the
supplementary material. In all cases, we find very good agreement
with reference NEMD simulations.

IV. APPLICATION: WATER FRICTION UNDER
CONFINEMENT

Having a connection between a macroscopic and microscopic
description of fluid flow, we can revisit the long-standing ques-
tion on the domain of applicability of the continuum hydrodynamic
equations. Such a question is twofold, as it concerns both the validity
of the boundary conditions applied when solving the Navier–Stokes
equation and the validity of continuum hydrodynamics itself.

Historically, the no-slip boundary condition b = 0 can suc-
cessfully describe much of everyday phenomena involving fluid
dynamics.64,65 For water flowing through macroscopic tubes and
channels, it provides a very good approximation, regardless of the
material of the solid wall. At these larger scales, the effective friction
increases monotonically as the tube becomes smaller, λ1D

eff ∼ 4η/R, or
as the channel height decreases, λ2D

eff ∼ 12η/H. It has also long been
established that as the length scale of confinement keeps shrinking
in size, finite slippage at the interface can no longer be ignored66,67

as a larger proportion of the confined fluid can feel the interface.
Thus, the first question we will address is as follows: “At which
confinement length scale do surface effects begin to manifest as a devi-
ation from the no-slip boundary approximation?” The answer will
depend on various factors, including the material and the curvature
of confinement.

To answer this question, we will consider 1D confinement in
single-walled carbon and boron nitride nanotubes of different radii
and 2D confinement in channels of different heights formed by two
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graphene or boron nitride sheets. For the interatomic interaction,
we employ a machine-learned potential where the electronic struc-
ture is accurately trained at the level of density functional theory;17

the walls are flexible in these simulations. While we consider these
low-dimensional materials for their relevance to applications in
nanofluidics, we stress the generality of the results obtained to con-
finement by other solid surfaces of other liquids. While the micro-
scopic mechanisms giving rise to friction at the interface are very
diverse (corrugation,14,17 phonon coupling,13 quantum friction,20,68

defects,42,46,47 etc.) and we expect them to depend sensitively on the
molecular details of the interface, the macroscopic hydrodynamic
behavior would be principally governed by the slip length. There-
fore, in addition to these realistic surfaces, we also consider water
confined in Lennard-Jones nanotubes and between walls of different
values of wettability.

For each surface, we first obtain the slip length from EMD sim-
ulations using the pair of Eqs. (31)/(32) and (34)/(35). Among the
different wall materials, the graphene surface has the highest slip
length (b = 16 nm), followed by boron nitride (b = 3.6 nm) and the
Lennard-Jones surface of high wettability where there is essentially
no slippage. In the case of 1D confinement, in addition to surface
effects due to different confining materials, curvature effects also
come into play since curving up a surface can change its free energy
surface significantly. We show the curvature-dependent slip length
bR for three different surfaces in Fig. 3(a). In all cases, curving up
the surface to form nanotubes leads to a decrease in the corruga-
tion of the surface, reflected by an increase in bR as R decreases.
This enhancement is most prominent for tubes of R ≲ 5 nm with
the slippery carbon surface. Our values are broadly in agreement
with previous simulations and experiments of water on graphene
and boron nitride surfaces.10,12,14,16,17,20

To assess the overall effect of changing the radius on water flow
in 1D confinement, using bR(R) obtained from a non-linear fit of the

simulation data in [Eq. (30)], we show in Fig. 3(b) the effective fric-
tion λ1D

eff as a function of R. There are two competing effects dictating
the behavior of λ1D

eff . For tubes with diameters on the microme-
ter scale and beyond, λ1D

eff increases as R decreases for all surfaces,
asymptotic to the no-slip prediction. As R reaches the nanometric
regime, since it is now comparable to bR, the effective friction in the
fluid is no longer agnostic to the amount of slippage taking place
at the wall. As a result, the enhancement in bR due to curvature
effects starts to dominate, decreasing λ1D

eff as R decreases. Therefore,
a crossover in the dependence of λ1D

eff on R can be observed at R ∼ 10
nm and is most significant for surfaces of the highest slippage. We
note that experiments10 with multi-walled carbon nanotubes have
reported a radius dependence of slip length up to 50 nm, so the
length scale of the crossover could be as large as tens of nanometers.
For 2D confinement, since there is no curvature effect, any surface
effect would be solely due to interactions between the solid and the
fluid. In this case, instead of a crossover, a deviation to the no-slip
prediction is seen for the asymptotic behavior of λ2D

eff as the chan-
nel height H decreases, as shown in Fig. 3(c) for water confined
in symmetric channels of graphene, hexagonal boron nitride, and
the Lennard-Jones solid substrates. Similarly, the length scale of this
deviation is in the tens of nanometers and is most significant for
surfaces of the highest slippage.

Hydrodynamics relies on the key assumption that the fluid
behaves as a continuum in the hydrodynamic regime, where the
local properties of the fluid vary slowly on microscopic time and
length scales.52 As the degree of confinement increases, this approx-
imation is expected to break down as the separation in scale between
the confinement length and the molecular length becomes less clear.
This naturally brings us to the second question: “Once finite slip-
page is accounted for at the interface, what is the confinement length
scale at which it is still possible to describe flow with continuum
hydrodynamics?”

FIG. 3. Water friction under confinement. (a) Curvature dependence of the slip length b for water on different surfaces, including carbon nanotubes (CNTs), boron nitride
nanotubes (BNNTs), nanotubes made of Lennard-Jones particles (LJNTs), a flat graphene sheet (GRA), and a flat hexagonal boron nitride sheet (hBN), obtained from
simulations. The effective friction under 1D and 2D confinement is shown in (b) and (c) as a function of the tube radius R and channel height H. The data points are obtained
by the GK relation using constrained EMD simulations. For 2D confinement, the solid lines are predictions from CHT [Eq. (30)] parameterized on the slip length of the
largest channel. For 1D confinement, the dashed lines are from Eq. (33) using bR(R) fitted to the simulation data. The dotted lines show the results using no-slip boundary
conditions, while solid lines account for finite slippage at the interface. The shaded regions indicate where CHT begins to break down.
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Since the GK relation we have derived is independent of CHT,
we can parameterize CHT with the slip length obtained from a par-
ticular geometry and then assess how well this parameterized CHT
performs as we decrease the confinement length. To this end, we
compare the effective friction predicted by CHT [Eq. (30)] with that
computed from the GK relation for various channel heights down
to the sub-nanometer regime, shown as data points in Fig. 3(c). We
find that in all confining materials considered, CHT predictions hold
remarkably well down to H ∼ 1 nm, where the channels can accom-
modate only three layers of water. The deviation between CHT and
simulations is only significant for smaller channels with a bilayer
and monolayer of water, where we find that λ2D

eff from simulations is
extremely sensitive to changes in the density and interfacial structure
of the fluid. The breakdown of CHT below 1 nm is perhaps not sur-
prising since with fewer than three layers of water, one can no longer
sensibly define a continuum bulk region. In fact, the length scale of 1
nm has been suggested both experimentally69,70 and theoretically71,72

as the limit for the validity of the notion of a bulk shear viscos-
ity. Nevertheless, the robustness of a continuum theory to describe
water flow down to such a small scale is extremely satisfying. It is also
reminiscent of the validity of other macroscopic theories, e.g., con-
tinuum mechanics,73 the Kelvin equation,74 or dielectric continuum
theory,75–78 down to the nanoscale.

V. CONCLUSION
In this work, through the use of the projection operator for-

malism and linear response theory, we have derived a GK relation
for the liquid–solid friction by considering the stochastic motion of
a liquid droplet on a solid surface. The force autocorrelation func-
tion in the expression is sampled using constrained dynamics in
which the momentum of the liquid is conserved. Not only does
such an expression help resolve the long-standing plateau problem
associated with previous studies of friction using molecular simula-
tions, but it also sheds light on the physical meaning of the obtained
friction coefficient: λeff measures an effective friction and not the
intrinsic interfacial friction. Our expression can be applied gener-
ally to finite systems with surfaces of very low or very high friction.
In contrast, the widely used expression by Bocquet and Barrat was
derived originally for a semi-infinite system.26,30 When applied to
finite systems, in the context of our work, it amounts to a reasonable
approximation only when the slip length is much greater than the
confining length scale.

By linking the microscopic expression for friction to macro-
scopic hydrodynamics, we show how the hydrodynamic slip length
can be obtained faithfully, for both 1D and 2D fluid flow. Going for-
ward, we believe that such a connection is important to understand
the flow of liquids across length scales on more complex surfaces
where slippage is determined by the interplay of the material’s
electronic properties, wettability, surface charge, and the presence
of defects. This work also lays the foundation for understanding
interfacial effects in electrokinetic phenomena and other transport
properties under confinement.79,80 We believe that our work can
provide insights for the development of microscopic descriptions of
hydrodynamics based on dynamical density functional theory63,81–83

and the non-equilibrium extension of equilibrium classical density
functional theory,52,84,85 in which the fluid flow is described with
mass and momentum density fields.

Finally, as an application of our approach, we assess the abil-
ity of continuum hydrodynamics to describe water flow at the
nanoscale. While for macroscopic confining geometries, assum-
ing no-slip boundary conditions is a reasonable approximation,
the impact of finite slippage cannot be ignored for confinement
length scales below 10–100 nm. Nevertheless, our results show that,
provided that the finite slip length is taken into account, contin-
uum hydrodynamics remains remarkably robust down to ∼1 nm
confinement.

SUPPLEMENTARY MATERIAL

The supplementary material includes simulations details and
additional supporting results.
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