
PHYSICAL REVIEW B 110, 174112 (2024)

Structural chirality measurements and computation of handedness in periodic solids
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We compare the various chirality measures most widely used in the literature to quantify chiral symmetry in
extended solids, i.e., the continuous chirality measure and the Hausdorff distance. By studying these functions
in an algebraically tractable case, we can evaluate their strengths and weaknesses when applied to more complex
crystals. Going beyond those classical calculations, we propose a different method to quantify the handedness
of a crystal based on a pseudoscalar function, i.e., the helicity during a soft phonon mode driven displacive
phase transition from an achiral structure. This quantity, borrowed from hydrodynamics, can be computed
from the eigenvector carrying the system from the high-symmetry nonchiral phase to the low-symmetry chiral
phase. Different model systems like K3NiO2, CsCuCl3, and MgTi2O4 are used as test cases where we show the
superior interest of using helicity to quantify chirality in displacive chiral transitions together with the handedness
distinction.
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I. INTRODUCTION

A recent revival of chirality studies in materials has oc-
curred due to its applicability in high-impact fields like
topological insulators or chiral phonons in two-dimensional
(2D) materials [1]. Despite this revival, relatively little at-
tention has been paid to the structural chirality in crystalline
phases. From a symmetry standpoint, the criteria for a crystal
to exhibit chirality are straightforward: it must lack improper
rotation symmetry elements within its symmetry group (i.e.,
no “operations of the second kind” which can convert right-
handed coordinate systems into left-handed ones) [2]. This
condition leads to a comprehensive classification of the 230
crystallographic space groups [1,3]. The first category encom-
passes 165 space groups which include improper symmetry
operations, rendering them achiral. The second category com-
prises the remaining 65 groups, called Sohncke space groups,
which are exclusively characterized by containing orientation-
preserving operations (i.e., only “operations of the first kind”)
[2]. Among the Sohncke groups, we can further distinguish
two different subcategories: 11 enantiomorphic pairs (22 chi-
ral groups) characterized by containing screw axis of opposite
handedness and 43 nonenantiomorphic space groups that will
only preserve the chirality of the motif. The former subset of
space groups will be the focus of this work.

However, this binary (chiral vs achiral) classification
sometimes proves insufficient, particularly when we aim to
identify materials with optimal chiral responses for specific
functionalities such as optoelectronics [4]. A more nu-
anced approach involves categorizing crystals based on their
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varying degrees of chirality, offering a richer classification
of materials [5,6]. To address this challenge, significant ef-
forts have been dedicated in the literature to continuously
quantify chirality over the past few years despite its in-
herent difficulty [7–9]. Evidence of such attempts can be
found in various measures, including the continuous chirality
measure [5,6], the Hausdorff distance [1,10], or the phonon
pseudoangular momentum of the eigendisplacements [11,12].
Chirality measures are commonly divided into two primary
categories based on their mathematical behavior under sym-
metry transformations: scalar and pseudoscalar functions.
Scalar functions retain their value when subjected to mirror
symmetry, making them invariant under such transforma-
tions. In contrast, pseudoscalar functions are sensitive to
these symmetries and undergo a sign change when reflected.
Intriguingly, in structural chirality determination, scalar func-
tions are predominantly utilized in most established measures.
This prevalence overshadows pseudoscalar functions, which
remain relatively unexplored and elusive to the best of our
knowledge.

In this study, we delve into the strengths and weaknesses
of the previously announced chirality measures, e.g., the
continuous chirality measure and the Hausdorff distance. Go-
ing further, we propose a fresh methodology to determine
the handedness of crystalline solids that undergo displacive
chiral transitions [13] by utilizing a pseudoscalar function
inspired by the concept of helicity in hydrodynamics [14,15].
This innovative approach quantifies the degree of chirality
in a crystal and distinguishes between right- and left-handed
configurations.

However, it is worth noting that while all handed objects
are inherently chiral, not all chiral objects possess unambigu-
ous handedness, even if we can distinguish their enantiomers
[1]. Consequently, our proposed method effectively assesses
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FIG. 1. Schematic view of the unit cell in the prototypical cubic
ABO3 perovskite structure together with their dominant instabilities
without periodic boundary conditions. (a) Nonpolar cubic cen-
trosymmetric phase. (b) Nonpolar rotation of the oxygen octahedra.
(c) The off-centering motion of the B atom. Gray, blue, and red balls
represent A, B, and O atoms, respectively. Yellow arrows indicate the
direction for the nonzero displacements.

the chiral response of crystals undergoing a displacive chiral
transition within the 11 pairs of enantiomorphic space groups
[16], albeit it poses problems to those within chiral nonenan-
tiomorphic space groups, limiting its applicability.

The paper is organized as follows. In the following section,
we will inquire into the highly tractable scenario of a unit per-
ovskite ABO3 cell, where all the various chiral measurements
can be computed algebraically, providing a clear understand-
ing of their limitations. Moreover, we shall introduce the
concept of helicity as a new chiral measure to quantify the
handedness of a crystalline structure that undergoes a dis-
placive chiral transition. After identifying the strengths and
weaknesses of the aforementioned quantities, we shall apply
them to different cases of interest. Subsequent sections will
therefore be dedicated to the particular study of K3NiO2,
Na3AuO2, CsCuCl3, and MgTi2O4 that have been selected as
paradigmatic examples.

II. CASE OF A UNIT PEROVSKITE CELL

In this section, we present the continuous chirality measure
and the Hausdorff distance through a simple toy model formed
by an isolated ABO3 perovskite unit cell. This examination
aims to delineate the applicability range of these approaches.
Additionally, we shall introduce a different pseudoscalar mea-
sure to quantify the handedness of a given structure precisely.

A. Problems with continuous chirality measurements

We begin by examining a simplified model system: a pro-
totypical ABO3 perovskite unit cell, without considering its
periodic replicas. In its centrosymmetric cubic phase, cor-
responding to the Pm3̄m space group under hypothetical
periodic boundary conditions, the crystal is inherently nonchi-
ral, as illustrated in Fig. 1(a). Next, we introduce structural
distortions to this system and analyze their impact on different
chirality measurements. According to Hlinka, chirality can
arise from the interaction of a vector V with a rotational mode
R, forming an axial vector. Although these distortions, when
considered separately, might be achiral, their coupling can
lead to the emergence of chiral distortions [17].

These vector and rotation modes can be achieved in our
model by the distortions schematized in Fig. 1. In particular,
a local rotation in a perovskite can be obtained by a rotation
of the oxygen octahedra [Fig. 1(b)], and a polar vector can be

simplified by an off centering of the B cation [Fig. 1(c)]. Such
transformations are easy to characterize algebraically, and the
values of the new positions of the distorted atoms can be found
in the following Eq. (1):
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2 − 1

2 cos θ, 1
2 − 1

2 sin θ, 1
2

)
,

Ox2 = (
1
2 + 1

2 cos θ, 1
2 + 1

2 sin θ, 1
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)
,
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1
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2 − 1

2 cos θ, 1
2

)
,

Oy2 = (
1
2 − 1

2 sin θ, 1
2 + 1

2 cos θ, 1
2

)
,

B = (
1
2 , 1

2 , 1
2 + ξ

)
, (1)

where θ is the rotation angle of the oxygen octahedra with
respect to the z axis and ξ is the off centering of the B
atom. We have, therefore, three different structures: (i) the
high-symmetry cubic phase (that would correspond to a
Pm3̄m space group with periodic boundary conditions), (ii)
the lower-symmetry phase corresponding to the rotation of
the oxygen octahedra (represented by a I4/mcm space group
with periodic boundary conditions), and (iii) the phase cor-
responding to the off centering of the B cation (ascribed to
a I4/mcm space group with periodic boundary conditions).
Clearly, the two distortions are nonchiral individually, as
they present mirror symmetry planes along z and x, respec-
tively. However, when the octahedral rotation is combined
with the off-centering motion of the B cation, a chiral struc-
ture emerges at the unit-cell level as it combines a vector
(polar distortion) and an axial vector (octahedra rotation).
It is important to highlight that, in the periodic crystal, the
antiferrodistortive coupling of the oxygen octahedra causes
octahedra to rotate cooperatively in opposite directions from
unit cell to unit cell. In contrast, the off-centering direction is
preserved, leading to opposite chirality and an overall achiral
system. The system would be antichiral unit-cell wise as the
chirality from one unit cell will reverse sign but keep the same
absolute value concerning its neighboring cells. Nevertheless,
for the sake of simplicity in our analysis, we will restrict our
examination to the chiral nature observed at the unit-cell level
in this straightforward scenario.

1. Continuous chirality measure

The continuous chirality measure (CCM) is a scalar
measure introduced by Avnir that quantifies the structure’s
distance to its closest achiral reference [6]. Mathematically,
it can be expressed as

CCM = 1

N

N∑
1

||�xi − �x′
i||2, (2)

where N is the number of atoms of the structure and �x, �x′
are, respectively, the positions of the structure under study and
its closest achiral reference. Although in later works, Avnir
added a normalization factor by the root-mean-square size of
the original centered structure [18], this will not be considered
here for simplicity.

One inherent difficulty of the CCM [5,6] is that it requires
selecting the closest nonchiral structure. One may think that
a reliable choice would be the nondistorted high-symmetry
phase, arguing that for small enough distortions, the closest
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nonchiral configuration is the original reference structure.
This simple toy model demonstrates that such an assumption
is generally incorrect. In the general case, we can follow a
symmetry-adapted modes (SAMs) argument. Given a nonchi-
ral high-symmetry phase (R) and a chiral low-symmetry phase
(G), one can generally write the total distortion δ as the sum
over SAMs, namely, as aδ1 + bδ2 where δ1 and δ2 are the
modes associated with the irreducible representations brought
up by the R → G transition and a and b are real projection
coefficients. We can take δ2 to be the symmetry-breaking
mode, while δ1 is the mode associated with an isotropy rep-
resentation of the parent achiral group. Thus, the CCM is
given by the norm of δ1 rather than by the norm of δ that
would be greater. In fact, the closest nonchiral structure in this
example corresponds to the configuration with the octahedral
rotation but without the B atom’s off-center motion. This
problem manifests when computing the CCM with the cubic
centrosymmetric structure as a reference. Applying Eq. (2) to
our perovskite toy model system with such a reference results
in the following value:

CCM = 1

15

∑
i∈ atoms

∣∣∣∣�xi − �xPm3̄m
i

∣∣∣∣2 = 1

15

(
ξ 2 + 4 sin2 θ

2

)
.

(3)

We can see that the CCM decouples the off-center motion of
the B atom and the octahedra rotation. Therefore, we would
obtain a nonzero value if θ is nonzero and ξ is zero or vice
versa, even if we know that we need both distortions simul-
taneously to have a chiral structure. This is a consequence of
the wrong selection of the reference structure. However, if we
take as a reference the configuration containing the octahedral
rotations, which is the closest nonchiral structure, the CCM
would then have a value of

CCM = 1

15

∑
i∈ atoms

∣∣∣∣�xi − �xI4/mcm
i

∣∣∣∣2 = 1

15
ξ 2, (4)

which is not satisfactory either, as much important informa-
tion is encoded in the selection of the reference structure,
and the value of the final order parameter only relies on the
off-centering value of the B atom. Consequently, the chirality
contribution measure of two different distortions, D1 and D2,
will be higher for the distortion with greater off centering,
regardless of the extent of their octahedral rotations. This
discrepancy arises because the reference structures for both
distortions differ, potentially leading to misconceptions.

These challenges become more pronounced as the crystal
structure becomes more complicated. Identifying the closest
nonchiral reference structure can be difficult. While recent nu-
merical approximations, available at [19,20], have improved
computational efficiency to N2 (compared with the N! scaling
of analytical methods [21]) with an error margin of 2% for
cyclic symmetry groups [18], they may disrupt the connec-
tivity map of the structure, resulting in unphysical references
[22]. Furthermore, chiral distortions often involve multiple
coupled modes in complex systems with many atoms in the
unit cell. These modes can become decoupled, as seen in the
case where octahedral rotation and the off-centering motion
of the B cation are examined separately.

Aside from these problem-specific issues, other general
problems and considerations about the difficulties of whether

continuous chiral measures can be well defined have been
addressed in Refs. [8,9,23–25].

2. Hausdorff distances

The Hausdorff distance is defined as the supremum of
the minimum distances between the structure and its clos-
est nonchiral reference [1,10]. Therefore, it also relies on
the preassumption of a reference structure concerning which
computes the supremum of the infimum of the distances (i.e.,
the supremum for the case of maximal overlap between the
structure and the reference). Consequently, the same types
of problems discussed above for the CCM are at play too
for the Hausdorff distance. When we compute the Hausdorff
distance concerning the centrosymmetric structure, we obtain
the following value:

H(chir, Pm3̄m) = sup

{
|ξ |, sin

|θ |
2

}
, (5)

depending on the values of the off-centering motion and the
octahedral rotation, the Hausdorff distance would vary. How-
ever, similar to the case of the CCM, since we are computing
positive-definite distances, no distinction can be made be-
tween enantiomers if we reverse either the direction of the
rotation or the direction of the off-centering motion. This
problem is common to all scalar measures as mirror symme-
tries will leave the value unaffected.

Another problem arises with the Hausdorff distance when
considering the distances’ supremum. For small distortions,
the distance between the B atoms is ξ , and the distance be-
tween the equatorial oxygens is sin θ

2 ∼ θ
2 . Let us imagine

that the value of the off centering and the rotation is the
same. In such a case, the Hausdorff distance would be ξ .
However, the multiplicity of the oxygen atoms is not taken
into account. Therefore, even if the overall contribution of the
oxygen sites is larger than the one coming from the B atom,
as the individual inputs are smaller, they are not considered
in the chiral measure. This is an added problem to the ones
highlighted above for the case of the CCM.

B. Computation of handedness

Handedness is intrinsically linked to rotational direction
in physics. For instance, in chemistry, helicity refers to the
sense of rotation of helical structures, with right-handed he-
lices assigned a positive helicity value and left-handed helices
assigned a negative helicity value [26]. Similarly, in hydrody-
namics, the handedness of a flow is determined by the sign
of its helicity, which measures the degree of linkage of the
streamlines [15]. This quantity can be computed from the
velocity lines of the flow as the following integral [14,15]:

H =
∫

d3�r �v · [ �∇ × �v]. (6)

The integrand of Eq. (6), the helicity density, is a pseudoscalar
quantity that changes its sign under a mirror-symmetry op-
eration. Thus, a nonzero helicity is associated with a lack
of mirror symmetry: right (respectively left) handedness can
be associated with positive (respectively negative) values
of H. Accordingly, the helicity modulus |H| quantifies the
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strength of the handedness [15]. Contrary to scalar measures
(like CCM or Hausdorff distances), the helicity measure can
discriminate between enantiomers. However, other problems
arise due to the chiral connectedness property [27–30]. This
property refers to the fact that two enantiomorphs can be trans-
formed into one another while remaining chiral throughout
the transformation process. As elucidated in Refs. [27–29],
this inevitably leads to what is known as the false-zeros
problem: any pseudoscalar function will, in general, fail to
determine the handedness of some objects assigning zero
values to chiral entities. A notable exception to the false-
zeros problem occurs in the set of helices with variable
pitch, as discussed in Ref. [31]. In these cases, pseudoscalar
functions exclusively yield zero values for achiral objects,
making them suitable measures of chirality. Consequently,
enantiomorphic space groups are unaffected by this issue and
can be classified according to their handedness, indicating
that pseudoscalar functions are more convenient for such
classifications. Conversely, nonenantiomorphic space groups
showing chirality like the Pb5Ge3O11 compound [32] may
exhibit chiral connectedness, making the presence of chiral
nonhanded configurations inevitable.

The definition of helicity from fluid dynamics has been ex-
tended to the case of discrete fields defined in periodic crystals
to compute the handedness of topological polar textures and is
now widely accepted [33,34]. Borrowing this knowledge, we
shall try to apply it to our particular problem where a velocity
field can be established linking the achiral and chiral phases,
i.e., going from continuous to discrete vector fields. In such
a case, the velocity field can be defined, by the individual
atomic displacements from the high-symmetry phase to the
low-symmetry chiral phase (the difference in positions can
be related with a velocity in an arbitrary units of time sys-
tem following a finite difference approach). Indeed, we will
choose the high-symmetry reference as the nonexcited phase
and follow the eigenvector direction towards the nonexcited
chiral state in an arbitrary time length. Therefore, in our per-
ovskite toy model system, the velocities of the atoms give the
following values:

�̇xOx1 = (
1
2 − 1

2 cos θ,− 1
2 sin θ, 0

)
,

�̇xOx2 = ( − 1
2 + 1

2 cos θ, 1
2 sin θ, 0

)
,

�̇xOy1 = (
1
2 sin θ, 1

2 − 1
2 cos θ, 0

)
,

�̇xOy2 = ( − 1
2 sin θ,− 1

2 + 1
2 cos θ, 0

)
,

�̇xB = (0, 0, ξ ). (7)

The curl �∇ × �̇xi, is then computed following a finite-
difference approach and the integral is substituted by a
regular sum at each atomic site in the unit cell analogous
to the approach employed in polar textures at the supercell
level [33,34] where the polarization vector field is also dis-
crete. Note that whenever this field cannot be established
as it is the case, for instance, of reconstructive phase tran-
sition this method cannot be applied. Furthermore, in the
case of a sequence of displacive phase transitions A →
B → C, where both A and B are achiral and C is chiral,
a stepwise approach should be adopted. This approach re-
lies on well-defined eigenvectors governing each individual

transition. Consequently, the helicity between the achiral
states A → B would be zero, and the helicity would only be
nonzero for the transition B → C, where chirality emerges.
With this definition and the set of velocities described in
Eq. (7), we obtain a value of the helicity of

H = sin θξ . (8)

Therefore, to have a nonzero helicity, we need the coupling of
the oxygen rotation and the polar displacement, as desired, to
characterize a chiral structure. Moreover, suppose we reverse
the sense of rotation or the sign of the polar distortion inducing
a change of handedness in the structure. In that case, the
helicity changes sign accordingly in contrast to the scenario
observed with the CCM or Hausdorff distances.

In the following sections, we shall apply this method (avail-
able at [35]) to compute the handedness of different crystalline
structures that undergo such continuous chiral transitions.

III. APPLICATION TO K3NiO2-LIKE CHIRAL STRUCTURE

One interesting application case is found in the K3NiO2

compound [36]. At 423 K, this crystal exhibits a first-order
chiral phase transition from a high-symmetry achiral phase
(P42/mnm space group) to a low-symmetry enantiomorphic
phase (either P41212 or P43212). The transition is continu-
ous and has been identified to come from a zone boundary
soft phonon mode that explains the cell doubling during the
transition [13]. Such a phenomenon could be present in all
crystals that can be stabilized into the same high-symmetry
P42/mnm crystal structure. For example, although Na3AuO2

does not crystallize in this structure, a hypothetical Na3AuO2

phase isostructural to K3NiO2 is a useful nonmagnetic and
closed shell toy model system for computational studies. In
this section, we shall compute the CCM, Hausdorff distances,
and helicity for K3NiO2 and Na3AuO2. The latter is much
simpler from a computational perspective due to its nonmag-
netic nature. It will be used to systematically analyze how
the different chirality measures behave when connecting the
different possible phases. In Fig. 2, we show a schematic
representation of the K3NiO2 crystal. Atomic positions corre-
spond to the high-symmetry P42/mnm phase, and the arrows
indicate how the atoms move when transitioning to the chiral
P41212 phase. In that way, we have defined a vector field for
every atomic site in the reference structure and, therefore, we
can compute all the quantities discussed in previous sections.
We can see from the arrows plotted in Fig. 2 that a handed
helical distortion pattern along the c direction is present.

As we can see in Table I for the case of Na3AuO2, the
values of the CCM and Hausdorff distances calculations give
each the same value for both enantiomers, which is in line with
what we discussed before in Sec. II A, i.e., that these measures
cannot distinguish two enantiomers as distances are always
positive definite.

Finally, the sign of helicity is sensitive to the system’s
change of handedness while its modulus is constant. Hence,
and as anticipated in Sec. II B, the helicity modulus can mea-
sure the chiral distortion amplitude while its sign encodes the
handedness “sign” of the structure.

To compare those different measures, we plot in
Fig. 3 the evolution of the CCM, Hausdorff, and helicity
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FIG. 2. Schematic representation of the K3NiO2 crystal structure
where atoms occupy the P42/mnm high-symmetry positions. Arrows
indicate the direction of the atom displacements that bring the system
to the P43212 chiral phase. Purple, gray, and red balls represent K,
Ni, and O atoms.

measures as a function of the distortion amplitude when going
from the high-symmetry P42/mnm phase to both the P41212
and P43212 phases. Those two phases are degenerate in en-
ergy and correspond to the two energy minima of the left-
and right-handed enantiomers that can be formed from the
P42/mnm phase. The difference in the distortion pattern of
those two enantiomeric phases is simply a change of sign,
i.e., a change between right- and left-handed helical distortion.
As expected from the different definitions, the module of the
Hausdorff distance shows a linear dependence with η. In con-
trast, the module of the CCM and the helicity measurements
have a quadratic behavior, as already reported in Ref. [1].
Moreover, as anticipated, the helicity sign is reversed for
the different enantiomers, whereas the CCM and Hausdorff
distances are not. Note that the CCM and Hausdorff distances
could be multiplied by a sign representing the sense of rota-
tion of the screw axis to differentiate between enantiomers.

TABLE I. Values of the different chirality measures discussed
before for the Na3AuO2 compound taking the P42/mnm phase as a
reference. The + and − superscripts represent the enantiomorphic
P41212 and P43212 phases, respectively. Fractional units and nor-
malization by the number of atoms in the unit cell have been used to
compute the CCM and helicity.

Na3AuO+
2 Na3AuO−

2

CCM 3.30×10−3 3.30×10−3

Hausdorff 1.18×10−1 1.18×10−1

Helicity 7.75×10−3 −7.75×10−3

FIG. 3. Comparison of the evolution of the different chiral mea-
sures as a function of the amplitude of the chiral distortion η in
Na3AuO2. Positive (negative) values of η correspond to the conden-
sation of the modes towards the P41212 (P43212) phase. Red dots,
blue squares, and green triangles correspond to CCM, Hausdorff, and
helicity measures. The values of the different measures have been
normalized to display a value of 1 at the optimal amplitude of the
chiral distortion (η = 1).

However, this measure will not serve to differentiate the
degree of chirality of two different compounds due to the
reference choice problem highlighted in Sec. II A 1.

Furthermore, when assessing the same calculations be-
tween the P42/mnm phase and the Cmcm intermediate achiral
phase, which is found to be an intermediate achiral structure
before the enantiomorphic groups [13], we obtain a zero value
from the helicity calculation. Therefore, the helicity calcu-
lation appears robust in determining the chirality of helical
structures and can be applied straightforwardly. Moreover, as
one can see in Table II, when we apply this procedure to the
case of the K3NiO2 and compare the results with the ones
obtained for the Na3AuO2, we observe that the ratio between
of the CCM’s and the ratio of the helicities is constant, sug-
gesting the same helical structure for both compounds.

TABLE II. Values of the different chirality measures for the
distinct compounds discussed in the work. Fractional units and
normalization by the number of atoms in the unit cell have been
performed to compute the CCM and helicity.

Na3AuO2 K3NiO2 CsCuCl3 MgTi2O4

CCM 3.30×10−3 1.24×10−3 5.66×10−3 1.03×10−4

Hausdorff 1.18×10−1 7.35×10−2 1.07×10−1 1.19×10−2

Helicity 7.75×10−3 2.75×10−3 2.08×10−2 3.08×10−4
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FIG. 4. Schematic representation of the CsCuCl3 where atoms
occupy the high-symmetry positions. Arrows indicate the direction
of the displacements into the P6122 chiral phase. Gray, blue, and
green balls represent Cs, Cu, and Cl atoms.

IV. CASE OF CsCuCl3

Next, we will discuss the chiral transition in CsCuCl3.
This material undergoes a transition from a high-temperature,
high-symmetry P63/mmc phase to one of the enantiomorphic
groups P6122 or P6522 [37,38]. This transition is driven by a
cooperative Jahn-Teller distortion as reported in Refs. [39,40].
Figure 4 illustrates a schematic representation of the CsCuCl3

crystal, similar to our previous example. It shows the chiral
crystal distortions, depicted as differences in atomic posi-
tions between the high-symmetry phase and one of the chiral
phases. The displacement vector field demonstrates the right-
handed helical structure. In Table II, the values of the different
chirality measures can be encountered compared to other
compounds. As we can see from the data, if we compare the
values of the different measures for the Na3AuO2 and the
CsCuCl3 cases, we can see that the ratio between the CCM
is half of the ratio between the helicities, indicating that the
CsCuCl3 adopts a more pronounced helical structure at equal
distortion.

V. CASE OF MgTi2O4

A crucial prerequisite for computing the helicity of a given
structure is the ability to establish a one-to-one mapping be-
tween atomic positions in the high-symmetry phase and those
in the low-symmetry phase, thereby defining the displacement
vector field. In previous examples, establishing this mapping
has been straightforward. However, in the case of MgTi2O4,
this is not so. The high-temperature phase exhibits a structure

FIG. 5. Schematic representation of the MgTi2O4. Atoms oc-
cupy the high-symmetry undistorted positions in a (a) P41212 or
(b) P43212 representation. Arrows indicate the direction of the dis-
placements into their respective chiral phases. Orange, blue, and red
balls represent Mg, Ti, and O atoms, respectively.

of Fd-3m symmetry with 56 atoms in the conventional unit
cell. In contrast, the chiral phase exhibits a P41212 or P43212
space-group symmetry with 28 atoms in the unit cell [41,42].
To establish such a mapping, we used the ISODISTORT software
[43,44]. Beginning with the high-symmetry phase and setting
the distortions that bring the system to the P41212 or P43212
phase to zero, we could derive a set of undistorted atomic
positions that adhere to the desired symmetry. Afterward, we
provided to AMPLIMODES [45,46] the undistorted and distorted
atomic coordinates to obtain the set of displacements. In
Fig. 5, we present the atomic displacements obtained using
this method.

Similar to previous examples, the CCM and Hausdorff
distances are equivalent for both enantiomers, while the he-
licity exhibits the same magnitude but opposite signs between
them. The numerical values of the different chirality quantifi-
cation methods can be found in Table II. In comparison to
the Na3AuO2 case, the ratio between the CCM values roughly
equals the ratio between the helicities, suggesting that the two
compounds present approximately the same chiral strength. In
contrast to the previously discussed cases where a clear helical
structure was observable along the c direction, this compound
exhibits a more evenly distributed helicity due to the lattice’s
transition from a face-centered-cubic to a tetragonal structure.
The corresponding distortion results in the absence of a pre-
ferred direction, making it more difficult to identify the helical
structure of the compound visually.

VI. CONCLUSIONS

In this work, we have delved into various continuous chi-
rality measures proposed in the literature. Utilizing the simple
model system of a unit perovskite cell, we have examined
the challenges these measures pose when applied to extended
solids. For the case of the CCM or Hausdorff distances,
in addition to the difficulties associated with employing a
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position-based operator in periodic systems [47],1 not dis-
cussed in the text, we have identified the critical issue of
selecting an appropriate reference, which can often be non-
trivial. Even in the case of small chiral distortions, relying on
the high-symmetry phase as an accurate reference may not
suffice, as the deformation could involve multiple nonchiral
modes that only become chiral when coupled together as
exemplified by the rotation (axial-like) and off-centering (vec-
tor) distortions. Consequently, much important information
about the distortion can remain implicitly hidden even with
the right reference selection. Moreover, because these meth-
ods rely on computing distances, which are positive-definite
quantities, they cannot discriminate between the different
enantiomorphic structures of a given compound. An inter-
esting venue to explore would be to create tuples of chiral
measures and increasing the number of degrees of freedom in
order to have a better description of the distortion. However,
there is strong mathematical evidence to believe that it will be
insufficient to solve the chiral contentedness and consequent
false-zeros problem [28,30].

Aside from the analysis of the various chirality measures
in the literature [8], we have proposed using a unique pseu-
doscalar function, the helicity, to quantify the handedness
of solids that undergo a continuous transition from an achi-
ral to a chiral enantiomorphic space group. Borrowing the
definition from hydrodinamics [14,15], and its extension to
discrete fields in periodic solids [33,34], this quantity can be
directly computed from the eigenvector that brings the system
from the high-symmetry nonchiral phase to the low-symmetry
chiral one. We have demonstrated the method’s robustness
in measuring the handedness of a given distortion in enan-
tiomorphic groups that do not suffer the false-zeros problem.
In such groups, helicity not only yields zero values for nonchi-
ral transformations but also provides finite values for chiral
structures, with equal magnitude and opposite signs for each
enantiomorph. Such approach has unveiled the handedness of
different compounds like Na3AuO2, CsCuCl3, or MgTi2O4.
The use of helicity as defined in the paper could therefore be
incorporated as a potential descriptor for the high-throughput
characterization of materials, similar to how the CCM has
been utilized for organic molecules [48] as well as interest-
ing to characterize chiral phonons [49]. While effective in
measuring the handedness of crystals with enantiomorphic
space groups (the 11 enantiomorphic pairs), it is important to
note that chiral crystals that are within the 43 nonenantiomor-
phic space groups present chiral connectedness such that this
approach may be inadequate in those cases enhancing the
well-known difference between chirality and handedness [1].
We note that the method is limited to measure the handedness
of systems that exhibit a displacive transition from an achiral
reference to a chiral state. In order to extend this mecha-
nism to a broader range of compounds, a minimal supergroup
search can be conducted, analogous to the approach used for
identifying displacive ferroelectrics [50]. A comprehensive
study detailing the workflow and introducing new candidates
for soft phonon mode-driven displacive chiral phase transi-
tions is underway [51]. Additionally, the Appendix presents

1The position operator does not commute with the Hamiltonian.

a perspective on a potential reciprocal-space formulation of
the helicity operator. Although not implemented in this work,
this approach could inspire further advancements in the study
of chiral distortions, potentially enabling its integration into
density functional perturbation theory and finite-wavelength
techniques [52].

Even though the helicity described in this paper remains
reliant on a position-based operator and thus susceptible to
common challenges in dealing with periodic systems [47], we
hope that our proposed approach will facilitate a more system-
atic quantification of crystal handedness of enantiomorphic
space groups. We believe that the helicity measurement de-
scribed here shares some similarities to the polarization
quantification problem in ferroelectrics. The most evident
example is that we aim to measure to what extent a chiral crys-
tal deviates from its achiral high-symmetry phase. Besides,
some of the issues discussed in the paper, as the reference
problem, also existed (and were solved by the modern the-
ory of polarization [53]) in the case of the polarization and
periodic boundary conditions. We hope that this paper will
stimulate further work towards refining the quantification of
structural chirality. For instance, it would be interesting to
establish a relation between helical structures’ helicity from
enantiomorphic groups and their optical activity, e.g., from
density functional theory as the optical activity calculation has
been recently implemented [54].
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APPENDIX: RECIPROCAL SPACE FORMULATION
OF THE HELICITY

This brief Appendix explores a potential alternative formu-
lation of the helicity operator in reciprocal space. Notably, the
value of the Fourier transform of the helicity density operator
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at the � point directly corresponds to the helicity

Ĥ (�k = 0) =
∫

�v · (∇ × �v) · ei�0�rd3�r

=
∫

�v · (∇ × �v) · 1 d3�r = H.

Now, we only have to compute the Fourier transform of the
helicity density operator Ĥ (�r) = �v · (∇ × �v). Applying the
convolution theorem [55], the Fourier transform of the product
of two vectorial functions corresponds to the componentwise

convolution of their respective Fourier transforms. Therefore,
the following equality holds:

F[�v · (∇ × �v)] = F[�v]∗̇F[∇ × �v]. (A1)

Moreover, the Fourier transform of the curl of a function can
be rewritten in the following way [55]:

F[∇ × �v] = i�k × F[�v], (A2)

which offers a concise expression for the reciprocal-space
formulation of the operator discussed in the main text.
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