
npj | digitalmedicine Article
Published in partnership with Seoul National University Bundang Hospital

https://doi.org/10.1038/s41746-024-01250-1

Development and assessment of a
machine learning tool for predicting
emergency admission in Scotland

Check for updates

James Liley 1,2,3,14 , Gergo Bohner2,4,14, Samuel R. Emerson1, Bilal A. Mateen2,5,6, Katie Borland7,
David Carr7, Scott Heald7, Samuel D. Oduro7, Jill Ireland7, Keith Moffat7,8, Rachel Porteous7,
Stephen Riddell7, Simon Rogers 9, Ioanna Thoma2,3, Nathan Cunningham 2,10, Chris Holmes2,11,
Katrina Payne2, Sebastian J. Vollmer2,4,12,13, Catalina A. Vallejos 2,3,15 & Louis J. M. Aslett 1,2,15

Emergency admissions (EA), where a patient requires urgent in-hospital care, are amajor challenge for
healthcare systems. The development of risk prediction models can partly alleviate this problem by
supporting primary care interventions and public health planning. Here, we introduce SPARRAv4, a
predictive score for EA risk thatwill be deployednationwide inScotland. SPARRAv4wasderivedusing
supervised and unsupervised machine-learning methods applied to routinely collected electronic
health records fromapproximately 4.8MScottish residents (2013-18).Wedemonstrate improvements
in discrimination and calibration with respect to previous scores deployed in Scotland, as well as
stability over a 3-year timeframe.Our analysis also provides insights about the epidemiology of EA risk
in Scotland, by studying predictive performance across different population sub-groups and reasons
for admission, as well as by quantifying the effect of individual input features. Finally, we discuss
broader challenges including reproducibility and how to safely update risk prediction models that are
already deployed at population level.

Emergency admissions (EA), where a patient requires urgent in-hospital
care, represent deteriorations in individual health and are a major
challenge for healthcare systems. For example, approximately 395,000
Scottish residents (≈ 1 in 14) had at least one EA between 1 April 2021
and 31 March 20221. In total, around 600,000 EAs were recorded for
these individuals, nearly 54% of all hospital admissions in that period,
and they resulted in longer hospital stays (6.8 days average) compared to
planned elective admissions (3.6 days average).Modern health and social
care policies aim to implement proactive strategies2, often by appropriate
primary care intervention3–5. Machine learning (ML) can support such
interventions by identifying individuals at risk of EA who may benefit
from anticipatory care. If successful, such interventions can be expected
to improve patient outcomes and reduced pressures on secondary care
(Fig. 1a).

A range of risk prediction models have been developed in this
context6–11. However, transferability across temporal and geographical set-
tings is limited due to differing demographics and data availability8.
Development of models in the setting in which they will be used is thus
preferable to reapplication of models trained in other settings. In Scotland,
the Information Services Division of the National Services Scotland (now
incorporated into Public Health Scotland; PHS) developed SPARRA
(Scottish Patients At Risk of Re-admission and Admission)—an algorithm
to predict the risk of EA in the next 12months. SPARRAwas derived using
national electronic health records (EHR)databases andhas been inuse since
2006. The current version of the algorithm (SPARRAv3)12 was deployed in
2012/13 and is calculated monthly by PHS for almost the entire Scottish
population. Individual-level SPARRA scores can be accessed by general
practitioners (GPs), helping them to plan mitigation strategies for
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individuals with complex care needs. Collectively, SPARRA scores may be
used to estimate future demand, supporting planning and resource alloca-
tion. SPARRA has also been used extensively in public health research13–18.

In this paper we update the SPARRA algorithm to version 4 (SPAR-
RAv4) using contemporary supervised and unsupervised ML methods. In
particular, we use an ensemble of machine learning methods19, and use a
topic model20 to derive further information from prescriptions and diag-
nostic data. This represents a large scaleML risk score,fitted and deployed at
national level, and widely available in clinical settings. We develop SPAR-
RAv4 using EHRs collected for around 4.8million (after exclusions) Scottish
residents between 2013 and 2018. Among other variables, this includes data
about past hospital admissions, long term conditions (e.g. asthma) and
prescriptions.We use cross-validation to evaluate the validity of SPARRAv4
and its stability over time. This shows an improvement of performance with
respect to SPARRAv3 in terms of discrimination and calibration, including a
stratified analysis across different subpopulations. We also perform exten-
sive analyses to determine what reasons for emergency admission are pre-
dictable, and use Shapley values21 to quantify the effect of individual input
factors. Finally, we discuss some of the practical challenges that arise when
developing and deployingmodels of this kind, including issues associated to
updating risk scores that are already deployed at population level.

Reproducibility is critical to ensure reliable applicationofML in clinical
settings22. To provide a transparent description of our pipeline, this
manuscript conforms to theTRIPODguidelines23 (SupplementaryTable 1).
Moreover, all code is publicly available at github.com/jamesliley/
SPARRAv4. This includes non-disclosive outputs used to generate all the
figures and tables presented in this article.

Results
Data overview
The input data prior to any exclusions combines multiple national EHR
databases held byPHS for 5.8million Scottish residents between1May2013
and 30April 2018 (Supplementary Table 2), some of whomdied during the
observation period. These comprised 468 million records, comprising
interactions with the Scottish healthcare system and deaths. The total
number of available records varies across sex, age, and SIMD (Fig. 1b), and
when records are grouped by database (Supplementary Fig. 1a). In parti-
cular, marginally more records are available for individuals in the most
deprived areas (asmeasuredbydeciles of the 2016Scottish IndexofMultiple
Deprivation (SIMD)24), particularly within accidents and emergency and
mental health hospital records. Two additional tables (see Supplementary
Table 2) containing historic data about long term conditions (LTC, back to
1981) and mortality records were also used as input.

We selected three timecutoffs formodelfitting (1Mayand1December
2016, and 1 May 2017) leading to 17.4 million individual-time pairs,
hereafter referred to as samples (Fig. 1c). This choice was informed by the
extent of data required to define the input features used by the score (3 years
prior the time cutoff) and the prediction target (1 year after the time cutoff).
We used the earliest (1 May 2016) and latest (1 May 2017) possible time
cutoffs, and a third time cutoff halfway between these. Although we could
have used more than one time cutoff between the earliest and latest, we
deemed that this would add little because, for most patients, we expect to
havenegiblible variation in their input features andEAstatus frommonth to
month.After exclusions (whichwerepredominantlydue to sampleswithout
SPARRAv3 scores; see Methods), the data comprise 12.8 million samples
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Fig. 1 | Data andmodelfitting overview. a Illustration of how SPARRA can support
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corresponding to 4.8million individuals. Overall, the study cohort is slightly
older, has more females, and is moderately more deprived than the general
population (Table 1). The prediction target was defined as a recorded EA to
a Scottish hospital or death in the year following the time cutoff (see
Methods). In total, 1,142,169 EA or death events (9%) were observed across
all samples. This includes 57,183 samples for which a death was recorded
(without a prior EA within that year) and 1,084,986 samples for which an
EA was recorded (amongst those, 107,827 deaths were observed after the
EA). As expected, the proportion of deaths amongst the observed events
increases with age (Supplementary Fig. 1b). Moreover, patients with an EA
or death event (in at least one time cutoff) are, on average, older and more
deprived than those without an event (Table 1).

Overall predictive performance
In held out test data, SPARRAv4 was effective at predicting EA, and out-
performed SPARRAv3 on the basis of area-under-receiver-operator-char-
acteristic curve (AUROC) and area-under-precision-recall-curve (AUPRC)
(Fig. 2a, b). SPARRAv4 was also better calibrated, particularly for samples
with observed risk≈ 0.5 (Fig. 2c).Whilst SPARRAv3 and SPARRAv4 scores
were highly correlated, large discrepancies were observed for some samples
(Supplementary Fig. 2). In samples for whom v3 and v4 disagreed (defined
as ∣v3− v4∣ > 0.1), we found that v4 was better-calibrated than v3 (Fig. 2d).

We also assessed the potential population-wide benefit of SPARRAv4
over SPARRAv3 directly. Amongst the 50,000 individuals judged to be at
highest risk by SPARRAv3, around 4000 fewer individuals were eventually
admitted that were amongst the 50,000 individuals judged to be at highest
risk by SPARRAv4 (Fig. 2e). For another perspective, if we simply assume
that 20% of admissions are avoidable (value taken from25), that avoidable
admissions are as predictable asnon-avoidable admissions, and thatwewish
to pre-empt 3000 avoidable admissions by targeted intervention on the

highest risk patients (the second assumption is conservative, since avoidable
admissions are often predictable due to other medical problems). Then, by
using SPARRAv4, we would need to intervene on approximately 1,500
fewer patients than ifwewere to use SPARRAv3 in the sameway, in order to
achieve the target of avoiding 3000 admissions (Fig. 2f).

SPARRAv4 comprises an ensemble of models (see Methods), so we
also explored a breakdown of AUROC/AUPRC (Table 2) and calibration
(Supplementary Fig. 3) across constituent models. The ensemble had
slightly better performance (> 1 standard error) than the best constituent
models (XGB and RF) and substantially better performance than simple
statistical models (GLM and NB), which can be considered as benchmarks.
Note that some constituent models (ANN, GLM, NB) had ensemble coef-
ficients which were regularised to be vanishingly small, so in practice scores
for those models need not be computed when calculating SPARRAv4. We
investigated whether performance could be improved by using separate sets
of coefficients for each SPARRAv3 cohort, but found that the improvement
was so small that we judged this to be unnecessary (SupplementaryNote 3).

Stratified performance of SPARRAv3 and SPARRAv4
To examine differences in performance more closely, we explored the
performance of SPARRAv3 and SPARRAv4 across different patient sub-
cohorts definedbyage, SIMDdeciles and the four subcohortsdefinedaspart
of SPARRAv3 development. Generally, we observed that SPARRAv4 had
better discrimination performance across all subcohorts (Fig. 3a).

Conditional performance of SPARRAv4 by admission type and
imminence
Figure 3 b displays the distribution of SPARRAv4 scores stratified according
to event status and, for thosewith anEA, according to the diagnosis thatwas
assigned to the patient during admission (Supplementary Table 5). When
comparing sampleswith andwithout an event (definedby the compositeEA
or death outcome), we observed the former had generally lower
SPARRAv4 scores. Amongst those with an event, all-cause mortality was
associated with high SPARRAv4 scores. If the event was an EA, we found
that samples with certain medical classes of admission tended to have
particularly high SPARRA scores, suggesting that such admissions can be
predicted disproportionately well (Fig. 3b): in particular, those withmental/
behavioural, respiratory and endocrine/metabolic related admissions. As
one would expect, we were less able to predict external causes of admissions
(e.g., S21: open wound of thorax26). Obstetric and puerperium-related
admissions were particularly challenging to predict by SPARRAv4. When
further analysing SPARRAv4 scores, we also found that among individuals
who had an EA during the 1 year outcome period, those with higher risk
scores were likelier to have the first EA near the start of the period (Fig. 3c).
We did not use an absolute threshold to determine who is at high risk.
Instead, we ranked individuals according to their scores and looked at those
in the top part of the ranking (i.e. with the highest risk scores).

Deployment scenario stability and performance attenuation
We next addressed two crucial aspects pertaining to practical usage of
SPARRAv4. Firstly, we assess the durability of performance for a model
trained once (at the time cutoff 1May 2014, using a one-year lookback) and
employed to generate scores at future times (1May and 1December 2015, 1
May and 1December 2016, 1May 2017), confirming it does not deteriorate.
This is the way in which SPARRAv4 will be deployed by PHS, generating
new scores each month but without repeated model updating, akin to
SPARRAv3’s monthly use without update from 2013–2023. Secondly, we
demonstrate that it is none-the-less necessary to update scores despite the
absence of model updates, since evolving patient covariates lead to the
performance attenuation of any point-in-time score.

We firstly used a static model M0 (Methods) to predict risk at future
time-points (i.e. new scores are generated as the features are updated).M0

performed essentially equally well over time (Fig. 4a–c), with no statistically
significant decrease in performance (adjusted p-values > 0.05), or improved
performance with time for all comparisons of AUROCs. With stability

Table 1 | Demographic summary for the different cohorts: the
whole Scottish population (approximately 5.8 million), those
present in the input databases at least once
(17,488,596 samples comprising 5,829,532 unique individuals),
our study cohort after exclusions (12,866,084 samples
comprising 4,835,428 unique individuals) and our study cohort
after stratifying by event status (EA or death:
1,142,169 samples comprising 667,566 unique individuals; no
EA or death: 11,723,915 samples comprising 4,670,756 unique
individuals)

Cohort

Variable Scottish
population

Input
data

After
exclusions

EA
or
death

No EA
or
death

Sex (%)

Male 48.5 48.2 45.4 46.2 45.3

Female 51.5 51.8 54.6 53.7 54.7

Age at time
cutoff (%)

0-19 16.9 21.1 19.6 11.8 20.4

20-70 71.2 64.2 64.9 50.1 66.4

71+ 11.9 14.7 15.4 38.1 13.2

SIMD
decile (%)

1-5 50.0 50.8 52.0 59.5 51.2

6-10 50.0 49.2 48.0 40.5 48.8

Any
LTC (%)

Unknown 29.4 32.1 58.8 29.5

Summary statistics were calculated using sample-level data. The EA or death cohort includes
individual-timepairs forwhich the individual hadat least oneEAordiedduring the year after the time.
LTC denotes long-term conditions (e.g. epilepsy). Data for the Scottish population is from the 2011
Census47.
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under the deployment scenario confirmed,we also explored the distribution
of scores over time. In line with expectations, the quantiles of scores gen-
erated by the static model increased as the cohort grew older (Fig. 4d). The
mean risk scores of individuals in the highest centiles of risk at t0 decreased
over time (Fig. 4e), suggesting that very high risk scores tend to be transient.
Thebivariate densities of time-specific scores (Fig. 4f) also show lower scores
to be more stable than higher scores, and that subjects ‘jump’ to higher
scores (upper left in Fig. 4f) more than they drop to lower scores (bot-
tom right).

Finally, we examined the behaviour of static scores (computed at t0
usingM0) topredict future event risk (note that themodel is also static in this
setting, though we will call it static scores for brevity). We observed that the
static scores performed reasonably well even 2-3 years after t0, although

discrimination and calibration were gradually lost (Supplementary Fig.
4a–c). More generally, we observe that scores fitted and calculated at a fixed
time cutoff had successively lower AUROCs for predicting EA over future
periods (Supplementary Fig. 4d). Although the absolute differences in
AUROC over time with static scores are small, they are visibly larger than
those seen between SPARRAv3 and SPARRAv4 (Fig. 2a), indicating that
comparisons analogous to Fig. 2e, f would similarly show much larger
differences. This affirms the need for updated scores in deployment, despite
the static model.

Feature importance
The features with the largest mean absolute Shapley value (excluding
SPARRAv3 and the features derived from the topic model) were age, the
number of days since the last EA, the number of previousA&E attendances,
and the number of antibacterial prescriptions (Table 3). Most features had
non-linear effects (see e.g. Supplementary Fig. 5a-b). For example, the risk
contribution from age was high in infancy, dropping rapidly from infancy
through childhood, then remaining stable until around age 65, and rising
rapidly thereafter (Fig. 5a).We also found anon-linear importanceof SIMD
(Fig. 5b) and number of previous emergency hospital admissions (Sup-
plementary Fig. 5c).

We further investigated the contribution of SIMD by comparing
Shapley values between features. We computed the mean difference in
contribution of SIMDto risk score between individuals in themost deprived
and least deprived SIMD decile areas, and the additional years of age which
would contribute an equivalent amount. This was generally around 10-40
additional years (Fig. 5d). In terms of raw admission rates, disparity was
further apparent: individuals aged 20 in lowest SIMD decile areas had
similar admission rates to individuals aged 70 in the 3 highest SIMD decile
areas (Fig. 5e).

When exploring the addedvalue (in termsofAUROC)of including the
features derived using the topic model (Supplementary Table 4), we
observed slightly better performance than the model without such features
(p-value = 3 × 10−29; Supplementary Fig. 5e, f). In some cases, topic features
led to substantial changes in overall score: for example, a topic relating to
skin disease contributed more than 2% to the SPARRAv4 score (roughly
equivalent to the mean contribution to the score from age for individuals
aged 75; see Fig. 5a) for around 0.43% of individuals with the resultant
SPARRAv4 scores better-calibrated than the SPARRAv3 scores, which did
not use a topic model (Supplementary Note 1). Analogously to Fig. 2e, we
also computed the additional number of samples correctly identified as
having an event amongst the top scores by the two models. Although the
absolute difference in AUROC was small, we found that the use of topic
features increased the number of EAs detected in the top 500,000 scores by
around 200.

Deployment
SPARRAv4 was developed in a remote data safe haven (DSH)
environment27 without access to internet ormodern collaboration tools (e.g.
git version control). Whilst our analysis code and a summary of model
outputs (e.g. AUROCvalues) could be securely extracted from theDSH, this
was not possible for the actual trained model due to potential leaks of
sensitive patient information28. This introduced reproducibility challenges,
since themodel had to be retrained in a different secure environment before
it was deployed by PHS. In particular, this re-development outside theDSH
had twodistinct phases. Firstly, the rawdata transformations (to convert the
original databases into a format that is suitable for ML algorithms) were
reproduced from scratch from the same source data. Once the output of the
transformations matched perfectly between the DSH and the external
environment for all features, the topic and predictive models were re-
trained. The training process could not be exactly matched due to differing
compute environments, package versions and training/validation split.
However, after training, the external models were validated by comparing
the performance (via AUROC) and the calibrationwith the results obtained
within the DSH.

Table 2 | Overall discrimination performance for SPARRAv4
and its constituent models

Model Fold 1

AUROC AUPRC Coef.

ANN 0.7613 0.346 0

Penalised GLM 0.7879 0.3657 0

Naive Bayes 0.7471 0.2233 0

RF, depth: 20 0.7927 0.3787 0.3624

RF, depth: 40 0.7845 0.3666 0

SPARRAv3 0.7812 0.3568 0

XGB depth: 4 0.7981 0.3839 0.6626

XGB depth: 8 0.7984 0.3873 2.004

XGB depth 3 0.7984 0.3864 1.363

Ensemble 0.7989 0.3888

Model Fold 2

AUROC AUPRC Coef.

ANN 0.7698 0.3479 0

Penalised GLM 0.7874 0.367 0

Naive Bayes 0.7468 0.2238 0

RF, depth: 20 0.7928 0.3799 0.3749

RF, depth: 40 0.7844 0.3678 0

SPARRAv3 0.7809 0.3584 0

XGB depth: 4 0.7975 0.3839 0.6579

XGB depth: 8 0.798 0.3881 1.162

XGB depth 3 0.7981 0.387 1.727

Ensemble 0.7987 0.3895

Model Fold 3 Mean over folds

AUROC AUPRC Coef. AUROC AUPRC

ANN 0.7693 0.3525 0 0.7668 0.3488

Penalised
GLM

0.7878 0.3661 0 0.7877 0.3663

Naive Bayes 0.7468 0.2246 0 0.7469 0.2239

RF, depth: 20 0.7926 0.3791 0.5013 0.7927 0.3792

RF, depth: 40 0.784 0.3674 0 0.7843 0.3672

SPARRAv3 0.7809 0.3572 0 0.7810 0.3574

XGB depth: 4 0.7973 0.3837 0.9105 0.7976 0.3838

XGB depth: 8 0.7978 0.3877 1.116 0.7981 0.3877

XGB depth 3 0.798 0.3867 1.418 0.7982 0.3867

Ensemble 0.7985 0.3891 0.7987 0.3891

Areas under ROC curves and PR curves by fold for each constituent predictor and ensemble.
Columns ‘Coef.’ indicate estimated coefficients (weights) in the final ensemble (see Methods
section for details). All standard errors for AUROCs are < 5 × 10−4 and for AUPRCs are < 8 × 10−4.
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Another practical issue that arises when developing and deploying a
new version of SPARRA is due to potential performative prediction effects29.
Since SPARRAv3 is already visible toGPs (whomay intervene to reduce the
risk of high-risk patients), v3 can alter observed risk in training data used for
v4, with v3 becoming a ‘victim of its own success’30,31. This is potentially
hazardous: if some risk factor R confers high v3 scores prompting GP
intervention (e.g., enhanced follow-up), then in the training data for v4, R
may no longer apparently confer increased risk. Should v4 replace v3, some
individuals would therefore have their EA risk underestimated, potentially
diverting important anticipatory care away from them. This highlights a
critical problem in the theory of model updating32, which we expand on in
Methods and illustrate in Fig. 6a–d. As a practical solution, during

deployment, GPs could receive the maximum between v3 and v4 scores.
This would avoid the potential hazard of risk underestimation, at the cost of
mild loss of AUROC (Fig. 6e) and score calibration (Fig. 6f).

Discussion
We used routinely collected EHRs from around 5.8 million Scottish resi-
dents to develop and evaluate SPARRAv4, a risk score that quantifies 1-year
EA risk based on age, deprivation (using SIMD as a geographic-based
proxy) and a wide range of features derived from a patient’s past medical
history. SPARRAv4 constitutes a real-world use of ML, derived from
population-level data and embedded in clinical settings across Scotland
(Fig. 1).
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While the increases in AUROCandAUPRC over the previous version
of SPARRA may be small (Fig. 2a, b), the improvement provided by
SPARRAv4 in termsof absolutebenefit topopulation is substantial (Fig. 2e, f).
This arises from the use of more flexible ML methods (e.g. to capture non-
linear patterns between features and EA risk) and the incorporation of fea-
tures derived by a topic model which extracts more granular information
(with respect to themanually curated features used by SPARRAv3) frompast
diagnoses and prescriptions data. The latter can be thought of as a proxy for

multi-morbidity patterns, in that topic models identify patterns of diagnoses
and prescriptions which commonly occur together33, which can be seen to
occur in ourdata (SupplementaryTable 4). Theuse of an ensemble ofmodels
also allows strongermodels andmethods todominate thefinal predictor, and
weaker models to be discarded.

Our analysis also provides insights into the epidemiology of EA risk,
highlighting predictable patterns in terms of EA type (as defined by the
recorded primary diagnosis; Fig. 3b) and the imminence of EA (Fig. 3c), in
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that those at high risk of an admission are likely to have an imminent
admission rather than equally likely to have an admission over the year-long
prediction period. Moreover, we studied the contribution of each feature,
revealing a complex relationship between age, deprivation and EA risk
(Fig. 5). Note, however, that we cannot assign a causal interpretation for any
reported associations. In particular, the link between SIMD and EA risk is
complex; SIMD includes a ‘health’ constituent24, and individuals in more-
deprived SIMDdecile areas (1:most deprived; 10: least deprived)missmore
primary care appointments34.

One important strength of SPARRAv4 is its nationwide coverage,
using existing healthcare databases without the need for additional bespoke
data collection.This, however, prevents theuseofprimary caredata (beyond
community prescribing) as it is not currently centrally collected in Scotland.
Due to privacy considerations, we were also unable to access geographic
locationdata, precluding the study of potential differences between e.g. rural
and urban areas and the use of a geographically separated test set8. Limited
data availability also limits a straightforward comparison of predictive
performance (e.g. in terms of AUROC) with respect to similar models
developed in England6,10 (this is also complicated because of differentmodel
choices, e.g.6 modelled time-to-event data but we used a binary 1-year EA
indicator). For example, we do not have information about marital and
smoking status, blood test results and family histories; all of which were
found to be predictive of EA risk by Ref. 6. Our training dataset is non-
representative of our raw dataset (which in turn is non-representative of the
Scottishpopulation, as perTable 1, as is typical of studies basedon electronic
health records35,36), but it does generally include individuals at higher
EA risk.

Beyond model development and evaluation, our work also highlights
broader challenges that arise in this type of translational project using EHR.
In particular, as SPARRAv4 has the potential to influence patient care, we
have placed high emphasis on transparency and reproducibility while
ensuring compliance with data governance constraints. Providing our code

in a publicly available repository will also allow us to transparently docu-
ment future changes to the model (e.g. if any unwanted behaviour is
identified during the early stages of deployment). SPARRAv4 also con-
stitutes a real-world example inwhich potential performative effects need to
be taken into account when updating an already deployed risk prediction
model (Fig. 6).

It is critical to emphasise that SPARRAv4 will not replace clinical
judgement, nor does it direct changes to patient management made solely
based on the score. Indeed, any potential interventions must be decided
jointly bymedical professionals and patients, balancing the underlying risks
and benefits. Moreover, lowering EA risk does not necessarily entail overall
patient benefit as e.g. long-term oral corticosteroid use in mild asthmatics
would reduce EA risk, but the corticosteroids themselves can cause an
unacceptable cost of long-term morbidity37.

Optimal translation into clinical action is a vital research area and is
essential for quantifying the benefit of such scores in clinical practice.
Indeed, any benefit is dependent on widespread uptake and the existence of
timely integrated health and social care interventions, and identification of
EA risk is only the first step in this pathway. As such, the evaluation of real-
world effectiveness for SPARRAv4 and similar risk scores is complex, and
requires amulti-disciplinary approach that considers a variety of factors (e.g.
the local health economy and the capacity to deliver pre-emtive interven-
tions in primary care). Therefore, we will continue to collaborate to achieve
successful deployment of SPARRAv4 and will carefully consider the feed-
back from GPs to improve the model and the communication of its results
further (e.g. via informative dashboards). As the COVID-19 pandemic
resolves, it will also be important to assess potential effects of dataset shift38

due to disproportionate mortality burden in older individuals and long-
term consequences of COVID-19 infections. In an era where healthcare
systems are under high stress, we hope that the availability of robust and
reproducible risk scores such as SPARRAv4 (and its future developments)
will contribute to the design of proactive interventions that reduce pressures
on healthcare systems and improve healthy life expectancy.

Methods
Ethics and data governance
The project was covered under National Safe Haven Generic Ethical
Approval (favourable ethical opinion from the East of Scotland NHS
Research Ethics Service). This study was conducted in accordance with UK
data governance regulations and the use of patient-level EHRwas approved
by the Public Benefit and Privacy Panel (PBPP) for Health and Social Care
(study number 1718-0370; approval evidenced in application outcome
minutes for 2018/19 at https://www.informationgovernance.scot.nhs.uk/
pbpphsc/application-outcomes/).Data accesswas also approvedby thePHS
National Safe Haven, through the electronic Data Research and Innovation
Service (eDRIS).

All studies have been conducted in accordance with information
governance standards; data had no patient identifiers available to the
researchers. Due to the confidential nature of the data, all analysis took place
on a remote “data safe haven”, without access to internet, software updates
or unpublished software. InformationGovernance trainingwas required for
all researchers accessing the analysis environment. Moreover, to avoid the
risk of accidental disclosure of sensitive information, an independent team
carried out statistical disclosure control checks on all data exports, including
the outputs presented in this manuscript.

SPARRAv3
SPARRAv312, deployed in 2012, uses separate logistic regressions on four
subcohorts of individuals: frail elderly conditions (FEC; individuals aged >
75); long-term conditions (LTC; individuals aged 16–75 with prior
healthcare system contact), young emergency department (YED; indivi-
duals aged 16-55 who have had at least one A&E attendance in the previous
year) and under-16 (U16; individuals aged < 16). If an individual belongs to
more than one of these groups, the maximum of the associated scores is
reported. SPARRAv3 was fitted once (at its inception in 2012) with

Table 3 | Top 20 most important variables by mean absolute
Shapley value (percentage scale)

Variable Importance

Age at time cutoff 1.530

Days since last emergency admission 0.752

Number of previous A&E attendances 0.509

Number of antibacterial prescriptions 0.376

Number of central nervous system related prescriptions 0.375

Male sex 0.373

Days since last A&E attendance 0.321

SIMD decile 0.310

Number of emergency bed days 0.299

Days since last acute admission of any type 0.285

Days since last outpatient attendance 0.257

Number of diuretic prescriptions 0.213

Number of lipid lowering drug prescriptions 0.194

Number of previous first outpatient appointments 0.190

Number of recorded long term conditions 0.173

Number of emergency admissions 0.161

Total number of filled prescriptions 0.160

Number of antianaemic prescriptions 0.159

Number of bronchodilator prescriptions 0.152

Number of BNF sections from which a prescription
was filled

0.141

Importance can be interpreted as the average percent added or subtracted to risk score due to this
factor.
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regression coefficients remaining fixed thereafter. Most input features were
manually dichotomised into two or more ranges for fitting and prediction.
The prediction target for SPARRAv3 is EA within 12 months. People who
died in the pre-prediction period, and who therefore do not have an out-
come for use in the analysis, are excluded. PHS calculated SPARRAv3 scores
and provided them as input for the analysis described herein. Any GP in
Scotland can access SPARRA scores after attaining information governance
approval.

Exclusion criteria
The exclusion criteria were applied per sample (defined as individual-time
pairs; Fig. 1c). Samples were excluded if: (i) they were excluded from
SPARRAv3 (these are individuals for which PHS did not calculate a
SPARRAv3 score and largely correspond to individuals with no healthcare
interactions or that were not covered by the four SPARRAv3 subcohorts12;),
(ii) when the individual died prior to the prediction time cutoff, (iii) when
the SIMD for the individual was unknown, or (iv) those associated to
individuals whose Community Health Index (CHI 39) changed during the
study period (‘Unmatched’ in Fig. 1). TheCHInumber is a unique identifier
which is used in Scotland for health care purposes. Rates of EA and death in
the follow-up period were generally lower in excluded samples than in
included samples (3.40% versus 8.88%, only considering exclusions which
were not due to the individual having died prior to the time cutoff; Sup-
plementaryTable 6). Exclusion criteria (i) and (ii)were applied at the sample
level, while exclusion criteria (iii) and (iv) were applied at the
individual level.

Feature engineering
Atypical entry in the sourceEHR tables (SupplementaryTable 2) recorded a
single interaction between a patient andNHSScotland (e.g. hospitalisation),
comprising a unique individual identifier (an anonymised version of the
CHInumber), the date onwhich the interaction began (admission), the date
it ended (discharge), and further details (diagnoses made, procedures per-
formed). For each sample, entries from up to three years before the time
cutoff were considered when building input features, except long-term
condition (LTC) records,which considered all data since recording began in
January 1981. A full feature list is described in Supplementary Table 3. This
includes SPARRAv312 features, e.g. age, sex, SIMD deciles and counts of
previous admissions (e.g. A&E admissions, drug-and-alcohol-related
admissions). Additional features encoding time-since-last-event (e.g. days
since last outpatient attendance) were included following findings in Ref. 6.
From community prescribing data, we derived predictors encoding the
number of prescriptions of various categories (e.g. respiratory), extending
the set of predictors beyond a similar set used in SPARRAv3. Similarly to
SPARRAv3, we also derived the total number of different prescription
categories, the total number of filled prescription items, and the number of
British National Formulary (BNF) sections from which a prescription was
filled40. FromLTC records, we extracted the number of years since diagnosis
of each LTC (e.g. asthma), the total number of LTCs recorded, and the
number of LTCs resulting in hospital admissions.

Data from prescription records and recorded diagnoses tend to be
sparse, in that most medications and diagnoses will only be recorded for a
small proportion of the population.We used our topicmodel20 to assimilate
this data, by jointly modelling prescriptions and diagnoses using 30 topics
(effectively clusters of prescriptions and diagnoses), considering samples as
‘documents’ and diagnoses/prescriptions as ‘words’. This enabled a sub-
stantial reduction in feature dimensionality, given the number of diagnoses/
prescription factor levels. Using the map from documents to topic prob-
abilities, we used derived topic probabilities as additional features in
SPARRAv4, which corresponded to sample-wisemembership of each topic.

Choice of prediction target for SPARRAv4
The primary target for SPARRA is to predict whether an individual will
experience an EA within 12 months from the prediction cutoff. A problem
arises due to the deaths during the follow-up year for which the target may

be unknown (e.g. if someone died within 6 months, without a prior EA).
Broadly, there are four options for how to treat such individuals during
model training and testing:
1. Exclude them from the dataset
2. Treat them according to whether they had an EA before they died
3. Treat them as no EA
4. Treat them as an EA

It would also be possible to code death in follow-up differentially; for
instance, coding in-hospital death as EA and in-community death as
exclusions or non-EA. Our choice not to code all deaths identically is in the
interests of non-maleficence. If an individual is at risk of imminent death in
the community they will typically be admitted to hospital if it is possible to
react in time, with a possible exemption if this is not in their best interests.

Option 1 would exclude the most critically ill individuals from the
dataset and hence was discarded. Option 2 would effectively mean such
individuals have a follow-up time less than a year, and would classify
individuals who died without a hospital admission as having had a ‘desir-
able’ outcome. Option 3 would effectively classify death as a ‘desirable’
outcome, so we avoided it. The consequences from coding community
deaths as non-EA would be severe, as it could mean that healthier indivi-
duals at risk of sudden death are either coded as non-EA or excluded from
the dataset, potentially leading to inappropriately low scores being assigned
to these individuals. This could draw treatment away from individuals in
high need. Instead, option 4 allows the general description of the target as ‘a
catastrophic breakdown in health’. In this case, ourmodel would not be able
to distinguish community deaths from emergency admissions: we may
assign high ’EA’ scores to the very old and terminally ill, when in fact these
individuals may be treated in the community rather than admitted. The
potential harm from this option is small. It couldmean that such individuals
are excessively treated rather than palliated, but since palliation over treat-
ment is an active decision41 and such individuals are generally known to be
high-risk it is unlikely that the SPARRA score will adversely affect any
decisions in this case. As the philosophy of the SPARRA score is to avert
breakdowns in health, of which death can be considered an example, we
decided touse a composite prediction target (EAordeathwithin12months)
which is consistent with option 4.

ML prediction methods
For SPARRAv4, we had no prior belief that any ML model class would be
best, so considered a range of binary prediction approaches (hereafter
referred to as constituent models). The following models were fitted using
the h2o42 R package (version 3.24.0.2): an artificial neural network (ANN),
two random forests (RF) (depth 20 and 40), an elastic net generalised linear
model (GLM) and a naive Bayes (NB) classifier. Thexgboost43 R package
(version 1.6.0.1) was used to train three gradient-boosted trees (XGB)
models (maximum tree depth 3, 4, and 8). Hyper-parameter choices are
described in Methods. SPARRAv3 was used as an extra constituent model.

Rather than selecting a single constituent model, we used an ensemble
approach. Similar to19, we calculated an optimal linear combination (L1-
penalised regression, using the R package glmnet, version 4.1.4) of the
scores generated by each constituentmodel. Ensemble weights were chosen
to optimise theAUROC.Finally, wemonotonically transformed thederived
predictor to improve calibration by inverting the empirical calibration
function (Supplementary Note 2).

Data imputation
As all non-primary care interactions withNHS Scotland are recorded in the
inputdatabases, therewasnomissingness formost features. For ‘time-since-
interaction’ type features, samples for which there was no recorded inter-
action were coded as twice the maximum lookback time. There was minor
non-randommissingness in topic features (~ 0.8%) due to individuals in the
dataset with no diagnoses or filled prescriptions, for whom topic prob-
abilities could not be calculated. We used mean-value imputation in the
ANN and GLM models (deriving mean values from training data only),
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used missingness to inform tree splits (defaults in Ref. 42) in RF, used
sample-wise imputation in XGB (as per43) and dropped during fitting
(default in Ref. 42) in NB (omitted missing values for prediction). All
imputation rules were determined using training sets only.

Particular care was required for features encoding total lengths of
hospital stays. In some cases, a discharge datewas not recorded,which could
lead to an erroneous assumption of a very long hospital stay (from admis-
sion until the time cutoff). To address this, we truncated apparently spur-
iously long stays at data-informed values (Supplementary Note 4).

Hyperparameter choice for ML prediction methods
We used a range of constituent models. Unless otherwise specified,
hyperparameters were set as the software defaults. When tuned, hyper-
parameter values were chosen to optimise the default objective functions
implemented for each method: log-loss or the ANN, RFs and GLM, like-
lihood for the NB model; and a logistic objective for the XGB trees. In all
cases, hyperparameters were determined by randomly splitting the relevant
dataset into a training and test set of 80% and 20% of the data respectively.
Details for each method are provided below. Only limited hyperparameter
tuning was possible due to the restricted computational environment in the
data safe haven (see Results).

SPARRAv3. SPARRAv3 scores were calculated by PHS using their
existing algorithm12.

Artificial neural network (ANN). We used a training dropout rate of 20%
to reduce generalisation error.We optimised over the number of layers (1
or 2) and the number of nodes in each layer (128 or 256).

Random forest (RF). We fitted two RF: one hadmaximum depth 20 and
500 trees, and the other hadmaximumdepth 40 and 50 trees (both taking
a similar time to fit).

Gradient-boosted trees (XGB). We fitted three boosted tree models
with threemaximumdepths: 3, 4, and 8. For the deeper-treemodel, we set
a low step size shrinkage η= 0.075 and a positiveminimum loss reduction
γ = 5 in order to avoid overfitting. In the other two models, we used
default values of η = 0.3, γ = 0.

Naive Bayes (NB). The only hyperparameter we tuned was a Laplace
smoothing parameter, varying between 0 and 4.

Penalised Generalised linear model (GLM). We optimised L1 and L2
penalties (an elastic net), considering total penalty (L1+ L2) in 10

−{1,2,3,4,5},
and a ratio L1/L2 in {0, 0.5, 1}.

Cross-validation
We fitted and evaluated SPARRAv4 using three-fold cross-validation
(CV). We considered three-fold cross validation acceptable in our case
given the size of our dataset44. This was designed such that all elements of
the model evaluated on a test set were agnostic to samples in that test set.
Individuals were randomly partitioned into three data folds (F1, F2 and
F3). At each CV iteration, F1 and F2 were combined and used as a
training dataset, F3 was used as a test dataset. The training dataset
(F1+F2) was used to fit the topic model and to train all constituent
models (except SPARRAv3, whose training anyhow pre-dates the data
used here). The ensemble weights and re-calibration transformation
were learned using F1+ F2, i.e. without using the test set from the test set
(Supplementary Note 2).

Predictive performance
Our primary endpoint for model performance was AUROC. We also
considered area-under-precision-recall curves (PRC) and calibration
curves. We plotted calibration curves using a kernelised calibration esti-
mator (Supplementary Note 5).

For simplicity, figures show ROC/PRC that were calculated by com-
bining all samples from the three test CV folds (that is, all scores and
observed outcomes were merged to draw a single curve). Quoted AUROC/
AUPRCvalueswere calculated as an average across the three testCVfolds to
avert problems from between-fold differences in models45. For ease of
comparison, we also used mean-over-folds to compute quoted AUROCs
and AUPRCs for SPARRAv3, although the latter was not fitted to our data.

Deployment scenario stability and performance attenuation
Using the same analysis pipeline as for the development of SPARRAv4, we
trained a staticmodelM0 to an early time cutoff (t0=1May 2014), and using
one year of data prior to t0 to derive predictors (the restricted lookback is the
only deviation from the actualmodel pipeline, due to limited temporal span
of the training data).

We studied the performance of M0 as a static model to repeatedly
predict risk at future time cutoffs, whichmirrors the way in which PHS will
deploy the model. To do this, we assembled test features from data 1 year
prior to t1=1 May 2015, t2=1 Dec 2015, t3=1 May 2016, t4=1 Dec 2016, and
t5=1 May 2017, applying M0 to predict EA risk in the year following each
time-point. In this analysis, the comparison of thedistributionof scores over
time only considered the cohort of patients who were alive and had valid
scores at t1,…, t5.

To ensure a fair comparisonwhen evaluating the performance of static
scores (computed at t0 usingM0) to predict future event risk (at t1,…, t5), we
only considered a subsample of 1million individuals with full data across all
time-points, selected such that global admission rates matched those at t0.

Assessment of feature importance
We examined the contribution of feature to risk scores at an individual level
by estimating Shapley values21 for each feature. For simplicity, this calcu-
lation was done using 20,000 randomly-chosen samples in the first cross-
validation fold (F1).We treated SPARRAv3 scores as fixed predictors rather
than as functions of other predictors.

We also assessed the added value of inclusion of topic-model derived
features, which summarise more granular information about the previous
medical history of a patient with respect to those included in SPARRAv3.
For this purpose,we refitted themodel to F2+F3with topic-derived features
excluded from the predictormatrix.We compared the performance of these
models using F1 as test data. We compared the performance of predictive
models with and without the features derived from the topic model by
comparing AUROC values using DeLong’s test46.

Model updating in the presence of performative effects
We aim to produce the SPARRA score to accurately estimate EA risk over a
year under normal medical care. In other words, the score should represent
the EA risk if GPs do not already have access to such a risk score. Because
GPs see a SPARRA score (SPARRAv3) andmay act on it, the observed risk
may be lower than predicted - the score may become a ‘victim of its own
success’30,31 due to performative effects29. Unfortunately, since the
SPARRAv3 score iswidely available to ScottishGPs, andmaybe freely acted
on,we cannot assess the behaviour of themedical system in its absence. This
is potentially hazardous32.

Formally, at a given fixed time, for each individual, the value of ‘EA in
the next 12 months’ is a Bernoulli random variable. The probability of the
event for individual i is conditional on a set of covariates Xi derived from
their EHR. We denote v3(Xi), v4(Xi) the derived SPARRAv3 and
SPARRAv4 scores as functions of covariates, and assume a causal structure
shown in Fig. 6 (for simplicity, we assume there are no unobserved con-
founders but the same argument applies in their presence). With no
SPARRA-like predictive score in place, there is only one causal pathway
Xi → EA. It is to this system (coloured red) that v3 was fitted. Here, v3(Xi)
estimates the ‘native’ risk P(EA | Xi) (ignoring previous versions of the
SPARRA score, which covered < 30%of the population). Although v3(Xi) is
determined entirely by Xi, the act of distributing values of v3(Xi) to GPs
opens a second causal pathway from Xi to EA (Fig. 6) driven by GP
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interventions made in response to v3(Xi) scores. It is to this system
(coloured red) that SPARRAv4 is fitted. Hence, v4(Xi) is an estimator of
P(EA | Xi, v3(Xi)), a ‘conditional’ risk after interventions driven by
v3(Xi) have been implemented.

If SPARRAv4 naively replaced SPARRAv3 (Fig. 6), we would be using
v4(Xi) to predict behaviour of a system different to that on which it was
trained (Fig. 6). To amend this problem, we propose to use SPARRAv4 in
conjunction with SPARRAv3 rather than to completely replace it (Fig. 6).
Ideally, GPs would be given v3(Xi) and v4(Xi) simultaneously and asked to
firstlyobserve and act on v3(Xi), thenobserve and act on v4(Xi), therebyonly
using v4(Xi) as per Fig. 6. This is impractical, so instead, we propose to
distribute a single value (given by themaximumbetween v3(Xi) and v4(Xi)),
avoiding thepotential hazard of risk underestimation, at the cost ofmild loss
of score calibration (Fig. 6).

Data availability
Raw data for this project are patient-level EHR, which have been
anonymised for confidentiality ahead of any analysis being undertaken.
Enquiries about access to this data may be directed to phs.e-
dris@phs.scot. However, the summary data required to draw fig-
ures included in our manuscript is publically available from our GitHub
repository. All publicly available data summaries were reviewed by an
independent team to avoid the risk of accidental disclosure of sensitive
information.

Code availability
All analysis code and co-ordinates required to reproduce our Figures are
available in github.com/jamesliley/SPARRAv4 This manuscript
conforms to the TRIPOD guidelines23 (Supplementary Table 1).
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