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A B S T R A C T

Positional reasoning is the process of ordering an unsorted set of parts into a consistent structure. To address
this problem, we present Positional Diffusion, a plug-and-play graph formulation with Diffusion Probabilistic
Models. Using a diffusion process, we add Gaussian noise to the set elements’ position and map them to a
random position in a continuous space. Positional Diffusion learns to reverse the noising process and recover
the original positions through an Attention-based Graph Neural Network. To evaluate our method, we conduct
extensive experiments on three different tasks and seven datasets, comparing our approach against the state-
of-the-art methods for visual puzzle-solving, sentence ordering, and room arrangement, demonstrating that
our method outperforms long-lasting research on puzzle solving with up to +17% compared to the second-
best deep learning method, and performs on par against the state-of-the-art methods on sentence ordering
and room rearrangement. Our work highlights the suitability of diffusion models for ordering problems
and proposes a novel formulation and method for solving various ordering tasks. We release our code at
https://github.com/IIT-PAVIS/Positional_Diffusion.
1. Introduction

The ability to arrange elements is a fundamental human skill that
is learned during the early stages of development and is essential for
carrying out daily tasks. Such ability generalizes across different tasks.
Researchers suggest that childhood games, such as Jigsaw puzzles,
LEGO© blocks, and crosswords play a critical role in building the
foundations of reasoning over the correct arrangement of things [1].
While each of these games is tackling a very specific problem, hu-
mans have remarkable skills in ‘‘putting an element in the correct place’’
regardless of the dimensionality and the information modality of the
problems, such as 1-dimensional (1𝐷) for arranging texts or 2𝐷 for
solving puzzles. We refer to this ability as positional reasoning and
formulate it as an ordering problem, i.e., assigning a correct position
to each element of an unordered set. Positional reasoning involves
numerous real-world applications, e.g., art restoration. Ancient frescoes
and old texts are usually fragmented and may have missing parts [2].
Computation solutions help archaeologists tackle the problem with
classical positional reasoning methods [3,4].
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The difficulty in positional reasoning lies in the combinatorial na-
ture of ordering a set of elements into a coherent (given) structure. A
robust ordering method must be invariant to the input sets’ random
permutations. Previous solutions have been designed to be problem-
specific. For example, methods addressing Jigsaw puzzle operate on a
2𝐷 grid by jointly optimizing similarities and permutations [5] or by
learning first an image representation complaint with the set of image
tiles and then solving a standard Hungarian approach for matching the
pieces [6].

Alternatively, sentence ordering is a 1𝐷 ordering NLP problem
where a set of sentences must be ordered by exploiting pairwise simi-
larities and attention mechanisms [7,8] to form a coherent paragraph.
Although all these problems involve finding a correct ordering of a set,
current solutions are customized to the data modality and contextual
information.

We propose Positional Diffusion, a unified model for positional rea-
soning that eliminates the need for architecture re-design when dealing
with different input modalities or various dimensionalities of the posi-
tioning problem (Fig. 1). In this approach, we represent the elements in
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Fig. 1. Positional Diffusion is a unified architecture based on Diffusion Probabilistic
Models following a graph formulation. It can solve several ordering problems with
different dimensionality and multimodal data.

the set as nodes of a complete graph to achieve permutation invariance.
We solve this problem by regressing the position of each element
in a bounded continuous space. Our approach is based on Diffusion
Probabilistic Models (DPMs) to estimate each element’s position (and
thus ordering) in the set. Using a diffusion formulation during training,
we inject noise into the node positions. To learn the reverse process
that recovers the correct positions, we employ Graph Neural Networks
(GNNs) [9,10], and we train an Attention-based GNN. The relationships
among the nodes in the graph are unknown, as we do not assume
any prior knowledge about elements’ neighborhood. Thus, each node
of the graph is connected to all others and the attention mechanism
assigns an importance weight to each neighbor before the aggregation
phase. At inference, we initialize the graph with sampled positions
and iteratively retrieve the correct ordinal positions by conditioning
on nodes’ features.

In this paper, we demonstrate the effectiveness of our formula-
tion and method with three fundamental tasks: (i) puzzle solving, a
2𝐷 positioning task with visual inputs, where we compare Positional
Diffusion to both optimization and learning-based methods, scoring
the new State-Of-The-Art (SOTA) performance among all methods with
a margin up to +18% compared to the second-best learning-based
method; (ii) sentence ordering, a 1𝐷 positioning task with textual inputs,
where we obtain performance comparable to the SOTA

without the need of re-training a Large Language Model; and (iii)
Room Rearrangement, a 2𝐷 positioning task with abstract object repre-
sentations as inputs, where we show the benefits of Positional Diffusion
formulation over an iterative denoising strategy on 3D Front [11]
Main Contributions and Novelty of the Work:

• We incorporate a graph formulation with DPMs to address the
positional reasoning problem. The graph formulation addresses
the invariance to input set size and permutations, while the
DPMs learn to restore the positions via the noising and de-noising
processes;

• We propose a task-agnostic method, Positional Diffusion, that im-
plements an Attention-based GNN following a DPM formulation
to address positional reasoning in various tasks in a plug-and-play
manner;

• We show that, without task-specific customization, Positional Dif-
fusion can generalize and achieve SOTA or on-par performance
among existing task-specific methods.

2. Related works

We consider related works on recent developments of Diffusion
Probabilistic Models and the SOTA methods of the three representative
tasks for positional reasoning: puzzle solving, sentence ordering, and room
rearrangement.
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Diffusion probabilistic models. Diffusion Probabilistic Models (DPMs)
solve the inverse problem of removing noise from a noisy data distri-
bution [12]. They gained popularity thanks to their impressive results
on image synthesis and their elegant probabilistic interpretation [12].
We propose a formulation of the forward and reverse diffusion process
for coherently sorting a shuffled input by treating the problem as either
𝑛-dimensional vectors sampled from a Gaussian distribution.

Positional reasoning tasks. Literature on positional reasoning is vast and
assumes different connotations depending on the task and modalities
involved. Our study focuses on positional reasoning as an ordering task,
i.e., sorting shuffled elements into a coherent output.

(i) Jigsaw Puzzles [13] interested the optimization community with
puzzles as a benchmark for studying image ordering with intrinsic
combinatorial complexity [14]. The most successful strategies are re-
lated to greedy approaches using hand-crafted features [15,16] with
robustness to noise and missing pieces [17] and solving thousands of
pieces. This task has also been used as auxiliary task for improving
visual encoders [18]

(ii) Sentence ordering involves positional reasoning on textual con-
tents, which aims to order sentences into a coherent narration. Several
proposed approaches utilize attention-based pointer networks [19],
topological sorting [20], deep relational modules [21], and constraint
graphs to enhance sentence representations [22]. Other works also
re-framed the problem as a ranking problem [23], while [24] formu-
lated sentence ordering as a conditional text generation task using a
sequence-to-sequence model [25].

(iii) Room Rearrangement is the task of ordering objects in a scene
into an organized arrangement that is compliant with common sense.
Robotics and embodied AI communities recently showed interest in the
problem of re-arranging objects in a room to a specific goal [26]. Wei
et al. [27] narrowed the problem by focusing on predicting coherent
locations for objects in a messy room without any input goal.

Differently from previous literature in computer vision, natural lan-
guage processing, and multimodal learning, we interpret data shuffling
as the noise injection of DPMs’ forward process and exploit the reverse
process of a DPM to retrieve the final position of each element, that
being a sentence, a puzzle piece, an object, or a sentence-image pair.
To the best of our knowledge, our Positional Diffusion is the first DPM-
based solution for positional reasoning that can work with different
data modalities and positioning dimensions.

3. Positional diffusion

We define positional reasoning as a restoring process that re-
establishes order from shuffled unstructured data distribution in a
Euclidean space R𝑛, where 𝑛 = 1 for 1𝐷 problems such as sentence
ordering, 𝑛 = 2 for 2𝐷 tasks like puzzle pieces arrangement. Given
an unordered set of 𝐾 elements with some task-specific features 𝐇 =
{𝐡1,… ,𝐡𝐾},𝐡𝑖 ∈ R𝑑 , where 𝑑 is the dimension of the features, and
with ground-truth positions 𝐗 = {𝐱1,… , 𝐱𝐾}, 𝐱𝑖 ∈ R𝑛, our network
estimates a set of positions �̂� = {�̂�1,… , �̂�𝐾}, �̂�𝑖 ∈ R𝑛, that matches
the real position of each element. Because we use an iterative diffusion
process defined by 𝑇 steps, we use subscript 𝑡, to refer to inputs/outputs
or features used in the 𝑡 step of the diffusion chain.

In our method, we adopt a graph-based approach that enables
interactions among different elements and accommodates a variable
number of input samples. In particular, we define a complete graph
𝐺𝑁 with 𝑁 vertices and 𝑁(𝑁−1)

2 edges [28], where each data point is
represented as a node with an associated feature vector 𝑧𝑖𝑡 = [𝐱𝑖𝑡;𝐡

𝑖]⊤.
As shown in Fig. 2, Positional Diffusion uses the DPMs formulation to
iteratively restore the position of the unordered data from a randomly
sampled position and use GNNs to work with our graph-structured data.
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Fig. 2. For each task, the input initial set (i) is a permuted version of the solution. Each element of the set is correlated with an initial sample location (ii) 𝐱𝑖𝑇 (in 1𝐷 or 2𝐷) and
an encoding 𝐡𝑖 from a task-specific backbone (iii). During the training of the diffusion steps (iv) we apply a noising process to each element position 𝐱𝑖 to obtain a noisy position
𝐱𝑖𝑡 . We concatenate 𝐡𝑖 with the noisy positions 𝑥𝑖𝑡 to create the features and encode them as node features in a fully connected graph. We use a GNN with an attention mechanism
to generate the less noisy positions 𝐱𝑖𝑡−1. During inference, for each element, we sample an initial position 𝐱𝑖𝑇 from  (0, 1) or set it to 𝟎, and use Positional Diffusion for the full
reverse process to obtain the estimated positions �̂�𝑖0.
Table 1
Results for puzzle solving on PuzzleCelebA and PuzzleWikiArts. PO-LA was not assessed for larger sizes due to the computational limitations of
its memory footprint. †Trained on individual puzzle sizes.
Dataset PuzzleCelebA PuzzleWikiArts

6 × 6 8 × 8 10 × 10 12 × 12 6 × 6 8 × 8 10 × 10 12 × 12

Paikin and Tal [17] 99.12 98.67 98.39 96.51 98.03 97.35 95.31 90.52
Pomeranz et al. [16] 84.59 79.43 74.80 66.43 79.23 72.64 67.70 62.13
Gallagher [15] 98.55 97.04 95.49 93.13 88.77 82.28 77.17 73.40
PO-LA [5]† 71.96 50.12 38.05 – 12.19 5.77 3.28 –
Ganzzle [6] 72.18 53.26 32.84 12.94 13.48 6.93 4.10 2.58

Positional Diffusion w/o Diffusion Process 99.60 95.20 98.62 96.55 98.52 95.30 88.76 75.84
Positional Diffusion -  (0, 1) sampling 99.72 96.78 99.28 98.55 98.52 97.15 94.34 90.26
Positional Diffusion - Zero-centered initialization 99.77 97.53 99.37 98.88 99.12 98.27 96.28 93.26
3.1. Network architecture

To solve the reverse process, we train a GNN that given noisy
positions 𝐗𝑡, features 𝐇 and a time step 𝑡, it outputs the noise 𝜖𝑡
that is used to calculate 𝐗𝑡−1. Our network operates with element
features 𝐡𝑖 that can be extracted from any pre-trained task-specific
backbone. We apply the Unified Message Passing Model (UniMP), a
GNN architecture introduced by [29], to process 𝐺𝑁 . UniMP adopts a
Multi-Headed Attention mechanism to adaptively learn and control the
amount of information that is gathered from neighboring nodes. Multi-
head attention is well-suited for graph contexts where we lack prior
knowledge of node relationships, i.e., we cannot define an adjacency
matrix 𝐴.

3.2. Forward and reverse process

Building upon [12], we define the forward process as a fixed Markov
chain that adds Gaussian noise to each input’s starting position 𝐱𝑖0 = 𝐱𝑖
according to a Gaussian distribution. At timestep 𝑡 ∈ [0, 𝑇 ], we adopt
the variance 𝛽𝑡 according to a linear scheduler and define 𝑞(𝐱𝑡|𝐱0) as:

𝑞(𝐱𝑖𝑡|𝐱
𝑖
0) =  (𝐱𝑖𝑡;

√

𝛼𝑡𝐱𝑖0, (1 − 𝛼𝑡)𝐈), (1)

where 𝛼𝑡 = 1 − 𝛽𝑡, 𝛼𝑡 =
∏𝑡

𝑠=1 𝛼𝑠. Using this formulation, we can obtain
a noisy position 𝐱𝑖𝑡 from 𝐱𝑖0. The reverse process retrieves the correct
position for each data point using the noisy positions 𝐱𝑖𝑡, and element
features 𝐡𝑖. We adopt DDIM [30] algorithm and sample �̂�𝑡−1 as:

�̂�𝑡−1 =
√

𝛼𝑡−1

(

𝐱𝑡 −
√

1 − 𝛼𝑡𝜖𝜃(𝐱𝑡, 𝐭,𝐡)
√

)

𝛼𝑡
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+
√

1 − 𝛼𝑡−1 − 𝜎2𝑡 ⋅ 𝜖𝜃(𝐱𝑡, 𝐭,𝐡) + 𝜎𝑡𝜖,

where 𝜖𝜃(𝐱𝑡, 𝐭,𝐡) is the estimated noise that has to be removed from 𝐱𝑡 to
recover �̂�𝑡−1. In the formula, we omit the superscripts 𝑖 as the network
operates on all elements simultaneously as a graph. DDIM introduces
the parameter 𝜎 to control the stochastic sampling. As the ordering
tasks have only one correct arrangement, we set 𝜎 = 0 to make the
sampling deterministic.

Our method is trained using the loss for diffusion models introduced
in [12]:

𝐿simple(𝜃) = E𝑡,𝐱0 ,𝜖[‖𝜖 − 𝜖𝜃(
√

𝛼𝑡𝐱0 +
√

1 − 𝛼𝑡𝜖
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐱𝑡

, 𝐭,𝐡)‖].

We calculate 𝐱𝑡 in closed form from 𝐱0, using the reparametrization
trick with the noise vector 𝜖. The network learns to minimize the Mean
Squared Error between 𝜖 and the output 𝜖 = 𝜖𝜃(𝐱𝑡, 𝐭,𝐡).

3.3. Zero-centered initialization

In generative diffusion models, the initial 𝐗𝑇 set during the reverse
process is sampled from  (0, 1). This noise is used in standard image
generation tasks to introduce stochasticity for creating different images.
However, since the solution in positional reasoning represents the final
arrangement, it should only be influenced by the input features 𝐇 and
not by the initial 𝐗𝑇 . Moreover, to guarantee a unique solution, it is
essential to ensure that all elements have an equal probability of being
moved to the correct positions without introducing initial noise that
could generate a different scenario from the correct one. In this regard,
the mean of the noise distribution is the optimal starting position. We
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Table 2
Results for sentence ordering compiled from [24]. † Requires fine-tuning BART. ‡ Requires fine-tuning BERT.

Method
NeurIPS Abstract Wikipedia movie plots ROCStories

var. length, avg. 6 (max 15) var. length, avg. 13.5 (max 20) fixed length, avg. 5 (max 5)

Acc PMR 𝜏 Acc PMR 𝜏 Acc PMR 𝜏

TGCM [33] 59.43 31.44 0.75 – – – – – –
RankTxNet‡ [34] – 24.13 0.75 – – – – 38.02 0.76
B-TSort‡ [20] 61.48 32.59 0.81 – – – – – –
BERSON‡ [21] 73.87 48.01 0.85 – – – 82.86 68.23 0.88
Bart (seq2seq)† [24] 64.35 33.69 0.78 30.01 18.88 0.59 80.42 63.50 0.85
Re-BART† [24] 77.41 57.03 0.89 42.04 25.76 0.77 90.78 81.88 0.94

Positional Diffusion w/o Diffusion Process 70.31 36.58 0.84 48.31 22.51 0.61 71.78 44.59 0.80
Positional Diffusion -  (0, 1) sampling 64.90 29.10 0.78 47.40 21.52 0.62 56.00 25.00 0.61
Positional Diffusion - Zero-centered initialization 74.44 45.24 0.85 50.41 25.00 0.63 75.12 54.80 0.82

Positional Diffusion - Zero-centered initialization w/ Re-BART backbone 71.12 39.31 0.85 52.15 29.38 0.69 80.11 59.95 0.86
o
t
a
m

propose to set 𝐱𝑇 = 𝟎 at the beginning of the reverse process, and show
he benefits of this solution through extensive experiments and abla-
ions (see Appendix). We use zero-centered initialization throughout
he experiments, unless specified otherwise.

. Experimental evaluation

We evaluate Positional Diffusion on three tasks that require posi-
ional reasoning on different dimensions and modalities: (i) puzzle
olving operates with visual data to order the shuffled image patches
nto a complete image in 2𝐷; (ii) sentence ordering operates with
extual data that aims to order the shuffled sentences in 1𝐷 to form

complete and reasonable paragraph; and (iii) room rearrangement
perates with objects’ bounding-boxes and classes to re-arrange the
bjects of a messy room into the most likely coherent configuration
n a 2𝐷 floor plan. We report additional details about the adopted
atasets in the Appendix. The following sections introduce the detailed
xperimental setup for each task regarding the evaluation protocols,
erformance metrics, and comparisons.

Throughout this section, tables report the best results in boldface
nd the second-best underlined.

4.1. Puzzle solving

We follow the experimental setup in Ganzzle [6] and report the
results of Positional Diffusion in comparison to optimization-based and
eep learning-based methods on PuzzleCelebA, based on CelebA-HQ

[31], and PuzzleWikiArts, based on WikiArts [32] (see Appendix for
more details). These two datasets feature many images, allowing for
method training with deep learning, while other puzzle datasets typi-
cally only contain ≤ 100 images. For both datasets, we test with puzzles
of 6, 8, 10, and 12 squared size. As the puzzle size increases, the
problem becomes more difficult, as the permutations increase and each
piece contains less discriminative information.

The Appendix includes an extensive ablation study, qualitative
results, and additional experiments with missing pieces and eroded
patches.

Evaluation metrics. We evaluate the performance of Positional Diffusion
using the Direct Comparison Metric [13], an accuracy that indicates the
number of correctly ordered pieces over the full test set.

Implementation details. As input an image is provided in 𝑛 × 𝑛 patches,
resulting a total of 𝐾 = 𝑛2 elements. We divide a 2𝐷 target space with
a range of (−1,−1), (1, 1) into a grid of 𝑛×𝑛 cells. We use the centers of
the cells as ground truth positions 𝐗 for the patches. The input data for
puzzle solving are the pixel values for each patch, resized to 32 × 32.
We use EfficientNet [35] as the task-specific backbone to extract the
patch visual features 𝐡𝑖 and we train the diffusion model with 𝑇 = 300
and sample it with inference ratio 𝑟 = 10. Regarding the details of
UniMP, we configure it with 4 stacked graph attention layers, each
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employing 8 attention heads. We train a single model with all puzzle
sizes simultaneously. At inference, we arrange the patches by mapping
each estimated patch position �̂�𝑖 to a cell in the grid.

We measure the distance between each patch position and cells’
centers and assign each patch to its closest cell, mapping each cell
to at most one patch. By using a greedy approach that prioritizes the
assignment between cell-patch pairs starting from those with the lowest
distance, the most confident prediction will be assigned first, increasing
the prediction robustness.

Comparisons. We compared Positional Diffusion against a set of SOTA
methods for puzzle solving. Optimization methods [15–17] are hand-
crafted methods for puzzle solving. They involve computing a compat-
ibility score between all pairs of pieces to predict which are neighbors.
PO-LA [5] uses a neural network to learn a differentiable permutation
invariant ordering cost between a set of patches. Ganzzle [6] employs
a GAN to generate a hallucinated version of the full image from the
set of pieces and solves the puzzle as an assignment problem with the
Hungarian algorithm. Positional Diffusion w/o Diffusion Process shares
the same architecture with Positional Diffusion but predicts the positions
of each piece in one step. We present two variants of Positional Diffusion,
where one uses the standard DPM random sampling from  (0, 1), and
the other uses the proposed zero-centered initialization for sampling.

Table 1 presents the results of all methods for solving puzzles
of various sizes with the two datasets. On PuzzleCelebA, both the
Positional Diffusion w/o Diffusion Process and Positional Diffusion out-
perform the previous SOTA methods on almost all puzzle sizes. In
particular, Positional Diffusion scores the new SOTA performance among
learning-based methods on all puzzle sizes, with a significant improve-
ment against the previous best-performing method Ganzzle [6], even
outperforming classical optimization approaches.

PuzzleWikiArts contains puzzles that are harder to solve, as they
come from paintings with different pictorial styles and subjects, with
little common patterns. Nevertheless, Positional Diffusion consistently
btains the best performance among all methods, even outperforming
he optimization-based methods, which require hand-crafted features
nd greedy solutions, on all puzzle sizes. Using the same trained
odel, Positional Diffusion with the zero-centered initialization consis-

tently obtains better performance than using the standard DPM random
sampling from  (0, 1).

Since the Direct Comparison Metric is computed at the patch level,
it does not reflect the performance of solving a puzzle as a whole.
For example, the Positional Diffusion w/o Diffusion Process positioned
75.84% patches correctly on PuzzleWikiArt 12 × 12, but it only solved
6.64% of the puzzles, while Positional Diffusion with 93.26% correctly
positioned patches solved 69.32% of puzzles.

Computation analysis. We analyze the average computational time for
solving 6 × 6 puzzles across all methods and we report results in
Table 3. Positional Diffusion’s time requirements are higher than the
other deep-learning baselines when performing 300 steps with an
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Table 3
Computation time for solving a 6 × 6 puzzle averaged over 24 samples.

Method Time (ms)

Optimization based
Paikin and Tal 27.47
Pomeranz et al. 221.64
Gallagher 235.19

Learning based

PO-LA 22.38
Hung-Perm 9.97
Ganzzle 25.16
Positional Diffusion 84.38

inference ratio of 10, while being computationally advantageous with
respect to optimization approaches. Positional Diffusion trades the ad-
ditional computation time for achieving state-of-the-art performances,
outperforming optimization based approaches.

4.2. Sentence ordering

For Sentence Ordering, we follow the experimental setup in [24] and
report the results of all compared methods on three common textual
datasets (dataset statistics are in the Appendix.): NeurIPS Abstract is
obtained from the abstracts of scientific articles featured at NeurIPS;
Wikipedia Movie Plots is a collection of plots of popular movies that are
available on Wikipedia; ROCStories is a collection of 5 sentences stories
regarding everyday events.

Evaluation metrics. We quantify the sentence ordering performances
with three metrics as in [24]:
• Accuracy (Acc.) is the percentage of correctly predicted sentence

positions in an input text.
• Perfect Match Ratio (PMR) is the percentage of the number of correctly

ordered texts over the total number of texts in the test set. Differ-
ently from Acc. which is calculated over individual sentences, PMR
measures if the full input text is ordered correctly.

• Kendall’s Tau (𝜏) measures the correlation between the ground-truth
orders of sentences and the predicted ones, defined as: 𝜏 = 1 −
(2(#Inversions)

(𝐾
2

)−1
), where 𝐾 is the number of sentences in an input

text, and #Inversions is the number of discordant pairs.
We report the metrics averaged over the test set. Higher is better.

Implementation details. We divide a text into a variable number 𝐾
sentences with shuffled orders as the input. To assign the correct
positions 𝐱0 to each sentence, we evenly sample 𝐾 positions over the
interval (−1, 1), and assigned them to the divided sentences based on
their position in the text. The starting sentence will have the smallest
position, while the ending sentence will have the largest position. We
use a frozen pre-trained BART [25] language model for our task-specific
feature backbone, to which we added a learnable transformer encoder
layer at the end. For each sentence, we prepend a ⟨𝑏𝑜𝑠⟩ token and pass
the sentence to BART to obtain the token feature as the task-specific
feature 𝐡𝑖 in Positional Diffusion. We train our method with 𝑇 = 300
and sample with inference ratio 𝑟 = 10. The architecture configuration
remains consistent with that reported for the puzzle solving task.

Comparisons. We conducted a comprehensive evaluation of Positional
Diffusion against the current best-performing methods BERSON [21],
Re-BART [24], and BART for seq2seq generation as proposed in [24],
as well as other baselines including B-TSort [20], RankTxNet [34],
TGCM [33]. We also provide the results of Positional Diffusion w/o Dif-
fusion Process, which shares the same architecture of Positional Diffusion
but directly predicts the final order in a single step.

We report the results in Table 2.
Wikipedia Movie Plots has the largest average number of sentences

in a paragraph, which is more than double compared to that of NeurIPS
Abstract and On ROCStories. Positional Diffusion scores the best Accuracy
on Wikipedia Movie Plots, with an improvement of +8% over the current
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SOTA method Re-BART, with on par performance in terms of PMR
and 𝜏. With NeurIPS Abstract, Positional Diffusion is the second-best
method in Accuracy and 𝜏, while Re-BART remains the best-performing
one. It is important to note that we use frozen BART to extract the
word embedding for a single sentence, and then use a learnable two-
layer transformer to convert the word embedding to a single sentence
embedding that we use as a node feature to train our GNN model for
positional reasoning. Instead, Re-BART [24] fine-tunes BART with all
sentences simultaneously to predict the sequence order. In fact, the
trainable parameters of Positional Diffusion is 32M for text ordering,
which is negligible compared to Re-BART’s 425M.

On ROCStories, Positional Diffusion performs worse than BEARSON
and Re-BART. Compared to the well-structured texts in NeurIPS Abstract
and Wikipedia Movie Plots, the logical connection among sentences in
ROCStories is weak in some cases, which we credit it as the main reason
for the poorer performance of Positional Diffusion.

We further explore adopting Positional Diffusion with Re-BART
backbone. Re-BART improves Positional Diffusion over ROCStories and
Wikipedia Movie Plots across all metrics, while BART backbone still
outperforms on NeurIPS Abstract.

Re-BART fine-tunes BART by concatenating the input sentences
and computing features for the entire paragraph, that are later fed
to a decoder that predicts the correct order. On the other hand, our
method builds a graph where each node represents sentence to order.
Node features are extracted via a text feature-encoder that is fed with
individual sentences, which makes Re-BART less ideal as it requires full
paragraph as input.

Finally, we highlight a trend that was already evident for Jigsaw
Puzzles: Positional Diffusion generally excels on ordering big sets with
higher variability, such as sentences for NeurIPS abstract and Wikipedia
Movie Plots, or 𝟏𝟐 × 𝟏𝟐 Wikiart puzzles.

4.3. Room rearrangement

We evaluate Positional Diffusionon rearranging objects in coherent
positions in 2𝐷 space. We adopt the experimental setup in [27] and
report results on professionally-arranged living rooms and bedrooms from
the 3D-Front dataset [11]. Contrarily to jigsaw puzzles, objects in a
room may be correctly placed in multiple valid positions (e.g., a chair
may be appropriately positioned around any table in the room). Wei
et al. initialized the objects’ locations slightly off the correct ones at
testing, and then consider that only the acceptable configuration closest
to the ground-truth is correct.

Evaluation metrics. We quantify the room rearrangement performances
with two metrics as in [27]:
• Distance moved: distance between starting (noisy) and final (rear-

ranged) positions of the objects in the scene;
• Earth moving distance to ground-truth (EMD to GT): earth moving

distance between rearranged objects’ location and ground-truth;
• % scenes with objects within boundaries: Percentage of denoised scenes

with at least 90% of its furniture within the floor plan boundaries;

Implementation details. For each object in scene, we represent its (𝑥, 𝑦)
position in bird’s-eye view and orientation 𝜃 as a vector 𝐱 =
[𝑥, 𝑦, cos 𝜃, sin 𝜃]. As input, we pass, as node features, the 𝐱 vector, the
object’s class and the 2D bounding-boxes.

Furthermore, we encode the room layout with PointNet [37] fol-
lowing [27] and include it as an additional node in the input graph.
At training, we add Gaussian noise (forward pass) with 𝑇 = 1500 and
train Positional Diffusion to predict the initial position and orientation
of every object. At inference, we follow [27] and initialize objects by
adding Gaussian noise  (0, 0.1) to ground-truth positions, and we re-
verse the noise with Positional Diffusion. We take inspiration from [38]
and propose to start the de-noising process from timestep 𝑇infer much
lower than 𝑇 to account for the difference between training and test

distributions of the object positions.
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Table 4
Experiment results on room rearrangement compiled from [27].

Inference Living Room Bedroom

Distance
Moved ↓

EMD to
GT ↓

% within
boundaries ↑

Distance
Moved ↓

EMD to
GT ↓

% within
boundaries ↑

ATISS [36] failure-correction 0.1473 0.3378 – 0.2025 0.4673 –

Lego-net [27] grad. w/ noise 0.091 0.125 54.20 0.052 0.086 84.20
grad. w/o noise 0.086 0.117 54.40 0.0492 0.0815 84.40

Positional Diffusion 𝑇𝑖𝑛𝑓𝑒𝑟 = 𝑇 = 1500 0.140 0.048 58.93 0.0781 0.0683 85.31
𝑇𝑖𝑛𝑓𝑒𝑟 = 100 0.086 0.037 59.38 0.066 0.055 89.01
Table 5
Overview of the experimental settings. †We report the parameters of the trainable Transformer built on top of the frozen BART model (425 M).

Task Position Data Feature Trainable parameters

Dim. Modality Backbone(s) Backbone GNN

Puzzle solving 2𝐷 RGB EfficientNet [35] 6.8 M

3.2 M
Sentences ordering 1𝐷 Text BART [25] 28.2 M†

Room rearrangement 2𝐷
Room layout PointNet [37] 1.22 M& Obj. class/bbox & Embedding layers
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Comparisons. We compare Positional Diffusion with ATISS [36] and
Lego-net [27]. ATISS differs from its original implementation and
performs failure-correction by iteratively re-positioning objects with low
robability in a scene.

Lego-net iteratively de-noises the starting object positions (w/o
oise). A variant of Lego-net (w/noise) adds a small noise at every
teration. Wei et al. [27] used fixed-variance Gaussian noise at training
hile injecting time-dependent noise at inference. This strategy is fun-
amentally different from diffusion models. Ho et al. [12] shows that
ime-dependent noise injection at training is an essential characteristic
f diffusion and score-based generative models that sets them apart
rom traditional denoising techniques.

Table 4 shows that Positional Diffusion outperforms the baselines on
he living room dataset. In particular, our approach greatly reduces
he EMD to GT by 70% on living room with respect to Lego-net,
hile maintaining distance moved for the object low. On bedrooms, our
ethod outperforms the baselines on EMD to GT while maintaining
low average distance for objects. A coherent room should have

easible positions of objects, e.g., inside its boundaries. We compare our
pproach to the Lego-net on the % of scenes with objects within bound-
ries. The results show that Positional Diffusion consistently outperforms
ego-net in locating objects within rooms.

We initialize the inference process from a much lower timestep
infer and compare truncated inference at 𝑇infer = 100 to full inference
t 𝑇 = 1500. Truncating the diffusion process improves living room
nd bedroom results while reducing the number of inference steps by
0%.

.4. Experiment details

ardware. The experiments were conducted on a computer with 2
VIDIA Tesla V100 16 GB, 380 GB RAM, and 2x Intel(R) Xeon(R) Silver
210 CPU @ 2.20 GHz Sky Lake CPU.

odel settings. We train Positional Diffusion with a learning rate of
0−4 and employ Adagrad as the optimization algorithm [39]. We set
maximum of 1000 epochs during our training process, but we stop

he training earlier to prevent unnecessary iterations when the loss no
onger decreases.

Table 5 shows the different dimensionality, modality, and number
f parameters for each of our downstream tasks. It is worth noting that
ur Positional Diffusion shares the same structure across all tasks.

Due to limited computational resources and the high cost associated
ith the various tasks, we could not rerun our model with multiple

eeds.
 d
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5. Conclusion

In this work, we proposed Positional Diffusion, a graph-based DPM
or positional reasoning on unordered sets. Positional Diffusion repre-
ents the set as a fully connected graph where each element is a node
f the graph. By using an Attention-based GNN, we update the node
eatures to estimate the node position. The diffusion formulation allows
s to learn the underlying patterns and iteratively refine the element
ositions. As demonstrated in the experimental section, Positional Dif-
usion is generic and applicable to multiple tasks that require positional
easoning regardless of the data modality and positional dimension.
e experimented with three ordering tasks: puzzle solving, sentence

rdering, and room rearrangement. Positional Diffusion reaches SOTA
n puzzle solving–outperforming long-lasting optimization methods
hile being computationally efficient, outperforms previous methods
n room rearrangement, and achieves comparable results on sentence
rdering on par with methods specifically designed for the task. Fur-
hermore, Positional Diffusion outperforms previous methods when in-
ecting noise in puzzle solving tasks, demonstrating robustness and
eneralization to unseen scenarios.

imitations and future work. Our experiments highlighted some of the
imitations of Positional Diffusion. Adopting the diffusion-based formula-
ion improves performances across all tasks and datasets but introduces
computational overhead due to the iterative diffusion process. Fur-

hermore, Positional Diffusion learns a distribution of element positions
onditioned on the inputs. While task-specific approaches work well
or smaller set of elements (e.g., 6 × 6 puzzles, ROCStories 5-sentence
aragraphs), Positional Diffusion shines for more complex distribution,
.g., for 12 × 12 puzzles and Wikipedia 20-sentence paragraphs. While
ositional Diffusion is easy to apply, it needs to be trained per task.

In future work, our aim is to strengthen the generalization capability
y training a single foundation model to address positional reasoning
cross multiple modalities and tasks. In addition, the fully-connected
raph formulation limits the method to scale in terms of set size. We
ill explore graph formulations with dynamic connectivity to mitigate

his limitation.
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