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Abstract
It is increasingly important to understand the spatial dynamics of epidemics. While there are numerous
mathematical models of epidemics, there is a scarcity of physical systems with sufficiently well-controlled
parameters to allow quantitative model testing. It is also challenging to replicate the macro non-equilibrium effects
of complex models in microscopic systems. In this work, we demonstrate experimentally a physics analog of
epidemic spreading using optically-driven non-equilibrium phase transitions in strongly interacting Rydberg atoms.
Using multiple laser beams we can impose any desired spatial structure. The observed spatially localized phase
transitions simulate the outbreak of an infectious disease in multiple locations, and the splitting of the outbreak in
subregions, as well as the dynamics towards “herd immunity” and “endemic state” in different regimes. The reported
results indicate that Rydberg systems are versatile enough to model complex spatial-temporal dynamics.
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1 Introduction
Self-organization and non-equilibrium dynamics of com-
plex systems emerge not only in physics, but also in other
fields such as earth science, biology, and economics [1].
In these cases, many interacting objects, such as granu-
lar media [2] and flux quanta [3, 4], can be temporally
stuck in metastable states, due to local energy minima.
When slowly driven towards marginal stability, these ex-
tended systems exhibit avalanches at various length scales
[2–4]. On the other hand, the Rydberg atoms widely used
in quantum information [5–11], combine the precision of
atomic physics with strong interactions among neighbor-
ing atoms, which allows us to model constrained spatial
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dynamics with emerging complexity [12–16]. Besides, the
precise control of the excitation probability using narrow-
band lasers [17, 18] makes Rydberg atoms an excellent
candidate to study non-equilibrium physics, as instabili-
ties of equilibrium states are ubiquitous processes occur-
ring in a variety of driven Rydberg systems. For example,
Rydberg atoms in different driven configurations exhibit
many fascinating characteristics of complex systems, in-
cluding aggregate formation [19], non-equilibrium phase
transitions [20, 21], critical points [22], self-organized crit-
icality [23, 24], spreading and growth dynamics [25, 26],
and hydrodynamics [27]. As one of the exotic phenom-
ena in Rydberg atoms, bistability here relates to a non-
equilibrium phase transition of Rydberg atoms, which is
characterized by a hysteresis loop when the parameter is
scanned forward and backward [20–22, 24, 28–33]. The
hysteresis loop arises as a consequence of the feedback
mechanism in Rydberg atoms, which is induced by the
nonlinear interaction and dissipation processes among the
atoms. Specifically, in the condition of electromagnetically

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1007/s44214-024-00071-3
https://crossmark.crossref.org/dialog/?doi=10.1007/s44214-024-00071-3&domain=pdf
https://orcid.org/0000-0002-5051-4777
mailto:dds@ustc.edu.cn
http://creativecommons.org/licenses/by/4.0/


Liu et al. Quantum Frontiers            (2024) 3:23 Page 2 of 16

induced transparency (EIT), the coupling light induces
transparency in the atom towards the probe light. It is
within this EIT condition that the bistable behavior occurs,
driven by the dependence of probe light absorption on its
own intensity, thereby establishing a feedback loop. When
the intensity of the probe field is below a certain thresh-
old, the system operates in a low-absorption state, satis-
fying the EIT condition. However, when the intensity sur-
passes this threshold, the excitation of the Rydberg atoms
becomes significant, resulting in a population-dependent
frequency shift in the probe light. This shift leads to the
occurrence of bistability.

There is a considerable interest in simulating the out-
break of infectious diseases. The accuracy of epidemic
models has been considerably improved over time [34,
35]. Besides numerical simulation, it is desirable to study
and replicate the macro non-equilibrium effects of com-
plex dynamics in microscopic atomic systems. Because
the atomic system is easy to scale to a larger size and
is fully controlled by the experiment parameters. More-
over, many non-equilibrium phenomena cannot be bro-
ken down into global stable states; and numerous real sys-
tems are spatially inhomogeneous, e.g., the outbreak of
an infectious disease can occur in multiple locations [36].
The local change of a non-equilibrium phase would re-
sult in additional complexity that manifests as phase split-
ting or a new emergent phase. Consequently, the study of
phase transitions in engineered spatially inhomogeneous
systems can be an insightful tool to improve our under-
standing of non-equilibrium dynamics in extended perco-
lating systems.

Here, we model epidemic spreading dynamics using a
laser-driven thermal Rydberg gas composed of rubidium-
85. We have observed the analog of typical transmis-
sion profiles for susceptible-infected-recovered (SIR) and
susceptible-infected-susceptible (SIS) processes with a
nonlinear recovery rate. The intensity pattern of the laser
beams creates a spatially inhomogeneous Rydberg excita-
tion rate, and thus spatial domains with different Rydberg
atom densities. The experimental atomic system shows an
initial exponential spread of the (microscopic) “epidemic”,
until the system reaches two cases: one is analogous to
“herd immunity”, which stops the spread in the SIR pro-
cess; another is an “endemic state”, which is a stationary
state in the SIS case. The observed phase splitting and the
respective multiple hysteresis loops show a good analogy
with the fact that the disease starting in one place spreads
to other areas. In addition, the predicted bifurcation of
the SIRS model with a nonlinear recovery process can be
mapped to the multiple non-equilibrium states in Rydberg
systems.

This work is organized as follows: Sect. 2 introduces the
Rydberg epidemic model; Sect. 3 is long and presents our
results; followed by discussions and concluding remarks.

Since this work bridges two very different research areas
(e.g., atomic physics and the modeling of epidemic spread-
ing), several appendices provide background information
on these models and how to relate these to our system.
Moreover, considerable details about the experiments are
spelled out in the Appendix.

2 The Rydberg epidemic model
In order to gain insight into the spatial dynamics of Ry-
dberg non-equilibrium phase transitions and, in partic-
ular, the spreading of the interacting phase, we build an
avalanche model via the SIS, SIR, and SIRS models in-
troduced in Refs. [36]; more details about the epidemic
model and the experimental setup are shown in Appendix
A and B.

The Rydberg atoms in our system can be found in one of
two phases. Below a critical threshold density, interactions
between Rydberg atoms are negligible; we refer to this as
the ‘non-interacting’ (NI) phase. Above a threshold, inter-
actions between Rydberg atoms induce a shift and broad-
ening of the Rydberg lines; and these facilitate Rydberg ex-
citations in adjacent regions. This triggers avalanches (cas-
cades, chain reactions, or domino effect) of localized exci-
tations and transitions to a ‘strongly-interacting’ (I) phase.
The final Rydberg atomic density is controlled by the de-
tuning �c and the Rabi frequency �p.

An atom in the ground state is analogous to a recov-
ered individual. An atom in the NI phase corresponds to
a susceptible individual. An atom in the I phase is anal-
ogous to an infected individual. These are schematically
sketched in Fig. 1(a). The colored cells in Fig. 1(a) corre-
spond to atoms in a micro-ensemble, in which the atoms
can be either in their ground state |g〉 or their Rydberg state
|r〉 = |47D3/2〉, as shown in the right diagram of Fig. 1(a).
An atom in the NI phase can be excited to the I phase by
a Rydberg excitation (infected, with a rate β related to the
interaction strength V ). Then an atom in the I phase de-
cays to the ground state (herded, with rate γ related to
the Rydberg decay �r) or de-excites to the NI phase (re-
susceptible, with rate μ) by the loss of Rydberg atoms. An
atom in its ground state can be excited to the NI phase by
a two-photon process (re-susceptible, with rate η). Specif-
ically, the system remains susceptible until the strength of
the excitation exceeds a threshold, owing to the increas-
ing Rydberg density, controlled by the detuning �. Above
this threshold, the system undergoes an avalanche mani-
fested by a jump in the transmission of the probe light (the
infection of the susceptible individuals). This is caused by
the criticality of the Rydberg atoms in the electromagnet-
ically induced transparency process that coherently links
the ground state

∣
∣g

〉

with the Rydberg state |r〉. There is an
inverse process where the atom becomes susceptible again
from the infected state when the experiment tunes the cou-
pling laser to lessen the influence of the |r〉 state. This pro-
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Figure 1 Epidemic model simulation with Rydberg avalanche excitations. (a) The model consists of three states: the cell with interacting Rydberg
atoms (red), the cell with non-interacting Rydberg atoms (green) and the cell of ground atoms (black). A cell does not represent an atom but an
element of volume in atomic vapor. The right diagram shows the energy levels of atoms under a laser drive. Here, � is defined as the detuning
between the Rydberg state |r〉 and the laser, and �r is the decay rate of |r〉. (b) The calculated Rydberg population ρrr versus � for the following
cases: �/2π = 12 MHz and V/2π = –35 MHz (red data), �/2π = 15 MHz and V/2π = –35 MHz (green data), �/2π = 17 MHz and V/2π = –35 MHz
(purple data), �/2π = 15 MHz and V/2π = 0 MHz (black data). (c) The algorithm of our 2D percolation. The rule of updating cells in the
susceptible-infected-recovered model is shown in (c1–c3): the cells are updated in the next step according to its current state and the state of its
eight nearest neighbors. The susceptible infected-susceptible model satisfies the condition β � γ , γ → 0, μ = 0.01, η = 0; the
susceptible-infected-recovered process obeys β/γ > 1 and μ → 0, η = 0; while the susceptible-infected-recovered-susceptible process has μ = 0.
The interacting Rydberg atoms spread out in the entire interacting region because the population-dependent energy shift �shift induces a
nonlinear ‘facilitated’ excitation, in which the effective detuning � between the laser and the Rydberg energy level of the excited state |r〉 is shifted.
(d) A 2D snapshot of interacting Rydberg atoms (red) spreading in a N = 100× 100 inhomogeneous Rydberg density system (with fractions
fR = 0–0.9) after i = 200 iterations. There is an isolated boundary of contagion (marked in white), a domain wall separating the inhomogeneous
distributions of Rydberg density

cess exhibits a hysteresis that defines the bistability. Dis-
sipation affects these coherent dynamics which is termed
by γ , as a recovery probability owing to either isolation or
medication.

In the experiment, the bistability occurs when the de-
tuning �c is scanned with time in a symmetric triangu-
lar wave shape, i.e., the same rate increases and decreases.
As a result, the hysteresis loop of the bistability is obvi-
ous in experiment results, which is a stable solution of
the nonlinear equations including the nonlinear interac-

tions between Rydberg atoms [Eq. (11) in Appendix D]. As
shown in Fig. 10 of Appendix D, in the shaded area, there
are three solutions for detuning �c but one of the solu-
tions is unstable. And when the detuning �c is scanned
within this region, the unstable solution collapsed into one
of the stable solutions depending on the scan direction.
This unstable solution is a result of (1) the interaction
between atom and the external environment [Eq. (13) in
Appendix D] and (2) feedback via the interaction among
atoms.
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Then, we can model the evolution of the cell by using the
following time-dependent master equation with the mean-
field approximation that neglects atomic motion (Doppler
effect and the excitation loss induced by the atom moving
in and out of the excitation area) [28, 37]:

dρgr

dt
= i

�

2
(

ρrr – ρgg
)

+ i�effρgr –
�r

2
ρgr (1)

dρrr

dt
= –i�

(

ρgr – ρrg
)

– �rρrr (2)

where �eff is the effective detuning

�eff = � – Vρrr (3)

Here, ρgg and ρrr are the populations of the ground state
and Rydberg state, ρgr (ρrg) is the atomic density matrix el-
ement, �r represents the decay rate of the Rydberg state,
and � is the Rabi frequency of the excited laser. In Eq. 2
the Rydberg population operator n̂ is replaced by its ex-
pectation value Tr[ρ · n̂] = ρrr in the mean-field approxi-
mation. And the anisotropy of the interaction between Ry-
dberg atoms is neglected.

For a finite evolution time t, we calculate the Rydberg
population ρrr versus � for different �, with V /2π = 0
and V /2π = –35 MHz, as shown in Fig. 1(b). From this,
for increasing � the populations of Rydberg atoms dis-
play an avalanche process, for example, the green data in
Fig. 1(b) show that ρrr undergoes a steep rise when �/2π ≈
10 MHz. This process corresponds to the phase transition
from the NI- to the I-phase, and the position of the jump
represents the threshold. At �/2π ≈ 10 MHz, the cells
with �/2π ≈ 12 MHz and �/2π ≈ 17 MHz are in the I-
phase and NI-phase, respectively, as shown in the red and
purple data in Fig. 1(b). Applying a little shift or a small
change of � to the cells, the phase could be changed be-
tween the NI- and I-phases.

For a larger ensemble system, its evolution could be re-
garded as a spreading process, approximated by a discrete-
state model or the cellular automaton model with the rules
shown in Fig. 1(c), which corresponds to a 2D percolation
model using N(= m × m) 2D cells. In this approximation,
the atom ensemble is coarse-grained by N square lattices,
as in Ref. [26]. The 3-D distribution of the atoms is approx-
imated by the distribution of the atoms in 2-D square lat-
tices. And there is more than one atom in each lattice. In
the cellular automaton model, we also assume that three
states evolve with the same time step. Both the time evo-
lution and the space of our cellular automaton model are
discrete. Each cell updates according to both its current
state and the state of its eight nearest neighbors.

First, the cells are randomly filled with fractions fR of Ry-
dberg atoms. A cell is in the NI phase if fR < fR,c [green
cells in Fig. 1(c)], in the I phase if fR > fR,c (red), or in a

depleted phase (black) without Rydberg atoms in the cell.
These situations correspond to a susceptible person, an in-
fected person, or an immune site, in the original epidemic
model [36].

The procedure schematically shown in Fig. 1(c) de-
scribes the following steps: if the fraction fR of Rydberg
atoms in an arbitrary cell [red cells in Fig. 1(c1)] exceeds
the critical fraction fR,c, and is thus in the I-phase, it in-
creases the excitation probability of neighboring Rydberg
atoms [green cells in Fig. 1(c1)] fR to be above fR,c, such
that the neighboring cells transition to the I phase as well
in the next iteration [red cells in Fig. 1(c2)], here the ith
iteration corresponds to an iteration number for an in-
teresting snapshot. This occurs due to level shifts �shift
by strong interactions that result in a ‘facilitated’ excita-
tion process, which triggers an avalanche or chain reac-
tion throughout the interaction region, corresponding to
the epidemic spreading to adjacent sites; see the energy
diagrams in Fig. 1(c1–c3). This occurs when the system’s
state reverses at �/2π ≈ 10 MHz from the NI phase [pur-
ple data in Fig. 1(b)] to the I phase [red data in Fig. 1(b)]
by changing �/2π = 17 MHz to �/2π = 12 MHz.

We consider the condition β � μ,γ = 0 for the following
SIS simulation, which corresponds to fast scanning either
the probe intensity or �c, and the system changes from
the NI to the I phase. Otherwise, the system would oscil-
late near the critical point, and the oscillations between the
phases display a bimodal distribution of transmission lev-
els as demonstrated in Ref. [24]. This is due to the decay
of the interacting Rydberg atoms, and the refilling atoms
from the thermal motions, see also in Appendix. The phys-
ical boundary condition in our model is such that interact-
ing Rydberg atoms at the edges disappear as they would
move out of the excitation volume defined by the laser
beams.

We have simulated the dynamics of ‘facilitated’ Ryd-
berg excitations according to a 2D percolation model, see
Fig. 1(d). After i = 200 iterations in a 2D inhomogeneous
Rydberg density system (using initial random gradient dis-
tributions) from fractions fR = 0 to fR = 0.9, respectively,
with m = 100, there is an isolated boundary edge [shown in
white in Fig. 1(d)] or “domain wall” that splits up the sus-
ceptible and infected regions. On the contrary, there are
no obvious domain walls if using a uniform atomic density
(i.e., an initial random no-gradient distribution).

Next, we use the following ordinary differential equa-
tions to model the epidemic spreading dynamics [36, 38]:

dSN

dt
= NS – dSN –

βIN SN

N
+ μIN + ηRN (4)

dIN

dt
= –(ν + d)IN – μIN +

βIN SN

N
– γ (b, IN )IN (5)

dRN

dt
= –dRN + γ (b, IN )IN – ηRN (6)
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Figure 2 A 2D snapshot of interacting Rydberg atoms spreading in a 50× 50 system after iterations i = 2, 20, 40, 60, respectively for the initial
Rydberg atoms fractions fR = 0.9 (SIR model) and fR = 0.55 (SIS model). In the SIS model, μ = 0.05, β = 0.95, and γ = 0 are used for the SIS automaton
simulation. In the SIR model, the parameters μ = 0, β = 0.95, and γ = 0.2 are used to demonstrate the SIR automaton simulation. Red cells
correspond to the infected state I, green cells the susceptible state S, and black cells the recovered state R

where N is the initial total number of cells in the sys-
tem, SN , IN and RN represent the susceptible, the infected,
and recovery numbers; γ (b, IN ) = γ0 + b(γ1 – γ0)/(b + IN ),
with parameters γ1 and γ0, and b represents the number
of hospital beds. Also, μ, γ (b, IN ), and β denote their cor-
responding rates; see more details in Appendix [see also
Fig. 1(a)]; NS is the recruitment rate of the susceptible
population, d is the natural death rate, ν is the per capita
disease-induced death rate, and η corresponds to the im-
munity loss rate.

The SIS model corresponds to γ = 0 and η = 0, the SIR
model has μ = 0 and η = 0, while the SIRS model involves
when μ = 0. When considering the SIS model with NS = 0,
d = 0, and ν = 0, the infected number IN (t) can be simpli-
fied to

IN (t) =
β + Nβ – Nμ

β + e–(β+β/N–μ)tN(β – μ)
(7)

When considering the steady-state of the SIRS model, for
NS �= 0, d �= 0, and ν �= 0, we can obtain a quadratic equation
for the number IN of infected cells:

AI2
N + BIN + C = 0 (8)

where, A, B, and C are the functions of b, β , d, η, γ1, γ0, ν ,
NS , and N . From this equation, the infected state of the sys-
tem has two endemic equilibria when B2 – 4AC > 0, show-
ing a complex bifurcation dynamics for epidemic spread-
ing [38].

3 Results
3.1 SIS and SIR modeled results in theory and experiment
In order to demonstrate the spatial evolution of the epi-
demic, we investigate the dynamical results of the SIS and
SIR models as we change the fractions fR of the suscepti-
ble state. We show the spreading dynamics of the infected
state after different iterations i = 2, 20, 40, 60, for different
fractions fR.

For low fractions fR, e.g. fR < 0.2, there is almost no
spread because there are not enough susceptible individu-
als to match close neighbor contacts, while for larger frac-
tions fR, i.e. fR = 0.9 shown in Fig. 2 (SIR model), the in-
fected state is more inclined to spread through all the vol-
ume. We also observe the evolution of the SIS model with
fR = 0.55: the infected individuals spread along local trajec-
tories and result in a specific graph state [see the SIS model
in Fig. 2].

Eventually, the final states of evolution for these two
models are different. For the SIS model, the system follows
a stationary state due to the cycle I → S → I ; see the evo-
lution of the system after the iteration i = 60 [SIS model in
Fig. 2]. This stationary effect satisfies the character of “en-
demic state” in which the dynamic equilibrium between
the susceptible and infected state is sustained for a long
time. While in the SIR model, due to the recovery channel
S → R, most of the red and green cells change to black cells
after multiple iterations [SIR model in Fig. 2], and the sys-
tem finally reaches an immune state in which all infected
individuals are healthy. This describes the process of “herd
immunity”.
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Figure 3 Epidemic nonlinear spreading (a) SIS model simulating the avalanche behavior of interacting Rydberg atoms via a 2D percolation model in
an N = 100× 100 cells system. In this process, the parameters μ = 0.05, β = 0.95, and γ = 0 are used for the SIS automaton simulation. Here, the plot
shows the steady state versus the initial Rydberg fractions fR . (b) Measured phase transition versus probe intensity. Here, the probe intensity is linearly
modulated by a triangular wave function driving acoustic optic modulator. From the plot, it is clear that when the probe intensity is very weak, then
the fraction of excited Rydberg atoms is also very small. When the probe intensity is increased by a small amount, the fraction of excited Rydberg
atoms also increases by a small amount. Thus, it is not surprising to find this linear relation. These types of linear relations eventually saturate, as in the
case of the Rabi frequency of two-level systems versus drive amplitude: also starting linearly, and eventually saturating. The solid lines in (a) and (b)
are fit by aIN[(t – t0)/τ ]/N + a0, with parameters a = 0.89, N = 10, 000, t0 = 0.29, τ = 0.031, a0 = 0.06, μ = 0.05, β = 0.95 for (a), and a = 2.47, N = 10, 000,
t0 = 0.291, τ = 0.014, a0 = 0.1, μ = 0.1 and β = 0.9 for (b). (c) SIR model showing a peak versus iterations in the atoms fraction. In this process, the
parameters β = 0.95, and γ = 0.2 are used to demonstrate the SIR automaton simulation via a 3D percolation model in an N = 50× 50× 50 cells
system. The initial fraction of non-interacting atoms fR = 0.9 at i = 0. (d) The measured transmission in time without scanning laser detuning. The
solid lines in (c) and (d) are fit by aIN[(t – t0)/τ ]/N, according to Eqs. ((4),(5),(6)) with parameters a = 12, N = 600, t0 = –3.2, τ = 1.15, γ = 0.25 and
β = 0.4 for (c), and a = 2.3, N = 100, t0 = 0.5, τ = 0.011, γ = 0.18 and β = 0.34. The interaction region considered in simulation is the nearest neighbor
of each cell corresponding to the nearest-neighborhood interaction. The dynamics is divided in three regimes: initial, exponential growth, and “herd
immunity” or “endemic state”. The gray areas in (a-d) are the exponential growth regions (or nonlinear outbreak) in the epidemic process

In the latter case, we record the Rydberg atoms density
in the I phase after 200 iterations, and the simulated result
is shown in Fig. 3(a). The interacting Rydberg fraction ver-
sus the initially filling fraction of Rydberg atoms fR shows
a critical point near a Rydberg fraction fR,c = 0.55–0.65. In
the experiment, we measure the transmission of the probe
beam against the Rydberg atoms fraction by increasing the
probe intensity in a two-photon electromagnetically in-
duced transparency (EIT) scheme, see more details in Ap-
pendix.

There is a sudden jump in the probe transmission spec-
trum given in Fig. 3(b), which corresponds to the system
transition from the NI to the I phase within the exponential
growth regime. The threshold effect in the spreading of the

interacting Rydberg atoms is consistent with the nonlinear
spreading characteristics in the SIS model, as predicted in
Fig. 3(a). The solid curves in Fig. 3(a) and Fig. 3(b) are fit
by Eq. (7), which is also almost equivalent to the tanh func-
tion.

When the system is scanned at a fast rate (see more de-
tails in Appendix), the NI and I phases tend to dynamical
equilibrium, which predicts a stationary “endemic state”, a
main feature of the SIS model.

When we consider the SIR process, the parameters β and
μ satisfy β/γ > 1 and μ → 0, corresponding to the case of
measuring the Rydberg excitations without scanning the
laser detuning in the experiment. We have simulated the
results in Fig. 3(c) with β > γ . The interacting Rydberg
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Figure 4 Rydberg population dependent bistability. (a) Schematic diagram illustrating the intensity distribution inside the cell. The perturbing
beam and focused probe form two distinct high intensity regions labelled A and B, respectively. The relative Rydberg populations in A and B can be
controlled by varying �pert . (b) Schematic illustration of the Rydberg atom density ρrr along the optical axis z-coordinate. When ρrr > ρth , the critical
Rydberg density, a phase transition between a non-interacting and the interacting phase occurs. In region C, between the two domains A and B, the
Rydberg density is below threshold. (c) Simplified theoretical simulation of multi-domain bistability. The gray dotted lines correspond to steady
states 1, 2 and 3, respectively. The red and black lines are the trajectories when scanning from red- to blue-detuning (red) and vice versa (black). State
1 has a normal EIT transmission with T (0 < fR < 0.09). State 2 shows the integrated transmission T (fR = 0.23). State 3 corresponds to T (fR = 0.33). (d-f )
Three cases are compared for (d) no, (e) single bistability in region B only and (f ) double bistability in regions A and B. The inserted subfigures
describe the Rydberg population under three situations: (d) both of regions A and B are below ρth ; (e) Region A is below and B is above ρth ; (f ) both
of regions A and B are above ρth

atoms fraction first increases due to the contagion effect in
the exponential regime, and then suddenly decreases be-
cause the system reaches “herd immunity” via the “infec-
tion recovery channel” in the SIR process. We have also
measured the probe transmission spike near the critical
point in the time domain, as shown in Fig. 3(d). The ex-
perimental Rydberg system shows the exponential spread
of the (microscopic) epidemic until it reaches “herd immu-
nity”.

3.2 Population dependent bistability
Many mixing epidemic models describe the complex dy-
namics (e.g., bifurcation and bistability phenomena) by
modelling epidemic spreading with nonlinear incidence
and recovery rates [38, 39], and antibiotic resistance [40].
For example, by considering limited medical resources, the
recovery rate γ (b, IN ) decreases with the number IN of in-
fected, then the infected state I can be in a metastable epi-
demic state, as described by Eq. (8).

In analogy to the Rydberg system, the Rydberg popula-
tion ρrr decreases with a feedback from the population-
dependent energy shift Vρrr ; thus the bistability effect is

observed [20], see more details in the Appendices. The
nonlinear spreading of the I phase is strongly dependent on
the initial Rydberg density fR(t = 0). This reveals that one
uniform spatial domain leads to one jump, and multiple
spatial domains lead to multiple jumps. This corresponds
to the scenario of an outbreak of an infectious disease in
different locations.

To demonstrate how spatial domains with different ex-
citation dynamics result in optical multistability, we ex-
pose part of the excitation volume to an additional probe
light in the form of a single perturbing beam that inter-
sects the probe and control beams at an angle θ , and lo-
cally enhances the Rydberg population in the region la-
beled A in Fig. 4(a). A second local maximum labelled B
in Fig. 4(a) occurs at the focus of the probe. Thus, a spa-
tial inhomogeneity is introduced by subjecting part of the
atomic vapor to localized perturbing beams. A dynamical
phase transition can be observed as a jump in the probe
transmission as the critical Rydberg density [correspond-
ing to the critical population ρth, shown as a horizontal red
line in Fig. 4(b)] is exceeded, and an optical bistability win-
dow can be observed depending on the scan direction and
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rate of change of �c. The areas beyond the threshold ρth
are marked in red in Fig. 4(b).

The amplitude of the perturbing field is characterized
by a Rabi frequency �pert, which can be varied indepen-
dently of �p. Varying �pert can adjust the relative intensity
and hence the Rydberg density in regions A and B. As the
two domains are characterized by distinct Rydberg pop-
ulations, they can exhibit either independent or coupled
non-equilibrium dynamics depending on the size of the
separation region labelled C in Fig. 4(b). The dynamics of
the optical multistability along the z-axis are thus affected
by the overall inhomogeneity of the Rydberg density. For
any spatially varying intensity distribution, we expect dis-
tinct phases that are characterized by a spatial boundary
between states of high and low population [41].

In addition to the control offered via �pert, we can also
vary both the total intensity in region A and its overlap
with region B via the alignment of the perturbing beam. As
expected, we find that both the intensity in region A and
the separation to region B, i.e. C in Fig. 4(b) are critical.
Additional perturbing fields would create more domains.

These additional domains could result in distinct op-
tical responses. Here, we consider three distinct steady-
states, 1, 2, and 3, corresponding to: no domains above
threshold; one domain above threshold; and two domains
above threshold, respectively. The steady-state lineshapes
associated with these three steady-states are plotted as
dashed lines in Fig. 4(c), see more details about calcula-
tions in Appendix. When �c is scanned from red- to blue-
detuning (rightwards scan direction, red line), the trans-
mission initially evolves along the normal EIT resonance
curve (steady state 1).

As �c approaches resonance, ρrr increases and eventu-
ally one domain (either A or B depending on �pert) reaches
the threshold ρth, this threshold effect is also simulated by
the epidemic model in the main text. At this detuning [la-
bel g in Fig. 4(c)], the system undergoes a non-equilibrium
phase transition accompanied by a sudden jump in its op-
tical transmission.

Note that the critical detuning also depends on temper-
ature and �p. Increasing �c further, the system initially
follows the steady-state 2 resonance curve, and then un-
dergoes a second phase transition at point i in Fig. 4(c)
as ρrr lies above threshold in both domains. In this exam-
ple, the transition points g and i do not coincide due to
the different local conditions in the domains A and B. By
changing �pert, g and i can be moved to coincide. Scanning
�c from blue- to red-detuning (leftwards scan direction,
black line), the phase transitions occur at points d and b,
giving rise to two hysteresis loops, see Fig. 4(c). Depend-
ing on system parameters, the two bistability loops may be
either closed [Fig. 4(c)] or open. Three states with differ-
ent Rydberg fractions, (for example fR < 0.9, fR = 0.23, and
fR = 0.33, respectively,) are used in the simulations.

The system transmission states T(fR) are treated as EIT
transmission with different energy shifts and broaden-
ing, given by the gray lines in Fig. 4(c). The multiple dis-
crete transmission levels arise as the transition threshold
is reached for different detunings in each domain. In this
process, the transmission difference decreases at the start
because we use a differential scheme to obtain the ampli-
fied signal, where the probe is absorbed more than the ref-
erence via a two-photon excitation process, see details in
the Appendix section.

In order to highlight how the subtle difference in Ry-
dberg population between domains A, B, and C results
in optical multistability, we analyze three situations: no-,
single- and double-bistability. The spatial variation of the
perturbing, probe, and coupling fields leads to a spatially
inhomogeneous coupling to the Rydberg state and creates
an inhomogeneous Rydberg density. Once the critical Ry-
dberg population in a given region exceeds the threshold
population ρth, the state of the region would transition
from the NI to the I phase, and accompanied by a jump
in the probe transmission.

If the Rydberg population does not exceed the threshold
population ρth in any domain, we only observe a standard
EIT spectrum without any jump, as in the case in Fig. 4(d).
The probe transmission spectra with positive and negative
scan directions are smooth without sudden changes. If the
Rydberg population in, e.g. region B, is above ρth, optical
bistability occurs as in the case in Fig. 4(e). We only ob-
serve a single bistability because there is only one domain.
If the Rydberg population of both domains A and B exceed
ρth, but with different densities, we could observe optical
multistability in the spectra, in which the two bistabilities
are staggered, as shown in Fig. 4(f ).

3.3 The phase diagram and transmission spectra of
multistability

For the experiments, we measure the phase diagram of two
independent domains by extracting the transmission dif-
ference for the +/– scan directions and plotting the probe
transmission versus �pert and �c in Fig. 5(a). In order to
simulate the non-equilibrium behavior of the spatial do-
mains in our phenomenological model, we consider dis-
tinct fractions fR1 and fR2 to each domain and their overall
optical response. We then plot a color map of the trans-
mission difference for the +/– scan directions against fR2
and �c by setting fr1 = 0.33, as in Fig. 5(b).

We assign distinct fractions fR1 and fR2 to each domain
and combine their overall optical response. In both theory
and experiments, we observe two bistable regimes and a
multistable regime where the former coincide. For �pert =
2π × 2.4 MHz [Fig. 5(a1)], we observe similar behaviour
predicted in Fig. 4(c) or (f ) with thresholds (+ scan direc-
tions) for state 2 at �c ∼ –2π × 16 MHz (transition in do-
main B) and state 3 at �c ∼ –2π × 10 MHz (domain A).
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Figure 5 Phase diagram and transmission spectra of two individual domains. Comparison of the (a) experimentally, and (b) theoretically observed
probe transmission. The probe transmission versus the coupling detuning �c are shown in (a1-a3) for experiments and (b1-b3) for theory. The areas
indicated by A and B show their individual bistability regions, which add up to multi-stability where they overlap. The hysteresis loops of
multistability are shown in (a1-a3) for experiments and (b1-b3) for theory. Positive (+) and negative (–) scan directions are shown in red and black,
respectively. The experimentally observed hysteresis loops for �pert = (2π × 2.4, 3.2, 3.9) MHz are shown in Figs. a1-a3, respectively. The phase
transitions associated with domains A and B for the + scans are labelled accordingly. Figures b1-b3 show simulations based on our multi-domain
model. In the model, we use the Rydberg fractions fR1 = 0.33 and fR2 = 0.24 (b1), fR2 = 0.33 (b2), fR2 = 0.71 (b3), where fRj are the fractions of Rydberg
atoms in the interaction volumes A and B, respectively. The Rabi frequency of the probe is set to �p = 2π × 5.7 MHz

To demonstrate control of the phase transition point in
domain A, we vary �pert from 2π × 2.4 to 2π × 3.9 MHz.
Scanning �c in either direction, we obtain the experimen-
tal spectra shown in Figs. 5(a1-a3). For �pert = 2π × 2.4
MHz, Fig. 5(a1), the hysteresis loops hardly overlap. For
�pert = 2π × 3.2 MHz, Fig. 5(a3), the transition appears at
the same critical detuning as the phase transitions occur
simultaneously in both domains. Comparing Fig. 5(a1-a3)
and (b1-b3), the experimental and model data are in good
qualitative agreement.

If we scan �c more slowly for the parameters in Fig. 5(a3),
the double bistability appears again because of slight pop-
ulation differences between domains due to fluctuations of
the driving fields or vapor temperature.

3.4 Phase splitting and multiple jumps
It is insightful to increase the number of spatial domains in
the experiments, and hence the number of phase jumps, by
adding a few perturbing laser beams. Figures 6(a-d) show
the transmission spectra with 1, 2, and 3 discrete jumps,
obtained by scanning �c from red- to blue-detuning.

Figure 6(a) refers to the single domain created by the
probe field, showing a sudden jump in the transmission
of light [gray region, where �c/2π ∼ –19 MHz]. As we
add the perturbing field 1 overlapping with the probe, the
additional Rydberg populations are added in the subre-
gion of the phase 1©, and the jump in Fig. 6(a) is split
into two jumps in Fig. 6(b), these located at the detunings
�c/2π ∼ –19 MHz and �c/2π ∼ –24 MHz, respectively.

The local change of a non-equilibrium phase would result
in additional complexity that manifests as phase splitting
or a new emergent phase in Fig. 6(b). Like a phase produc-
ing another new phase, as seen by the dashed yellow cir-
cles in Fig. 6(a-b), corresponding to the locally increased
infected individuals in the subregion.

Meanwhile, the phase transition is weakened, as seen
from the decreased height of each jump and the suscepti-
bility of the phase transition defined as dT/d�c (dT is the
transmission difference of the jump) is reduced near the
transition point �c/2π ∼ –19 MHz.

If a perturbing field 2 overlaps with the subregion where
the population is below threshold (this region is out of the
phase 1©), see Fig. 6(c), a new phase 3© appears when this
subregion is above the threshold by considering the ef-
fect of the additional Rydberg populations driven by the
perturbing field 2. This transmission spectrum could be
the result of a simple addition of the two phases, and
the same effect can be seen in Fig. 5. In these two cases,
as �c approaches resonance, fR increases and eventu-
ally one domain reaches the threshold f (1)

R at position 1
and another domain reaches the threshold f (2)

R , the sys-
tem undergoes two non-equilibrium phase transitions ac-
companied by two sudden jumps in the optical transmis-
sion.

Figure 6(d) shows three jumps created by both the probe
and perturbing fields 1 and 2. Changing the alignment de-
termines whether these regions overlap or are separate.
Here, we extend the epidemic model to multiple spatial do-
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Figure 6 Phase splitting and multiple phase jumps. Panels (a)-(d) show, respectively, spectra with single-, double- and triple-jumps in the
transmission. The different spectra are obtained by adding the additional perturbing fields 1 and 2 to create two and three domains. In these cases,
the angles between the probe and the two perturbing fields are 7◦ and 14◦ , respectively. The dashed lines given in (a) and (b) are the slopes of the
jumps. Here, �pert,1 = 2π × 3.7 MHz and �pert,2 = 2π × 2.2 MHz. The red dashed lines are the boundaries of the phases. Panels (e)-(h) show our
simulations using the SIS cellular automaton [24, 42] with one, two, and three spatial domains, respectively. The solid lines in these simulations are fit
by the function A +

∑
Bi tanh((x – Ci)/wi) including a series of tanh steps with different position Ci and width wi . We initialize the domain with atomic

fractions fR1 = fR in (e) and fR1 = fR + 0.2, fR2 = fR + 0.3 in (f ), fR1 = fR + 0.2 and fR3 = fR in (g) and fR2 = fR + 0.3, fR1 = fR + 0.15, fR3 = fR in (h). The insets
show the spread of interacting atoms (red) from left to right, following 100 iterations at fR , marked by the red vertical dashed lines in (e-h)

mains according to the 2D SIS cellular automaton. We con-
sider one [Fig. 6(e)], two [Figs. 6(f ) and 6(g)] and three re-
gions [Fig. 6(h)] with initial random distributions but with
different Rydberg fractions fR1, fR2 and fR3 for each subdi-
vision. The qualitative agreement between the predicted
phase jumps, Figs. 6(e-h), and the experimental observa-
tions, Figs. 6(a-d), confirms that we can associate each
jump with an individual domain.

4 Discussion
Non-equilibrium phase transitions within multi-domains
often correspond to optical multistability, as demonstrated
here, which is the extension of optical bistability to three
or more stable output states. Before this work, multistabil-
ity had been predicted and investigated in coupled atom-
cavity systems [43–46] and semiconductor microcavities
[47–51]. Optical bistability in Rydberg atoms has previ-
ously been studied both in theory [22, 28–31] and exper-
iments [20, 21, 24, 32, 33]. However, optical multistability
in Rydberg atoms is more challenging, and has not been
explored before.

The Bloch equations with mean-field approximation is
able to qualitatively simulate the multistability, because the
individual Rydberg atoms interact with each other at ran-
dom, in such a way that each Rydberg atom in a compart-
ment is treated similarly and indistinguishably. More pre-
cise simulations in large-scale networks must consider the
subtle differences between various states of the Rydberg
atoms.

In reality, there are sudden outbreaks in the population
of infections. These outbreaks are induced by the non-
linearity of the epidemic spreading process. For example,
as shown in Fig. 7 of Ref. [36] the bistability comes from
the disconnection and re-connection of the link between
susceptible individual and infected individual. Another ex-
ample, in Ref. [38], demonstrates that the bistability is in-
duced from the nonlinear recovery rate when one consid-
ers the impact of available resource of the public health
system especially the number of hospital beds. In our ex-
periment, the nonlinearity also exists in the atomic sys-
tem simulating the epidemic model, induced by (1) the
interaction between atoms and the external environment
and (2) the spatial-structure-dependent interaction among
atoms, which is concluded from the interaction term of
the Hamiltonian and the master equation; see Appendix
D for details. And the complexity emerges from these in-
teractions including spatial pattern shown in Fig. 2, phase
splitting (Fig. 3), bifurcations (Fig. 8) and multistability
(Figs. 4 and 5). It is noted that the outbreaks in the epi-
demic and atomic models are both induced by the nonlin-
earity.

This driven non-equilibrium system of strongly-
interacting quantum system can be viewed as an inani-
mate virus spreading simulation, providing a reference for
real-world systems such as virus spreading. Furthermore,
as a many-body quantum system, it may exhibit unique
collective quantum effects that go beyond classical sys-
tems, such as quantum collective jumps and quantum cor-
relations, offering a new perspective on understanding the
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dynamics of complex quantum system. Thermal Rydberg
gases offer several advantages for investigating epidemic
spreading, including tunable interactions and controlled
spatial structures. Unlike classical systems, such as cellular
automata simulations, which struggle to model large pop-
ulations [52, 53], thermal Rydberg systems can easily sim-
ulate complex behaviors by consisting of a large number
of atoms, each representing a cell. Moreover, this many-
body quantum system allows for precise control over ex-
perimental parameters, enabling the study of emergent
behaviors, phase splitting, and unique quantum effects.
The use of multiple laser beams also enables the creation
of customized spatial structures, providing a highly con-
trolled environment for studying epidemic spreading dy-
namics.

In summary, we have studied optically-driven multi-
domain non-equilibrium dynamics in strongly interacting
Rydberg atom gases. The measured hysteresis and phase
jumps can be understood well and reproduced qualita-
tively using our epidemic model and using a mean-field
master equation. The atomic model is capable of simulat-
ing the SIR and SIS models (Fig. 3) in time dynamics by
adjusting the parameters of the system. Besides, in spa-
tial domain, the initial density of infections is controlled
by another laser (Fig. 4). In that case, the simulated infec-
tion is common in real life, where the infection begins as an
outbreak in some areas with dense population. Finally, we
show that the nonlinearity of the epidemic model (Eq. (7))
is also mimic by the atomic system (Figs. 3 and 5), from
which we deduce the universality of the self-organize sys-
tems. But it is noted that the similarity between the atomic
model and the epidemic model is come up mainly from the
spreading dynamics after approximations as mentioned in
section II but not from the form of the interaction in the
equations.

Our results highlight the rich range of non-equilibrium
phenomena that are accessible even in a relatively sim-
ple experiment and provide observational data to bench-
mark theoretical models of non-equilibrium dynamics
under arbitrary spatial structures. Specifically, the ob-
served dynamics of Rydberg atoms in different time and
space scales can exhibit analogs of “herd immunity”, “en-
demic state” and the outbreak of a disease in multiple
locations. The reported multi-domain-dependent exotic
phases could help build a future Rydberg-based experi-
mental analogy simulation platform for spreading in epi-
demiology.

Appendix A: SIS, SIR and SIRS models
Two typical epidemic spreadings can be described by
the Susceptible-Infected-Susceptible (SIS), Susceptible-
Infected-Recovered (SIR), and susceptible-infected-

Figure 7 Diagrammatic representation of the SIS, SIR and SIRS
models in terms of reaction-diffusion processes. Boxes represent
different disease states, while the arrows represent the stochastic
transitions between these states. Note that S: susceptible state; I:
infected state; R: recovered state; β represents the probability of the
transition S→ I; γ is the recovery probability from infected I to
recovered R via isolation and/or medication; μ is the probability of
the transition I → S, corresponding to when the infected individuals
have not been immunized. Here, η is the probability of the transition
R → S, corresponding to the loss of immunity. This figure is adapted
from Ref. [36], APS

recovered-susceptible (SIRS) models, as shown in Fig. 7.
The SIS model has two simple transitions: (1) S → I hap-
pening when a susceptible individual S interacts with an
infected I and becomes infected; (2) the reverse process
I → S occurs when the infected individual I becomes sus-
ceptible. The SIS model does not have an immunity state,
and remains in the permanent cycle I → S → I . The SIR
model consists of three states: the susceptible S, infected I,
and recovered states R.

The main difference between the SIR and SIS modes is
that I → S is replaced by I → R in SIR model. The process
I → R corresponds to the infected individual I recovering
to be immune R via isolation and/or medication. In addi-
tion, the total population could not be a constant due to the
non-balanced birth and death; thus we consider the natu-
ral death rate d of the states S, I and R. We also consider
the disease-induced death rate ν for the state I .

In the simulation of the epidemic dynamics, the spe-
cific values of μ, β and γ play a role. A non-zero μ al-
lows infected individuals to then become susceptible ones,
lengthening the overall time of spreading. The parameter
γ determines the overall time for stopping the spreading,
because the recovered individuals would not be infected
again.

When considering the impact of the available hospital
resources, such as the number b of hospital beds, we use
the simple function

γ (b, IN ) = γ0 + b(γ1 – γ0)/(b + IN ) (9)

to show the impact of the hospital beds. Here, the recovery
rate γ (b, IN ) decreases with the infected number IN under
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Figure 8 Bifurcation of epidemic spreading. The number IN of
infected individuals versus the probability β and the number b of the
hospital beds. In the simulations, we set the parameters b = 500,
d = 0.1, η = 0.05, γ1 = 0.98, γ0 = 0.02, ν = 0.1, NS = 1000, N = 10000 for
(a); while d = 0.1, β = 0.7, η = 0.05, γ1 = 0.98, γ0 = 0.02, ν = 0.1,
NS = 1000, N = 10000 for (b). In these two cases, the infected state
exhibits a bifurcation

a fixed number b. If the system has real roots, as stated in
the main text, two non-equilibrium epidemic states could
be found.

The simulations calculating Eq. (8) are given in Fig. 8, the
number of infected IN displays a bifurcation effect against
both the probability β and the number of hospital beds b.
For Fig. 8(b), we find that IN decreases with b, revealing
that the disease will disappear if having enough medical
resources.

Appendix B: Experimental setup
The experimental laser beams configuration is schemati-
cally shown in Fig. 4(a). We use a differential scheme in our
experiments. The probe (and an identical reference beam
resonant with the |g〉 = |5S1/2, F = 3〉 → |e〉 = |5P1/2, F ′ = 2〉
transition in 85Rb) propagates in parallel through a heated
Rb cell. The probe and reference transmission are detected
on a differencing photodetector.

Aside from the addition of the perturbing field, the setup
is similar to the one in Ref. [24]. Three atomic levels, a
ground state |g〉, a low-lying excited state |e〉, and a Ryd-
berg state |r〉, are driven by a probe (near-resonant with
|g〉 → |e〉) and a coupling field (near-resonant with |e〉 →
|r〉) with Rabi frequencies, �p and �c, respectively. These
fields counter-propagate through a 5 cm long vapour cell

filled with 85Rb atoms at T = 60◦C. The two lasers ex-
cite Rydberg atoms in a ladder-type EIT configuration
[54].

The ground state atom density is 3.3 × 1011 cm–3, cor-
responding to a mean interatomic spacing of 0.8μm. The
probe beam is focused into the cell (1/e2-waist radius ∼
500 μm) and couples the ground state |g〉 = |5S1/2, F = 3〉 to
|e〉 = |5P1/2, F ′ = 2〉 with detuning �p and Rabi frequency
�p. The coupling beam (1/e2-waist radius of ∼ 200μm)
with detuning �c is resonant with the transition from |e〉
to a Rydberg state |r〉 = |47D3/2〉 with Rabi frequency �c ∼
2π × 20 MHz.

By using a counter-propagating geometry, the Doppler
effect induced shift becomes v(wp – wc)/c, where v is the
atom’s velocity, and ωp and ωc denote the angular frequen-
cies of the probe and coupling light. If the lifetime of |r〉 is
long compared to |e〉, (i.e. the decay rates satisfy �r � �e,
as typically the case for Rydberg states) and the probe is
weak compared to the coupling field �p � �c, this corre-
sponds to an EIT configuration where the presence of the
resonant coupling field renders the ensemble transparent
for the resonant probe light.

In the experiment, we fix �p = 0 and observe the trans-
mission as �c is scanned at different rates. The transmis-
sion of a reference field (sent through the cell in parallel
and not overlapping with the coupling light) is subtracted
via a pair of balanced amplified photodiodes. The photo-
electric signal of the transmission difference between the
probe and reference is recorded by a computer. The trans-
mission difference is

IN = M(P1 – P2) (10)

where M is the magnification coefficient of the detector,
while P1,2 represents the intensity of the transmitted probe
and reference fields.

Appendix C: Effects of fast and slow scan of the
detuning

At a low scan rate of detuning �c, the spreading dynam-
ics of the interacting phase population are affected by the
finite lifetime of the Rydberg states, as well as the inter-
acting phase, compared to the sweep speed of the cou-
pling detuning �c [Fig. 9]. The interacting Rydberg pop-
ulation would oscillate between �c ≈ –2π × 21.3 MHz
and �c ≈ –2π × 20.8 MHz, which corresponds to the case
when β�t ∼ γ�t and μ�t → 0 in the relatively longer
time interval �t, see Fig. 9(b).

Here, the increase in coupling strength to the Rydberg
state arising from the detuning scan is low, and the inter-
acting phase cannot be sustained because the decay plays
a role in the interacting phase spreading out. This is due to
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Figure 9 Transmission in the vicinity of the critical threshold for scan
rates of 1× 2π GHz/s (a) and 0.1× 2π GHz/s (b). For slow scans, the
Rydberg density can become insufficient to sustain the interacting
phase, as the decay dominates over the change in coupling strength
to the Rydberg state from the scan

the decay of the interacting Rydberg atoms, and the refill-
ing atoms from their thermal motions; then the system ex-
hibits instabilities and avalanches [55]. Moreover, a phase
transition without oscillation appears at a fast scan rate of
�c, see Fig. 9(a); in this case, the spreading rate β is larger
than the decay rate γ , thus γ�t → 0 or β�t � γ�t, μ�t
in a relatively short time interval �t.

The system under the different regimes shows different
non-equilibrium dynamics. Our experiments in the fast-
scan regime follow the predictions of the SIS model. In
the fast-scan, the interacting Rydberg atoms do not have
enough time to decay, because the increased Rydberg pop-
ulation would supply the system with additional atoms
when scanning �c fast. Although the interacting Rydberg
atoms are constantly excited, there are still some interact-
ing atoms decaying into non-interacting atoms. But in a
relatively long time, the system would reach a stationary
state, where the interacting and the non-interacting Ryd-
berg atoms are in dynamical equilibrium.

This process follows the predictions of the SIS model: the
disease does not confer immunity and individuals can be
infected over and over again, undergoing a cycle of suscep-
tible state → infected state → susceptible state, which, un-
der some conditions, can be sustained in a long time [36].
While in the slow- or no-scan regime, the system follows
the predictions of the SIR model.

The system near the critical point would undergo a self-
organized phase, where the lost atoms are not effectively

replenished, thus the interacting phase would transit to the
no-interacting phase. For relatively long times, the inter-
acting Rydberg atoms have enough time to be lost below
the threshold ρth, and this corresponds to the process of
infectious individuals recovering from the disease in the
SIR model.

Appendix D: Theoretical simulation for multiple
quantum jumps

Here we describe the mean-field optical Bloch equations.
The Lindblad master equation is given by

dρ/dt = –i [H ,ρ] /ℏ + L/ℏ, (11)

where ρ is the atomic ensemble’s density matrix and
H =

∑

k H[ρ(k)] the atom-light interaction Hamiltonian
summed over all the k-th atom Hamiltonians using the ro-
tating wave approximation. The single-atom Hamiltonian
has the form:

H[ρ(k)] = –
ℏ

2

⎛

⎝

0 �p 0
�p –2�p �c
0 �c –2(�p – �c)

⎞

⎠ (12)

The Lindblad superoperator L =
∑

k L[ρ(k)] is comprised
of the single-atom superoperators, where

L[ρ(k)]/ℏ = –
1
2
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〉

and from |r〉 to |e〉 with
rates �e and �r respectively. The matrix form of the Lind-
bladian can be written as
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Since we are only concerned with the steady state, i.e.
t → ∞, the Lindblad master equation can be solved for
dρ/dt = 0. Then the detuning of coupling light is modi-
fied by a mean field approximation: �c → �c – Vρrr . The
bistability effect of ρrr is obtained, as shown in Fig. 10. In
the bistability region, the system is unstable thus result-
ing in a hysteresis loop, as shown by the shaded area in
Fig. 10, in which there are quantum jumps [28, 56–58] in
the transmission spectrum. This region is separated by the
two distinct Rydberg population thresholds ρth1 and ρth2
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Figure 10 The simulated ρrr versus the coupling detuning �c . The
shaded area indicates the bistability region, which is obtained by
scanning �c in positive and negative directions. In the simulation, we
set �e = 6� , �r = 0.03� , �c = 6� , �p = 2� , �p = 0 and V = -100 �

under positively and negatively scanning �c, respectively
(ρth1 < ρth2 for V < 0).

The complex susceptibility of the EIT medium including
the Doppler effect due to atomic motion is

χ(v)dv = (|μge|2/ε0ℏ)ρeg(v)dv, (15)

the coherence ρeg in the density matrix is obtained by solv-
ing the master equation. It has the form

ρeg(v) =
N(v)[�r + 2i(δ + �D)]

(2�p + 2ωpv/c – i�e)[�r + 2i(δ + �D) – i�2
eff]

.

(16)

where

�D = (ωp – ωc)v/c

denotes the Doppler shift experienced by an atom moving
with velocity v,

δ = �c + �p

is the two-photon detuning, and N(v) is the effective atom
number. Here, �eff is defined as the average Rabi frequency
of �c, by considering the coupling beam size along the va-
por cell. The spectra of the EIT medium are obtained from
the susceptibility via

T(�c,�r) ∼ exp{–Im[
∫

kLχ(v)dv]}. (17)

where L is the medium length and k the wavevector of the
probe field. In the Doppler integration, we consider atomic
velocities from v = –500 m/s to 500 m/s in order to re-
duce computational complexity, this velocity range covers
nearly 95% of the Boltzmann-distributed atoms.

Due to the two spatial domains A and B illustrated in
the inset of Fig. 4(b), we consider there are three distinct
steady states, 1, 2, and 3, corresponding to: no domains
above threshold; one domain above threshold; and two do-
mains above threshold, respectively.

The steady-state lineshapes associated with these three
steady-states are plotted as dashed lines in Fig. 4(c). To cal-
culate these steady-state lineshapes, we assume that both
the energy and the decay rate, �r , of the Rydberg state are
modified by motional averaging of interaction potentials
�shift [20, 33]. These effects could be simplify described by

�c → �c + η1 · (fR – fR,c), (18)

and

�r → �r + η2 · (fR – fR,c), (19)

when fR > fR,c, where fR is the fraction of Rydberg atoms,
and we set the critical Rydberg fraction, fR,c = 0.09, η1 = 3
MHz, and η2 = 50 MHz to match the experimental re-
sults. The observation that the broadening exceeds the line
shift (η2 > η1) is consistent with previous work on Rydberg-
induced bistability [24, 33].
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