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Abstract Causal inference concerns finding the treatment effect on subjects along with
causal links between the variables and the outcome. However, the underlying heterogeneity
between subjects makes the problem practically unsolvable. Additionally, we often need to
find a subset of explanatory variables to understand the treatment effect. Currently, variable
selection methods tend to maximise the predictive performance of the underlying model, and
unfortunately, under limited data, the predictive performance is hard to assess, leading to
harmful consequences. To address these issues, in this paper, we consider a robust Bayesian
analysis which accounts for abstention in selecting explanatory variables in the high dimen-
sional regression model. To achieve that, we consider a set of spike and slab priors through
prior elicitation to obtain a set of posteriors for both the treatment and outcome model. We
are specifically interested in the sensitivity of the treatment effect in high dimensional causal
inference as well as identifying confounder variables. However, confounder selection can be
deceptive in this setting, especially when a predictor is strongly associated with either the
treatment or the outcome. To avoid that we apply a post-hoc selection scheme, attaining
a smaller set of confounders as well as separate sets of variables which are only related to
treatment or outcome model. Finally, we illustrate our method to show its applicability.

Keywords: high dimensional data · variable selection · Bayesian analysis · imprecise prob-
ability.

1 Introduction

In causal inference, we are interested in estimating the causal effect of independent variables on
a dependent variable. Ideally, randomised trials are the most efficient way to perform this task.
However, this is not always practical for several reasons; ethical concerns, design cost, population
size, to name a few. This leaves us with observational studies which are usually obtained by means
of collecting data though surveys or record keeping. But this can be problematic in the presence
of confounders, which are variables associated with both the treatment and the outcome. In such
cases, we need to be extra cautious as otherwise it will lead to unwanted bias in the treatment
effect estimator [1]. Several works have been done in order to tackle the presence of confounder
variables. One such work in the topic was by Robins [2] where the author used a graphical approach
for the identification of the causal parameters. Rosenbaum and Robin [3] suggested the use of a link
model to estimate the propensity scores for all individuals. Later on several other methods have
been proposed based on propensity score matching. A brief review on such methods can be found
in [4, 5].

The Bayesian approach in causal effect estimation is a popular strategy in the field and one
of the earlier works on this can be found in [6]. Lately, with the rise of high dimensional data,



Bayesian methodologies have become more appealing. Crainiceanu et al. [7] proposed a bi-level
Bayesian model averaging based method for estimating the causal effect. Wang et al. [8] suggested
BAC (or, Bayesian adjustment for confounding) where they use an informative prior obtained from
the treatment model and apply them on the outcome model for estimating causal effect. Several
other methods were also proposed to tackle confounders from the point of view of Bayesian variable
selection, see for instance [9, 10] among others.

In this paper we take inspiration from the approach of Koch et al. [11], who proposed a bi-level
spike and slab prior for causal effect estimation. They considered a data-driven adaptive approach
to propose their prior which reduces the variance of the causal estimate. In our approach, we
perform a sensitivity analysis based approach where instead of using a single prior, we consider a
set of priors [12]. This is particularly interesting as in many cases, causal effect estimation can be
performed through a meta analysis and hence robust Bayesian analysis [13] can be beneficial under
severe uncertainty. Moreover, for some problems we have to rely on very limited data to perform
our Bayesian analysis and inference may not be reliable in presence of heteroscedasticity within the
data. Instead, we use expert opinion and elicit a set of priors based on empirical evidence. This also
allows us to construct the problem of confounder identification in a framework where abstention
has a relatively positive gain i.e. when the cost of further tests/data collection is cheaper than
mistreating a subject. To propose our framework, we consider a set of continuous spike and slab
priors [14] for confounder identification and construct a Bayesian group LASSO [15] type problem.
To perform the prior sensitivity analysis, we consider a set of beta priors on the covariate selection
probability of the spike and slab priors. We use the posteriors of this covariate selection probability
for identifying the confounders. Finally, we consider a post-hoc coefficient adjustment method [16]
to recover sparse estimates associated with either the outcome or the treatment model.

The rest of the paper is organised as follows. In Section 2 we give a formal description of the
causal estimation problem in the context of linear regression. Section 3 is focused on the Bayesian
analysis of causal inference problems, followed by the motivation of a robust Bayesian analysis along
with our proposed decision theoretic framework for confounder (variable) selection. In Section 4, we
provide results of simulation studies under different scenarios and show the possible applications in
real life problems. Finally, we discuss our findings and conclude this paper in Section 5.

2 Causal Estimation

Let an observational study give us the outcomes Y = (Y1, . . . , Yn) along with corresponding treat-
ment indicators T = (T1, . . . , Tn). Then the treatment effect in the population is given by the
expectation of the difference in outcomes between the treatment and controls:

δ = E(Y | T = 1)− E(Y | T = 0). (1)

Similarly, the individual causal effect of treatment Ti on outcome Yi is given by:

δi := E(Yi | Ti = 1)− E(Yi | Ti = 0). (2)

That is, we are interested in the difference between the outcomes when the i-th subject receives the
treatment and when it remains as a control.

In theory, both of these quantities exist. However, we cannot observe E(Yi | Ti = 1) and
E(Yi | Ti = 0) the average causal effect of the treatment T by calculating the averaged outcome of



all the subjects that received the treatment and all the subjects that remained as control:

δ̂ :=

∑n
i=1 Yi · I(Ti = 1)−

∑n
i=1 Yi · I(Ti = 0)

n
. (3)

However, this relies on an important assumption that the treatment effect on the i-th subject given
that they received the treatment is the same as the (counterfactual) treatment effect when they
remain as control [4].

2.1 Regression Model

Regression methods are widely used in causal effect estimation. The main idea behind these regres-
sion methods is to remove the correlation between the treatment indicator and the error term [4, 17].
To do so, we rely on p different observed quantities or predictors denoted by X := [XT

1 , . . . , X
T
n ]

T

where each Xi ∈ Rp. Each Xi is treated as a p-dimensional row vector, so X is a n×p matrix. Now,
let β := (β1, . . . , βp)

T denote the vector of regression coefficients related to the predictors, and βT

denote a regression coefficient related to the treatment. Then we can define a linear model for the
outcome so that

Yi = TiβT +Xiβ + ϵi (4)

where ϵi ∼ N (0, σ2). Clearly, when the underlying true outcome model is linear with respect to the
treatment,

δi = E(Yi | Ti = 1)− E(Yi | Ti = 0) = βT . (5)

In the presence of confounders we also need to consider the association between the treatment
indicators and the predictors. In literature, authors often suggest a probit link function to construct
the regression model. This way, we can specify the conditional probability that subject i receives
the treatment through a linear model. That is, for another vector of regression coefficients γ :=
(γ1, · · · , γp)T we define

P (Ti = 1 | Xi) = Φ(Xiγ) (6)

where Φ(·) denotes the cumulative distribution function of a standard normal distribution. To
incorporate this probit link function, we assume that we can model the Ti through the following
[18]:

T ∗
i = Xiγ + ui (7)

Ti = I(T ∗
i > 0) =

{
1 if T ∗

i > 0

0 otherwise
(8)

where ui ∼ N (0, 1).
Now, to construct the joint likelihood function, we define an extended output 2n × 1 column

vector W :=
(

Y
T∗

)
and corresponding 2n× (2p+ 1) dimensional design matrix

Z :=



T1 X1 0
...

... 0
Tn Xn 0
0 0 X1

...
...

...
0 0 Xn


=

[
XO 0
0 XT

]
(9)



where, XO = [T,X] and XT = X. Then, considering the assumption of Gaussian error terms, we
have the following likelihood distribution

W | Z, βT , β, γ, σ
2 ∼ N (Zν,Σ) , (10)

where ν = (βT , β
T , γT )T and

Σ =

[
σ2In 0
0 In

]
. (11)

3 Bayesian Causal Estimation

The likelihood given by Eq. (10) gives us a foundation for a Bayesian group LASSO [15] type model.
This way, we can look into the posterior selection probability associated with the j-th predictor.
There are several ways to construct spike and slab priors which achieve variable selection. In our
case, we consider a continuous type [14] prior for faster posterior computation.

3.1 Hierarchical model

Let πj denote the prior probability that the j-th predictor is associated to the outcome or the
treatment. That is,

πj = P ((βj , γj) ̸= (0, 0)) . (12)

Then we can define the following hierarchical model for spike and slab group LASSO so that, for
1 ≤ j ≤ p,

(βj , γj)
T | πj , σ

2 ∼ πjN
([

0
0

]
, τ21

[
σ2 0
0 1

])
+ (1− πj)N

([
0
0

]
, τ20

[
σ2 0
0 1

])
(13)

βT | σ2 ∼ N
(
0, σ2

)
(14)

1

σ2
∼ Gamma(a, b) (15)

πj ∼ Beta (sq, s(1− q)) . (16)

In the hierarchical model, we fix sufficiently small τ0 (1 ≫ τ0 > 0) so that (βj , γj) has its prob-
ability mass concentrated around zero. Therefore, this represents the spike component of our prior
specification. For the slab component, we consider τ1 to be large so that τ1 ≥ 1. This allows the
prior for (βj , γj) to be flat, besides the spike component at the origin.. We illustrate the components
of a bivariate spike and slab prior in Fig. 1 (with fixed σ = 1). We generate the spike component
with τ0 = 0.001 and the slab component with τ1 = 5.

For the precision term 1/σ2, a natural choice of prior is the gamma distribution as it allows
the control of both the location and the scale of the precision. To ensure that the prior is able to
represent the data, we consider b = 1 and fix a so that it represents the prior mean of the precision.
In cases where we have no prior information, we can simply consider a large value for a so that the
interval [0, 2a] contains the true value of the precision. As defined earlier, πj is used as the selection
probability of the j-th predictor in either of the models and we use a beta prior to specify these
selection probabilities where qj represents our prior expectation of the selection probability (πj) and
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Figure 1: Spike (left) and slab (right) components of a bi-variate distribution for τ0 = 0.001, τ1 =
5 and σ = 1.

s acts as a concentration parameter. For the causal effect, we want to use a Gaussian distribution
that matches the scale of the noise term. Therefore, we consider βT ∼ N (0, σ2).

In Fig. 2, we show a probabilistic graphical representation of our hierarchical model. In the figure,
grey circular nodes represent the prior hyper-parameters which will be used for sensitivity analysis
of the model. The transparent circular nodes are used to denote the modelling parameters which
are our quantities of interest. The observed quantities are denoted with transparent rectangular
nodes. We also use a grey rectangular node to denote the intermediate latent variable T ∗. We use
directed edges to denote the relationship between different nodes. However, we use a dashed edge
between X and T as they are related through the latent variable T ∗.

3.2 Robust Bayesian Analysis

The hierarchical model presented above is a standard spike and slab model for variable selection
and performs well when we have sufficient data to begin with. However, especially in the case of
causal inference having sufficient data may not be feasible. Moreover, we also need to be cautious
about the side effects of a treatment. Therefore, we are particularly interested in constructing a
robust Bayesian framework for variable selection. This way, when we are preparing a guideline for
treatment, we can have the option to ask for more data before reaching any conclusion. To achieve
this, we consider a utility based framework with three possible ways of determining a variable.
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Figure 2: Probabilistic graphical representation for causal inference with Bayesian hierarchical
model.

In general, an unsuccessful treatment of a subject can have severe consequences which cannot
be associated with a suitable loss function. Instead, we assume that we can always revert any initial
mistreatment by further treatments, and we can associate a loss function with the cost of further
treatments. This way, in the simplest case, we can associate two constant loss values ℓ1, ℓ2 with false
positives and false negatives respectively. Clearly, false positives will lead to unwanted side effects
and false negatives will lead to mistreatment of the patient. Finally, we associate a loss value ℓ3 for
abstention which can be interpreted as the cost of further tests. Ideally, in most cases, ℓ3 ≪ ℓ1, ℓ2.
However, in certain scenarios, this might not be the case, especially when the condition of a subject
deteriorates rapidly over time.

Now, based on this notion of abstaining from selecting a variable, we can perform a sensitivity
analysis over a set of priors on the prior selection probability. That is, we can consider a set of
possible values for q such that q ∈ P, where P ⊆ (0, 1)

p
. Here, the equality occurs for the near

vacuous case. However, in real-life situations, performing a robust Bayesian analysis for the near
vacuous case is not practical. Instead, we incorporate expert elicitation to define our model. For
instance, we can consider q ∈

[
q, q

]
where pq and pq represent the bounds of the prior expectation

on the total number of variables present in either of the models.

3.3 Variable selection and coefficient adjustment

For the co-variate selection, we look into the posterior expectation of πj . We consider the j-th
predictor to be removed from both the treatment and outcome model, if

E(πj | W ) := sup
q∈P

E(πj | W ) < 1/2. (17)



Similarly, we consider the j-th predictor to be present in at least one of the models, if

E(πj | W ) := inf
q∈P

E(πj | W ) ≥ 1/2. (18)

Otherwise, we consider the variable to be indeterminate, in which case we abstain from putting it
in any of the models but instead just report a lack of information.

In general, this framework is self sufficient for variable selection. However, for model fitting and
prediction, we need to evaluate the values of the regression coefficients. For that we first need to
find the set of active predictors with respect to our prior expectation of the selection probability q.
For any fixed q, we define the set S(q) as the set of all variables which are active in the treatment
model or in the outcome model:

S(q) := {j : E(πj | W ) ≥ 1/2} . (19)

For sensitivity analysis, the intersection of S(q) over all q gives us the set of active variables obtained
through Eq. (18). Similarly, the union gives us the set of variables that are not removed through
Eq. (17). That is:

S∗ := {j : E(πj | W ) ≥ 1/2} =
⋂
q∈P

S(q), S∗ :=
{
j : E(πj | W ) ≥ 1/2

}
=

⋃
q∈P

S(q). (20)

Clearly, S∗ ⊆ S∗. S∗ represents the set of variables that are sure to be selected, {1, . . . , p} \ S∗

represents the set of variables that are sure to be removed, and S∗ \ S∗ represents the set of
variables about which we are undecided. In this way, through sensitivity analysis, our approach
incorporates robustness.

Now, for each fixed value of q, let β̂S(q) be the posterior means of the regression coefficients of the
outcome model with respect to the predictors that belong to S(q). Similarly, γ̂S(q) be the posterior
means of the regression coefficients for the treatment effects. Since we use continuous spike and slab
priors, these regression coefficients are not sparse. Moreover, with our variable selection we only
determine whether the variable is included in at least one of the models. But, we cannot determine
a specific association. Therefore, to adjust the sparsity of the estimates and understand the specific
association with the treatment/outcome/both, we apply the “decoupled shrinkage and selection”
method proposed by [16]. For that, we solve the following adaptive LASSO-type [19] problems

β̂D
S(q) = arg min

βS(q)

1

n
∥XS(q)β̂S(q) −XS(q)βS(q)∥22 + λ

∑
j∈S(q)

|βj,S(q)|
|β̂j,S(q)|

(21)

and

γ̂D
S(q) = arg min

γS(q)

1

n
∥XS(q)γ̂S(q) −XS(q)γS(q)∥22 + λ

∑
j∈S(q)

|γj,S(q)|
|γ̂j,S(q)|

(22)

where q ∈ P.

4 Simulation Studies

For the simulation studies, we consider 2 different settings. In each case, we generate the design
matrix X such that Xi ∼ N (0, Σ) for 1 ≤ i ≤ n where [Σ]ij = 0.3|i−j|. This way, we generate 50



predictors for our model with mild correlations among them. We then use the following generation
schemes to generate the outcome and treatment indicator:

Ti ∼ Bernoulli (1/(1 + exp(−Xiγ))) and Yi = 4Ti +Xiβ. (23)

Scenario 1 — |γj |, |βj | > 0 for j ≤ 10
Scenario 2 — |γj | > 0 for j ≤ 10 and |βj | > 0 for j ≤ 15

For both the cases, we consider different numbers of observations n where n = 25 + 5k for k =
0, 1, 2, · · · , 10.

We present our analyses in Table 1 and Table 2. For the sake of clarity we use the following
accronyms: RBCE for robust Bayesian causal estimation (our method); SSCE for spike and slab
causal estimation [11]; BSSCE for bi-level spike and slab causal estimation [11]; and BSSL for
Bayesian spike and slab lasso [15]. As it can be seen from both the tables, SSCE and BSSCE are
formulated for problems where p ≤ n and therefore we do not have any results for n < 50.

Elicitation For the elicitation of P, we use marginal correlation between Y and X to determine the
bounds on number of active variables. We set the thresholds to be 0.15 and 0.35 for the correlations.
We compute the number of variables with marginal correlation greater than 0.15 (say p1) and
number of variables with marginal correlation greater than 0.35 (say p2). We use these numbers to
obtain the bounds on the number of active variables so that P = [p2/p, p1/p].

Initialisation To implement our method, we use rjags and for the other three methods we use the
code provided in the appendix of [11]. For our method, we set τ0 = 10−6 and τ1 = 1 to construct
the spike and slab prior. For the noise term, we set a = 10 and b = 1. To perform our Bayesian
analysis with rjags, we first consider an adaptive stage with 2000 iterations followed by discarding
of 2000 burn in samples to refine the posteriors. We consider 5000 MCMC samples to compute the
posterior estimates. For the other methods we use the in-built settings to initiate the analyses.

Results We provide our result for causal estimate in Table 1. As we perform a sensitivity analysis,
our method gives an interval estimate for the causal effect and we show that in two different rows
where the first row gives the lower bound and the second row gives the upper bound. We notice that
our method is somewhat in agreement with the other methods but much more consistent in terms
of estimating the treatment effect. However, this is not the case for other methods and sometimes
those methods produce extreme values. This can be observed in Fig. 3 as well. Here, the true value
is represented by the straight line for βT = 4.

From the figure, we can notice that our method tends to underestimate the causal effect. This
suggests that we may want to have a different value of a for these sets of observations instead of a
fixed value of a = 10 for all of our analyses. We can also see that the lower bound tends to improve
with increasing number of observations which validates the assumption that as we accumulate more
information, the interval becomes smaller and converges towards the true value.

For the variable identification, we use the notion of different losses as described earlier. We
consider ℓ1 = ℓ2 = 1 and ℓ3 = 0.2. This is a simplified way of choosing the loss function, we can
choose more sophisticated loss functions based on [20]. We use this associated loss to obtain the
total loss, which we present in Table 2. In the table we denote the misspecification by counting the
number of false positives (FP) and false negatives (FN). For RBCE, we have an additional column
‘ID’ which denotes the number of variables which remain as indeterminate. From the table it can



Table 1: Causal estimates obtained from different methods for 6 different numbers of observations.

First scenario: |γj |, |βj | > 0 for j ≤ 10

25 30 35 40 45 50 55 60 65 70 75

RBCE (low) 3.22 3.54 3.30 3.66 3.77 3.80 3.85 3.89 3.90 3.91 3.89
RBCE (up) 4.03 3.96 3.50 3.77 3.82 3.83 3.90 3.93 3.92 3.92 3.91
SSCE – – – – – 4.24 4.11 3.99 4.00 4.00 3.99
BSSCE – – – – – 4.02 4.01 4.01 4.01 4.01 4.01
BSSL -0.23 4.07 6.80 4.05 4.00 4.00 4.01 3.98 3.99 3.99 3.99

Second scenario: |γj | > 0 for j ≤ 10 and |βj | > 0 for j ≤ 15

25 30 35 40 45 50 55 60 65 70 75

RBCE (low) 2.79 3.70 3.77 3.56 3.69 3.70 3.81 3.78 3.81 3.82 3.85
RBCE (up) 3.65 4.01 3.96 3.82 3.90 3.86 3.92 3.89 3.91 3.88 3.91
SSCE – – – – – 4.80 4.05 4.06 6.02 4.04 4.04
BSSCE – – – – – 10.34 8.12 4.17 4.04 4.06 4.05
BSSL -6.68 3.62 4.06 4.07 4.06 4.02 4.05 4.07 4.03 4.05 4.04

be seen that for the first scenario, our method abstains from identifying some variables for n < 50.
Especially for n = 25, our method identifies 26 and 23 variables as indeterminate for the first setting
and second setting respectively. However, later on our method gives more precise results in terms of
variable selection. We also notice that BSSL tends to perform poorly in terms of variable selection
for n = 25, this can be seen from the treatment effect estimation as well. Moreover, we observe
that for the second setting both SSCE and BSSCE underperform in identifying the active variables,
which can be explained from Table 1 as well.

5 Conclusion

Causal effect estimation is an important tool in statistical learning and needs to be performed with
utmost care as in many cases we may have severe consequence of poor estimation. In this paper,
we tackle this issue by proposing a robust Bayesian analysis of causal effect estimation problem for
high dimensional data. Our framework is focused on the effect of prior elicitation on confounder
selection as well as causal effect estimation. We consider a spike and slab type prior for confounder
selection and discuss the possible sources of uncertainty that need to be tackled carefully. We
were particularly focused on the uncertainty associated with prior selection probabilities for which
we consider a set of beta priors to perform sensitivity analysis. We showed that the sensitivity
analysis on the prior selection probability gives us a robust confounder selection scheme. In this
way, we can abstain from selecting a confounder when the available data is not sufficient. We also
propose a generalised utility based framework, where we associate a loss for abstaining which can
be interpreted as the cost of further data collection. Finally, we illustrate our method with synthetic
dataset and compare with other state of the art Bayesian methods.

Currently, the paper proposes a robust Bayesian approach for causal effect estimation where we
rely on sampling strategies to obtain the posterior bounds as well as performing variable selection.
In future, it will be interesting to derive inner approximation bounds for the posterior estimates to
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Figure 3: Comparison of different methods in estimating the treatment effect.

reduce the computational cost. Moreover, for the sake of illustration, we rely on simple loss functions
and elicitation strategy. In future, we would like to investigate different elicitation strategies for the
method and explore alternative loss functions for formulating a decision theoretic framework. Last
but not the least, we noticed that our method is in good agreement with other methods with an
added level of robustness. This confirms that our method has good potential for real-life problems,
and we intend to apply it on a real dataset in future work.
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[20] Zaffalon, M., Corani, G., Mauá, D.: Evaluating credal classifiers by utility-discounted predictive accur-
acy. International Journal of Approximate Reasoning 53(8) (2012) 1282–1301 Imprecise Probability:
Theories and Applications (ISIPTA’11).



Citation on deposit: Basu, T., Troffaes, M. C. M., 
& Einbeck, J. (2023, September). A Robust 
Bayesian Approach for Causal Inference 
Problems. Presented at ECSQARU 2023, Arras, 
France 
For final citation and metadata, visit Durham 

Research Online URL: https://durham-
repository.worktribe.com/output/3106497 
Copyright statement: This accepted manuscript is licensed under the Creative 
Commons Attribution 4.0 licence. 
https://creativecommons.org/licenses/by/4.0/ 
 
 

https://durham-repository.worktribe.com/output/3106504
https://durham-repository.worktribe.com/output/3106504
https://creativecommons.org/licenses/by/4.0/

