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Abstract14

Causal effect estimation is a critical task in statistical learning that aims to15

find the causal effect on subjects by identifying causal links between a number16

of predictor (or, explanatory) variables and the outcome of a treatment. In17

a regressional framework, we assign a treatment and outcome model to esti-18

mate the average causal effect. Additionally, for high dimensional regression19

problems, variable selection methods are also used to find a subset of pre-20

dictor variables that maximises the predictive performance of the underlying21

model for better estimation of the causal effect. In this paper, we propose22

a different approach. We focus on the variable selection aspects of high di-23

mensional causal estimation problem. We suggest a cautious Bayesian group24

LASSO framework for variable selection using prior sensitivity analysis. We25

argue that in some cases, abstaining from selecting (or, rejecting) a predictor26

is beneficial and we should gather more information to obtain a more decisive27

result. We also show that for problems with very limited information, expert28

elicited variable selection can give us a more stable causal effect estimation29

as it avoids overfitting. Lastly, we carry a comparative study with synthetic30

dataset and show the applicability of our method in real-life situations.31

Keywords: high dimensional regresssion, variable selection, Bayesian32

analysis, imprecise probability33

1. Introduction34

Causal inference using observational data is important in many fields,35

including epidemiology, social science, economics, and many more. Causal36
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inference concerns estimating the causal effect of predictor variables on an37

outcome variable, as well as identifying which predictors are causally linked38

with the outcome. Ideally, randomised trials are the most efficient way to39

perform this task. However, this is not always practical due to, for instance,40

ethical concerns, design cost, population size, to name a few. This leaves us41

with observational studies where data is collected though surveys or record42

keeping.43

Unfortunately, without fully controlled randomised trials and full knowl-44

edge of confounders, it is well understood that statistical models are unable45

to infer causality, as correlation does not imply causation especially in the46

presence of confounders. Still, it is highly desirable to try to adjust for47

confounding in our statistical models to the best of our ability. This is48

termed (perhaps somewhat unfortunately) causal inference in the literature49

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. This is also the approach that we will fol-50

low here, under the disclaimer that whether actual causality can be inferred51

remains a subject of interpretation and conjecture specific to the situation52

being studied. In this regard, we also refer to [11] where a detailed discussion53

on different interpretations of ‘causality’ in statistics and econometrics can54

be found55

biomarker
(confounder)

treatment
decision

(predictor)

treatment
outcome

Figure 1: A biomarker influencing both the treatment decision and the treatment outcome,
thereby acting as confounder. Solid arrows indicate causation, whilst the dashed arrow
indicates correlation without causation.
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A confounder is any variable which is causally linked with both a predic-56

tor and the outcome, giving the false impression that that predictor causes57

the outcome (see Fig. 1). Confounding happens commonly in observational58

treatment studies because many predictors are often causally linked with the59

treatment decision (which is also a predictor), whilst simultaneously affect-60

ing the outcome of the treatment. Any such predictors act as a confounders61

between treatment decision (as one of the predictor variables) and treatment62

outcome. In such cases, we must be extra cautious as we risk unwanted63

bias in the causal effect estimator [2], if we ignore such correlations. Sev-64

eral authors have tackled the presence of confounder variables. Robins [3]65

used a graphical approach to identify the causal parameters. Rosenbaum and66

Rubin [12] suggested a link model to estimate the propensity scores for all67

individuals. Subsequently, several other methods have been proposed based68

on propensity score matching; see [4, 5] for a brief review.69

One of the earlier Bayesian approaches to causal inference can be found in70

[1]. More recently, with the rise of high dimensional data, Bayesian method-71

ologies have grown in popularity. Crainiceanu et al. [13] proposed a bi-level72

Bayesian model averaging based method for estimating the causal effect.73

Wang et al. [7] suggested BAC (or, Bayesian adjustment for confounding),74

where an informative prior obtained from the treatment model is applied on75

the outcome model for estimating the causal effect. Several other methods76

were proposed to tackle confounders, see for instance [6, 9] among others77

for a Bayesian perspective and [14] for a survey of methods for addressing78

unmeasured confounding.79

In this paper, we take inspiration from the approach of Koch et al. [10],80

who proposed a bi-level spike and slab prior for causal effect estimation in81

high dimensional problems (i.e. when number of predictors is larger than the82

number of observations). They considered a data-driven adaptive approach83

to propose their prior which reduces the variance of the causal estimate. Our84

approach however focuses on the other aspect of high dimensional causal85

inference problem, ie. variable selection. To achieve that we rely on prior86

sensitivity analysis, where instead of using a single prior, we consider a set of87

priors [15]. Prior sensitivity analysis for causal inference has been a topic of88

interest lately. Zaffalon et al. [16] used credal networks in structured causal89

models for causal inference; Raices Cruz et al. [17] performed a meta anal-90

ysis in a robust Bayesian framework for causal effect estimation. However,91

variable selection in causal estimation problem has not been investigated in92

robust Bayesian framework. This motivates us to investigate the role and ap-93
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plicability of prior sensitivity analysis in high dimensional causal estimation94

problems. This is particularly beneficial, as in high dimensional problems,95

we have to rely on very limited observations to perform our Bayesian anal-96

ysis and as a result variable selection with a single prior can be unreliable97

[18] in many cases, Moreover, in causal effect estimation, failing to correctly98

identify a relation between the treatment effect and predictor can lead to99

harmful side-effects. Therefore, it is extremely important to adopt a cau-100

tious approach in selecting or rejecting a variable. To achieve this cautious101

paradigm and to perform a prior sensitivity analysis, we rely on expert opin-102

ion to elicit a set of priors based on empirical evidence. This allows us to103

construct the problem of predictor selection in a framework where absten-104

tion has a relatively positive gain i.e. when the cost of further tests/data105

collection is lower than that of incorrectly treating a subject.106

Our framework considers a set of continuous spike and slab priors [19] for107

predictor selection. We thereby construct a Bayesian group LASSO (least108

absolute shrinkage and selection operator) [20] type problem. To perform109

sensitivity analysis, we consider a set of beta priors on the covariate selection110

probability of the spike and slab priors. We use the posteriors of this covariate111

selection probability for identifying the active predictors. Finally, we consider112

a post-hoc coefficient adjustment method [21] to recover sparse estimates113

associated with either the outcome or the treatment model.114

The rest of the paper is organised as follows. In Section 2 we give a115

formal description of the causal estimation problem in the context of linear116

regression. Section 3 is focused on the Bayesian analysis of causal inference117

problems, followed by the motivation of a robust Bayesian analysis along118

with our proposed decision theoretic framework for predictor selection. In119

Section 4, we provide results of simulation studies under different scenarios120

and show the possible applications in real life problems. Finally, we discuss121

our findings and conclude this paper in Section 5.122

2. Causal Estimation123

Let an observational study on n individuals give us treatment outcomes124

Y := (Y1, . . . , Yn) with corresponding treatment decisions T := (T1, . . . , Tn).125

Here, we use an indicator to represent the treatment decision. That is, Ti is 1126

if the ith patient was treated, and 0 otherwise. Similarly, Yi is the treatment127

outcome of the ith patient, represented as some real-valued quantity.128
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Regression methods are widely used in causal effect estimation. The main129

idea behind these regression methods is to remove the correlation between130

the treatment indicator and the error term [4, 22]. To do so, we rely on131

p observed quantities, called predictors, denoted by X := [X⊤
1 , . . . , X

⊤
n ]

⊤
132

where each Xi ∈ Rp. Each Xi is treated as a p-dimensional row vector,133

so X is a n × p matrix. Now, let β := (β1, . . . , βp)
⊤ denote the vector of134

regression coefficients related to the predictors, and let βT denote a regression135

coefficient related to the treatment decision. Following the usual approach in136

the literature (see for instance [4, 22]), we model the outcome using a linear137

model138

Yi = TiβT +Xiβ + β0 + ϵi (1)

where ϵi ∼ N (0, σ2), independent of Ti and Xi. Note that both Ti and Xi are139

predictors for Yi in the above model. However, when we talk about predictors140

in this paper, we usually mean just the components of Xi.141

To decide whether or not to treat a new individual with given predictors,142

we are mainly interested in the effect of the treatment on the outcome. More143

precisely, the causal effect of a new individual, indexed as n + 1, whose144

outcome Yn+1 is not yet observed, and with observed predictors Xn+1 = xn+1,145

is defined by:146

δ(xn+1) := E(Yn+1 | Xn+1 = xn+1, Tn+1 = 1)

− E(Yn+1 | Xn+1 = xn+1, Tn+1 = 0)
(2)

For our model, due to linearity of expectation, we have that147

δ(xn+1) = βT + xn+1β + E(ϵn+1 | Xn+1 = xn+1, Tn+1 = 1)

− xn+1β − E(ϵn+1 | Xn+1 = xn+1, Tn+1 = 0)
(3)

and because ϵn+1 is independent from Xn+1 and Tn+1,148

= βT . (4)

Note that, for this model, the causal effect δ(xn+1) does not depend on the149

observed value xn+1 of Xn+1. So, to find the causal effect, we simply need to150

estimate βT . Note that, if interaction terms between Xi and Ti were present151

in the model (for example a term of the form, say, TiXiη for some parameter152

vector η), that would result in a dependence of the causal effect on xn+1.153

To estimate βT from the data X, Y and T , especially in the presence of154

confounders, we also need to consider the association between the treatment155
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indicators T and the predictors X. A common choice in the literature is to156

use a probit link function [4], though other link functions, such as the logit,157

can also be used [22]. In this way, we can specify the conditional probability158

that subject i receives the treatment through a linear model. That is, for159

another vector of regression coefficients γ := (γ1, · · · , γp)⊤ we assume160

P (Ti = 1 | Xi) = Φ(Xiγ + γ0) (5)

where Φ denotes the cumulative distribution function of a standard normal161

distribution. The key assumption made here is that there is a monotone162

relationship between the predictors and the probability of treatment. Here163

too, interaction terms between the Xi could be added to form more complex164

models if so desired.165

To incorporate this probit link function, we model the Ti as follows [23]:166

T ∗
i = Xiγ + γ0 + ui (6)

Ti = I(T ∗
i > 0) =

{
1 if T ∗

i > 0

0 otherwise
(7)

where ui ∼ N (0, 1). With this model, indeed167

P (Ti = 1 | Xi) = P (T ∗
i > 0) = P (ui > −Xiγ − γ0) = 1− P (ui ≤ −Xiγ − γ0)

(8)

= 1− Φ(−Xiγ − γ0) = Φ(Xiγ + γ0). (9)

Now, to construct the joint likelihood function, we define an extended168

output 2n × 1 column vector W := ( Y
T ∗ ) and corresponding 2n × (2p + 3)169

dimensional design matrix170

Z :=



T1 X1 1 0 0
...

...
... 0 0

Tn Xn 1 0 0
0 0 0 X1 1
...

...
...

...
...

0 0 0 Xn 1


=

[
XO 0
0 XT

]
(10)

where, XO := [T,X,1n] and XT := [X,1n]. Then, considering the assump-171

tion of Gaussian error terms, we have the following likelihood distribution172

W | Z, βT , β, β0, γ, γ0, σ
2 ∼ N (Zν,Σ) , (11)
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where ν := (βT , β
⊤, β0, γ

⊤, γ0)
⊤ and173

Σ :=

[
σ2In 0
0 In

]
. (12)

3. Robust Bayesian Causal Estimation174

The likelihood given by Eq. (11) gives us a foundation for a Bayesian175

group LASSO [20] type model. In this way, we can look into the posterior176

selection probability of each predictor. In this section, we formally introduce177

our proposed methodology for causal estimation and we call it as ‘robust178

Bayesian causal estimation’ as we perform a robust Bayesian analysis [15]179

to achieve a cautious variable selection paradigm. There are several ways180

to construct spike and slab priors for variable selection. In our method, we181

consider a continuous type prior [18, 19] for faster posterior computation.182

3.1. Hierarchical model183

Let πj denote the prior probability that the j-th predictor is associated184

with the outcome or the treatment. That is, conceptually,185

πj := P ((βj, γj) ̸= (0, 0)) . (13)

Practically, we model this by defining the following hierarchical model so186

that, for 1 ≤ j ≤ p,187

(βj, γj)
⊤ | πj, σ

2 ∼ πjN
([

0
0

]
, τ 21

[
σ2 0
0 1

])
+ (1− πj)N

([
0
0

]
, τ 20

[
σ2 0
0 1

])
(14)

βT | σ2 ∼ N
(
0, σ2

)
(15)

β0 | σ2 ∼ N
(
0, σ2

)
(16)

γ0 ∼ N (0, 1) (17)

1

σ2
∼ Gamma(a, b) (18)

πj ∼ Beta (sqj, s(1− qj)) . (19)

In the hierarchical model, we fix sufficiently small τ0 (1 ≫ τ0 > 0) so that188

(βj, γj) has its probability mass concentrated around zero. Therefore, this189

represents the spike component of our prior specification. For the slab com-190

ponent, we consider τ1 to be large so that τ1 ≥ 1. This allows the prior for191
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(βj, γj) to be flat beyond the spike component at the origin. We illustrate the192

components of a bivariate spike and slab prior in Fig. 2 (with fixed σ = 1).193

We generate the spike component with τ0 = 0.1 and the slab component with194

τ1 = 5.195
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Figure 2: Spike (left) and slab (right) components of a bivariate distribution for τ0 = 0.1,
τ1 = 5 and σ = 1.

For the precision term 1/σ2, a natural choice of prior is the gamma dis-196

tribution as it allows the control of both the location and the scale of the197

precision. To ensure that the prior is able to represent the data, we consider198

b = 1 and fix a so that it represents the prior mean of the precision. Al-199

ternatively, when b = 1, we know that the interval [0, 3a] contains the true200

value of the precision parameter with probability close to 0.95. So, we can201

also use a prior judgement on the 95% quantile to set a. We use a beta prior202

to model our uncertainty about the selection probabilities πj where qj rep-203

resents our prior expectation of πj and s acts as a concentration parameter.204

For the causal effect in Eq. (15) and intercept term of the outcome model in205

Eq. (16), we want to use a Gaussian distribution that matches the scale of206

the noise term. Therefore, we consider βT , β0 | σ2 ∼ N (0, σ2). Similarly, for207

the intercept of the treatment model we match the scale of the probit model208

and consider γ0 ∼ N (0, 1).209

In Fig. 3, we show a probabilistic graphical representation of our hierar-210

chical model. In the figure, grey circular nodes represent the prior hyper-211

parameters which will be used for sensitivity analysis of the model. The212

transparent circular nodes are used to denote the modelling parameters which213

are our quantities of interest. The observed quantities are denoted with trans-214

parent rectangular nodes. We also use a grey rectangular node to denote the215
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intermediate latent variable T ∗. We use directed edges to denote the rela-216

tionship between different nodes. However, we use a dashed edge between X217

and T as they are related through the latent variable T ∗.218

π X T

γ

γ0

T ∗

β

β0

Y

σ2

βT

s

q

a

b

Figure 3: Probabilistic graphical representation for causal inference with our Bayesian
hierarchical model.

3.2. Robust Bayesian Analysis219

The hierarchical model presented above is a standard spike and slab model220

for variable selection and performs well when we have sufficient data. How-221

ever, especially in many situations, we do not always have sufficient data.222

Moreover, we also must be cautious about the side effects of a treatment.223

Therefore, we are particularly interested in constructing a robust Bayesian224

framework for variable selection. In this way, when we are preparing guide-225

lines for treatment, we can have the option to ask for more data before reach-226

ing any conclusion. To achieve this, we consider a utility based framework227

with three possible outcomes.228

In particular, through predictor selection, we also want to check if a229

certain bio-marker should be considered for the treatment decision. For ex-230

ample, say we can observe blood pressure with some other bio-markers and231

want to decide whether our treatment guideline should also consider the232

blood pressure of the subject before treating them. This is useful as an un-233

necessary treatment of a subject can have severe consequences because of the234
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medicinal side effects. In general, it is hard to associate such consequences235

with a suitable loss function. Instead, we assume that we can always revert236

any initial incorrect treatment by further treatments, and we can associate237

a loss function with the cost of further treatments. So, we will associate238

two constant loss values ℓ1 and ℓ2 with false positives (falsely selected pre-239

dictor) and false negatives (falsely rejected predictor) respectively. Clearly,240

false positives may lead to unwanted side effects and false negatives may241

lead to incorrect treatment of the patient. Finally, we associate a loss value242

ℓ3 for abstention from selecting a variable which can be interpreted as the243

cost of further tests to determine whether that bio-marker is important for244

constructing the treatment guideline. Ideally, in most cases, ℓ3 ≪ ℓ1, ℓ2.245

However, in certain scenarios, this might not be the case, especially when246

the condition of a subject deteriorates rapidly over time.247

Now, based on this notion of abstaining from selecting a predictor, we248

can perform a sensitivity analysis over a set of priors on the prior selection249

probability. That is, we can consider a set of possible values for q such that250

q ∈ P , where P ⊆ (0, 1)p. Here, the equality occurs for the near vacuous251

case. However, in real-life situations, performing a robust Bayesian analysis252

for the near vacuous case is not practical. Instead, we incorporate expert253

elicitation to define our model.254

For instance, assume k and k represent the expert’s bounds of the prior255

expectation on the total number of variables present in either of the mod-256

els. We can then consider P =
[
k/p, k/p

]p
. Using an interval for the prior257

expectation on the total number of active variables gives us a more cautious258

approach to specifying the prior distribution on variable selection, and thus259

more robust inferences.260

Alternatively, we may also use the empirically observed correlations from261

the data directly. This is particularly common in ultra high dimensional262

problems (when p ≫ n) for reducing the dimensionality of the problem [24].263

We can also use this approach to have a better prior judgement since any264

predictors that are correlated with the outcome are good candidates to be265

active. When doing so, we need a prior judgement on what is a reasonable266

correlation between active predictors and the outcome. Say the expert judges267

that an active predictor has a correlation with the outcome that lies typically268

in [−1,−c] ∪ [c, 1], i.e. an absolute correlation larger than c. Let kc be the269

number of predictors with absolute marginal correlation greater than c. We270

could then consider q = kc/p for the prior, as it gives a prior estimate on the271

selection probability that is consistent with a prior predictive expectation of272
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kc active variables. Now, it is in general quite difficult to specify an exact273

value for c a priori. Therefore, we consider an interval [c, c] for c, leading to274

P = [kc/p, kc/p]
p (note that kc is monotonically non-increasing in c).275

Variable selection. Ideally, we should check the joint posterior probability276

of πj’s to select the most probable model. However, this means we have277

to search a space of dimension 2p, which is practically impossible when p278

is very large. Instead, we can use the posterior of individual πj as Barbieri279

and Berger [25] showed that median probability model gives the optimal280

model. That is we can set a threshold of 1/2 to select a variable. Therefore,281

we consider the j-th predictor to be removed from both the treatment and282

outcome model, if283

E(πj | W ) := sup
q∈P

Eq(πj | W ) < 1/2. (20)

Similarly, we consider the j-th predictor to be present in at least one of the284

models, if285

E(πj | W ) := inf
q∈P

Eq(πj | W ) ≥ 1/2. (21)

Otherwise, we consider the variable to be indeterminate, in which case we286

abstain from putting it in any of the models but instead just report a lack287

of information.288

3.3. Coefficient Adjustment and Refit289

In general, our framework is intended for robust variable selection in290

causal effect estimation problem. However, one might also be interested291

in model fitting and prediction, for that we need to evaluate the values of292

the regression coefficients. To do so, we first need to find the set of active293

predictors with respect to our prior expectation of the selection probability294

q. For any fixed q, we define the set S(q) as the set of all variables which are295

active in the treatment model or in the outcome model:296

S(q) := {j : Eq(πj | W ) ≥ 1/2} . (22)

For sensitivity analysis, the intersection of S(q) over all q gives us the set of297

active variables obtained through Eq. (21). Similarly, the union gives us the298
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set of variables that are not removed through Eq. (20). That is:299

S∗ := {j : E(πj | W ) ≥ 1/2} =
⋂
q∈P

S(q), (23)

S∗ :=
{
j : E(πj | W ) ≥ 1/2

}
=

⋃
q∈P

S(q). (24)

Clearly, S∗ ⊆ S∗. S∗ represents the set of variables that are sure to be300

selected, {1, . . . , p} \ S∗ represents the set of variables that are sure to be301

removed, and S∗ \ S∗ represents the set of variables about which we are un-302

decided. In this way, through sensitivity analysis, our approach incorporates303

robustness.304

We can derive bounds on the posterior means of the parameters as follows:305

β
j
:= E(βj | W ) = inf

q∈P
Eq(βj | W ) (25)

βj := E(βj | W ) = sup
q∈P

Eq(βj | W ) (26)

with similar expressions for β
T
, βT , γj

and γj. If we take the posterior ex-306

pectation interval [0, 0] = {0} on a regression coefficient to represent absence307

of a variable, then our bounds on the regression coefficients are generally not308

sparse, because we use continuous spike and slab priors.309

Moreover, with our variable selection we only determine whether the vari-310

able is included in at least one of the models. To determine which predictors311

influence the outcome (βj ̸= 0), the treatment (γj ̸= 0), or both, and to312

understand the degree of assocation (i.e. the magnitude of βj and/or γj), we313

apply the “decoupled shrinkage and selection” (DSS) method proposed by314

[21]. For that, we solve the following adaptive LASSO-type [26] problems:315

β̂D
S(q) = argmin

βS(q)

1

n
∥XS(q)β̂S(q) −XS(q)βS(q)∥22 + λ

∑
j∈S(q)

|βj,S(q)|
|β̂j,S(q)|

(27)

and316

γ̂D
S(q) = argmin

γS(q)

1

n
∥XS(q)γ̂S(q) −XS(q)γS(q)∥22 + λ

∑
j∈S(q)

|γj,S(q)|
|γ̂j,S(q)|

(28)

where q ∈ P , where β̂S(q) and γ̂S(q) are the posterior means of the regression317

coefficients with respect to the predictors that belong to S(q). By varying318
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q, this gives us a set of point estimates for the model parameters β and γ,319

along with a more detailed selection of individual βj and γj.320

To compute the posterior bounds (as in Eqs. (20), (21), (25) and (26)),321

unfortunately, we usually have to resort to brute force optimisation, due322

to the lack of tractable expressions for the posterior expectations. This is323

obviously a major drawback of this approach.324

Refit. In our setting, the DSS method only gives us a set of point estimates325

for the final selection of variables: some coefficients may be always selected,326

some never, and some will be indeterminate. For the final inference model,327

the modeller will need to make a judgement about which of the indeterminate328

coefficients βj and γj to include in the final model or not. Once done so, the329

model can be refitted to account for the effect of variable selection on the330

estimation of the model parameters.331

To do so, we can again use our Bayesian model without πj (as there is no332

selection anymore), and with priors333

βj | σ2 ∼ N (0, τ 21σ
2) (29)

γj | σ2 ∼ N (0, τ 21 ) (30)

for those βj and γj that are selected in the model, with the remaining βj and334

γj set to zero. This is similar to the spike and slab prior from Eq. (14) but335

without the spike component.336

We expect this to have only a small effect on the mean and variance of the337

estimated parameters. This refit is useful to validate the variable selection338

and to improve the estimating of the model parameters, including the causal339

effect βT . Indeed, since there are fewer parameters for the same data, the340

estimates are expected to have less uncertainty.341

Note that here, we described a precise Bayesian refit model, but obviously342

this could be extended to robust Bayesian refit models too.343

4. Simulation Studies344

For the simulation studies, we consider 2 different cases each with 2 sub-345

cases, amounting to 4 studies in total. In each of these 4 studies, we gen-346

erate the design matrix X such that Xi ∼ N (0,Σ) for 1 ≤ i ≤ n where347

Σij = 0.3|i−j|. In this way, we generate predictors for our model with mild348
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correlations between them. We then use the following distributions to gen-349

erate the outcome and the treatment indicator:350

Ti ∼ Bernoulli (1/(1 + exp(−Xiγ))) and Yi = 4Ti +Xiβ + ϵi. (31)

where ϵi ∼ N (0, 0.12). Note that the simulated causal effect βT is equal to351

4.352

In case 1, we consider an increasing number of observations. We have353

two sub-cases: in case 1a we consider all active variables to be confounders354

and in case 1b we consider some active variables which are only related to355

the outcome model.356

Case 1a — |γj|, |βj| > 0 for j ≤ 10357

Case 1b — |γj| > 0 for j ≤ 10 and |βj| > 0 for j ≤ 15358

For both case 1a and 1b, we consider different numbers of observations n359

where n = 20 + 5k for k = 1, 2, . . . , 11 and p = 50 predictors. This way, we360

check the efficiency of our method with varying level of information.361

For case 2, we check our method for varying number of predictors (and362

hence sparsity level, i.e. the percentage of active variables present in the363

model). Similar to case 1 we also have two sub-cases:364

Case 2a — |γj|, |βj| > 0 for j ≤ 10365

Case 2b — |γj| > 0 for j ≤ 10 and |βj| > 0 for j ≤ 15366

For both case 2a and 2b, we consider different numbers of predictors p where367

p = 20 + 5k for k = 1, 2, . . . , 11 and n = 40 subjects.368

For all four cases, we consider 20 replicates for an empirical statistical369

analysis to check the consistency and robustness of our approach.370

We use these studies to compare our method with three other approaches.371

From now on, for the sake of illustration, we use the following acronyms:372

RBCE for robust Bayesian causal estimation (our method); SSCE for spike373

and slab causal estimation [10]; BSSCE for bi-level spike and slab causal374

estimation [10]; and BSSL for Bayesian spike and slab LASSO [20].375

Metrics. As mentioned earlier, to perform our statistical analyses we use376

20 replications. To evaluate the accuracy of estimation, we consider mean377

and median values obtained from these 20 samples. Similarly, to check the378

dispersion, we use standard deviation (denoted by sd), mean squared error379
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Figure 4: Diagram of the simulation setup for comparative study.

with respect to the true value (denoted by MSE) and coverage (percentage)380

of the true value within the 95% posterior credible interval (denoted by CI%).381

Finally, to check the accuracy of variable selection, we evaluate false average382

positive numbers (denoted by FP), average false negative numbers (denoted383

by FN) and average number of indeterminate variables (denoted by ID).384

Clearly for other classical methods ID is equal to zero and therefore is not385

presented in the tables. We also define a misspecification loss in the following386

way for illustration :387

Misspecification Loss =
FP

TN
+

FN

TP
+ 0.2 ∗ ID

Total no of predictors
. (32)

Note that since RBCE gives interval estimates, CI% is calculated using388

the minimum of the lower bounds of credible intervals and the maximum of389

the upper bounds of credible intervals.390

Elicitation. To elicit P , as discussed earlier in Section 3.2, we use the empir-391

ically observed correlations from the data directly. For expert elicitation, we392

follow the correlation guidelines mentioned in [27] where the authors provide393

Table 1.394

From Table 1, we notice that the number of labelled relations is different395

for different columns. As a result it is difficult to obtain a single value for c as396
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Table 1: Interpretation of the Pearson’s and Spearman’s correlation coefficients in absolute
values

Absolute Dancey & Reidy[28] Chan YH[29] Quinnipiac University
Correlation (Psychology) (Medicine) (Politics)

1.0 Perfect Perfect Perfect
0.9 Strong Very strong Very strong
0.8 Strong Very Strong Very strong
0.7 Strong Moderate Very strong
0.6 Moderate Moderate Strong
0.5 Moderate Fair Strong
0.4 Moderate Fair Strong
0.3 Weak Fair Moderate
0.2 Weak Poor Weak
0.1 Weak Poor Negligible
0.0 Zero Zero Zero

mentioned in Section 3.2. Instead, we can disregard the last labelled relation397

(other than zero) and assume that c is typically larger than a value lying398

in the interval [0.15, 0.35] Let k be the number of predictors with absolute399

marginal correlation greater than 0.15 and let k be number of predictors with400

absolute marginal correlation greater than 0.35. Then P = [k/p, k/p]p gives401

us a prior bound on the selection probability of each predictor, reflecting our402

prior expert judgement.403

Initialisation. To implement our method, we use rjags [30] and for the other404

three methods we use the code provided in the appendix of [10]. However,405

we modify to accommodate analysis with ‘high dimensional’ data. For our406

method, we set τ0 = 10−6 and τ1 = 1 to construct the spike and slab prior.407

For the noise term, we set a = 50 and b = 1. To perform our Bayesian anal-408

ysis with rjags, we discard 500 burn in samples and consider 2500 MCMC409

samples to compute the posterior estimates. For the other methods we use410

the in-built settings to initiate the analyses. We also transform the data so411

that the data is centred around 0 for the outcome model to avoid having an412

intercept term.413

Results. Table 2 shows the results of estimating the causal effect βT for case414

1a. For reference, recall the true value is βT = 4. As we perform a sensitivity415

analysis, our method gives an interval estimate for the causal effect. So we416
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Table 2: Comparison of different methods for varying number of observations where all
the active variables are confounders.

(a) Accuracy in estimation of causal effect

RBCE SCCE BSSCE BSSL
Obs Mean Median Mean Median Mean Median Mean Median
25 2.6 3.5 2.5 3.6 20.4 20.4 20.9 20.7 15.6 19.0
30 3.0 3.7 2.9 3.7 18.4 19.9 20.9 21.2 10.3 4.1
35 3.3 3.8 3.3 3.8 15.8 18.5 19.6 19.8 7.2 4.1
40 3.4 3.8 3.4 3.8 11.8 10.4 16.4 18.3 4.2 4.0
45 3.6 3.8 3.6 3.8 8.1 4.1 11.0 11.3 4.1 4.0
50 3.7 3.8 3.6 3.8 7.5 4.1 7.8 4.2 4.0 4.0
55 3.7 3.9 3.7 3.9 4.5 4.0 4.4 4.0 4.0 4.0
60 3.8 3.9 3.8 3.9 4.2 4.0 4.0 4.0 4.0 4.0
65 3.8 3.9 3.8 3.9 4.1 4.0 4.0 4.0 4.0 4.0
70 3.8 3.9 3.8 3.9 4.0 4.0 4.0 4.0 4.0 4.0
75 3.8 3.9 3.8 3.9 4.0 4.0 4.0 4.0 4.0 4.0

(b) Dispersion of estimated causal effect: values less than 0.05 are replaced with *

RBCE SCCE BSSCE BSSL
Obs sd MSE CI% sd MSE CI% sd MSE CI% sd MSE CI%
25 0.4 0.5 0.5 2.1 100 3.1 277.4 0 3.0 295.1 0 9.3 217.6 20
30 0.4 0.5 0.2 1.3 100 5.9 239.9 15 2.7 291.9 0 8.4 107.2 60
35 0.3 0.4 0.1 0.7 100 7.2 187.0 25 4.3 261.4 10 6.7 53.7 80
40 0.2 0.3 0.1 0.4 100 7.8 118.7 45 6.4 191.7 20 0.9 0.7 95
45 0.2 0.2 0.1 0.2 100 6.0 50.7 60 6.6 90.5 45 0.5 0.3 95
50 0.1 0.2 * 0.1 100 5.3 39.6 65 5.5 43.0 65 0.1 * 100
55 0.1 0.1 * 0.1 100 1.6 2.6 95 1.6 2.5 95 0.1 * 95
60 0.1 0.1 * 0.1 100 0.9 0.9 90 0.1 * 100 * * 95
65 0.1 0.1 * * 100 0.5 0.3 95 0.1 * 95 * * 95
70 0.1 0.1 * * 100 * * 95 * * 95 * * 95
75 0.1 0.1 * * 100 * * 95 * * 95 * * 95

(c) Accuracy of variable selection: all the values are averaged over 20 replications

RBCE SCCE BSSCE BSSL
Obs FP FN ID FP FN FP FN FP FN
25 0.7 0.2 30.4 0 9.8 0 10 1.4 7.1
30 0 0 19.2 0 8.8 0 10 0 3.8
35 0 0 8.1 0 7.3 0 9.4 0 2.0
40 0 0 3.0 0 5.1 0 8.2 0 0.2
45 0 0 0.6 0 2.9 0 5.0 0 0
50 0 0 0.4 0 2.9 0 3.0 0 0
55 0 0 0 0 0.6 0 0.4 0 0
60 0 0 0 0 0.2 0 0 0 0
65 0 0 0 0 0.2 0 0 0 0
70 0 0 0 0 0 0 0 0 0
75 0 0 0 0 0 0 0 0 0

present mean, median, sd and MSE for RBCE using two columns where the417

left columns give the lower bounds and the right columns give the upper418

bounds. We notice that as we increase the number of observation our ap-419

proach provides more precise estimates which shows that our set of priors420

is able to learn from the data. We also observe that our method tends to421

under estimate the causal effect. However, our approach does not produce422

any extreme values and is more consistent in terms of estimating the causal423

effect, especially for fewer number of observations which is not the case for424

SSCE and BSSCE. For BSSL we notice that median value is close to the true425

value for fewer number of observations but mean value is higher which shows426

that for some experiments BSSL tend to produce extreme values. This can427
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also be from the table for dispersion in estimation where BSSL tends to have428

a high MSE and lower CI% for fewer number of observations.429

We also provide the performance in variable selection in Table 2. We430

notice that for fewer number of observations our method tends to give many431

indeterminate variables but this number gradually decreases as we increase432

the number of observations. However, our elicitation based approach ensures433

that we have very few false negative and false positive variables which is not434

the case for other approaches.435

Table 3: Comparison of different methods in estimating the causal effect for varying
number of observations where some variables are only related to the outcome model.

(a) Accuracy in estimation of causal effect

RBCE SCCE BSSCE BSSL
Obs Mean Median Mean Median Mean Median Mean Median
25 2.8 3.7 2.8 3.8 25.5 25.0 26.2 25.5 20.5 24.1
30 3.2 4.1 3.1 4.1 25.4 25.1 26.4 26.2 15.8 10.8
35 3.7 4.3 3.7 4.3 22.3 25.1 26.2 26.0 10.9 4.0
40 3.9 4.3 3.9 4.4 21.4 24.6 26.0 25.4 4.7 4.0
45 3.9 4.2 3.9 4.2 18.7 23.9 22.5 25.2 4.0 4.0
50 3.9 4.2 3.9 4.2 9.6 4.0 13.2 6.2 4.0 4.0
55 4.0 4.1 3.9 4.2 7.1 4.0 9.3 4.1 4.0 4.0
60 4.0 4.1 4.0 4.1 4.0 4.0 4.0 4.0 4.0 4.0
65 4.0 4.1 4.0 4.1 4.6 4.0 4.5 4.0 4.0 4.0
70 4.0 4.1 4.0 4.1 4.0 4.0 4.0 4.0 4.0 4.0
75 4.0 4.1 4.0 4.1 4.0 4.0 4.0 4.0 4.0 4.0

(b) Dispersion of estimated causal effect: values less than 0.05 are replaced with *

RBCE SCCE BSSCE BSSL
Obs sd MSE CI% sd MSE CI% sd MSE CI% sd MSE CI%
25 0.4 0.6 0.4 1.6 100 5.6 492.2 10 5.2 517.1 0 10.4 375.8 10
30 0.6 0.6 0.3 0.9 100 5.8 488.8 5 5.0 525.3 0 12.2 280.9 50
35 0.6 0.6 0.3 0.5 100 8.5 405.3 20 4.7 514.7 0 9.4 130.9 60
40 0.4 0.5 0.2 0.3 100 9.6 390.6 20 4.4 500.1 0 3.4 11.3 95
45 0.3 0.3 0.1 0.1 100 11.0 330.5 30 8.5 413.2 15 * * 100
50 0.3 0.3 0.1 0.1 100 9.8 123.0 70 11.0 199.1 50 * * 100
55 0.2 0.3 * 0.1 100 7.5 63.4 85 9.4 110.9 75 * * 100
60 0.2 0.2 * 0.1 100 * * 100 * * 100 * * 100
65 0.1 0.2 * * 100 2.4 6.0 95 2.1 4.3 95 * * 100
70 0.1 0.1 * * 100 * * 100 * * 100 * * 100
75 0.1 0.1 * * 100 * * 100 * * 100 * * 100

(c) Accuracy of variable selection: all the values are averaged over 20 replications

RBCE SCCE BSSCE BSSL
Obs FP FN ID FP FN FP FN FP FN
25 1.8 0.6 31.8 0 14.7 0 14.9 2.0 11.6
30 0.6 0.4 27.2 0 14.8 0 14.9 1.0 7.7
35 0.2 0.5 16.9 0 13.1 0 15.0 0 5.2
40 0 0.2 10 0 12.8 0 15.0 0 0.6
45 0 0 2.9 0 10.2 0 12.9 0 0
50 0 0 0.9 0 3.9 0 6.6 0 0
55 0 0 0.4 0 2.0 0 3.5 0 0
60 0 0 0.3 0 0 0 0 0 0
65 0 0 0.3 0 0.6 0 0.6 0 0
70 0 0 0 0 0 0 0 0 0
75 0 0 0 0 0 0 0 0 0

We present our analysis for case 1b in Table 3. Similar to our analyses436

for case 1a, we notice that as we obtain more observations the imprecision437

in the estimation reduces. However, unlike case 1a, our approach tends to438
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over estimate the causal effect for higher number of observations. This also439

shows an overall increasing trend of the estimated causal effect similar to440

case 1a. We also notice that for case 1b number of indeterminate variables441

is higher than that of case 1a. This happens as some of the variables are442

only related to the outcome model. This also contributes to higher number443

of false negative variables in for other methods. We also observe that similar444

to the previous case, other methods often produces extreme values for the445

causal effect increasing the sd and MSE of the estimated causal effect.446
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Figure 5: Comparison of different methods in estimating the causal effect for varying
number of observations. The top (bottom) row represents case 1a (case 1b). The left(right)
images show the average(median) causal effects obtained from 20 replications.

We illustrate the estimated causal effect in Fig. 5 as well. In the figure, the447
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top row illustrates the case 1a where the left image shows the average value of448

the estimated causal effect with respect to observations and the right image449

shows the median value. Similarly, the bottom row represents the same for450

case 1b. In the figure, RBCE bounds are given by red lines; SSCE estimates451

by blue lines; BSSCE estimates by green lines; BSSL estimates by purple452

line; and true value by black lines. In the figure, we can also notice the453

increase trend of the estimated causal effect as we obtain more observations454

and also the estimation becomes more precise.455
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Figure 6: Comparison of different methods in identifying the confounders for varying
number of observations. One the left (right) we present case 1a (1b). The red line presents
RBCE; blue line presents SSCE; green line presents BSSCE; and purple line presents BSSL

We also illustrate the performance of variable selection in Fig. 6. For456

variable selection, we use a loss function as described earlier. Here, we con-457

sider ℓ1 = ℓ2 = 1 and ℓ3 = 0.2, i.e. we associate a loss of 1 with false positive458

and false negative selections, and a loss of 0.2 with indeterminate selections.459

Note that we could also choose more sophisticated loss functions based on460

[31]. We evaluate the misspecification loss using the equation that we de-461

scribed before. From the figure it can be seen that for case 1, our method462

abstains from identifying some variables for n ≤ 40. However, later on our463

method gives more precise results in terms of variable selection. We also464

notice that the SSCE, BSSCE and BSSL tend to perform poorly in terms of465

variable selection. However, BSSL performs better than the rest for higher466

number of observations467
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Table 4: Comparison of different methods in estimating the causal effect for varying
number of predictors where all the active variables are confounders.

(a) Accuracy in estimation of causal effect

RBCE SCCE BSSCE BSSL
Pred Mean Median Mean Median Mean Median Mean Median
1 2 3 4 5 6 7 8 9 10 11
25 3.6 3.8 3.7 3.8 9.5 4.6 11.8 14.0 4.0 4.0
30 3.6 3.8 3.6 3.8 8.8 4.1 9.7 4.7 4.5 4.0
35 3.6 3.8 3.6 3.8 12.8 17.4 12.8 14.9 4.9 4.0
40 3.5 3.8 3.5 3.8 12.3 15.2 14.9 17.6 4.0 4.0
45 3.5 3.8 3.4 3.8 10.7 4.1 16.6 18.3 4.0 4.0
50 3.4 3.8 3.5 3.8 11.8 10.4 16.4 18.3 4.2 4.0
55 3.4 3.8 3.4 3.8 12.4 15.6 16.6 18.8 4.5 4.0
60 3.3 3.8 3.3 3.8 14.2 18.7 17.3 19.1 4.1 4.0
65 3.2 3.8 3.3 3.8 12.6 15.5 19.4 19.2 5.0 4.0
70 3.1 3.8 3.2 3.8 11.1 4.1 16.7 19.1 4.0 4.0
75 3.1 3.8 3.1 3.8 11.7 9.3 18.4 19.2 4.5 4.0

(b) Dispersion of estimated causal effect: values less than 0.05 are replaced with *

RBCE SCCE BSSCE BSSL
Pred sd MSE CI% sd MSE CI% sd MSE CI% sd MSE CI%
25 0.2 0.2 0.1 0.2 100 6.6 72.1 50 7.1 109.3 45 0.1 * 100
30 0.2 0.2 0.1 0.2 100 6.6 64.4 65 6.8 76.7 60 2.0 3.9 95
35 0.2 0.2 0.1 0.2 100 7.4 129.2 35 7.4 130.1 40 4.1 16.6 90
40 0.2 0.2 0.1 0.2 100 7.9 129.0 45 6.7 162.0 30 0.1 * 95
45 0.2 0.2 0.1 0.3 100 7.8 102.5 55 5.7 190.4 20 0.1 * 100
50 0.2 0.3 0.1 0.4 100 7.8 118.7 45 6.4 191.7 20 0.9 0.7 95
55 0.2 0.3 0.1 0.5 100 8.0 132.4 45 6.8 201.9 25 2.3 5.2 95
60 0.2 0.3 0.1 0.6 100 8.1 165.8 30 6.2 214.7 15 0.6 0.4 100
65 0.2 0.4 0.1 0.8 100 8.3 139.2 40 2.8 244.0 0 4.4 19.1 95
70 0.2 0.4 0.1 0.9 100 8.2 114.9 55 6.6 202.1 25 0.1 * 95
75 0.2 0.4 0.1 1.0 100 8.0 120.2 50 4.8 228.7 10 3.5 11.9 85

(c) Accuracy of variable selection: all the values are averaged over 20 replications

RBCE SCCE BSSCE BSSL
Pred FP FN ID FP FN FP FN FP FN
25 0 0 5.2 0 4.0 0 5.5 0 0
30 0 0 2.4 0 3.5 0 4.1 0 0.4
35 0 0 2.0 0 6.0 0 6.0 0 0.5
40 0 0 2.1 0 5.4 0 7.3 0 0
45 0 0 2.6 0 4.4 0 8.4 0 0
50 0 0 3.0 0 5.1 0 8.2 0 0.2
55 0 0 3.8 0 5.4 0 7.9 0 0.4
60 0 0 5.0 0 6.4 0 8.4 0 0
65 0 0 4.4 0 5.4 0 9.9 0 0.5
70 0 0 4.8 0 4.4 0 8.0 0 0
75 0 0 6.2 0 4.9 0 9.2 2.4 0.6

We show the result of our analyses case 2a in Table 4. Similar to our468

analyses with increasing number of observations, we notice that our method469

is overall in agreement with BSSL. However, similar to case 1a our method470

tends to underestimate the treatment effect (approximately 5%) for case 2b.471

We also notice that the imprecision in estimation increases as we increase472

the number of predictors. This happens as observation per predictor reduces.473

We also notice that BSSL outperforms RBCE in terms of median value of474

estimated causal effect over 20 replications. However, in very few cases BSSL475

provides extreme values which can be understood from mean and CI% as476

well as MSE. Moreover, for 75 predictors BSSL gives higher number of false477

positives which is not the case for RBCE. Unlike the case 1a and 1b, SSCE478
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and BSSCE performs poorly for every value of predictors.479

Table 5: Comparison of different methods in estimating the causal effect for varying
number of predictors where some variables are only to the outcome model.

(a) Accuracy in estimation of causal effect

RBCE SCCE BSSCE BSSL
Pred Mean Median Mean Median Mean Median Mean Median
1 2 3 4 5 6 7 8 9 10 11
25 3.8 4.1 3.8 4.1 19.0 22.3 24.0 25.3 4.0 4.0
30 3.9 4.2 3.9 4.1 20.6 24.6 20.9 24.5 7.4 4.0
35 3.9 4.3 3.9 4.2 21.9 24.7 23.7 24.8 7.3 4.0
40 3.9 4.3 3.9 4.3 20.9 24.4 24.7 25.5 5.1 4.0
45 3.8 4.3 3.9 4.3 20.2 23.9 26.1 25.4 4.8 4.0
50 3.9 4.3 3.9 4.3 21.4 24.6 26.0 25.4 4.7 4.0
55 3.8 4.4 3.9 4.4 21.8 24.8 26.0 25.1 9.5 4.0
60 3.8 4.4 3.9 4.4 16.6 19.7 25.1 25.5 8.4 4.0
65 3.7 4.4 3.8 4.4 18.7 22.8 26.2 25.6 5.4 4.0
70 3.7 4.5 3.8 4.4 20.4 23.9 25.5 25.2 8.5 4.0
75 3.7 4.5 3.7 4.4 17.7 22.8 26.0 25.2 5.0 4.0

(b) Dispersion of estimated causal effect: values less than 0.05 are replaced with *

RBCE SCCE BSSCE BSSL
Pred sd MSE CI% sd MSE CI% sd MSE CI% sd MSE CI%
25 0.2 0.3 0.1 0.1 100 11.2 343.7 35 8.0 459.5 10 0.1 * 100
30 0.3 0.4 0.1 0.1 100 10.4 377.0 25 10.8 397.7 25 8.3 77.9 85
35 0.3 0.4 0.1 0.2 100 9.9 412.9 20 7.4 438.6 10 8.0 71.7 85
40 0.4 0.4 0.1 0.3 100 9.3 366.8 15 7.0 475.8 10 4.8 23.1 95
45 0.4 0.4 0.2 0.3 100 10.4 365.5 25 4.4 504.8 0 3.4 11.3 95
50 0.4 0.5 0.2 0.3 100 9.6 390.6 20 4.4 500.1 0 3.4 11.3 95
55 0.4 0.5 0.2 0.3 100 9.9 410.6 20 4.5 503.9 0 9.9 123.1 75
60 0.5 0.5 0.2 0.4 100 11.7 288.5 40 6.4 484.0 5 9.3 102.4 80
65 0.4 0.5 0.2 0.4 100 11.2 334.4 30 4.5 510.0 0 6.4 40.5 95
70 0.5 0.5 0.2 0.5 100 11.1 385.3 25 5.2 488.8 5 9.3 102.1 80
75 0.5 0.5 0.2 0.5 100 11.8 318.1 40 4.5 502.1 0 4.0 16.3 95

(c) Accuracy of variable selection: all the values are averaged over 20 replications

RBCE SCCE BSSCE BSSL
Pred FP FN ID FP FN FP FN FP FN
25 0 0 7.8 0 10.2 0 13.5 0 0
30 0 0 8.2 0 11.6 0 11.2 0 2.0
35 0 0 9.2 0 12.6 0 14.0 0 2.2
40 0 0 10.1 0 11.9 0 13.8 0 0.8
45 0 0.1 10.8 0 11.8 0 15.0 0 0.6
50 0 0.2 10.1 0 12.8 0 15.0 0 0.6
55 0 0.3 8.9 0 12.0 0 15.0 0 3.5
60 0 0.4 11.1 0 9.2 0 14.4 0.5 2.9
65 0 0.8 11.9 0 10.6 0 15.0 0.4 0.8
70 0 0.8 12.8 0 10.9 0 14.8 0 2.8
75 0 1.0 12.3 0.1 9.6 0 15.0 0 0.9

The result for case 2b is presented in Table 5. We notice that for this case480

the true causal effect is always contained within the estimated bounds unlike481

the previous cases. For this case, the imprecision in the estimated causal482

effect increases with respect to predictors similar to case 2a as the observation483

per predictor reduces. We also see that SSCE and BSSCE performs poorly484

similar to case 2a and BSSL is mostly consistent in estimation but produces485

extreme values for some experiments giving a significant differences between486

mean and median of the estimated causal treatments.487

We also show the causal effect estimation and performance in variable488

selection in Figs. 7 and 8. From Fig. 7 we can see the increase in imprecision489
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Figure 7: Comparison of different methods in estimating the causal effect for varying
number of predictors. The top (bottom) row represents case 2a (case 2b). The left(right)
images show the average(median) causal effects obtained from 20 replications.

as we increase then number of predictors. We also see that RBCE performs490

more consistently than other methods in terms of estimating the causal effect.491

We also notice that BSSL outperforms RBCE in terms of estimating the492

causal effect and performs at per in terms of variable selection for case 2a.493

However, for case 2b, BSSL appears to be less consistent in terms of variable494

selection. From these two figures we can also see that SSCE and BSSCE495

performs poorly as we increase the number of predictors and is particularly496

unstable for case 2a.497

Importance of prior elicitation. Our method relies on expert elicitation and498

prior sensitivity analysis. So we also explore the effect of prior elicitation499
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Figure 8: Comparison of different methods in identifying the confounders for varying
number of predictors. One the left (right) we present case 1a (1b). The red line presents
RBCE; blue line presents SSCE; green line presents BSSCE; and purple line presents BSSL

in identifying the active variables in our model. As mentioned earlier, we500

consider c is expected to be lying in the interval [0.15, 0.35] based on Table 1.501

However, we might want to choose a different value for c. To compare the502

effect of having different value for c, we use the case 2b and set c ∈ [0.2, 0.4].503

That is we set a higher threshold for the correlation so that k becomes smaller504

and hence the prior expectation of the inclusion probability. We show our505

results in Table 6. In the left hand side we elicit the expected number of506

active variables by setting the marginal correlation threshold c ∈ [0.15, 0.35]507

and the right we set c ∈ [0.2, 0.4]. On the left hand side, we see our method508

tends to give higher number of indeterminate variables for fewer observations509

than the right hand side. As we increase the predictors the higher threshold510

of marginal correlation plays an important role and we see more cases of false511

negative variables on the right hand side. This also results to over estimation512

of the causal effect as many true active variables are shrinked towards zero.513

As a result the lower bound of the averaged causal effect is more than four514

on the right hand side.515

The analyses and simulation studies can be investigated using the code516

from https://github.com/tathagatabasu/Causal-Inference.517
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Table 6: Effect of elicitation of the inclusion probability of the variables where FP stands
for false positive, FN stands for false negative and ID stands for indeterminate.

[c, c] [0.15, 0.35] [0.2, 0.4]
Pred Mean FP FN IDR Mean FP FN IDR
25 3.8 4.1 0 0 7.8 3.9 4.2 0 0 4.9
30 3.9 4.2 0 0 8.2 3.9 4.3 0 0 4.2
35 3.9 4.3 0 0 9.2 4.0 4.3 0 0.2 3.5
40 3.9 4.3 0 0 10.1 4.0 4.4 0 0.3 3.4
45 3.8 4.3 0 0.1 10.8 4.0 4.4 0 0.4 3.5
50 3.9 4.3 0 0.2 10.1 4.0 4.4 0 0.6 3.0
55 3.8 4.4 0 0.3 8.9 4.0 4.4 0 0.6 3.0
60 3.8 4.4 0 0.4 11.1 4.0 4.5 0 0.8 3.4
65 3.7 4.4 0 0.8 11.9 4.0 4.5 0 1.0 3.8
70 3.7 4.5 0 0.8 12.8 4.0 4.5 0 1.3 3.0
75 3.7 4.5 0 1.0 12.3 4.0 4.5 0 1.4 3.1

5. Conclusion518

Causal effect estimation is an important tool in statistical learning. Espe-519

cially in risk-sensitive situations, such as medicine, it needs to be performed520

with the utmost care as in many cases poor estimation can have severe ad-521

verse consequences. In this paper, we tackle this issue by proposing a robust522

Bayesian analysis of the causal effect estimation problem for high dimen-523

sional data. Our framework is focused on the effect of prior elicitation on524

predictor selection as well as causal effect estimation. We consider a spike525

and slab type prior for predictor selection and discuss the possible sources of526

uncertainty that need to be tackled carefully. We were particularly focused527

on the uncertainty associated with prior selection probabilities for which we528

consider a set of beta priors to perform sensitivity analysis. We showed that529

the sensitivity analysis on the prior selection probability gives us a robust530

predictor selection scheme. In this way, we can abstain from selecting a531

predictor when the available data is not sufficient. We also propose a more532

relaxed utility based framework, where we associate a loss for abstaining533

which can be interpreted as the cost of further data collection. We illustrate534

our method with synthetic dataset and compare with other state of the art535

Bayesian methods. We could see that our elicitation based approach helps536

to have a more consistent causal effect estimation for very limited number537
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of observations and avoids producing extreme values for the causal effect.538

Moreover, we also notice correct elicitation of the inclusion probability plays539

a crucial role in identifying the active variables and therefore can be ex-540

tremely useful in cases where we need to design a treatment guideline with541

multiple bio-markers.542

Currently, the paper proposes a robust Bayesian approach for causal ef-543

fect estimation where we rely on sampling strategies to obtain the posterior544

bounds as well as performing variable selection. A weakness of our approach545

is simulation efficiency, as we resorted to brute force optimisation. However,546

there is ample opportunity to improve computational aspects. In the future,547

it will be interesting to derive inner approximation bounds for the posterior548

estimates to reduce the computational cost, or to find better ways than brute549

force optimisation, such as for instance iterative importance sampling [32].550

To compare the different methods, we rely on simple loss functions associ-551

ated with the predictor selection. However, loss functions could be used for a552

generalised decision theoretic framework as well. For instance, the selection553

problem itself could be formulated as a decision problem, potentially leading554

to different selection thresholds or even selection systems that are directly555

based on a loss function. Additionally, we could formulate the problem of556

whether or not to treat a subject as a decision support problem based on557

predictor selection.558

Another topic of interest pertinent to medical diagnosis is missing data.559

It has been shown that using bounded probability is particularly suitable for560

dealing with instances where data cannot be assumed missing at random [33].561

Incorporating robustness against missing data could lead to an interesting562

extension of the model in this paper.563

We also notice with our simulation studies that our method tends to564

underestimate the causal effect when only confounders are present in the565

model. This suggests that we might want to use a correction formula for566

the causal effect. Moreover, in future, we would like to investigate different567

elicitation strategies for different prior parameters and their importance in568

causal effect estimation.569

In general, we noticed that our method is in good agreement with other570

methods with an added level of robustness. This shows that our method571

has good potential for real-life problems, and we intend to apply it on a real572

dataset in future work.573
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