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1 INTRODUCTION

The critical state in soils represents the condition whereby unbounded distortions occur with
no change in volume [1]. Many constitutive models incorporate this idealised asymptotic state
as a fundamental feature. It has been shown experimentally that both the critical state and
yield surfaces in soils exhibit a Lode Angle, 6, Dependency (LAD) [2]. A separate feature in
soils is the directional bias of the material stiffness. This has been introduced into hardening
plasticity models by allowing the yield surface to rotate. Extending the classical Modified Cam-
Clay (MCC) model, Dafalias proposed a rotated and distorted ellipse that maintains a constant
critical state stress ratio for any degree of rotation of the yield surface [3]. He also presented the
multi-axial generalised version of the yield function in which anisotropy is properly accounted for
by a second order tensor ce. A means of satisfactorily introducing LAD, together with rotational
hardening has yet to be found. This paper explores the consequences of using simple approaches
to overcome this omission.

2 ANISOTROPY

In-situ geotechnical materials often exhibit significant anisotropy in their stiffness due to
the deposition process and the particulate nature of their fabric. Rotational hardening uses a
measure of anisotropy, «, representing the degree of rotation of the yield surface from the &
axis. « is a scalar when confined to a constant # meridian, but becomes a second order tensor
in general stress space. Dafalias [3] presented the following form of a rotated MCC yield surface
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where ¢ = tr(0)/V3, pa = s — (£/V3)a, s = o — (£/V/3)1. &, defines the size of the yield
surface and M is the gradient of the Critical State line.

Figure 1 displays the consequences of non-coincident principal directions of e and o when
representing yield surfaces in principal stress space. The two surfaces are for the same degree
of anisotropy. A represents the yield surface when it is assumed that the principal directions
are coincident and B when the direction of « is properly accounted for. The difference arises

f=€—¢+ (3(pa)? + (& — )éa®) =0, (1)
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from the components of (p,)? in (1), and although it is possible to represent the general o yield
surface in principal stress space, the appropriate measure of anisotropy must be used.
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Figure 1: Implications of the principal directions of & and a being A coincident and B non-coincident .

3 LODE ANGLE DEPENDENCY

Incorporation of the influence of the intermediate principal stress within a yield function
introduces a non-linear deviatoric section to the yield surface. Podgdski commented that the
shape of the deviatoric section is important to obtain good agreement between computational
and experimental results [4]. This fact led to various LADs being proposed for particulate
media, some of which are given in Figure 2 ([4]-[7]). The shape functions are defined in terms
of a normalised deviatoric radius p(#), using the Haigh-Westergaard co-ordinate system, where

1 ) 3vV3 Js
9—§arcsm (_2J§’/2> —7/6 <60 <7/6, (2)

Jo = 1/2tr(s?) and J3 = 1/3tr(s). Use of these deviatoric sections requires the identification of
the normalised deviatoric yield stress under triaxial extension p. (6 = 7/6) (and also under pure
shear ps (6 = 0) for the Bhowmik-Long criterion [7]). The implications of using a non-circular
deviatoric section can be demonstrated using a simpler mathematical form than that used by
many of these shape functions, whilst still allowing control over pe.

The modified Reuleaux triangle is formed using three equal arcs projected from centres
equidistance from the hydrostatic axis on the compression meridians, as shown in Figure 3(a).
Formation requires only the normalised deviatoric yield stress under triaxial extension, p, =
Pe/pe, where p. is the deviatoric yield stress under triaxial compression subjected to the same
confining pressure. p(f), for —7/6 < 0 < 7/6 and 0.5 < p. < 1, is defined in Figure 2. In the
limits of p. = 0.5 and p. = 1, the modified Reuleaux triangle forms trianglular and circular
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Figure 2: Lode angle shape functions for particulate media.

deviatoric sections, respectively. By setting p. = 1/v/3 a Reuleaux triangle is formed where
the arc centres coincide with the compression meridians apexes. Although this deviatoric shape
function is not C continuous at the compression meridian, it does offer a simple formulation
and allows analytic backward integration for a modified Reuleaux cone.
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(a) Geometric construction.

Figure 3:
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(b) CSS.Aa=0. B a #0.

Modified Reuleaux Triangle.



WM Coombs, RS Crouch and CE Augarde

4 CRITICAL STATE

Figure 3(b) shows the effect on the Critical State Surface (CSS) of introducing a Reuleaux
triangle deviatoric section (p. = 1/v/3) to Dafalias’ anisotropic MCC model. A indicates two
deviatoric sections through the original CSS (a = 0) and B shows similar sections, but for
o ={-0.0244 0.184 —0.160}". Sections are located at £ = 1 and ¢ = 2/3, normalised with
respect to the maximum &£ value. It can be seen that for @ # 0 the uniqueness of the critical
state is lost. That is, the mobilised friction angle associated with the critical state depends
on the degree of anisotropy. This does not appear to be supported by experimental evidence.
Furthermore, convexity of the CSS is no longer preserved. The findings here suggest that more
work is required to gain a deeper understanding of the fabric condition at the critical state.
Recent DEM simulations have explored how soil grading affects the critical state density, at
a given mean stress [8]. Yet it is not at all clear whether that state represents an isotropic
condition [9]. If this is the case, then the rotationally hardening plasticity models will require
some revision as they predict residual anisotropy.
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