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Abstract: This paper presents nonparametric predictive inference for discrete lifetime data. While
lifetimes are mostly treated as continuous random variables in statistics, there are scenarios where
time observations are recorded as discrete values, for example, in actuary, where lifetimes are often
recorded as integers in years. The presented method provides lower and upper probabilities for
a variety of events of interest involving discrete lifetimes, with examples provided for illustration.
Furthermore, the discrete-time situation is considered for inference of the reliability of systems, with
discrete-time data for components of different types and using the survival signature to combine
inference on components’ reliability to quantify the overall system reliability.
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1. Introduction

In the real world, the time until an event occurs is typically considered to be a continu-
ous variable. However, in many applications, recorded observations have a discrete nature
because they are represented by discrete values. When there are many different possible
values, any distinction between the continuous or discrete nature of a variable becomes
negligible. Nonetheless, in certain application areas, time is often modelled as a discrete
variable with relatively few possible values. This is particularly true for actuarial models,
for which typically a cohort of people, either real or hypothetical, is followed over time,
and events such as deaths are recorded per year. However, if a person leaves the group for
reasons other than death, or other than the specific cause of death under investigation, then
right-censoring occurs. In such cases, time is recorded as the person’s age at the time of the
event, making time a discrete variable.

For discrete-time data, approaches like those considered in this paper can be visualised
as a table with k discrete-time points, say t1 < t2 < . . . < tk. The data include the number of
events and the number of right-censored individuals at each discrete-time point, excluding
time t0 where no events or right-censoring are assumed to have occurred. At any given
time, we consider how many people are alive; that is, how many people have survived
that time, so this is effectively Bernoulli data; then, we look ahead and assess how many
people will be alive in the future. The actuarial estimator is a nonparametric method for
estimating the survival function which explicitly restricts attention to the discrete-time,
with the possible inclusion of right-censored data [1–3].

In this paper, we take a similar approach, but we look at it from a predictive perspective
using nonparametric predictive inference (NPI), which is inherently predictive. NPI is
a statistical method that relies on only a few assumptions based on Hill’s assumption
A(n) [4] and uses imprecise probabilities to measure uncertainty [5,6]. Additionally, NPI
has been adapted to accommodate various types of data and a wide range of applications.
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For example, NPI has been used with Bernoulli data [7,8], data containing right-censored
observations [9,10], bivariate data [11], multinomial data [12,13], and circular data [6]. The
NPI approach has also been developed for right-censored observations in survival data [14].
NPI for Bernoulli data [7] will be utilised to develop the NPI alternative to the actuarial
estimator, based on the assumption of non-informative right censoring [9,15].

The paper is organized as follows. Section 2 provides a brief introduction to the
actuarial estimator of the survival function. Section 3 provides an overview of NPI and
its application to Bernoulli and right-censored data. In Section 4, we present NPI as an
alternative to the actuarial estimator for right-censored data. It proposes lower and upper
probabilities for the event that all future observations are greater than a specific discrete
time tj. Section 5 focuses on the proposed NPI-based discrete-time reliability function
by providing lower and upper probabilities for the event that at least x out of m future
observations will survive at discrete time tj. In Section 6, we apply the proposed method
to system reliability using survival signatures [16,17] combined with NPI for Bernoulli
data [7]. Finally, we conclude with some remarks in Section 7.

2. Actuarial Estimator of the Survival Function

In a discrete-time setting, a common nonparametric method for estimating the survival
function is the actuarial estimator. To introduce the actuarial estimator, we first consider
n individuals alive at time t0. Let X1, X2, . . . , Xn be positive, exchangeable, and discrete
random variables, of which their discrete lifetimes are assumed to be independent and
identically distributed, that take values at discrete-time points tj, where j = 1, . . . , k, with
t1 < t2 < · · · < tk. We refer to the event of interest as ‘death’, but it can be any time-related
event of interest; for example, in reliability, it will typically be a failure event. The discrete-
time hazard function at a specific time tj is defined as the conditional probability that a
randomly selected individual, Xi, i = 1, . . . , n, will experience the event of interest at time
tj given that this individual did not experience the event prior to tj such that

htj = P(Xi = tj|Xi ≥ tj) (1)

Let dtj be the number of individuals who died at time tj and let ctj be the number
of individuals whose lifetimes are right-censored at time tj. Let ǹtj be the number of
individuals known to be at risk (still alive and uncensored) at time tj, that is ǹtj = ǹtj−1 −
dtj−1 − ctj−1 . It is common to assume that all individuals are at risk at t0, so ǹt0 = n. Then,
the discrete-time hazard function, htj , at a discrete time tj can be estimated by the actuarial
estimator [1–3], as

ĥtj =
dtj

ǹtj

(2)

The survival function at time tj is defined as Stj = P(X ≥ tj); note that St0 = P(X ≥ 0) = 1.

The survival function Stj can be estimated in terms of the actuarial estimator ĥtl for
l = 1, . . . , j − 1, by

Ŝtj =
j−1

∏
l=1

(
ǹtl − dtl

ǹtl

)
=

j−1

∏
l=1

(1 − ĥtl ) (3)

In Section 4, we will explore an alternative to the actuarial estimator under the NPI
methodology, using NPI for Bernoulli data [7]. First, a brief introductory overview of NPI,
including NPI for Bernoulli data, is provided in Section 3.

3. Nonparametric Predictive Inference (NPI)

Nonparametric predictive inference (NPI) is a frequentist statistical method which re-
quires only a few assumptions, enabled by the use of imprecise probabilities to quantify un-
certainty [5,6]. NPI is based on Hill’s assumption A(n) [4]. Assume that X1, X2, . . . , Xn, Xn+1
are real-valued absolutely continuous and exchangeable random quantities. Let the ordered
observed values of X1, . . . , Xn be denoted as x1 < x2 < · · · < xn. To simplify notation, let
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x0 = −∞ and xn+1 = ∞. These n observations divide up the real-line into n + 1 intervals
Ij = (xj, xj+1), where j = 0, 1, . . . , n. Based on n observations, the assumption A(n) [18] is
that the probability that the next future observation Xn+1 is equally likely to fall in each
open interval (xj, xj+1), for all j = 0, 1, . . . , n, so

PXn+1(xj, xj+1) =
1

n + 1
for all j = 0, 1, . . . , n (4)

The assumption A(n) alone is insufficient for constructing precise probabilities for
many events of interest, but it is still useful to derive bounds for probabilities. Repeated
application of the assumptions A(n), A(n+1), . . . , A(n+m−1) enables predictive inference for
m ≥ 1 future observations. These assumptions imply that all orderings of the m future
observations among the n data observations are equally likely. Based on these assumptions,
Coolen [7] introduced NPI for Bernoulli observations, using an assumed latent variable
representation for successes and failures as values on the real line separated by a threshold.

Assume that there are n + m exchangeable Bernoulli trials with failure and success as
possible outcomes for each trial, and data containing s successes in n trials. Let Xn

1 denote
the random number of successes in trials 1 to n, and Xn+m

n+1 denote the random number of
successes in trials n + 1 to n + m. Coolen [7] presented general formulae for NPI lower and
upper probabilities for any event of interest involving Xn

1 . The attention here is limited to
the results needed in this paper.

Coolen [7] derived the NPI lower and upper probabilities for the event that all m
future trials are successes, given data consisting of s successes observed in n trials, for
s ∈ {0, 1, . . . , n}. The NPI lower probability for this event is

P(Xn+m
n+1 = m | Xn

1 = s) =
m

∏
i=1

s + i − 1
n + i

(5)

and the corresponding NPI upper probability is

P(Xn+m
n+1 = m | Xn

1 = s) =
m

∏
i=1

s + i
n + i

(6)

Based on the general results by Coolen [7], Aboalkhair [19] derived formulae for the
NPI lower and upper probabilities for the event that there are at least r successes in m future
trials, given s successes observed in n trials. The NPI lower probability for this event is

P(Xn+m
n+1 ≥ r | Xn

1 = s) =

1 −
(

n + m
n

)−1
×
[

r−1

∑
ℓ=0

(
s + ℓ− 1

s − 1

)(
n − s + m − ℓ

n − s

)]
(7)

and the corresponding NPI upper probability is

P(Xn+m
n+1 ≥ r | Xn

1 = s) =
(

n + m
n

)−1
×
[(

s + r
s

)(
n − s + m − r

n − s

)
+

m

∑
ℓ=r+1

(
s + ℓ− 1

s − 1

)(
n − s + m − ℓ

n − s

)]
(8)

The nature of A(n) results in NPI being a frequentist statistical methodology [4,5,20],
which can be interpreted in a way similar to that of posterior predictive methods within
Bayesian statistics but without any prior information being included [7,21]. Hill [20]
provides detailed discussion of A(n) including comparison with nonparametric Bayesian
methods, and Hill [21] presented a formal justification of A(n) within the Bayesian con-
text. This justification, however, is a rather complicated splitting process under finite
exchangeability. It is more natural to consider NPI, based on A(n), as a frequentist statistics
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methodology based on assumed exchangeability of all observations. The exchangeability
assumption implies that all orderings of observations are equally likely, and A(n)-based
inference keeps this property for the orderings of future observations among data observa-
tions. This is a relatively weak assumption, but it excludes scenarios with known trends
in data, e.g., time series, or other clear patterns in the data which would undermine the
assumption that all orderings of the observations are equally likely.

4. NPI-Based Discrete-Time Survival Function

In this section, we introduce an NPI-based alternative to the actuarial estimator for the
survival function. We introduce it in two steps: first, we derive the NPI lower and upper
probabilities for the conditional survival function, and then we derive the corresponding
survival function. In doing so, we need to consider the interdependence between the m
future observations; however, we first need to introduce some notation.

Let X1, X2, . . . , Xn be positive, exchangeable, and discrete random variables that take
values at discrete-time points tj, where j = 1, . . . , k, with t1 < t2 < · · · < tk. We define
ǹt0 = n for the start of the study when all individuals survived, and tk+1 = ∞. Let ntj be
the number of individuals known to be alive at time tj. Also, let dtj represent the number of
observed events at time tj, and ctj represent the number of censored events at time tj. We
assume that the censored observations occur at discrete times tj, where j = 1, 2, . . . , k. Then,
the number of individuals at risk at time tj, denoted by n̂tj , is computed by n̂tj = ntj−1 − ctj .
Therefore, the number of individuals at risk at time tj, n̂tj , will decrease at subsequent

discrete times. Furthermore, let X
tj
l > tj, for l = 1, . . . , n̂tj , be the event times for the

individuals in the risk set at time tj.
Now, let us consider Xn+i for the time of event of the ith future individual, for i =

1, 2, . . . , m. We consider the event of interest that all m future observations Xn+i survive a
specific discrete time tj given that they survived the earlier discrete time tj−1. This event
can be denoted as

⋂m
i=1{Xn+i > tj|Xn+i > tj−1}.

We consider the survival of all m future observations at time tj as exchangeable with
the survival of the n̂tj individuals in the risk set at that discrete time. So, we assume that the
random quantities Xn+1, Xn+2, . . . , Xn+i, with respect to the event Xn+i > tj, i = 1, . . . , m,

are exchangeable with X
tj
1 , X

tj
2 , . . . , X

tj
l with respect to the event X

tj
l > tj for l = 1, . . . , n̂tj ,

where X
tj
l are the event times for the individuals in the risk set at time tj.

The NPI lower and upper probabilities for the event
⋂m

i=1{Xn+i > tj|Xn+i > tj−1} can
be derived by utilising NPI for Bernoulli data [7] via Equations (5) and (6), respectively.
This can be performed by considering the number of individuals known to be alive at
time tj, ntj , out of the number of individuals at risk at time tj, n̂tj . Thus, the NPI lower
probability for this event is

P

(
m⋂

i=1

{Xn+i > tj|Xn+i > tj−1}
)

=
m

∏
i=1

ntj + i − 1

n̂tj + i
(9)

and the corresponding NPI upper probability for this event is

P

(
m⋂

i=1

{Xn+i > tj|Xn+i > tj−1}
)

=
m

∏
i=1

ntj + i
n̂tj + i

(10)

We now consider the event that the m future observations will all exceed tj, that is⋂m
i=1{Xn+i > tj}. The NPI lower and upper probabilities for this event can be expressed
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in terms of the NPI conditional lower and upper probabilities in Equations (9) and (10),
respectively, at all earlier times t1, t2, . . . , tj, as follows

P

(
m⋂

i=1

{Xn+i > tj}
)

=
j

∏
ℓ=1

(
m

∏
i=1

ntℓ + i − 1
n̂tℓ + i

)
(11)

P

(
m⋂

i=1

{Xn+i > tj}
)

=
j

∏
ℓ=1

(
m

∏
i=1

ntℓ + i
n̂tℓ + i

)
(12)

For the special case when we have one future observation Xn+1 (i.e., m = 1), the
NPI lower and upper probabilities for the event Xn+1 > tj can be directly calculated from
Equations (11) and (12), respectively, as

P(Xn+1 > tj) =
j

∏
l=1

ntl

n̂tl + 1
(13)

P(Xn+1 > tj) =
j

∏
l=1

ntl + 1
n̂tl + 1

(14)

The NPI lower and upper probabilities for the event
⋂m

i=1{Xn+i > tj}, as presented
in Equations (11) and (12), take into account the dependence among all these future
observations when there is limited information in the form of n observations in the data set.
It is of interest to see the effect of taking this dependence carefully into account. For this
reason, we will compare our method with the results one would obtain if, mistakenly, when
interested in m future observations, one would use the NPI lower and upper probabilities
for the event Xn+1 > tj, presented in Equations (13) and (14), raised to the power of m, i.e.,[
P, P

]m
(Xn+1 > tj). This will be demonstrated in Example 2 by studying the impact of

ignoring the interdependence between the m future observations, but first, Example 1 is
provided to demonstrate our method.

Example 1. We will start with a simple example involving n = 9 observations, which are available
at discrete times tj, for j = 1, 2, 3, 4. At each time point, we have the number of observed events, dtj ;
the number of censored individuals, ctj ; the number of individuals known to be alive at time tj, ntj ;
and the number of individuals at risk at time tj, n̂tj . It is important to note that n̂tj is computed
differently than ǹtj , for example, n̂t2 = 7 but ǹt2 = 8 (see Section 2). The data are shown in the
first six columns in Table 1.

The probability of the hazard function, htj , at a discrete time tj can be estimated by using
the actuarial estimator with Equation (2). Then, the estimated probability of surviving tj, for
j = 1, 2, 3, 4, is derived using Equation (3). These results are presented in the seventh and eighth
columns of Table 1.

Next, we apply the NPI alternative to the actuarial estimator, leading to the NPI lower
and upper probabilities for the event

⋂m
i=1{X9+i > tj}, as given by Equations (11) and (12),

respectively. These are calculated for the discrete-time points t1, t2, t3, and t4, for different numbers
of future observations, i.e., for m ∈ {1, 3, 10, 15}. It is worth noting that at the start of the study at
time t0, no events or censorings have been recorded, so P(

⋂m
i=1{X9+i > t0}) = P(

⋂m
i=1{X9+i >

t0}) = 1.
Based on the results in Table 1, we observe that the difference between the NPI upper proba-

bility and the NPI lower probability is quite small at time t1 for all considered numbers of future
observations and becomes larger later on. This increase in difference is influenced by two effects:
fewer individuals in the risk set n̂tj at later times t2, t3, and t4, and the products of lower and upper
probabilities are taken such that each term (i.e., time point) adds to the imprecision.

When we compare the results from our proposed method for m = 1 future observation with
those resulting from estimating the survival function based on the actuarial estimator, we find
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that the Ŝtj values, based on using the actuarial estimator, fall between our NPI lower and upper
probabilities for X10 > tj, but they are closer to the upper probability values.

Table 1. The actuarial estimator for the survival function and the NPI lower and upper probabilities
for the event

⋂m
i=1{X9+i > tj}, m ∈ {1, 3, 10, 15}, Example 1.

m = 1 m = 3 m = 10 m = 15

tj dtj ctj n̂tj ntj ǹtj 1 − ĥtj Ŝtj P P P P P P P P

t1 1 0 9 8 9 0.889 0.889 0.8000 0.9000 0.6667 0.9167 0.4211 0.9474 0.3333 0.9583
t2 2 1 7 5 8 0.750 0.667 0.5000 0.6750 0.3333 0.7333 0.1238 0.8359 0.0758 0.8712
t3 2 1 4 2 5 0.600 0.400 0.2000 0.4050 0.0952 0.5238 0.0177 0.7165 0.0080 0.7795
t4 0 1 1 1 2 1.000 0.400 0.1000 0.4050 0.0238 0.5238 0.0016 0.7165 0.0005 0.7795

Example 2. The dataset used in this example was also utilised by Berkson and Gage [22] as well as
by Lawless [23] and Yan [15]. It comprises 374 observations, wherein 95 are right-censored, and the
remaining are event times measured at 10 discrete times in years. The dataset is summarised in the
first three columns of Table 2.

By using Equations (11) and (12), we obtain the NPI lower and upper probabilities for the
event

⋂m
i=1{Xn+i > tj} for m ∈ {1, 2, 3, 10} future observations at specific time points. The results

are summarised in Table 2.
To understand the impact of considering the dependence among future observations, we

compare our results [P, P](
⋂5

i=1{X374+i > tj}) for five future observations with those obtained by
erroneously considering only the first future observation (X375 > tj) raised to the power of 5, i.e.,
[P, P]5(X375 > tj). Due to the positive dependence among the future observations, X375, X376, X377,
X378, and X379, our correct NPI lower and upper probabilities for the event

⋂5
i=1{X374+i > tj} are

greater than those obtained using the mistaken approach (taking the lower and upper probabilities
for X375 > tj raised to the power of 5). Although the imprecisions (differences between the upper
and lower probabilities) are small, they would become more noticeable for more than five future
observations due to the positive dependence among all future observations.

Table 2. NPI lower and upper probabilities for
⋂m

i=1{X374+i > tj}, m ∈ {1, 2, 5, 10} and
[P, P]5(X375 > tj) (Example 2).

m = 1 m = 2 m = 5 m = 10 [P, P]5(X375 > tj)

tj dtj ctj n̂tj ntj P P P P P P P P [P]5 [P]5

t1 90 0 374 284 0.757 0.760 0.574 0.578 0.2513 0.2557 0.0644540 0.0667235 0.2486 0.2536
t2 76 0 284 208 0.553 0.557 0.306 0.311 0.0527 0.0549 0.0029253 0.0031739 0.0517 0.0536
t3 51 0 208 157 0.415 0.421 0.173 0.178 0.0128 0.0138 0.0001793 0.0002070 0.0123 0.0132
t4 25 12 145 120 0.341 0.349 0.117 0.123 0.0049 0.0055 0.0000269 0.0000336 0.0046 0.0051
t5 20 5 115 95 0.280 0.289 0.079 0.084 0.0018 0.0022 0.0000040 0.0000055 0.0017 0.0020
t6 7 9 86 79 0.254 0.266 0.065 0.071 0.0011 0.0014 0.0000016 0.0000025 0.0011 0.0013
t7 4 9 70 66 0.236 0.251 0.056 0.063 0.0008 0.0011 0.0000008 0.0000014 0.0007 0.0010
t8 1 3 63 62 0.229 0.247 0.053 0.061 0.0007 0.0010 0.0000006 0.0000012 0.0006 0.0009
t9 3 5 57 54 0.213 0.234 0.046 0.055 0.0005 0.0008 0.0000003 0.0000008 0.0004 0.0007
t10 2 5 49 47 0.200 0.225 0.040 0.051 0.0004 0.0006 0.0000002 0.0000005 0.0003 0.0006

5. NPI-Based Discrete-Time Reliability Function

In this section, we are introducing NPI lower and upper probabilities for the event that
at least x out of m future observations will survive at discrete time tj. Let Ntj denote the
number of future observations out of m that survive at discrete time tj. Given n̂tj Bernoulli
trials, with n̂tj − dtj observations surviving at time tj, we aim to derive the NPI lower and
upper probabilities for the event Ntj ≥ x, where x can take values in the set {0, 1, . . . , m}.

The NPI upper probability for the event Ntj ≥ x is derived by utilising Equation (8), as

P(Ntj ≥ x) =
m

∑
y=x

P(Ntj ≥ x|Ntj−1 = y)
[

P(Ntj−1 ≥ y)− P(Ntj−1 ≥ y + 1)
]

(15)
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The terms on the right-hand side of Equation (15) are all derived by applying Equation (8),
where for the terms involving Ntj−1 the data consist of n̂tj−1 Bernoulli trials, with n̂tj−1 − dtj−1

observations surviving at time tj−1, leading to

P(Ntj−1 ≥ y)− P(Ntj−1 ≥ y + 1) =(
n̂tj−1 + m

n̂tj−1

)−1((n̂tj−1 − dtj−1) + y
(n̂tj−1 − dtj−1)

)(
n̂tj−1 − (n̂tj−1 − dtj−1) + m − y − 1

n̂tj−1 − (n̂tj−1 − dtj−1)

) (16)

where y ∈ {0, 1, . . . , m} future observations. It is important to point out that for the case
y = m, the NPI upper probability for the event Ntj−1 ≥ y + 1 is equal to 0.

The NPI lower probability for the event Ntj ≥ x, for x ∈ {0, 1, . . . , m} is derived by
utilising Equation (7), as

P(Ntj ≥ x) =
m

∑
y=x

P(Ntj ≥ x|Ntj−1 = y)
[

P(Ntj−1 ≥ y)− P(Ntj−1 ≥ y + 1)
]

(17)

The terms on the right-hand side of Equation (17) are all derived by applying Equation (7),
where for the terms involving Ntj−1 the data consist of n̂tj−1 Bernoulli trials, with n̂tj−1 − dtj−1

observations surviving at time tj−1, leading to

P(Ntj−1 ≥ y)− P(Ntj−1 ≥ y + 1) =(
n̂tj−1 + m

n̂tj−1

)−1((n̂tj−1 − dtj−1) + y − 1

(n̂tj−1 − dtj−1)− 1

)(
n̂tj−1 − (n̂tj−1 − dtj−1) + m − y

n̂tj−1 − (n̂tj−1 − dtj−1)

) (18)

where y ∈ {0, 1, . . . , m} future observations. It should be remarked that the NPI lower
probability for the event Ntj−1 ≥ y + 1 for the case y = m is equal to 0.

It is worth noting that the lower and upper probabilities for the event Ntj ≥ x when
x = 0 are both equal to 1, regardless of the values of y. Therefore, only the results for
x = {1, . . . , m} will be reported hereafter.

Example 3. In this example, we will illustrate the method presented in Section 5 using a simple
example involving nine observations, available at discrete times tj for j = 1, 2, 3, 4 (data are
summarized in Table 3).

Table 3 shows the NPI lower and upper probabilities for the event Ntj ≥ x|Ntj−1 = y, where
x ∈ {0, 1, 2, 3} and y ∈ {0, 1, 2, 3}, with x ≤ y. For x = 0, the NPI lower and upper probabilities
are equal to 1 for all y ∈ {0, 1, 2, 3} and at all tj, due to the fact that no future observation out of y
will survive at discrete time tj. Note that some cells in Table 3 are empty due to the calculation of
probabilities for the event that at least x out of y future observations will survive at discrete time
tj. From Table 3, we can also observe that at a specific discrete time tj, the NPI lower and upper
probabilities decrease in x when everything else is constant and increase in y when everything else
is constant.

Meanwhile, Table 4 presents the NPI lower and upper probabilities for the event Ntj ≥ x
for x ∈ {1, 2, 3} future observations, again the lower and upper probabilities are equal to 1 when
x = 0. From Table 4, we can see that the difference between the NPI lower and upper probabilities
decreases in x while everything else is held constant at each discrete time tj. Without any further
added assumptions, the values of the NPI lower probabilities at t4 are 0 for x ∈ {1, 2, 3}, whereas
the NPI upper probabilities are positive.
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Table 3. NPI lower and upper probabilities for the event Ntj ≥ x|Ntj−1 = y with x ≤ y.

x = 1 x = 2 x = 3

tj dtj ctj ntj n̂tj n̂tj − dtj y P P P P P P

t1 1 0 8 9 8 1 0.8000 0.9000
2 0.9455 0.9818 0.6545 0.8182
3 0.9818 0.9955 0.8727 0.9545 0.5455 0.7500

t2 2 1 5 7 5 1 0.6250 0.7500
2 0.8333 0.9167 0.4167 0.5833
3 0.9167 0.9667 0.6667 0.8167 0.2917 0.4667

t3 2 1 2 4 2 1 0.4000 0.6000
2 0.6000 0.8000 0.2000 0.4000
3 0.7143 0.8857 0.3714 0.6286 0.1143 0.2857

t4 1 1 0 1 0 1 0 0.5000
2 0 0.6667 0 0.3333
3 0 0.7500 0 0.5000 0 0.2500

Table 4. NPI lower and upper for the event Ntj ≥ x.

x = 1 x = 2 x = 3

tj dtj ctj ntj n̂tj n̂tj − dtj P P P P P P

t1 1 0 8 9 8 0.9625 0.9955 0.7883 0.8832 0.4091 0.7500
t2 2 1 5 7 5 0.8409 0.9432 0.5000 0.7318 0.1591 0.3500
t3 2 1 2 4 2 0.5334 0.7834 0.1833 0.4334 0.0333 0.1333
t4 1 1 0 1 0 0 0.5714 0 0.2571 0 0.0714

6. Application to System Reliability Using Survival Signatures

In Section 5, we derived the NPI lower and upper probabilities for the event that at least x
out of m future observations will survive at discrete time tj. In this section, we will utilise these
probabilities to assess system reliability, considering single or multiple types of components,
using survival signatures. Essentially, the results from Section 5 will be employed to derive
lower and upper probabilities for the discrete-time system reliability event TS > tj, where
TS denotes the random failure time of the system. We will combine the concept of survival
signature [16,24] with the proposed method in Section 5. First, we will give a brief overview
of survival signatures, where the values of the survival signatures are assumed to be given.
Then, we will demonstrate the application of the proposed methods to the reliability of some
discrete-time systems with both single and multiple types of components.

6.1. The Survival Signature

The signature has been introduced to evaluate the reliability of systems consisting of
only one type of component and is used to model the structure of a system, separating
this from the random failure times of the components [17]. The NPI method is used in
order to learn about the components within the system, based on data consisting of failure
times for components that are exchangeable with those within the system. We therefore
assume that such data are available, such as those obtained from testing or previous use
of the components [16,17]. Following the literature, the assumption of exchangeability is
often replaced by the stronger assumption of independent and identically distributed (iid)
component failure times [25]. Taking into account a system consisting of m components with
exchangeable failure times, Samaniego [26,27] introduced the system signature as a tool
for reliability assessment for systems consisting of components of a single type. However,
the use of signatures becomes very complicated in the case of quantifying the reliability of
systems with multiple types of components. Coolen and Coolen–Maturi [24] introduced an
alternative concept called the ’survival signature’. The idea of the survival signature is to
generalise the signature to systems with multiple types of components. When quantifying
the reliability of systems with only one type of component, the survival signature is closely
related to the signature [16,24]. The NPI methodology has been introduced for system
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reliability using the survival signature via lower and upper survival functions for the failure
time TS of a system consisting of multiple types of components [16], combined with NPI
for Bernoulli data [7].

For a system with m exchangeable components, we need to consider the state vector
x = (x1, x2, . . . , xm) ∈ {0, 1}m taking into account that for each i, if the ith component
functions, then xi = 1, otherwise xi = 0 when the ith component does not function. For all
possible state vectors x, the following structure function is defined as ϕ : {0, 1}m → {0, 1},
so that ϕ(x) = 1 if the system functions and ϕ(x) = 0 if the system does not function.
Throughout this section, the system is assumed to be coherent, which means that the
structure function ϕ(x) must not be decreasing in any of the components of x, and this leads
to the fact that the functioning of the system cannot be improved by worse performance
of one or more of its components. Furthermore, we assume that the system functions if
all its components function, so ϕ(1) = 1, and the system fails if all its components fail, so
ϕ(0) = 0.

For a system consisting only of m exchangeable components, the survival signature,
denoted by Φ(l), for l = 1, . . . , m, is defined as the probability that the system functions
given that precisely l of its components function [24]. For coherent systems, Φ(l) is an
increasing function of l, and we assume that Φ(0) = 0 and Φ(m) = 1. There are (m

l ) state
vectors x with precisely l components xi = 1, so with ∑m

i=1 xi = l; the set of these state
vectors is denoted by Sl . Inspired by the iid assumption which has been considered for the
failure times of the m components, all these state vectors are equally likely to occur [24].
Thus, the survival signature Φ(l) can be achieved as follows [24]

Φ(l) =
(

m
l

)−1

∑
x∈Sl

ϕ(x) (19)

Let C(t) ∈ {0, 1, . . . , m} represent the number of components in the system with a
single type that functions at time t > 0. So, the probability that the system functions at time
t > 0 is

P(TS > t) =
m

∑
l=0

Φ(l)P(C(t) = l) (20)

For a system consisting of K ≥ 2 types of components, the survival signature, denoted
by Φ(l1, . . . , lK) for lk = 0, . . . , mk, is defined as the probability that a system functions
given that precisely lk of its components of type k function, for each k ∈ {1, 2, . . . , K}. There
are (mk

lk
) state vectors xk with precisely lk of its mk components xk

i = 1; so, with ∑mk
i=1 xk

i = lk,

we denote the set of these state vectors for components of type k by Sk
l . In addition, let

Sl1,...,lk denote the set of these state vectors for the whole system for which ∑mk
i=1 xk

i = lk,
k ∈ {1, 2, . . . , K}. Inspired by the iid assumption which has been considered for the failure
times of the mk components of type k, all these state vectors xk ∈ are equally likely to occur.
Thus, the survival signature Φ(l1, . . . , lK) can be achieved as follows [24].

Φ(l1, . . . , lK) =

[
K

∏
k=1

(
mk
lk

)−1
]
× ∑

x∈Sl1,...,lK

ϕ(x) (21)

Let Ck(t) ∈ {0, 1, . . . , mk} represent the number of components of type k in the system
which function at time t > 0. So, the probability that the system functions at time t > 0 is

P(TS > t) =
m1

∑
l1=0

· · ·
mK

∑
lK=0

Φ(l1, . . . , lK)P

(
K⋂

k=1

{Ck(t) = lk}
)

(22)

Assuming that the failure times of components of different types are independent,
while the exchangeability is assumed for the failure times of components of the same
type [16], the survival function for TS can be written as
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P(TS > t) =
m1

∑
l1=0

· · ·
mK

∑
lK=0

Φ(l1, . . . , lK)
K

∏
k=1

P({Ck(t) = lk}) (23)

6.2. Discrete-Time System Reliability

In this section, we will apply the proposed method to system reliability in the case of
discrete time. We will combine the concept of the survival signature Φ(l) (as reviewed in
Section 6.1) with the results obtained in Section 5 to present lower and upper probabilities
for the event TS > tj of a system reliability that consists of both single type and multiple
types of components. These lower and upper probabilities represent the survival functions
at discrete-time points tj.

At a specific time tj, let n̂tj represent the number of components for which test failure
data are available, and let dtj represent the number of components that failed at time tj.
Therefore, n̂tj − dtj is the number of components of this type that are still functioning at
time tj [16,17]. Additionally, let Ntj ∈ {0, 1, . . . , m} denote the number of components in
the system out of f m that are still functioning at a discrete time tj.

We obtain the NPI lower and upper probabilities for the event that TS > tj for a system
consisting of a single type of components, using the survival signature Φ(l) combined with
the proposed method in Section 5 as follows

P(TS > tj) =
m

∑
ℓ=0

Φ(ℓ)D(Ntj = ℓ) (24)

and

P(TS > tj) =
m

∑
ℓ=0

Φ(ℓ)D(Ntj = ℓ) (25)

where D(Ntj = ℓ) and D(Ntj = ℓ) are derived from Equations (16) and (18), respectively, so

D(Ntj = ℓ) = P(Ntj ≥ ℓ)− P(Ntj ≥ ℓ+ 1)

=

(
n̂tj + m

n̂tj

)−1((n̂tj − dtj) + ℓ− 1

(n̂tj − dtj)− 1

)(
n̂tj − (n̂tj − dtj) + m − ℓ

n̂tj − (n̂tj − dtj)

) (26)

and

D(Ntj = ℓ) = P(Ntj ≥ ℓ)− P(Ntj ≥ ℓ− 1)

=

(
n̂tj + m

n̂tj

)−1((n̂tj − dtj) + ℓ

(n̂tj − dtj)

)(
n̂tj − (n̂tj − dtj) + m − ℓ− 1

n̂tj − (n̂tj − dtj)− 1

) (27)

We now consider a system consisting of K ≥ 2 types of components with mk com-
ponents of k ∈ {1, 2, . . . , K}, with ∑K

k=1 mk = m. For a specific time tj, let n̂k
tj

denote the

number of components of type k for which test failure data are available, and let dk
tj

denote

the numbers of components that failed at time tj; therefore, n̂k
tj
− dk

tj
is the number of com-

ponents of type k that are still functioning at time tj [16,17]. The failure times of components
of different types are assumed to be independent, while failure times of components of the
same type are assumed to be exchangeable [16]. Let Nk

tj
∈ {0, 1, . . . , mk} denote the number

of components of type k in the system out of mk that are still functioning at a discrete time
tj, k = 1, 2, . . . , K.
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The NPI lower and upper probabilities for the event TS > tj of a system consisting
of multiple types of components using the survival signature Φ(l) combined with the
proposed method in Section 5 are as follows

P(TS > tj) =
m1

∑
ℓ1=0

· · ·
mK

∑
ℓK=0

Φ(ℓ1 . . . ℓK)
K

∏
k=1

D(Nk
tj
= ℓk) (28)

and

P(TS > tj) =
m1

∑
ℓ1=0

· · ·
mK

∑
ℓK=0

Φ(ℓ1 . . . ℓK)
K

∏
k=1

D(Nk
tj
= ℓk) (29)

where D(Nk
tj
= ℓk) and D(Nk

tj
= ℓk) for ℓk ∈ {0,1, . . . , mk} are derived from Equations (16) and (18),

respectively, thus

D(Nk
tj
= ℓk) = P(Nk

tj
≥ ℓk)− P(Nk

tj
≥ ℓk + 1)

=

(n̂k
tj
+ mk

n̂k
tj

)−1((n̂k
tj
− dk

tj
) + ℓk − 1

(n̂k
tj
− dk

tj
)− 1

)(n̂k
tj
− (n̂k

tj
− dk

tj
) + mk − ℓk

n̂k
tj
− (n̂k

tj
− dk

tj
)

) (30)

and

D(Nk
tj
= ℓk) = P(Nk

tj
≥ ℓk)− P(Nk

tj
≥ ℓk − 1)

=

(n̂k
tj
+ mk

n̂k
tj

)−1((n̂k
tj
− dk

tj
) + ℓk

(n̂k
tj
− dk

tj
)

)(n̂k
tj
− (n̂k

tj
− dk

tj
) + mk − ℓk − 1

n̂k
tj
− (n̂k

tj
− dk

tj
)− 1

) (31)

Next, we will apply the results presented above to discrete-time system reliability,
which consists of a single type of component (see Example 4) and multiple types of compo-
nents (see Example 5).

Example 4. The system depicted in Figure 1 is utilised in this example and was also utilised by
Coolen and Coolen–Maturi [28]. We are examining the reliability of a discrete-time system with m = 5
exchangeable components, presenting the survival signature values as follows: Φ(0) = 0, Φ(1) = 0,
Φ(2) = 0.6, Φ(3) = 0.9, Φ(4) = 1, and Φ(5) = 1. We will analyse two datasets of different sizes,
one with n = 10 observations and the other with n = 20 observations. These datasets include failure
events and right-censored observations for discrete times t1 to t5. Table 5 presents NPI lower and upper
probabilities for TS > tj at these discrete times, based on the survival signature values as provided and
the results in Section 6.2.

Upon comparing the results in Table 5, it is evident that the imprecisions (the difference between
the upper and lower probability) for both sample sizes are minimal at time t1 and increase as we progress
to later times, owing to fewer observations in the risk set. Additionally, the differences between the lower
and upper probabilities for TS > tj with n = 20 observations are generally smaller compared to those
with n = 10 observations. So, the imprecision for TS > tj decreases as the dataset size increases, i.e., as
we have more data available.

Table 5. NPI lower and upper probabilities for TS > tj, for the system in Figure 1, with n = 10 and
n = 20, Example 4.

n = 10 n = 20

tj dtj ctj n̂tj n̂tj − dtj P P P − P dtj ctj n̂tj n̂tj − dtj P P P − P

t1 2 0 10 8 0.8811 0.9426 0.0615 4 0 20 16 0.9177 0.9465 0.0288
t2 2 1 7 5 0.7765 0.8909 0.1144 4 2 14 10 0.8344 0.8921 0.0577
t3 2 0 5 3 0.6190 0.8095 0.1905 3 1 9 6 0.7552 0.8559 0.1007
t4 1 1 2 1 0.3857 0.7810 0.3953 2 2 4 2 0.4810 0.7333 0.2523
t5 1 0 1 0 0 0.5833 0.5833 2 0 2 0 0 0.3857 0.3857
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Figure 1. System with a single type of m = 5 components for Example 4.

Example 5. In this example, we are examining a system with K = 2 types of components, types 1
and 2, depicted in Figure 2. Coolen et al. [24] utilised this system to demonstrate NPI for the system
survival time. The survival signature for this system can be found in Table 6. We are focusing
on the data provided in Table 7 for the two types with m1 = m2 = 3 components, and each type
has 10 observations, i.e., n1 = n2 = 10, including failure events and right-censored observations,
for discrete times t1, t2, and t3. The table also includes the NPI lower and upper probabilities for
TS > tj at discrete times t1, t2, and t5, based on the given survival signature values and the results
in Section 6.2.

When considering the NPI approach for real-valued data, it is typical for the lower probability
value for Xn+1 > t in a specific interval to be less than or equal to the upper probability value for
Xn+1 > t in the next interval. This is evident in the results of [29]. However, the NPI for the discrete-
time approach indicates that this may not always be the case, as observed in the results of Table 7
where P(TS > t1) > P(TS > t2), and in the results of Table 5 where P(TS > t3) > P(TS > t4).
Many of the findings presented in this paper suggest that, for discrete-time cases, this discrepancy
may arise due to multiple failures occurring between discrete-time points.

Table 6. Survival signature of the system in Figure 2 (Example 5).

(ℓ1, ℓ2) Φ(ℓ1, ℓ2) (ℓ1, ℓ2) Φ(ℓ1, ℓ2)

(0, 0) 0 (2, 0) 0
(0, 1) 0 (2, 1) 0
(0, 2) 0 (2, 2) 4/9
(0, 3) 0 (2, 3) 6/9
(1, 0) 0 (3, 0) 1
(1, 1) 0 (3, 1) 1
(1, 2) 1/9 (3, 2) 1
(1, 3) 3/9 (3, 3) 1

Figure 2. System with 2 types of components for Example 5.

Table 7. NPI lower and upper probabilities for TS > tj, for the system in Figure 2 with two types of
components and m1 = m2 = 3, Example 5.

tj d1
tj

c1
tj

n̂1
tj

n̂1
tj
− d1

tj
d2

tj
c2

tj
n̂2

tj
n̂2

tj
− d2

tj
P(TS > tj) P(TS > tj)

t1 2 1 9 7 3 0 10 7 0.5500 0.7118
t2 3 2 5 2 3 1 6 3 0.1412 0.3189
t3 2 0 2 0 2 1 2 0 0 0.1478

7. Concluding Remarks

This paper introduced an alternative predictive approach to the actuarial estimator
in the context of discrete-time data. The proposed NPI method provides lower and upper
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probabilities for the event that all future observations survive at a discrete-time point.
The proposed method, based on NPI for Bernoulli data, is developed to derive the NPI
lower and upper probabilities for the event that a specific number of future Bernoulli trials
survive out of multiple future trials considered. Additionally, this development has been
applied to systems reliability with single and multiple types of components at discrete-time
points in conjunction with the survival signature method. The methods presented in this
paper can be applied to various applications in system reliability, where in particular their
use to support decisions in practical scenarios lead to interesting topics for future research.

Author Contributions: Methodology, F.P.A.C., T.C.-M. and A.M.Y.M.; Formal analysis, F.P.A.C.,
T.C.-M. and A.M.Y.M.; Investigation, F.P.A.C., T.C.-M. and A.M.Y.M.; Writing—original draft, F.P.A.C.,
T.C.-M. and A.M.Y.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Singer, J.D.; Willett, J.B. It’s about time: Using discrete-time survival analysis to study duration and the timing of events. J. Educ.

Stat. 1993, 18, 155–195.
2. Allison, P.D. Discrete-time methods for the analysis of event histories. Sociol. Methodol. 1982, 13, 61–98. [CrossRef]
3. Masyn, K.E. Discrete-Time Survival Mixture Analysis for Single and Recurrent Events Using Latent Variables. Ph.D. Thesis, Uni-

versity of California, Los Angeles, CA, USA, 2003. Available online: https://www.statmodel.com/download/masyndissertation.
pdf (accessed on 29 July 2024).

4. Hill, B.M. Posterior distribution of percentiles: Bayes’ theorem for sampling from a population. J. Am. Stat. Assoc. 1968,
63, 677–691. [CrossRef]

5. Augustin, T.; Coolen, F.P.A. Nonparametric predictive inference and interval probability. J. Stat. Plan. Inference 2004, 124, 251–272.
[CrossRef]

6. Coolen, F.P.A. On nonparametric predictive inference and objective Bayesianism. J. Logic Lang. Inf. 2006, 15, 21–47.
7. Coolen, F.P.A. Low structure imprecise predictive inference for Bayes’ problem. Stat. Probab. Lett. 1998, 36, 349–357. [CrossRef]
8. Coolen, F.P.A.; Coolen-Schrijner, P. Nonparametric predictive subset selection for proportions. Stat. Probab. Lett. 2006,

76, 1675–1684. [CrossRef]
9. Coolen, F.P.A.; Yan, K.J. Nonparametric predictive inference with right-censored data. J. Stat. Plan. Inference 2004, 126, 25–54.

[CrossRef]
10. Coolen, F.P.A.; Yan, K.J. Nonparametric Predictive Comparison of Two Groups of Lifetime Data. In Proceedings of the 3rd

International Symposium on Imprecise Probabilities and Their Applications, Carlton Scientific, Lugano, Switzerland, 14–17 July
2003; pp. 148–161.

11. Coolen-Maturi, T.A.; Coolen, F.P.A.; Muhammad, N. Predictive inference for bivariate data: Combining nonparametric predictive
inference for marginals with an estimated copula. J. Stat. Theory Pract. 2016, 10, 515–538. [CrossRef]

12. Baker, R. Multinomial Nonparametric Predictive Inference: Selection, Classification and Subcategory Data. Ph.D. Thesis,
University of Durham, Durham, UK, 2010. Available online: https://maths.durham.ac.uk/stats/people/fc/thesis-RB.pdf
(accessed on 29 July 2024).

13. Coolen, F.P.A.; Augustin, T. Learning from multinomial data: A nonparametric predictive alternative to the Imprecise Dirichlet
Model. In Proceedings of the ISIPTA 4th International Symposium on Imprecise Probabilities and Their Applications, Pittsburgh,
PA, USA, 20–23 July 2005; pp. 125–134.

14. Janurová, K.; Briš, R. A nonparametric approach to medical survival data: Uncertainty in the context of risk in mortality analysis.
Reliab. Eng. Syst. Saf. 2014, 125, 145–152. [CrossRef]

15. Yan, K.J. Nonparametric Predictive Inference with Right-Censored Data. Ph.D. Thesis, Durham University, Durham, UK, 2002.
Available online: https://maths.durham.ac.uk/stats/people/fc/thesis-KJY.pdf (accessed on 29 July 2024).

16. Coolen, F.P.A.; Coolen-Maturi, T.; Al-Nefaiee, A.H. Nonparametric predictive inference for system reliability using the survival
signature. Proc. Inst. Mech. Eng. Part O J. Risk Reliab. 2014, 228, 437–448. [CrossRef]

17. Al-Nefaiee, A.H. Nonparametric Predictive Inference for System Failure Time. Ph.D. Thesis, University of Durham, Durham, UK,
2014. Available online: https://maths.durham.ac.uk/stats/people/fc/thesis-AAN.pdf (accessed on 29 July 2024).

18. Hill, B.M. Bayesian nonparametric prediction and statistical inference. In Bayesian Analysis in Statistics and Econometrics; Springer:
New York, NY, USA, 1992; pp. 43–94.

19. Aboalkhair, A.M. Nonparametric Predictive Inference for System Reliability. Ph.D. Thesis, University of Durham, Durham, UK,
2012. Available online: https://maths.dur.ac.uk/stats/people/fc/thesis-AA.pdf (accessed on 29 July 2024).

http://doi.org/10.2307/270718
https://www.statmodel.com/download/masyndissertation.pdf
https://www.statmodel.com/download/masyndissertation.pdf
http://dx.doi.org/10.1080/01621459.1968.11009286
http://dx.doi.org/10.1016/j.jspi.2003.07.003
http://dx.doi.org/10.1016/S0167-7152(97)00081-3
http://dx.doi.org/10.1016/j.spl.2006.04.009
http://dx.doi.org/10.1016/j.jspi.2003.07.004
http://dx.doi.org/10.1080/15598608.2016.1184112
https://maths.durham.ac.uk/stats/people/fc/thesis-RB.pdf
http://dx.doi.org/10.1016/j.ress.2013.03.014
https://maths.durham.ac.uk/stats/people/fc/thesis-KJY.pdf
http://dx.doi.org/10.1177/1748006X14526390
https://maths.durham.ac.uk/stats/people/fc/thesis-AAN.pdf
https://maths.dur.ac.uk/stats/people/fc/thesis-AA.pdf


Mathematics 2024, 12, 3514 14 of 14

20. Hill, B.M. De Finetti’s Theorem, Induction, and Bayesian nonparametric predictive inference (with discussion). In Bayesian
Analysis in Statistics and Econometrics; Springer: Berlin/Heidelberg, Germany, 1988; pp. 211–241.

21. Hill, B.M. Parametric models for A(n): Splitting processes and mixtures. J. R. Stat. Soc. Ser. B 1993, 55, 423–433.
22. Berkson, J.; Gage, R.P. Calculation of survival rates for cancer. Mayo Clin. 1950, 25, 270–286.
23. Lawless, J.F. Statistical Models and Methods for Lifetime Data; Wiley: New York, NY, USA, 1982.
24. Coolen, F.P.A.; Coolen-Maturi, T. Generalizing the signature to systems with multiple types of components. In Complex Systems

and Dependability; Springer: Berlin/Heidelberg, Germany, 2013; pp. 115–130.
25. Samaniego, F.J. System Signatures and Their Applications in Engineering Reliability; Springer: Berlin/Heidelberg, Germany, 2007.
26. Samaniego, F.J. On closure of the IFR class under formation of coherent systems. IEEE Trans. Reliab. 1985, 34, 69–72. [CrossRef]
27. Navarro, J.; Samaniego, F.J.; Balakrishnan, N.; Bhattacharya, D. On the application and extension of system signatures in

engineering reliability. Nav. Res. Logist. 2008, 55, 313–327. [CrossRef]
28. Coolen, F.P.A.; Coolen-Maturi, T. Predictive inference for system reliability after common-cause component failures. Reliab. Eng.

Syst. Saf. 2015, 135, 27–33. [CrossRef]
29. Coolen-Maturi, T.; Mahnashi, A.M.; Coolen, F. Nonparametric Predictive Inference for Two Future Observations with Right-

Censored Data. Math. Methods Stat. 2024, in press.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TR.1985.5221935
http://dx.doi.org/10.1002/nav.20285
http://dx.doi.org/10.1016/j.ress.2014.11.005

	Introduction
	Actuarial Estimator of the Survival Function
	Nonparametric Predictive Inference (NPI) 
	NPI-Based Discrete-Time Survival Function
	NPI-Based Discrete-Time Reliability Function
	Application to System Reliability Using Survival Signatures
	The Survival Signature
	Discrete-Time System Reliability 

	Concluding Remarks
	References

