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Abstract—Microgrids, marked by substantial renewable en-
ergy integration, have garnered significant attention. Tradi-
tional optimization methods face challenges in handling the
unpredictability of renewable energy, market prices, and loads.
Reinforcement Learning (RL) offers a solution by learning from
historical data. However, Offline-RL models often encounter
adaptability challenges in new environments, while traditional
Online-RL faces stability issues in certain scenarios. To address
these concerns, this paper proposes a preference-based Deep
Deterministic Policy Gradient (PDDPG) algorithm. It guides
the online learning process using expert experience based on
expert rules and Offline-RL to enhance the model’s performance.
Moreover, unlike studies that assume perfect communication and
ignore Random Communication Failures (RCF), the proposed
real-time microgrid energy management (MEM) system tackles
communication challenges by incorporating a Communication
Detection and Data Supplement System (CDDSS), especially
during extreme weather conditions. The results indicate that the
incorporation of CDDSS, as opposed to zero value supplementa-
tion, previous moment data, and conventional predictive models,
results in a remarkable reduction of microgrid losses by 88.3%,
80.5%, and 53.4%, respectively.

Index Terms—Online microgrid energy management, online
reinforcement learning, extreme weather conditions, communi-
cation failures.

I. INTRODUCTION

AS global climate change intensifies and fossil fuel re-
sources gradually deplete, the importance of renewable

energy is increasingly coming to the fore. According to
forecasts by the International Renewable Energy Agency,
renewable energy is projected to meet over 80% of the world’s
electricity demand by 2050, with solar and wind energy
contributing to 52% of this capacity [1]. To meet this demand,
microgrids, composed of local loads, Energy Storage Systems
(ESS), Renewable Distributed Resources, and other Control-
lable Distributed Generations, are emerging as a promising so-
lution. Microgrid energy management (MEM) usually involves
multiple optimization variables and optimization objectives.
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In recent years, model-based optimization methods, such as
Mixed Integer Linear Programming, and model-free heuristic
approaches, like Genetic Algorithms, have achieved significant
success [2].

These MEM methods primarily target scheduling a day
ahead, where each unit’s operation is predetermined based
on predictions of future states. However, a key challenge in
optimizing microgrid operations is the significant uncertainty
and randomness in renewable energy generation, along with
unpredictable market prices and electricity demand. Accu-
rately forecasting these uncertainties is often impractical [3].
Moreover, there are shortcomings in modeling, parameter
control, and dynamic adaptation [4]. Model-free reinforcement
learning (RL) offers a solution that does not rely on prior state
prediction. RL agents learn the optimal decisions correspond-
ing to each possible state of the microgrid by training with
historical data. Utilizing the knowledge and experience gained,
they can make real-time decisions based on the current actual
state of the microgrid.

Energy management strategies for microgrids based on RL
have been extensively studied [5]. For example, Alabdullah
et al. [6] and Xiao et al. [7] employed RL algorithms using
Deep Q-Networks (DQN) and an improved sampling strategy
DQN, respectively, for scheduling various energy sources
within microgrids to minimize the costs of grid exchanges
and conventional power generation. However, these discrete
action-based RL methods cannot achieve continuous energy
control in microgrids and face convergence difficulties when
the number of actions increases, limiting their applicability
in real-world microgrids [8]. In contrast, policy gradient-
based RL methods optimize the policy directly, demonstrating
significant advantages in handling continuous control, better
sample efficiency, and a more stable training process, and have
been widely explored in microgrid energy management [9]–
[14]. Zhang et al. [9] formulated a multi agent RL method
to manage multi-energy microgrids, enhancing the stability of
privacy resilience and achieving exceptional performance in
reducing energy costs. In real-time microgrid energy man-
agement systems, solutions involving multiple agents face
challenges in real-time performance and convergence. Guo
et al. [10] and Lee et al. [11] utilized Deep RL algorithms
based on Proximal Policy Optimization (PPO) for microgrid
energy scheduling, achieving continuous energy dispatch and
validating the effectiveness of the proposed methods through
case studies. Dong et al. [12] introduced a multi-energy flow
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coordination optimization scheduling system based on the
Soft Actor-Critic (SAC) for optimal scheduling of renew-
able energy and flexible loads. Xu et al. [13] employed the
Deep Deterministic Policy Gradient (DDPG) RL method to
address energy management issues, achieving better real-time
control performance than model predictive control methods.
Liu et al. [14] used DDPG for real-time economic energy
management in microgrids, effectively utilizing energy storage
systems to reduce operating costs. However, these studies are
all based on offline reinforcement learning (offline-RL), where
the model is trained on offline data and then directly applied to
real microgrid energy management without any further updates
or adjustments. Real microgrid environments are typically
dynamic, and fixed models based on offline-RL can suffer from
performance degradation in new environments due to sample
bias, making efficient energy management challenging [15].

Online reinforcement learning (online-RL) offers a solution
that can update and adjust the model according to changes
in the new environment. For example, Yi et al. [16] and
Adibi et al. [17] applied online-RL methods to provide
continuous frequency regulation services for virtual power
plants and microgrids, respectively, continuously updating
the trained control policies in real environments to improve
tracking accuracy compared to offline-RL. In the field of
energy management, Du et al. [18] proposed an online-RL
control framework for vehicle energy management strategies,
using adaptive optimization methods to update neural network
weights, achieving better SOC control performance than the
original policy network. Meng et al. [19] introduced an online
RL-based microgrid energy management optimization model,
continuously updating the model to adapt to uncertainties.
However, both [18] and [19] utilized traditional Q-value-based
RL methods, which are not suitable for continuous control in
microgrid environments. Zhang et al. [20] proposed a DDPG-
based online deep RL energy management strategy to further
reduce fuel consumption and improve the adaptability of
algorithms for series hybrid electric tracked vehicles. Although
online-RL approaches have great promise in microgrid energy
management scenarios, challenges remain to be addressed.
One pitfall is that traditional online updating methods can
sometimes lead to irreversible performance declines under
specific settings, which could result from distribution shifts
between offline and online phases and changes in learning
dynamics due to algorithm transitions. Furthermore, there is
a problem of low sample efficiency when exploring updates
in new environments [21], [22]. Therefore, directly performing
simple online updates on models for real-time energy manage-
ment in microgrids lacks stability and efficiency. Expert expe-
rience is a general principled approach that can guide agent
exploration and updates, enhancing the learning process [23].
Li et al. [24] fine-tuned DDPG-based autonomous driving
agents using human-preferred driving trajectories to provide
personalized control solutions for different types of users. Ying
et al. [25] employed an expert-guided method to help agents
find better policies more efficiently. These works demonstrated
the guiding role of human-preferred expert knowledge in the
RL agent updating process.

Moreover, we note that in RL-based MEM systems, due

to the requirement for real-time state information to formu-
late the most appropriate control strategies, there is a high
demand for communication, where data loss can easily lead
to irrational decisions by the agent, resulting in significant
energy waste [26]. Smart grid applications have diverse re-
quirements for bandwidth, latency, and reliability, particularly
in remote mountainous areas and isolated microgrids, where
packet loss may occur when agents receive status information
from distributed energy sources. Furthermore, in the harsh
environments of Extreme Weather Events (EWE), communica-
tion systems are more susceptible to Random Communication
Failures (RCF), highlighting the need for robust and adaptive
control strategies in microgrid management [27]. Zhou et
al. [28] proposed a belief-based correlated equilibrium strategy
for joint action selection in multi-agent systems to manage
microgrid energy during communication failures. However, the
proposed methods rely on retrospective experiences to handle
communication failures, making it challenging to address
the randomness of the RCF problem in new environments,
especially under extreme weather conditions. Moreover, the
proposed approaches are not suitable for continuous control
scenarios. Existing RL-based real-time energy management re-
search often assumes perfect communication, which is risky in
practice. To our knowledge, there is still a lack of exploration
regarding the RCF problem in RL-based continuous MEM
system.

In this paper, we design a novel preference-based online
real-time microgrid energy management framework. This ap-
proach combines online RL with expert knowledge, aiming to
integrate high-quality human-preferred expertise to more ef-
fectively guide the agent’s online learning process and enhance
the performance of real-time microgrid scheduling models.
Additionally, we incorporate the possibility of communica-
tion failures into the agent’s real-time scheduling operations,
investigating and improving the performance of the energy
management system under RCF conditions.

The main contributions of this paper are as follows:

• We model the MEM problem as a series of improved
Markov decision processes, utilizing a simpler and more
accurate Energy Storage System (ESS) model based on
the linear approximation of energy content limits, as
well as a precise continuous control model for various
energies. The proposed Online-MEM achieves real-time
scheduling independent of prediction.

• To overcome the adaptability constraints of traditional of-
fline models, as well as the sample inefficiency and safety
concerns associated with conventional online models in
current MEM research, this paper proposes an enhanced
preference-based online Deep Deterministic Policy Gradi-
ent (PDDPG) algorithm. The method leverages integrated
expert knowledge, combining expert rules with high-
quality historical trajectories to guide the agent’s online
learning process. This ensures more stable and safer
model updates. Empirical results demonstrate that the
proposed approach consistently surpasses both offline-
DDPG and online-DDPG across multiple real-world sce-
narios.
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• To address the challenges posed by communication fail-
ures (RCF) in real-time energy management systems,
this paper introduces a Communication Detection and
Data Supplement System (CDDSS). The system identifies
RCF occurrences and compensates for missing data,
proposing four data supplementation strategies tailored
to RCF conditions. Among these, Strategy IV, which
incorporates Transformer models and Transfer Learning,
is shown to be the most effective, reducing additional
losses in microgrids by 88.3% compared to conventional
methods that use zero-value imputation. The proposed
system significantly enhances the resilience and efficiency
of microgrid operations under RCF scenarios.

The rest of this paper is organized as follows. Section II
introduces the overall architecture of the microgrid system
under study. Section III describes the process of modeling the
microgrid as an MDP, followed by a detailed presentation of
the proposed PDDPG and CDDSS. Section IV presents exper-
imental setup discusses the experimental results. Conclusions
are drawn in Section V.

II. MICROGRID MODELING AND PROBLEM FORMULATION

In this study, a typical microgrid comprises uncontrol-
lable renewable distributed generators (photovoltaics and wind
turbines), controllable distributed generators (CDG), energy
storage systems (ESS), and loads. The microgrid can exchange
power with the public grid when connected. The objective of
MEM is to minimize the real-time operational costs for each
period, which include the generation costs of CDG, the costs
of buying and selling electricity with the main grid, and the
operational costs of ESS. This section first introduces the cost
models for CDG and power trading, followed by a discussion
on essential foundational constraints designed to ensure the
safe and stable operation of the system.

A. System Modeling

1) System Costs: The electricity costs of the microgrid
primarily include the fuel costs of CDG, the costs of pur-
chasing electricity from the main grid, and the revenue from
selling electricity. The expenditure of a CDG can usually be
represented by a quadratic cost function:

CCDG(t) = a+ bPCDG(t) + cPCDG(t)
2
+ SCDG(t)HCDG

(1)
where CCDG(t) is the generation cost, PCDG(t) is the output
power of the generator at time t, and a, b, and c are coefficients
of the cost function. HCDG represents the start-up costs of the
generator and SCDG(t) represents the state of the generator.
When SCDG(t) equals 1, it means the generator has started.
When SCDG(t) equals 0, it means the generator has not
started.

The costs of purchasing and selling electricity can be
described as:

CBS(t) = (Pbuy(t)p(t))− (Psell(t)p(t)) (2)

where CBS(t) represents the net cost or revenue of electricity
trading at the current moment for the microgrid. Pbuy(t)
denotes the amount of electricity purchased from the main
grid at time t, and p(t) indicates the electricity price at time t.
Similarly, Psell(t) represents the amount of electricity sold to
the main grid at time t. This formula calculates the total net
expense or revenue by assessing the difference between the
costs of purchasing electricity and the income from selling
electricity at different times.

B. The Constraints

The system’s constraints primarily include the output con-
straint of the CDG, the power exchange constraint with the
main grid, and the operational constraints of the ESS. These
constraints ensure the safe and effective operation of the
system. When the generator is operational, it is subject to
output constraints:

Pmin
CDG ≤ PCDG(t) ≤ Pmax

CDG (3)

where PCDG(t) represents the DG’s output at time t. Pmin
CDG

and Pmax
CDG are the minimum and maximum output limits of

the generator, respectively.

|PCDG(t)− PCDG(t− 1)|
∆t

≤ ∆PR
max

∆t
(4)

where PCDG(t) and PCDG(t − 1) are the output powers of
the generator at times t and t − 1 respectively, ∆t is the
time interval between the two time points, and ∆PR

max is the
maximum allowable power change within the time interval ∆t.

To avoid congestion in transmission lines, the energy ex-
change constraint with the main grid can be expressed as
follows:

0 ≤ Pbuy(t) ≤ SBS(t)P
max
buy (5a)

0 ≤ Psell(t) ≤ (1− SBS(t))P
max
sell (5b)

where Pbuy(t) is the amount of electricity the microgrid
purchases from the main grid, and Psell(t) is the amount sold
to the main grid. BS denotes the direction of power exchange,
with SBS(t) equal to 1 indicating buying and BS equal to 0
indicating selling.

Emin
SoC(t) ≤ ESoC(t) ≤ Emax

SoC (t) (6a)
ESoC(0) = ESoC(T ) (6b)

where Eq. 6a outlines the desired range for the ESS’s state
of charge (SoC), where ESoC(t) indicates the current SoC.
ESoC(t)

min and ESoC(t)
max are the desired minimum and

maximum SoC, set to approximately 20% and 90% in this
study. Eq. 6b ensures that the desired SoC is the same at the
start and end of the dispatch cycle.

III. THE PROPOSED ENHANCED FRAMEWORK FOR MEM

This section provides a detailed exposition of the pro-
posed real-time energy management framework for micro-
grids. Building on the basic microgrid architecture introduced
earlier, different microgrid settings are described as a series
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of Markov Decision Processes (MDP). Subsequently, the
online Preference-based Deep Deterministic Policy Gradient
(PDDPG) model is introduced. Finally, strategies for address-
ing communication failures in real-time energy management
for microgrids are presented.

A. Modeling Energy Management as MDPs

The energy management problem in microgrids can be
conceptualized as an MDP. An MDP comprises states (S),
actions (A), a reward function (R), and state transition prob-
abilities (P ). Within an MDP, the goal is to find a policy
that maximizes the expected cumulative reward in a given
microgrid environment. At a specific time t, St represents the
description of the microgrid environment, At denotes the most
valuable action taken by the agent given the state St, and Rt

is the immediate reward or penalty received by the agent for
taking action At in state St.

1) The State in Microgrid Management: We define the
system state as:

St = {t,Pt,PV ,Pt,Wind,Pt,load,Et,ess, pt} (7)

where t represents the current time step (a day is divided into
24 hours), Pt,PV and Pt,Wind denote the output power of
PV and wind power generation, respectively, Pt,load indicates
the total power consumption of the load. Et,ess signifies the
remaining electric energy in the ESS, pt represents the real-
time prices for selling to and buying from the main grid,
respectively.

2) Precision-Enhanced Continuous Action: This paper uti-
lizes an improved continuous action space for more precise
energy control in microgrid, ensuring that the number of action
variables grows linearly with the number of batteries and
generators, enhancing practicality. The action space is defined
as follows:

A = {ξ1t , ξ2t | t ∈ T , ξt ∈ (−1, 1)}
= {∆Pt,ch, ∆Pt,dc, ∆Pt,CDG}

(8)

where ξ1t and ξ2t represent the control variables for ESS
and CDG, ξ1t > 0 denotes charging, and ξ1t < 0 denotes
discharging. ∆Pt,ch, ∆Pt,dc, ∆Pt,CDG represent the specific
ESS charging power, ESS discharging power and generating
power, respectively. Moreover, to accommodate the minimum
exchange power constraints, a small constant ϵ is introduced to
clip the continuous action values. At each time t, the charging
and discharging power of the batteries can be calculated using
a transformation coefficient a as follows:

∆Pt,dc = ξt · a, if − 1 < ξ1t ≤ −ϵ
∆Pt,dc = ∆Pt,ch = 0, if − ϵ < ξ1t < ϵ

∆Pt,ch = ξ1t · a, if ϵ ≤ ξ1t < 1

(9)

The power of the CDG can be calculated using a transfor-
mation coefficient b as follows:{

∆Pt,CDG = 0, if ξ2t < ϵ

∆Pt,ch = ξ2t · b, if ϵ ≤ ξ2t < 1
(10)

3) Improved ESS State Transition: Most existing MEM
research utilizes a simplistic ESS model, primarily considering
basic state transitionst [10], [13]. However, as ESS plays a
vital role in MEM as a critical control component, a more
comprehensive model is required for a better approximation
of the charging and discharging processes. Therefore, this
study employs a more detailed lithium-ion battery as the ESS
model, aiming to enhance the representation and operational
dynamics of energy storage within MEM systems. It maintains
the simplicity of a linear model while offering a more accurate
approximation of energy limits [29]. The energy state of the
battery for each interval can be calculated as follows:

E(t) = E(t− 1) + ∆E(t) (11)

∆E(t) =

{
ηchP (t)∆t if P (t) ≥ 0

ηdcP (t)∆t if P (t) < 0
(12)

where E(t) represents the estimated energy content of the
battery at the end of the current interval t, E(t−1) denotes the
estimated energy content at the end of the previous interval,
and ∆E(t) signifies the change in energy within the battery
during interval t, calculated based on power and charging/dis-
charging efficiencies. ∆P (t) indicates the power applied to
the battery during interval t, with ηch and ηdc representing the
efficiencies of charging and discharging, respectively (assumed
constant here). A positive value of ∆P (t) indicates charging,
while a negative value indicates discharging.

The battery must adhere to maximum charging and dis-
charging power constraints, denoted as P (t)ch and P (t)dc,
respectively. These constraints are as given by the formula:

P (t)dc ≤ P (t) ≤ P (t)ch
P (t)dc = nαdcV (t)

P (t)ch = nαchV (t)

V (t) =

{
Vnom,ch if P (t) ≥ 0

Vnom,dc if P (t) < 0

(13)

where V (t) represents the current voltage approximation of
the battery, determined based on its charging or discharging
state. Vnom,ch and Vnom,dc denote the nominal voltages dur-
ing charging and discharging, respectively. Additionally, the
battery must satisfy constraints on energy content limits as
functions of the current. The formula is as follows:

u1I(t) + v1n < E(t) < u2I(t) + v2n (14)

where I(t) = P (t)
V (t)) denotes the current during the battery’s

charging/discharging, and v1, v2,u1,u2 are constant parame-
ters associated with the battery’s energy content constraints.

4) Comprehensive Reward Function Design: An effective
reward function can prompt the agent to make prudent deci-
sions regarding the stability and efficiency of the microgrid,
thereby optimizing overall system performance. In this study,
the optimization objectives encompass not only the minimiza-
tion of energy costs and maximization of renewable energy
utilization but also the optimization of energy storage system
operations. Based on these objectives and the constraints
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outlined in the preceding section, a novel three-part reward
function has been devised:

Rt = r1t + r2t (15a)
r1t = −(CCDG(t) + CBS(t)) (15b)

where r1t represents the total cost of the system (a negative
value is used since the goal in MDP is to maximize rewards,
thereby minimizing costs). CCDG(t) and CBS(t) respectively
denote the cost of CDG power generation and the expenses
for buying and selling electricity, as indicated in Eqs. 1 and 2.
To reduce training complexity, a linear function is used to
approximate the cost CCDG(t) [2], as shown below:

CCDG(t) =


a1 · PCDG(t) + b1 if 0 ≤ PCDG(t) ≤ P1

a2 · PCDG(t) + b2 if P1 < PCDG(t) ≤ P2

a3 · PCDG(t) + b3 if P2 < PCDG(t) ≤ Pmax

r2t,1 =


−ξ1|ESoC(t)− Emin

SoC(t)|, if ESoC(t) < Emin
SoC(t)

−ξ2|ESoC(t)− Emax
SoC (t)|, if ESoC(t) > Emax

SoC (t)

ξ3, if Emin
SoC(t) ≤ ESoC(t) ≤ Emax

SoC (t)

r2t,2 =

{
0, if t ̸= 24

−ξ4|ESoC(T )− ESoC(0)|, if t = 24
(16)

where r2t,1 and r2t,2 signify the reward and penalty associ-
ated with the operational status of the energy storage system,
corresponding to Eqs. 6a and 6b. ξ1 , ξ2, ξ3 and ξ4 represent
the coefficients for rewards and penalties, both being positive
constants.

B. Preference-based DDPG Model

Unlike traditional offline-to-online reinforcement learning
approaches, the preference-based Deep Deterministic Policy
Gradient (PDDPG) proposed in this paper utilizes integrated
expert experience data to guide agent learning, aiming to
enhance the agent’s performance in real-world environments,
as illustrated in Fig. 1.

Off-DDPG 

agent

Historical 

data

A series of 

MDPS

Expert function p1

Expert function p0

Guidance rules

Integrated 

experience 

replay buffer

Updated model
New 

environment

Dispatch 

plan

Fig. 1: The overall architecture of PDDPG. Blue arrows
represent the process of traditional Offline RL, while red

arrows represent the process of traditional Online RL.

1) Integrated Expert Experience Pools: Inspired by [30],
to accelerate the online-DDPG agent for real-time microgrid
energy management systems, we propose an enhanced frame-
work that leverages expert experience to guide the online
learning process. This includes expert knowledge obtained

from offline RL and human preference-based expert experi-
ence derived from expert rules.

Due to the complexity of system dynamics and the adequacy
of data, expert experiences acquired through offline RL and
those derived from expert rules tend to execute differently.
The accuracy of their Q-value estimates can vary across
different states based on the data distribution in the historical
dataset. Therefore, combining both is a natural idea. Expert
experiences obtained through offline RL are aimed at more
effectively utilizing historical data, filtered and generated
through the expert function p0 to form the expert experience
pool Mp0 :

Mp0 = {Traj1,Traj2, ...,TrajN |Zt(Traji) ≥ Zt(p0), i ∈ N}
(17)

where Traji represents a trajectory in the offline data, com-
prising a series of information from the scheduling initial time
to the ending time, Zt denotes the cumulative return function
designed to filter high-quality historical data for reuse.

The expert experience poolMp1 is described by expert rules
Rrule(s), typically set by domain experts or grid operators
based on past experiences and domain expertise. These rules
do not provide optimal control actions for a given state, but
rather offer suggestions based on human preferences that can
be considered as guidance or constraints. They are taken
into account as sequences of state-action pairs. For instance,
actions such as increasing generation, reducing purchase,
increasing sales, or decreasing sales might be suggested de-
pending on specific circumstances. For each state, expert rules
can generate a set of action candidates:

Y p1
s = {a|a ∈ Rrule(s), a ∈ A, s ∈ S, t ∈ T} (18)

Based on the action candidate set Y p1
s for each state s, the

corresponding expert experience poolMp1 is obtained through
the constraints and state transition rules in the MDP:

Mp1
s = {(Rp1

s ,Dp1
s ,Sp1

next,s)|Y p1
s } (19)

where Rp1
s represents the reward function set, Dp1

s denotes
the set indicating whether the current scheduling cycle is
ending, and S′p1

s is the set of next state values. By dynamically
adjusting the mixing coefficient, control over the weights from
the expert experience pool is exercised to enhance the updating
performance of the DDPG agent within a narrowed MDP
scope.

2) Online Updating Process based on Expert Experience
for PDDPG: Online updates utilize the integrated expert expe-
riences pool to guide the learning process of the agent, achiev-
ing stable and secure performance improvements. During each
update, the agent randomly selects a batch of experiences
from the integrated expert experience pool Mp0 and Mp1

for model updating. In the proposed PDDPG framework, the
update process includes the Actor network update guided by
mixed expert experience, the Critic network update, and the
target network update [25].

Traji ={(si, ai, ri, si+1)|(si, ai, ri, si+1) ∈Mp1 ∪Mp2}
yi = ri + γQ′(st+1,µ

′(st+1)|θµ
′
) (20)
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∇θµJ ≈ 1

N

∑
i

∇aQ(s, a|θQ)|s=si,a=µ(si)∇θµµ(s|θµ)|si

L =
1

N

∑
i

(yi −Q(si, ai|θQ))2 (21)

θQ
′
← τθQ + (1− τ)θQ

′

θµ
′
← τθµ + (1− τ)θµ

′
(22)

where θQ and θµ represent the parameters of the Critic and
Actor networks respectively, θQ

′
and θµ

′
denote the parame-

ters of the target Critic and Actor networks, the discount factor
γ is used to calculate the current value of future rewards, and
the soft update parameter τ is employed to smoothly update
the parameters of the target networks.

C. Communication Detection and Data Supplement System
(CDDSS)

Random Communication Failures (RCF), including data
loss, can easily lead to irrational or incorrect decisions, re-
sulting in significant energy wastage. For example, RCF can
transform a data packet x(t) into p[bx(t) + (1− b)x(t− T )],
where p represents the probability of successful transmission,
b is the packet loss rate, and T is the sampling time [31].

The core of the Communication Detection System (CDS)
focuses on ensuring the timeliness and integrity of data. Ini-
tially, the system checks for consistency between the data and
its corresponding time tags. Normally, each data packet should
arrive on time, accompanied by an accurate time stamp. To
counteract the effects of communication delays on the system,
a maximum communication delay threshold ∆tmax has been
established. Let tarr denote the data packet’s arrival time and
texp the anticipated arrival time. Hence, the communication
delay ∆t can be defined as:

∆t = tarr − texp (23)

If ∆t surpasses the predefined maximum delay threshold
∆tmax, that is, ∆t > ∆tmax, the system identifies this as
a communication failure. In such scenarios, to ensure the mi-
crogrid’s stable operation, data supplementation measures are
taken. Moreover, the CDS evaluates the quality of incoming
data. Should the received data packets be blank or damaged
during transit (e.g., incomplete or conspicuously incorrect
packets), the CDS also treats these instances as communication
failures, implementing data supplementation strategies.

The Data Supplement System (DSS) aims to mitigate the
impact of communication problems on microgrid operations
by supplementing missing data in the event of RCF detected
by the CDS. It is important to note that wind energy systems
exhibit greater output fluctuations, especially under extreme
weather conditions. Consequently, the DSS focuses partic-
ularly on developing solutions for communication failures
specific to wind energy data, addressing the challenges posed
by the variability in renewable energy sources. We propose
four data supplementation methods:

1) Strategy I-Zero Value Strategy (ZVS): When an RCF is
detected, missing data points can be assigned a zero value.
This method is simple and effective for situations where
missing data has a minor impact on the system, allowing
temporary zero-value settings to avoid further disruption.

2) Strategy II-Previous Value Strategy (PVS): Microgrid
control systems often store data over time. In cases of RCF,
the data from the last successful transmission can serve as a
substitute for current missing data [32]. This approach assumes
stability in data over short intervals and is valid for systems
with infrequent or minor short-term data changes.

3) Strategy III-Multi-Head Self-Attention Based Prediction
Strategy (MSPS): When microgrid systems experience signifi-
cant data fluctuations and ongoing communication failures, the
previously mentioned data supplementation strategies may not
adequately reflect real conditions. Under these circumstances,
a prediction-based approach can be utilized to estimate missing
data [33]. This method, more intricate than its predecessors,
offers more precise estimations, particularly in scenarios of
high data variability. Thus, we introduce a prediction model
founded on a multi-head self-attention mechanism. It enables
parallel processing of different data segments and captures
long-range dependencies present in the input data. The training
process unfolds as follows: Initially, the raw training data is
formatted and dimensionally tailored for the Input Layer. Post-
adjustment, it proceeds to the Transformer Encoder Layer:

A(Q,K,V ) = Softmax

(
QKT

√
dk

)
V (24)

where Q,K,V denote the query, key, and value matrices,
respectively, with dk representing the key’s dimension. Sub-
sequent to this, the pooling layer conducts average pooling on
the multi-head attention’s output. The Fully Connected Layer
(FCL) then further manipulates the data:

f(x) = ReLU(Wx+ b) (25)

where W and b symbolize the weights and biases of the
layer, respectively. Following this, the Flatten Layer converts
the input data into a one-dimensional array. The Concatenate
Layer amalgamates this flattened input with the Transformer
layer’s output. This merged data is then processed through an
additional FCL, culminating in an output.

4) Strategy IV-Targeted Prediction Strategies for Extreme
Weather Events (TPS-EWE): Data prediction supplementation
under extreme weather conditions, particularly in the context
of volatile wind energy forecasting, confronts a notable chal-
lenge: data scarcity. Extreme weather events, owing to their
infrequency, often result in limited data for training prediction
models. Conventional prediction models may underperform in
these extreme scenarios as they are generally trained on data
from more typical and milder climates, potentially failing to
capture the intricate dynamics of wind energy output during
extreme weather [34]. Hence, we introduce the TPS-EWE,
grounded in transfer learning. This approach adapts a model
from a generic domain to a specific target domain-extreme
weather conditions, modifying existing models to better align
with the data features and patterns prevalent in extreme
weather.
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The TPS-EWE training involves two stages: initial pre-
training of the model on a comprehensive dataset encom-
passing all source data, followed by fine-tuning the pre-
trained model using a smaller, target domain-specific dataset
(rare data under extreme weather). The pre-training and fine-
tuning stages share several model parameters. More precisely,
the inaugural training phase aligns with the methodology of
Strategy III. During the second phase of training, all layers
of the model, barring the ultimate FCL, are designated as
non-trainable (effectively freezing these layers). Consequently,
their weights remain unaltered in subsequent training sessions.
Freezing the majority of the model’s layers ensures the reten-
tion of the acquired feature representations. Simultaneously,
training the final layer facilitates the model’s adaptation to the
novel dataset specific to the target domain. The update process
in the target domain is as follows:

Ltar(y
t, ŷt) =

1

M

M∑
j=1

(ytj − ŷtj)
2 (26)

where Ltar represents the loss on the target domain dataset,
with yt and ŷt denoting the actual labels and model predictions
in the target domain dataset, respectively. M is the number of
samples in the target domain.

wt = ws − α
∂Ltar

∂ws
(27a)

bt = bs − α
∂Ltar

∂bs
(27b)

where wt and bt represent the updated weights and biases in
the target domain, respectively, while ws and bs denote the
weights and biases obtained from pre-training in the source
domain. α is the learning rate. The CDDSS with TPS-EWE
Data Supplement system is illustrated in Fig. 2. The left
segment of the Fig. 2 delineates the Strategy IV-TPS-EWE
model’s training process, while the right segment conveys the
operational schematic of CDDSS during instances of RCF.
For the sake of brevity, only scenarios devoid of RCF and
those involving RCF occurrences within 1 and 2 time steps
are presented.

IV. RESULTS AND DISCUSSIONS

In this section, we present the settings of various test
experiments, showcase the results, and engage in detailed
discussions. Both training and testing data are derived from
a year’s worth of photovoltaic, wind, and load operation data
from a European location, with a time interval of 1 hour,
totaling 8760 data points. For training scenario setups, we con-
sider four typical photovoltaic output scenarios, four typical
load consumption scenarios, and three typical electricity price
scenarios. In each training step, a scenario is randomly selected
as the current training task. The comparative experiments
include several RL algorithms: Offline Deep Deterministic
Policy Gradient (Offline DDPG) [13], which is trained on
a fixed historical dataset without any model updates; and
traditional Online DDPG (On-DDPG) [20], which interacts
with the environment in real-time, continuously updating the
policy using current state information. Additionally, advanced
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Fig. 2: The framework of CDDSS with Strategy IV.

RL algorithms such as Soft Actor-Critic (SAC) [12] and
Proximal Policy Optimization (PPO) [10] are included. SAC
enhances performance in complex environments by maximiz-
ing expected returns and promoting exploration, while PPO
maintains policy stability by limiting the magnitude of each
update. Finally, the experiments also introduce Preference-
SAC (P-SAC) and Preference-PPO (P-PPO) as comparative
methods. For the CDDSS, training data for strategies III
and IV consist of 2000 wind turbine operation data points,
each containing meteorological data such as wind energy
data, temperature, pressure, humidity, etc. Furthermore, the
target domain of strategie IV TPS-EWE (Extreme Weather
Events) constitutes approximately 5% of the source domain
data volume.

A. Online Microgrid Energy Management with PDDPG

We randomly select four 24-hour new scenarios as testing
scenarios, each with different scales of renewable energy
outputs, load consumption, and electricity price fluctuations.
At each time step t (one hour), the agent makes correspond-
ing actions based on the microgrid’s current state, without
prediction information. The microgrid costs incurred by the
four agents in the four scenarios are presented in Table I,
with the minimum cost data highlighted in bold. Firstly,
we observe that compared to off-DDPG, on-DDPG, based
on traditional online updates, does improve performance in
certain scenarios. For instance, in scenario 2, it reduces
costs by approximately 30%. However, in scenarios 1 and
4, it actually incurs higher costs, indicating that simplistic
online updates sometimes lead to worse outcomes. In contrast,
PDDPG, guided by expert experience-based updates, consis-
tently exhibits stable performance enhancements. Compared
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TABLE I: Cost in Four New Scenarios ($)

Scenario Method
Off-DDPG On-DDPG PDDPG SAC P-SAC PPO P-PPO

1 84.47 104.08 64.20 85.82 71.70 80.64 69.23
2 80.99 67.34 60.16 81.34 64.57 75.39 68.69
3 50.01 51.70 39.69 58.78 45.15 58.59 43.25
4 67.77 167.87 53.33 77.87 57.91 70.72 61.32

to off-DDPG, it reduces costs by 23%, 25%, 20%, and 21%
in the four scenarios, respectively. Similarly, PDDPG also
demonstrated higher performance compared to the PPO agent
and SAC agent. Furthermore, by comparing the scheduling
results of the preference-based algorithms P-SAC and P-PPO
with those of SAC and PPO agents, it is demonstrated that the
preference-based updates of P-SAC and P-PPO result in better
performance in terms of cost reduction than the SAC and PPO
agents. This further confirms that the proposed preference in-
formation can effectively guide the learning process, optimize
decision quality, and further reduce energy consumption and
operational costs. In summary, our proposed PDDPG agent
achieved the best performance in all test scenarios, proving its
effectiveness in practical energy management applications for
microgrids.

Fig. 3: Comparison of specific strategies of the two agents.

In addition, we compared the specific operational differ-
ences between DDPG and PDDPG in energy management.
Taking Scenario 1 as an example, the real-time electricity
prices over 24 hours, as well as the generation dispatch plan
PCDG and the buy/sell electricity plan Pbuy/Psell for both
agents, are illustrated in Fig. 3.

In the real-time generation dispatch plan, during the second
peak of electricity prices (from 19 to 24 hours), PDDPG, bene-
fiting from excellent expert guidance, initiated the controllable
generators at 17 hours to reduce the amount of purchased
electricity during high-price periods, thus saving costs for the
microgrid. On the other hand, DDPG’s real-time generation

plan in the new scenario was evidently inferior, failing to
initiate generators during periods of higher electricity prices.
Similarly, in the real-time buy/sell electricity plan, PDDPG
also demonstrated better performance compared to DDPG: it
purchased more electricity during lower price periods (from 1
to 5 hours), sold more electricity during higher price periods
(from 9 to 16 hours), and chose a strategy of generating
more and selling less electricity rather than generating less
and buying more electricity during the higher price periods
(from 20 to 24 hours).

Fig. 4: Performance of three methods in new scenarios.

To provide a clearer analysis and demonstration of the
performance of three methods, Fig. 4 illustrates the cost
variation during the updating process. Off-DDPG, due to its
offline nature, maintains a constant cost. In comparison to
PDDPG, it exhibits significant differences, mainly attributed
to the offline learning relying on historical data for training,
which may introduce sample bias and affect the model’s
generalization ability in new environments. Additionally, we
observe considerable fluctuations in the cost of the On-DDPG
agent with real-time updating capability. While it achieves
performance improvements in certain cases, it occasionally
exhibited poorer results and had lower sample efficiency [35].
The proposed PDDPG shows a notable decrease in cost during
the online updating phase while maintaining stability. By
integrating expert knowledge with online learning, PDDPG
ensures a more robust and effective model update process.
It exhibits superior stability and lower costs across multiple
test scenarios, validating the effectiveness of leveraging expert
knowledge to guide online updates in reinforcement learning.

B. Online Microgrid Energy Management with Communica-
tion Failures

In this section, we discuss how CDDSS assists the PDDPG
agent in scenarios involving RCF. Fig. 5(a) displays the agent’s
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performance of the agent in load-side energy scheduling under
perfect communication, where the agent makes various oper-
ations based on the current state of the microgrid for rational
energy management. In Fig. 5(b), we assume a communication
failure at 14:00, resulting in the loss of two time steps
of wind energy data, and employ Strategy I-ZVS for data
supplementation, setting the wind energy data for these two
steps to zero. It is observed that the agent’s actions change
with the state: in Fig. 5(a), without communication failure,
the agent chooses to use part of the renewable energy for load
and store the rest in the ESS, which is the desired outcome.
However, in Fig. 5(b), after data supplementation with ZVS,
the agent, observing insufficient renewable energy for the load
demand, opts to use CDG generation unnecessarily, increasing
microgrid generation costs and leading to significant economic
losses. Furthermore, these RCFs also impact subsequent ac-
tions: due to RCFs during times of sufficient renewable energy,
the agent did not store excess energy in the ESS, resulting in
the inability to use ESS at 21:00 and 22:00, thus incurring
additional costs by relying on CDG generation. Fig. 5(c) shows
the operation after data supplementation using Strategy IV-
TPS-EWE. It is evident that after data supplementation, the
agent’s energy allocation is almost identical to the previous
cases, with only minor differences in quantity, resulting in
smaller additional costs.

(a) Without Communication Failure

(b) Using ZVS under Communication Failure

(c) Using TPS-EWE under Communication Failure

Fig. 5: Scheduling strategies without communication failure
and with data supplementation during communication failure.

To clearly demonstrate the differences in detailed data,

we conducted tests to compare the specific microgrid costs
incurred under no RCF and RCF conditions using four data
supplementation strategies, as shown in Table II. The first row
indicates the perfect communication scenario without RCF,
while the first and second columns represent the data values
supplemented by the four strategies after RCF occurrences at
14:00 and 15:00. The third column shows the actual costs
of the microgrid under various scenarios, and the fourth
column details the additional loss costs caused by the four
data supplementation strategies under RCF conditions. It is
evident that using ZVS for data supplementation is unreliable,
leading to the highest costs. Although using PVS results in
somewhat lesser additional costs, it can cause even greater
losses when there is a significant difference between consec-
utive data values. However, the proposed MSPS and TPS-
EWE strategies result in relatively lower cost losses, especially
TPS-EWE, which only causes an additional 3.94% in costs.
Compared to the other three methods, it reduces the additional
costs by 88.3%, 80.5%, and 53.4%, respectively, verifying the
effectiveness of our proposed approach in handling RCFs.

TABLE II: Comparison of Different Strategies Meets RCF

Methods Pw(t-1)(kW) Pw(t)(/kW) Cost($) Loss($)
No-RCF 29.39 36.41 65.34 -
ZVS 0 0 85.59 20.25
PVS 16.09 16.09 77.54 12.15
MSPS 20.76 28.94 70.45 5.11
TPS-EWE 25.01 32.33 67.71 2.37

In reality, due to the unpredictability of communication
failures at any given moment, these failures are inherently
random, and their duration is also uncertain. Consequently, we
assumed the possibility of communication failures throughout
the entire 24-hour scheduling period to ensure the randomness
of RCF. We tested the additional costs incurred when assuming
communication failures at various times within the 24-hour
period and using different strategies for data supplementation.
Moreover, we found that while PVS could handle some RCF
at certain times, it is a risky strategy when data fluctuates sig-
nificantly, potentially leading to substantial erroneous actions.
Therefore, we only considered using Strategy I-ZVS, Strategy
III-MSPS, and Strategy IV-TPS-EWE to address RCF. We
randomly selected two scenarios for our experiment: a normal
weather scenario with relatively stable energy fluctuations,
and an extreme weather scenario with more severe energy
fluctuations. For simplicity, we assume that the RCF only lasts
for one time step. The experimental results are shown in Fig. 6.

As we can see in both scenarios, relying solely on ZVS can
lead to significant losses when RCF occurs at each time step.
To be more specific, the substantial loss in Fig. 6(a) (between
7-12 hours) is due to high electricity prices coinciding with
RCF, leading to the agent mistakenly purchasing electricity to
meet load demands. In contrast, the high losses in Fig. 6(b)
(between 13-18 hours) are caused by RCF during energy
fluctuations. We found that using the MSPS can mitigate
most losses due to RCF under normal weather conditions,
but some losses are still inevitable under Extreme Weather
Events. Comparatively, the proposed TPS-EWE performs best,
significantly reducing the additional costs incurred by RCF
in both scenarios to a more acceptable level, demonstrating
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higher applicability in addressing the RCF problem in real-
time microgrid energy management systems.

(a) Normal Weather (b) Extreme Weather

Fig. 6: Comparison of additional cost losses in microgrids
under RCF for normal and extreme weather conditions.

To explain the feasibility of the results from an implemen-
tation and computational perspective, a detailed analysis of
the computational complexity of the proposed method was
conducted. For the computational analysis during the real-time
scheduling cycle, the strategy model update time for a single
scenario and the strategy model testing time during a real-time
scheduling cycle (24 hours) were reported. All model training
and testing were conducted on a computer equipped with an
AMD Ryzen 7 5800H CPU (3.20 GHz), 16 GB RAM, and
an Nvidia 3050 Ti GPU. The average computational cost for
strategy model updates based on PDDPG, on-DDPG, and off-
DDPG was 1.45s, 0.24s, and 0s, respectively, while the average
computational cost for online real-time scheduling for all three
agents was 0.08s ± 0.01s. The time for data supplementation
during communication failures was less than 0.1s. Therefore,
from a computational cost perspective, the proposed method
demonstrates high feasibility.

V. CONCLUSION

In this study, we have successfully developed an Online-
MEM framework based on the Preference-based DDPG model
to guide agent learning through two types of expert experience.
Testing results in new scenarios have shown that, compared to
traditional Offline-DDPG and Online-DDPG agents, PDDPG
can devise more rational scheduling strategies, thereby reduc-
ing microgrid expenses. Additionally, a Communication De-
tection and Data Supplement System (CDDSS) was integrated
to detect and address communication failure events in real-time
MEM. A data supplementation strategy specifically designed
for extreme weather events, utilizing Transformer and Transfer
Learning algorithms, was also developed. Experimental results
demonstrate that CDDSS effectively mitigates the impact
of communication failures, significantly reducing additional
losses in microgrids under RCF scenarios. Overall, this study
provides a new perspective in the field of online microgrid
energy management, with potential for future research to
further enhance the adaptability of online energy management
systems.
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