
Fast Collision-Free Multi-Vehicle Lane Change Motion
Planning and Control Framework in Uncertain

Environments
Tianhao Liu, Student Member, IEEE, Runqi Chai, Senior Member, IEEE, Senchun Chai, Senior Member, IEEE,

Farshad Arvin, Senior Member, IEEE, Jinning Zhang, and Barry Lennox, Senior Member, IEEE

Abstract—In this work, we focus on the design, test and valida-
tion of a hierarchical control framework capable of optimizing lane
change trajectories and steering the motion of multiple automated
guided vehicles (AGVs) in an uncertain environment. In the upper-
level maneuver planning phase, a convex feasible set-based real-
time optimization algorithm is adopted to plan the optimal motion
trajectories for AGVs. The main novelty of this approach lies in its
optimization process, where a sequence of convex feasible sets
around the current solution is iteratively constructed such that the
non-convex collision avoidance constraints can be approximated.
Subsequently, an improved sequential convex programming (SCP)
algorithm is designed and applied to reshape the current ma-
neuver trajectory in the pre-constructed convex feasible sets and
reduce the error caused by successive linearization of vehicle
kinematics and constraints. The planned lane change trajectories
are then provided to the lower-level motion controller, where a
deep reinforcement learning (DRL)-based collision-free tracking
control method is established and applied onboard to produce the
control commands. This approach has the capability to deal with
unexpected obstacles (e.g., those that suddenly appear around the
vehicle). The proposed training method integrates a consensus
algorithm with actor-critic deep reinforcement learning to allow
multi-agent training to achieve faster training speed and improved
performance compared with single-agent training. The feasibility
and effectiveness of the proposed design are verified by carrying
out simulation case studies. Moreover, the validity of the designed
hierarchical control framework is further confirmed by executing
hardware-in-the-loop tests.

Index Terms—Multi-vehicle lane change, automated guided ve-
hicles, convex feasible sets, sequential convex programming, deep
reinforcement learning, unexpected obstacles.

I. INTRODUCTION

AUTOMATED guided vehicles refer to one kind of intelligent
ground vehicle capable of sensing the environment, planning

the path of movement, and maneuvering without human input [1].
They have been widely researched during the last decade due to
their extensive applications in commercial, industry, and military
sectors. The core aim of the technology is to use it to replace
manned vehicles with a lower risk and more economically attractive
alternative. Among different automatic driving/maneuvering modes,
one of the most typical behaviors is lane change movement. Serious

T. Liu, R. Chai, and S. Chai are with the school of Automation, Beijing
Institute of Technology, Beijing, 100081, China. R. Chai is also with the
School of Aerospace, Transport and Manufacturing, Cranfield University,
Cranfield MK43 0AL, U.K. e-mail: (tianhao.liu@bit.edu.cn), (r.chai@bit.
edu.cn), (chaisc97@bit.edu.cn).

F. Arvin is with the Department of Computer Science, Durham Univer-
sity, DH1 3LE Durham, U.K. e-mail: (farshad.arvin@durham.ac.uk).

J. Zhang is with the School of Engineering, University of Leicester,
Leicester, LE1 7RH, UK. e-mail: (jz388@leicester.ac.uk).

B. Lennox is with the Department of Electrical and Electronic Engi-
neering, The University of Manchester, M13 9PL Manchester, U.K. e-
mail: (barry.lennox@manchester.ac.uk). (Corresponding Author: Runqi
Chai)

on-road accidents may occur if a lane change maneuver is performed
in an unsafe way. Consequently, a promising decision-making unit,
responsible for planning a safe lane change motion trajectory, is of
particular importance to enhance mobility, alleviate traffic congestion,
and guarantee road safety.

A. Related works
In recent years, researchers have devoted significant effort to

developing intelligent vehicle lane change motion planners for single
vehicles [2], [3]. For example, the authors of [2] developed a simulta-
neous trajectory planning and tracking control scheme able to change
lanes in the presence of static on-road obstacles. A low-complexity
lane change maneuver algorithm, capable of determining an optimal
transfer time and producing reliable control actions, was introduced in
[3]. However, these contributions cannot be easily extended to address
the multi-vehicle cases. This is due to the fact that by taking into
account the motion of surrounding vehicles, the maneuver corridor
for each vehicle is likely to be significantly narrowed. As a result, lane
change behaviors should be planned cooperatively, thus stimulating
the development of motion planning for multi-vehicle platforms.

Recently, various trajectory planning and control strategies have
been proposed to tackle different maneuver scenarios for multiple
vehicles. A common class of strategies is based on roadmap search,
such as rapidly exploring random tree-based method [4], probabilistic
roadmap-based method [5], and A∗-based method [6], etc. However,
such strategies can only provide feasible paths for the vehicles and
are not suitable when certain metrics need to be optimized.

Alternatively, the entire maneuver process can be formulated as
an optimization model and well-developed optimization methods
can be applied to search for the optimal maneuver solutions [7].
Optimization-based algorithms not only seek a feasible solution to
trajectory planning problems but also optimize user-defined objec-
tives. In [8], the authors developed an interior point-based decision-
making scheme for a multi-AGV system. In their work, the optimal
motion trajectory was obtained by solving a large-scale nonlinear
programming (NLP) problem directly. Moreover, the lateral vehicle
guidance task was formulated as a linear time-varying model pre-
dictive control (MPC) problem in [9], where the vehicle’s velocity
is treated as a time-varying parameter. A distributed maneuver
planning framework is proposed in [10]. This framework utilizes
distributed MPC to calculate a collision-free trajectory and is capable
of improving traffic throughput. However, either solving the NLP
problem directly or formulating it in an MPC approach suffers
from a high computational burden and there is no guarantee that
a solution can be found. On the other hand, convex programming
can be effectively solved in polynomial time [11] and has had many
successful applications in solving trajectory optimization problems
[12]. The authors in [13] designed a convex quadratic programming-
based model predictive control scheme for the collision-free naviga-
tion problem. It was verified that this scheme improves the real-time

tianhao.liu@bit.edu.cn
r.chai@bit.edu.cn
r.chai@bit.edu.cn
chaisc97@bit.edu.cn
farshad.arvin@durham.ac.uk
jz388@leicester.ac.uk
barry.lennox@manchester.ac.uk

performance of the motion planner. However, this approach is only
applicable when the mismatch between the convexified model and
the original one is negligible.

Moreover, the traffic environment might be uncertain in real-
world scenarios. For example, an object may suddenly appear in the
environment and create a collision hazard. With the development of
perception technology, the key obstacle information can be extracted
using LiDAR [14] or camera [15] data. Then well-developed obstacle
avoidance methods such as dynamic window approach (DWA) [16]
and artificial potential field [17] can be applied. Recently, the applica-
tion of deep reinforcement learning (DRL)-based techniques in AGV
motion planning and control has received increasing attention [18].
DRL is model-free and no map information is required. It produces
actions that maximize task-level rewards based on sensor data, thus
making it an end-to-end approach [19], [20].

B. Motivation, Goals, and Contributions
The aforementioned NLP-based motion planners/controllers can

be computationally intractable when addressing complex multi-
vehicle maneuver tasks. While convex programming-based methods
are effective, vehicle equations of motion and collision avoidance
constraints render the trajectory optimization problem nonconvex,
and therefore cannot be solved in typical convex optimization frame-
works. On the other hand, existing DRL-based methods for single
vehicle local planning and control may consume lengthy training time
when applied to multi-vehicle tasks. Specifically, each DRL controller
is trained for individual vehicles and no information is shared between
any of them, which limits the training performance.

To address the aforementioned open issues and enhance road
safety, we design, test, and validate a hierarchical motion planning
and control framework capable of producing collision-free maneuvers
for multi-AGV systems with consideration of unmodeled obstacles.
To summarize, the main contributions and novelties of the proposed
research are highlighted in the following three aspects:

1) The non-convex collision avoidance constraints are made convex
by the convex feasible set algorithm [21] and the original
nonlinear optimization model is reformulated into a convex one,
which requires less time to be solved. A sequential convex
programming (SCP) algorithm with adaptive trust region radii
which successively solves the convex problem is designed to
reduce the approximation error. To ensure the algorithm starts
from an initial collision-free reference, an extended A∗ algorithm
is proposed to generate an initial feasible trajectory to start the
optimization process from a collision-free trajectory.

2) Unlike existing SCP algorithms that accept the optimal solution
from the previous iteration as the reference to the current itera-
tion, a line search process between each iteration is introduced
to accelerate convergence and further reduce the approximation
error. A merit function is designed to measure how much the
optimal solution to a convex subproblem violates the constraints
of the original problem.

3) To deal with the sudden appearance of obstacles and steer
the AGVs along the pre-optimized trajectories, a consensus-
based DRL training algorithm that updates both actor and critic
parameters simultaneously is proposed. Compared to the Deep
Deterministic Policy Gradient (DDPG) algorithm, this approach
achieves faster convergence speed and higher reward value.

C. Layout
The remaining sections of this article are organized as follows.

Section II illustrates the original mathematical formulation of the
multi-vehicle lane change problem. In Section III, the translation of

the original optimization problem and the proposed sequential convex
programming algorithm are presented. The DRL-based trajectory
tracking scheme that is capable of avoiding unexpected obstacles in
the lane change process is presented in Section IV. In Section V,
simulation and HiL tests are conducted to demonstrate the effective-
ness of the proposed hierarchical collision-free control framework.
Finally, conclusions are summarised in Section VI.

II. MULTI-AGV LANE CHANGE PROBLEM DESCRIPTION

In this section, the multi-vehicle lane change maneuver is charac-
terized as a finite-horizon nonlinear trajectory optimization problem.
The problem is to transfer multiple vehicles from their current lanes
to the target lanes while removing collision risks between vehicles
and minimizing the transfer time. Before presenting the optimization
problem in detail, the vehicle variables, equations of motion, and
different types of constraints are introduced.

TABLE I: Nomenclature

pi = (pix, piy): The position of rear axle midpoint of vehicle i
vi, ai: The velocity and acceleration of vehicle i
θi, δi, ηi: Heading angle, steering angle, and steering rate of vehicle i
Lr , Lw , L: Vehicle’s rear overhang, wheelbase, and total length
Ia = {1, . . . , Na}: Set of vehicle
Ic = {1, . . . , Nc}: Set of circle that approximate the shape of vehicle
Cik, i ∈ Ia, k ∈ Ic: Center coordinate of the kth circle in vehicle i
Oik, i ∈ Ia, k ∈ Ic: Region occupied by the kth circle in vehicle i

A. Vehicle Kinematics
Suppose that there are Na vehicles in the lane change maneuver

process, the kinematic equations of motion for the i’th vehicle (i ∈
Ia) can be described as [22]

ṗix(t) = vi(t) cos(θi(t))
ṗiy(t) = vi(t) sin(θi(t))

θ̇i(t) =
vi(t) tan(δi(t))

Lw

δ̇i(t) = ηi(t)
v̇i(t) = ai(t)

(1)

where the definition of the variables can be found in Table I. Denoting
the state and control variables of the controlled vehicles as xi(t) =
[pix(t), piy(t), θi(t), δi(t), vi(t)]

T and ui = [ηi(t), ai(t)]
T , respec-

tively. Equation (1) can be abbreviated as ẋi(t) = f(xi(t), ui(t)).
During the lane change maneuver, the state and control variables
should vary within certain regions and can be expressed as

xi(t) ∈ [xmin, xmax], ui(t) ∈ [umin, umax],∀i ∈ Ia. (2)

B. Boundary Constraints
The initial and terminal conditions of the lane change problem are

as follows
pix(t0) = pix0, piy(t0) = Initi, piy(tf) = Desi.

[θi(tf), vi(tf), ηi(tf), ai(tf)] = [θi(t0), vi(t0), ηi(t0), ai(t0)]
(3)

where the initial conditions of all state and control variables are
known. Let {Y1, Y2, . . . } be the coordinates of the line centers,
the initial and the desired lanes are denoted by Initi, Desi ∈
{Y1, Y2, . . . }, respectively. Equation (3) can be written compactly
as xi(t0) = xi0, xi(tf) = xif , and ui(tf) = ui(t0).

C. Collision Avoidance Constraints
To achieve the lane change maneuver, two types of collisions need

to be avoided, namely i) collisions between the AGVs and the road
barrier, and ii) collisions among the vehicles.

The collisions between the AGVs and the road barrier can be
avoided by bounding the four corner points of the AGVs in the y axis,

which can be determined by the state variables [pix(t), piy(t), θi(t)]
and the length and width of the vehicles. Denoting the coordinate of
the corner points of AGV i in the y axis as yi1, yi2, yi3 and yi4, the
first type of collision avoidance can be formulated as

yi1, yi2, yi3, yi4 ∈ [yl, yu],∀i ∈ Ia (4)

where yl, yu are the coordinates of the two road barriers.
To formulate the second type of collision avoidance, this article

uses Nc circles, with the same radius r, placed evenly to approximate
the rectangular vehicles [23], as shown in Fig. 1. The coordinate of
the kth circle center in vehicle i at time t is

Cik(t) =

[
pix(t)
piy(t)

]
+

(
(k − 1

2)L

Nc

− Lr

)[
cos(θi(t))
sin(θi(t))

]
. (5)

The collision avoidance constraint is given by

d(Cik(t), Ojl(t)) ≥ r + r, i < j, ∀i, j ∈ Ia, ∀k, l ∈ Ic (6)

where r > 0 is safety margin. The collision avoidance for each
vehicle in R2 is achieved by ensuring that each circle located within
it keeps a safe distance, i.e. r + r, from any circles approximating
the location of other vehicles.

D. Overall Optimization Formulation

With the AGV dynamic model and different constraints established,
a collision-free optimal trajectory for the AGVs can be obtained by
addressing the following optimization problem:

min
xi,ui,tf

J0 = tf

s.t. ẋi(t) = f(xi(t), ui(t)), ∀i ∈ Ia, ∀t ∈ [0, tf]

xi(t) ∈ [x
min

, x
max

], ui(t) ∈ [u
min

, u
max

], ∀t ∈ [0, tf]

xi(0) = xi0, xi(tf) = xif , ui(tf) = ui(0), ∀i ∈ Ia

Cik(t) = pi(t) +

(
(k − 1

2)L

Nc

− Lr

)[
cos(θi(t))
sin(θi(t))

]
,

∀i ∈ Ia, ∀k ∈ Ic, ∀t ∈ [0, tf]

d(Cik(t), Ojl(t)) ≥ r + r, ∀i < j ∈ Ia, ∀k, l ∈ Ic, ∀t ∈ [0, tf]
(7)

where J0 is the objective function consisting of stage cost L
and terminal cost Φ of all the AGVs. The decision variables are
[xT

1 , u
T
1 , . . . , x

T
Na, u

T
Na, tf]

T . This formulation allows us to fulfill
different mission requirements including minimum lane changing
time and ensure the smoothness of the obtained trajectory.

C1
C2

p

Lw
Lr

L

W

Fig. 1: Illustration of vehicle and task-related parameters

E. Communication Topology

The interaction topology of communication among Na vehicles
can be illustrated using an undirected graph G = (V, E), where V
represents a vertex set V = {1, 2, · · · , Na} and E stands for an edge
set E ⊂ V × V . The edge (i, j) ∈ E , if the ith and jth agents
are connected. The weighted connectivity matrix w also satisfies the
following condition: (i) wij ∈ [0, 1), ∀(i, j); (ii) wij = wji, ∀(i, j);
(iii)

∑N
j=1 wij = 1, ∀i.

III. CONVEX FEASIBLE SET-BASED ALGORITHM

Currently, there are many off-the-shelf numerical optimizers avail-
able [7]. However, the existence of nonlinear dynamic constraints (1)
and large scale non-convex constraints, (6) leads to low solution-
finding efficiency when using such methods. In this section, the
original formulation is converted into a convex optimization problem
to reduce the computing demand in the optimization process. Note
that the constraints (2), (4) are convex and (3) is linear, which can
be directly used in the convex programming problem. Therefore,
converting the problem to be convex includes linearizing the nonlinear
equality constraints (1), (5), and relaxing the collision avoidance
constraints (6) to convex constraints. After the process of making
the problem convex, an SCP algorithm is introduced to address the
converted lane change problem.

A. Linearization of Equality Constraints

The process of convexification begins with the linearization of
system dynamics (1). Given the reference state and control variables
(x̂i, ûi), the linearized system model can be written as

ẋi = Ai(x̂i, ûi)xi + Bi(x̂i, ûi)ui + ci(x̂i, ûi), ∀i ∈ Ia (8)

where ci(x̂i, ûi) = f(x̂i, ûi)−Ai(x̂i, ûi)x̂i −Bi(x̂i, ûi)ûi and the
coefficients Ai(x̂i, ûi) and Bi(x̂i, ûi) are defined as

Ai(x̂i, ûi) =
∂f(x,u)

∂x

∣∣∣x=x̂i
u=ûi

, Bi(x̂i, ûi) =
∂f(x,u)

∂u

∣∣∣x=x̂i
u=ûi

. (9)

The linearized system dynamics should also be discretized to for-
mulate a static convex function. Define Ai(n) := Ai(x̂i(n), ûi(n)),
the discretized system model can be written as

xi(n + 1) = xi(n) + [Ai(n)xi(n) + Bi(n)ui(n) + ci(n)] × ∆t,

xi(n) ∈ [xmin, xmax], ui(n) ∈ [umin, umax], n = 0, 1, . . . , Nt, ∀i ∈ Ia
(10)

where Nt + 1 temporal nodes are used to split the time interval
[0, tf] into equal small intervals of length ∆t. The variables (xi, ui)
at time tn are denoted as (xi(n), ui(n)) with xi(0) = xi(t0) and
xi(Nt) = xi(tf). Note that so far the bounds on state and control
variables are imposed at each time instant n. Although only time-
invariant bounds are considered in this article, time-varying variable
bounds can be easily handled by imposing different bounding values
at different time instants. This extension makes the proposed method
applicable to a wider range of scenarios, such as varying road width.

In addition to nonlinear differential equation (1), the circle center
equations (5) should also be converted to linear equality constraints.
For each vehicle, (5) is equivalent to

Ci1(n) =

[
pix(n)
piy(n)

]
+

(
L

2Nc

− Lr

)[
cos(θi(n))
sin(θi(n))

]
(11)

Cik(n) = Ci1(n) +
(k − 1)L
L
2 − NcLr

(
Ci1(n) −

[
pix(n)
piy(n)

])
, k ∈ Ic\{1}.

(12)
Appending the first circle center coordinate Ci1 to the state

variables, (12) are linear with respect to the extended state variables
zi = [xT

i , C
T
i1]

T . Furthermore, denoting g(zi) = Ci1 − pi −(
L

2Nc
− Lr

)
[cos θi, sin θi]

T , (11) can be linearized at a reference

point ẑi as
g(ẑi) + ∇g(ẑi)

T (zi − ẑi) = 0. (13)

B. Construction of Feasible Sets

Since collision-free among AGVs is realized by a series of distance
constraints between the circle center and the circle in (6), the
CFS algorithm proposed in [21] can be applied to calculate the
convex feasible sets around a reference trajectory. Given a reference

trajectory ẑ obtained from the previous iteration, the circles Ôik and
their centers Ĉik can be determined according to (11), (12). For Cik

in AGV i, the region occupied by other vehicles are considered as
obstacles. At time step n, define a distance function as

ϕn
jl(x) := ∥x − Ĉjl(n)∥2 − 2r − r, j > i, j ∈ Ia, l ∈ Ic. (14)

ϕn
jl(Cik(n)) ≥ 0 indicates that there is no collision between Oik(n)

and Ôjl(n). The convex feasible set for Cik(n) is defined as

Fik(ẑ(n)) :=
⋂

j>i,j∈Ia,l∈Ic

Fjl(ẑ(n)) ⊂ R2 (15)

where

Fjl(ẑ(n)) = {Cik : ϕn
jl(Ĉik(n)) + ∇ϕn

jl(Ĉik(n))
T (Cik − Ĉik(n)) ≥ 0}

(16)
is the convex feasible set of Cik(n) when avoiding Ôjl(n). Taking
Na = 3 and Nc = 1 as an example, Fig. 2 illustrates the process
of constructing the CFS. Then the collision avoidance constraint for
AGV i along its trajectory can be represented as

zi ∈ Fi(ẑ) :=
Nt⋂
n=1

⋂
k∈Ic

Fik(ẑ(n)) ⊂ R2×Nt . (17)

Feasible

region of

Feasible region

of at the

next iteration

Fig. 2: Illustration of feasible sets

C. Trust Region Sequential Convex Programming

We have used linear approximation of (10) and (13) to establish the
convex programming problem. It is well known that the linearization
error becomes large when the true trajectory is far from the reference
trajectory. Thus we introduce trust region constraints with varying
radii to limit the difference between the planned and referenced state
and control trajectories. With the trust region constraints and the
convex constraints formulated in the last subsection, the original non-
convex continuous optimization problem (7) can be rewritten as the
following convex programming problem:

min
zi,uiriz,tNt

J1 = tNt + wz∥rz∥2

s.t. ∀i ∈ Ia, n = 0, 1, . . . , Nt

xi(n + 1) = xi(n) + [Ai(n)xi(n) + Bi(n)ui(n) + ci(n)]∆t

xi(t0) = xi0, xi(tf) = xif , xi(n) ∈ [x
min

, x
max

]

g(ẑi) + ∇g(ẑi)
T
(zi − ẑi) = 0,

ui(tf) = ui(t0), ui(n) ∈ [u
min

, u
max

]

Cik = pi +

(
(k − 1

2)L

Nc

− Lr

)
Ci1 − pi

L
2Nc

− Lr

, k ∈ Ic\{1}

zi ∈ Fi(ẑ) :=

Nt⋂
n=1

⋂
k∈Ic

Fik(ẑ(n))

∥zi(n) − ẑi(n)∥2 ≤ riz(n)
(18)

where rz is the trust region radius which is optimization variable
and wz is a positive weighting parameter. It was shown that a suffi-
ciently large wz reduces the convexification error and alleviates the
oscillation phenomenon in trust region-based methods [24]. Denoting

z = [zT1 , . . . , z
T
Na

]T , u = [uT
1 , . . . , u

T
Na

]T , the decision variables in
this formulation are d = [zT ,uT , rT

z , tNt]
T .

In this article, a convex feasible set-based SCP algorithm is de-
signed to solve the optimization problem (18). The overall algorithm
consists of two layers. The outer layer generates the convex collision
avoidance constraint (17) for (18). Every time the collision avoidance
constraints are determined, the inner layer solves the problem (18)
iteratively and the solution obtained in one iteration is regarded as
the reference trajectory for the next iteration, that is, ẑm+1 = zm,
where the superscript is the number of iterations. This iteration
terminates when a certain stopping condition is achieved and the
solution is used to update (17). The main steps are summarized
in Algorithm 1. A line-search strategy between each iteration is
established based on a metric function that evaluates the inconsistency
caused by convexification. At time node n and iteration m, define
the linearization error of equality constraints by

hn(d
m) =

∑

i∈Ia

xm
i (n + 1) − xm

i (n) − f(xm
i (n), um

i (n))∆t∑
i∈Ia

g(zm
i (n))

 (19)

and the convexification error of collision avoidance constraints by

gn(d
m) =

∑
i∈Ia
j∈Ic

∑
k>i,k∈Ia

l∈Ic

2r + r − ∥Cm
ik(n) − Cm

jl (n)∥2. (20)

The overall convexification error can be defined as

ℓ(dm; β1, β2) = β1
∑Nt

n=0 ∥hn(d
m)∥1 + β2

∑Nt
n=0 ∥g+

n (dm)∥1 (21)

where g+n (·) = max{gn(·), 0} and β1, β2 > 0 are penalty factors.
When a solution is obtained by solving (18), the constraint violation
regarding the original problem (7) is quantified by the l1 norm of
the approximation error at all time instant. The line-search process
is summarized in Algorithm 2.

Algorithm 1 Convex feasible set-based SCP algorithm

Input: Algorithm and task-related parameters xi0, xif , Nt, Nc, r. The
convergence threshold ϵ;
Step 1: Obtain initial trajectory d0 and set m = 0;
Step 2: Compute convex feasible sets zi ∈ Fi(z

m), ∀i ∈ Ic and set
h = 0, dh = dm;
Step 3: Perform the linearization (10), (13) with respect to dh;
Step 4: Address the convex optimization problem (18) and denote the
obtained solution as dh+1;
Step 5: Set h = h+1. If the stopping condition ∥dh −dh−1∥2 ≤ ϵ is
satisfied, set m = m+ 1 and go to Step 6, else go back to Step 3;
Step 6: Set dm = dh. If the stopping condition ∥dm−dm−1∥2 ≤ ϵ is
satisfied, then output dm as the optimal solution. Otherwise, perform
Algorithm 2 and go back to Step 2.
Output: The optimal trajectory d∗ = dm.

Remark 1. Note that problem (18) is an approximation of the original
problem (7). It is possible that a solution to (18) does not satisfy the
original system equations and collision avoidance constraints in (7)
and vice versa. Several strategies have been proposed to deal with
the inconsistencies caused by convexification. The authors in [25]
suggested adding unbounded virtual control variables to the linearized
system equations and penalizing it in the objective. It is shown in
[26] that a shrinking trust region can also reduce convexification
error. The trust region constraint in (18) serves the same purpose.
Nevertheless, in these methods, the reference to each iteration is the
optimal solution from the previous iteration, which does not solve
the original problem and thus can be modified. The proposed line
search process modifies it along a decreasing direction of the merit
function. Such a design may further reduce the approximation error
and accelerate convergence.

Algorithm 2 Line-Search Process

1: Input: dm, dm−1. Line-search parameters β1, β2 and 0 < c1 <

c2 < 1;
2: Calculate ξm = dm − dm−1;
3: Calculate the directional derivative of the error function ℓ by

∆(ℓ(dm;β1, β2); ξ
m) = lim

ϵ→0

ℓ(dm + ϵξm;β1, β2)− ℓ(dm;β1, β2)

ϵ

4: Search αm that satisfies the following condition:

ℓ(dm;β1, β2) + c1α
m∆(ℓ(dm;w1, w2); ξ

m)

≤ ℓ(dm + αmξm;β1, β2)

≤ ℓ(dm;β1, β2) + c2α
m∆(ℓ(dm;β1, β2); ξ

m);

5: Set dm = dm−1 + αmξm;
6: Output: The updated solution dm.

The suggested SCP algorithm requires an initial trajectory to start
the optimization process, as shown in Step 1 of Algorithm 1. The
initial value p0i = (p0ix, p

0
iy) is obtained by the A∗ algorithm, and the

other variables at all time instants are computed iteratively by

θ0
i (n) = arccos

(p0
ix(n + 1) − p0

ix(n)

∥p0
i (n + 1) − p0

i (n)∥2

)
v0
i (n) =

∥p0
i (n + 1) − p0

i (n)∥2

∆t

δ0i (n) = arctan
(θ0

i (n + 1) − θ0
i (n)

∆t

Lw

v0
i (n)

)
η0
i (n) =

∥δ0i (n + 1) − δ0i (n)∥2

∆t

a0
i (n) =

∥v0
i (n + 1) − v0

i (n)∥2

∆t
.

(22)

The trajectories computed in this approach may violate the bounds
on them and, if exist, the bounds on their difference. Therefore, a
modification process is introduced to ensure the initial trajectory lies
in the feasible region. The modification of η0

i (n) is given by

η0
i (n) =

{
ηmax if η0

i (n) > ηmax,

ηmin if η0
i (n) < ηmin.

(23)

and a0
i (n) are modified in similar form to (23). The modification of

v0i (n) is given by

v0
i (n) =

v0
i (n) + amax∆t if

v0
i (n+1)−v0

i (n)

∆t > amax,

v0
i (n) + amin∆t if

v0
i (n+1)−v0

i (n)

∆t < amin,

vmax if v0
i (n) > vmax,

vmin if v0
i (n) < vmin,

(24)

and θ0i (n), δ
0
i (n) are modified similar to (24). Based on this initial

trajectory generation strategy, which is referred to as E-A∗ algorithm
in the following context, the sequential convex programming starts
at a collision-free reference trajectory. Since some of the collision
avoidance constraints become inactive and no longer affect the
optimization process, the efficiency of the proposed algorithm is
likely to be improved.

IV. DRL-BASED COLLISION-FREE TRACKING CONTROL

In this section, we establish a DRL-based collision-free tracking
control scheme that is capable of steering the AGV as it moves
along the optimized trajectory [z∗,u∗]T , and avoiding any suddenly
appearing obstacles, which commonly exist in real-world scenarios.
Note that obstacles that are not modeled in the optimization problem
may appear on the pre-optimized trajectory. Thus this problem
cannot be solved by traditional trajectory tracking methods such as
the combined feed-forward and feedback control method or pure
pursuit control method. In this research, we design a consensus-
based deep reinforcement learning framework to allow for multi-agent
training to improve the training speed and achieve better training

performance than single-agent training. We also propose a deep
reinforcement learning algorithm based on an end-to-end mapless
collision avoidance algorithm for training in the proposed distributed
learning framework.

A. State Space and Action Space

The state space at time step t is represented by vector st and it
includes range sensor data vector rt, velocity data vector vt−1 at the
previous time step, and relative target position vector pt. The range
sensor data is normalized to the range of [0, 1]. The action space at
time step t is represented by at that is made of angular speed ηt and
linear velocity vt.

B. Reward Design

Reward functions are designed to encourage vehicles to achieve
the goal and avoiding potential collision risks. The reward function
is defined as

rtotal = rd + rc + rvc (25)

where rtotal represents the total reward, rd describes distance reward
for reaching the goal, rc is the clearance reward for safety, rvc

represents the velocity control reward. rd can be calculated as

rd =

{
ra if drg < drgmin

k∆dp if drg ≥ drgmin (26)

where vehicle receives arrival reward ra when the distance between
vehicle and goal drg is less than the threshold drgmin. Otherwise, rd is
proportional to ∆dp, which is the distance the vehicle moves towards
the goal at the last time step, where k is a user-configurable parameter.
The clearance reward rc can be calculated using

rc =

{
−rcp if dro < r

0 if dro ≥ r
(27)

When the distance between vehicle and obstacle dro is less than the
threshold r, the vehicle will be given negative reward/punishment
−rcp. The velocity control reward rvc, angular velocity reward rη
and linear velocity rv reward are given by

rvc = rη + rv

rη =

{
−rap if |η| > ηmax

0 if |η| ≤ ηmax , rv =

{
−rlp if v < vmin

0 if v ≥ vmin

(28)
where the subscript i is omitted here as the vehicles have the same
reward design. The angular velocity threshold and the linear velocity
threshold are denoted by ηmax and vmin, respectively. As we want
the vehicle to move to the goal waypoint at high linear speed and
low angular speed, if the angular velocity η is larger than ηmax or the
linear velocity v is less than vmin, then vehicle will receive punishment
value −rap or −rlp, respectively.

C. Network Structure

The architectures of actor and critic networks are shown in Fig. 3.
The input layer of actor network integrates laser data (24-dimensional
vector), relative target position (2-dimensional vector), and current
speed data (2-dimensional vector). The following layers include three
fully connected layers. Each has 512 nodes and a rectified linear unit
function (ReLU). The output includes linear velocity and angular
velocity, generated by a sigmoid function and a hyperbolic tangent
function, respectively. The critic network merges the input and output
layers of the actor network as its own input. The critic network
includes three fully connected layers and the ReLU function. The
output of the critic network is the Q-value.

Dense Layer-ReLU-512

Dense Layer-ReLU-512

Dense Layer-ReLU-512

Linear Velocity

Dense

Sigmoid

Angular Velocity

Dense

Tanh

Merge

Actor network structure

Input

Laser

24

Relative

Position

2

Velocity

2

Input

Laser

24

Relative

Position

2

Velocity

2

Dense Layer-ReLU-512

Output

Input

2

Dense Layer-ReLU-512

Dense Layer-ReLU-512

Output

Dense Layer-Linear

Q

Critic network structure

Fig. 3: Network structure

D. Integration of Actor-critic Off Policy Reinforcement Learning
and Consensus Algorithm

The proposed training algorithm is now introduced in which the
actor and critic training parameters are shared among the agents and
updated simultaneously. For agent i, denoting the training parameter
in actor and critic networks as ξi ∈ Rnξ and ζi ∈ Rnζ , respectively.
Let χ ∈ {ξ, ζ} denote either training parameter. For an undirected
graph G, if χ̂i represents the updated training parameter of χi after
a single consensus step and χi stands for the row vector of the
training parameter for agent i in the graph, the distributed consensus
algorithm updates the actor and critic parameters of an agent i using
the following scheme:

χ̂i = χi +
∑Na

k=1 wik(χk − χi) = χi −
∑Na

k=1 likχk = Ci (χk, lik) (29)

where wik is the element of the graph adjacency matrix which is
engendered by the undirected graph G, lik is the element of the
Laplacian matrix L and Ci represents the consensus protocol of the
ith agent. The training parameter update of all the Na agents with a
single consensus step can be described as

χ̂ = ((INa − L) ⊗ Inχ)χ = C (χ,L) (30)

where C stands for the distributed consensus protocol for all agents,
INa is a Na × Na identity matrix, and Inχ denotes a nχ × nχ

identity matrix and L represents the Laplacian matrix of undirected
graph. For undirected communication topology, by applying (30) in
the parameter training process, this distributed consensus algorithm
is verified to make all agents’ parameters converge to an average
value if the following assumptions are satisfied [27]: 1) All agents
are trained for the same task in the same scenario; 2) Each agent is
able to complete the training independently; 3) The state space and
action space are bounded. The design of policy function, the value
function, and the process of updating the actor and the critic training
parameter are extensions of [28] and are omitted here to save space.

Remark 2. The consensus algorithm mentioned above is theoretically
applicable to balanced graph topology. Since any undirected graph
is balanced, the communication topology is chosen to be undirected
and the main focus is on the performance of the designed DRL-based
collision-free tracking control. Balanced digraphs may further save
the network bandwidth. Future works should investigate the training
performance of the designed consensus-based DRL framework for
arbitrary balanced communication topology.

Remark 3. The proposed consensus algorithm with deep reinforce-
ment learning allows multiple agents to share actor-critic policy
model parameters, instead of training data, in a distributed manner. In
centralized training, the central agent exchanges information with all
other agents, which limits the number of agents for limited network

bandwidth. Compared with centralized training, the designed method
not only protects the data privacy of each agent but also saves the
network bandwidth for communication.

V. SIMULATION AND HIL STUDIES

A. Lane Change Scenarios and Parameter Specification

In this section, Matlab and CARLA [29] simulation results and
HiL test results in different lane change scenarios are provided to
demonstrate the performance of the proposed hierarchical control
framework. The simulation and HiL test setup are presented in Fig.
4.

The physical constraints of vehicles, together with task and
algorithm-related parameters are assigned in Table II. Three scenarios
are designed and are summarized in Table III, where Vehicle i is
abbreviated as Vi. Scenario 1 and Scenario 2 are used in simulation
and Scenario 3 is used in the HiL test. Boundary conditions of
vehicles’ state variables are [θi(t0), δi(t0), vi(t0), ηi(t0), ai(t0)] =
[0, 0, 10, 0, 0], [θi(tf), δi(tf), vi(tf), ηi(tf), ai(tf)] = [0, 0, 10, 0, 0]
∀i ∈ Ia.

Upper level: trajectory optimization process

No

Yes

Task

information

Convexify

optimization

problem (7)

Initial collision-free

trajectory

generation (22)-(24)

Solve convex

programming

problem (18)

The line-search

process

(Algorithm 2)

Solution

converge?

Optimal solution

Consensus-based

distributed

training

Trained DRL

model

Lower level: real-time control

Linear and

angular velocity

CARLA

simulator

Vehicle states

Fig. 4: Simulation setup

TABLE II: Parameters and physical constraints

Parameter/Variable Value/Range Parameter Value
pix, m [0, 80] Lr , Lw , L, m 0.7, 2.5, 4
piy , m [0, 14] r, m 0.2
θi, rad [−π/2, π/2] Y1, Y2, Y3, Y4 1.75, 5.25, 8.75, 12.25
δi, rad [-0.576, 0.576] Nc 2
ηi, rad/s [-1.5, 1.5] Nt 40
vi, m/s [-15,15] ϵ 10−3

ai, m/s2 [-2.5, 2.5] wz 20
[yl, yu], m [0,14] β1, β2, c1, c2 10, 10, 0.01, 0.9

TABLE III: Scenario settings

Scenario Initial lanes Desired lanes Additional setting

1
V1 in lane 4
V2 in lane 3
V3 in lane 1

V1 to lane 3
V2 to lane 1
V3 to lane 2

Road width changes

2

V1 in lane 1
V2, V3 in lane 2
V4, V5 in lane 3

V6 in lane 4

V1 to lane 4
V2, V3 to lane 3
V4, V5 to lane 2

V6 to lane 1

\

3
V1 in lane 4
V2 in lane 3
V3 in lane 1

V1 to lane 3
V2 to lane 1
V3 to lane 2

Unmodeled obstacle appears

B. Multi-Vehicle Lane Change Simulation Results

In this subsection, the performance of the proposed convex feasible
set-based SCP algorithm for the multi-vehicle lane change problem is
evaluated and simulation results are presented. The vehicles’ positions

Fig. 5: Multi-vehicle lane change trajectory in Scenario 1

and lane change trajectories at different time points in the two
scenarios are depicted in Fig. 5 and Fig. 6. From the presented lane
change profiles, it is clear that the proposed algorithm is able to
generate trajectories that satisfy the variable constraints and fulfill the
lane change mission for the two scenarios. In addition to completing
the lane change task, collision-free is also a necessary condition
for the multi-vehicle lane change maneuver and should be checked.
During the lane change process, the minimum distance among the
vehicles in the two scenarios are 0.616 m and 0.244 m, respectively,
which are relatively small. Since the algorithm aims to minimize the
traveling time, it will choose an aggressive trajectory as long as this
trajectory satisfies the constraints and shortens the traveling time.
Since we set r = 0.2 and the minimum distances in both scenarios
are smaller than this value, the simulation result is reasonable. If
additional safety margins are desired, r can be increased. It is worth
noting that due to the existence of nonlinear system equations and
multiple nonconvex collision avoidance constraints in the original
problem, there is currently no approach that can guarantee finding
the global optimal solution. The proposed strategy approximates the
original nonconvex optimization problem by a convex one and only
locally optimal solutions can be obtained. There may be some other
local optima with objective values different from those obtained here.

The performance of the proposed CFS-based SCP algorithm in
Scenario 2 is further tested in CARLA simulator. The road width and
vehicle specifications in this test are identical to the aforementioned
simulations. The lane change result in CARLA simulator is shown
in Fig. 7, where the plotted coordinate is shifted from the coordinate
in CARLA to be consistent with previous simulations. Although
the trajectories generated by the proposed algorithm in CARLA are
slightly different from the simulation in Matlab, they completed
the lane change task in CARLA without collision, which further
demonstrated the effectiveness of the proposed method.

C. Comparative Studies
Comparative studies are conducted in this subsection to verify the

effectiveness of the initial trajectory generation strategy introduced in
(22)-(24) and the designed trust region constraints and the line-search
strategy in the CFS-based SCP algorithm. All the methods mentioned
in this subsection are evaluated 200 times in both Scenario 1 and 2
with different initial positions given by

p′ix(t0) = pix(t0) + dix, p′iy(t0) = piy(t0) + diy, i ∈ Ia,

where dix, diy, i ∈ Ia are perturbations uniformly distributed on
[−0.7, 0.7]. Four indicators are selected, namely the instances that
can be solved successfully out of 200 trials, the objective tf , the

Fig. 6: Multi-vehicle lane change trajectory in Scenario 2

Fig. 7: Multi-vehicle lane change profile in CARLA

approximation error ℓ given by (21), and the computation time tc.
The last three indicators are reported by median value / worst case
value on success in Table IV.

First, the effectiveness of the designed line search strategy is
studied and SCP without line search is evaluated for comparison.
Without line search, Algorithm 2 is no longer used in Step 6 of
Algorithm 1. When Algorithm 1 is not converging, dm is used as
the reference for the next iteration. The results of these methods are
presented in Table IV. It can be observed that although SCP with or
without line search achieved a similar objective, the computation time
of SCP with line search is smaller in general. The approximation error
of SCP with line search tends to be smaller since the search direction
reduces the merit function ℓ. Note that the computation demand of
SCP with line search comprises solving convex subproblems and
executing the line search. It is possible that compared to the time
reduced in convex programming iterations, the line search itself
requires a longer computation time. This may be why the median
computation time of SCP with line search in Scenario 1 is longer.
We infer that the benefit of line search is more significant in more
complex problems, as the computation time is considerably shorter
in Scenario 2. Note that SCP-based methods have approximate errors
since each convex sub-problem is not the same as the original
nonconvex problem. There is a trade-off between dynamic feasibility
and computation time. One may allow for more iterations to get
results closer to the solution of the original problem [26]. In the
considered task, the SCP solution is a reference for the DRL control
module, and spontaneous obstacles appear during the lane change
task. Therefore, we believe that the reference trajectories generated
by the proposed CFS-based SCP algorithm are sufficient for the task
and the results in Table IV are acceptable.

The proposed initialization method is compared with different
initialization methods and the results are also shown in Table IV.
The first sets u0

i (t) = 0 and propagates the system equation (1)
from the initial state xi(0) [30] (referred to as Propagate in Table
IV). The second is the classic A∗ algorithm [6]. Initialized with
these two methods, SCP cannot solve all the 200 trials. Even if
these methods can obtain a solution, the optimality and algorithm

TABLE IV: Monte Carlo Comparison of Trajectory Optimization Methods

Different
methods

Scenario 1
Solved tf [s] ℓ tc [s]

E-A∗+SCP 200 4.46 / 4.59 0.010 / 0.027 5.88 / 6.00
E-A∗+SCP w/o LS 200 4.54 / 4.95 0.016 / 0.034 5.83 / 7.32

Propagate+SCP 194 4.71 / 5.18 0.032 / 0.049 6.34 / 7.59
A∗+SCP 197 4.67 / 4.98 0.019 / 0.033 5.93 / 6.36

Method 1 [31] 171 4.66 / 4.96 N/A 39.50 / 78.26
Method 2 [22] 183 4.60 / 5.13 N/A 56.28 / 102.87

Different
methods

Scenario 2
Solved tf [s] ℓ tc [s]

E-A∗+SCP 200 5.74 / 5.81 0.043 / 0.081 11.06 / 11.77
E-A∗+SCP w/o LS 200 5.72 / 5.94 0.052 / 0.085 12.83 / 14.65

Propagate+SCP 186 6.14 / 6.78 0.142 / 0.190 15.92 / 16.62
A∗+SCP 190 5.83 / 5.98 0.072 / 0.084 13.11 / 15.24

Method 1 [31] 122 6.02 / 7.74 N/A 154.84 / 339.16
Method 2 [22] 161 5.78 / 7.98 N/A 100.71 / 145.04

runtime are generally worse than the proposed method. It can be
seen from Table IV that in Scenario 1 when SCP initialized with
classic A∗ algorithm converges, the performance is similar to that of
SCP initialized with E-A∗. This is probably because Scenario 1 is
relatively simple and using the trajectory generated by the classic A∗

algorithm is sufficient to find the optimal solution. In Scenario 2, SCP
with the proposed initialization method achieved better performance
in all three indices, showing the advantage of starting from an initial
collision-free trajectory.

Furthermore, two motion planning methods are compared with the
proposed hierarchical method. Method 1 [31] suggested a sequential
quadratic programming-based optimization algorithm that solves the
nonconvex problem (7) directly. Method 2 [22] also generates an
initial feasible trajectory first, and then solves the optimization
problem by an adaptive gradient particle swarm optimization (PSO)
algorithm. The lane change results obtained by these algorithms
are also presented in Table IV. Both methods solve the nonconvex
optimization problem directly and therefore have no approximation
error ℓ. The success rates of these methods are much lower than
SCP-based methods while requiring longer computation time. These
phenomena are more noticeable in Scenario 2, indicating that these
nonconvex methods may not be suitable for complex multi-vehicle
trajectory optimization problems. It is also shown that SCP-based
methods have better optimality when solving the considered multi-
vehicle lane change trajectory optimization problem. Specifically,
while the median objective values of these methods are in general
similar to that of SCP-based methods, the worst-case objective values
are much higher than that of the proposed method in Scenario 1, and
in Scenario 2, they are much higher than those of all the SCP-based
methods.

D. Comparison of Proposed Training Method and Standard
DDPG Algorithm

In this section, the proposed consensus-based distributed deep
reinforcement learning method and standard DDPG algorithm are
compared in terms of reward value. We simulated the learning
environment using a Gazebo simulator and the Robot Operating
System (ROS). The rewards are assigned as ra = 100, rcp = 80,
and rap = rlp = 1 based on empirical experience. As shown
in Fig. 8a, four vehicles were simulated and each vehicle learned
collision avoidance policy in the same environment. The red spheres
represent targets. The grey cubes and cylinders represent obstacles.
The blue lines are lidar rays and the center of the lidar ray is a vehicle.
The vehicle navigated itself to the target. Once it collides with the
obstacle or arrives at the target, it is reset to the original position
which is the center of its own cell. If the vehicle arrives at the target,
the target resets its own position (that is in one of the four corners of

its own cell). We made four vehicles learn collision avoidance policy
simultaneously and used the proposed consensus algorithm to allow
them to share the learned parameters. We compared the proposed
consensus algorithm with a single vehicle learning using DDPG. As
shown in Fig. 9, the proposed method achieves faster reward growth
and higher reward value than standard DDPG. It is noted that the
proposed consensus-based algorithm only used 32629 steps to achieve
reward value 6. However, the single training method required more
than 100000 steps. Besides, the proposed method achieves a higher
reward value than the single training method.

(a) Gazebo simulator envi-
ronment.

(b) Interaction topology of
multiple vehicles.

Fig. 8: Simulation environment and interaction topology

Fig. 9: Comparison of single-agent training and consensus based multi-agent
training

E. Hardware-in-the-loop Tests

HiL tests were conducted to demonstrate the validity of the pro-
posed hierarchical collision-free control framework. The executable
scripts are created by an IPC-610MB-30LDE/I5-2400/DDR3 indus-
trial PC via LabVIEW real-time mode. A NI PXI-8820 embedded
controller is used to test the performance of the proposed framework.
The test platform is shown in Fig. 10. The processing time of the
trained DRL model in this platform is 0.027s to 0.034s and the
time-step in CARLA is set to 50ms. To validate the robustness of
the proposed training method, the policy trained in the simulated
environment was transferred to HiL tests without fine-tuning.

TABLE V: Quantitative Results of the HiL Test

Methods Proposed Reward set 1 Reward set 2 DDPG DWA [16]
tf 4.347s 4.628s 4.591s 4.676s 5.056s
I1 8.583 8.934 8.956 8.800 9.902
I2 0.449 0.481 0.341 0.562 0.392

In HiL tests, the goal of the vehicles was still to change the line
in the shortest time, and the trajectories generated by the algorithm
presented in Section III served as a reference. Unlike the simulation
tests, an unexpected obstacle appears in front of a vehicle during

Fig. 10: Front view of real-time simulator

Fig. 11: Trajectories in the HiL test

the lane change and the proposed DRL-based scheme is used to
avoid collision. Note that there is no communication among vehicles.
For each vehicle, other vehicles are considered as obstacles, and
their positions can only be obtained by laser scanner. Two other
methods are used for comparison, namely the DWA [16] and the
standard DDPG algorithm. Moreover, the proposed DRL methods
with different reward values are also compared to analyze the effect
of reward values on collision avoidance performance. The reward
combination ra = 100, rcp = 200, and rap = rlp = 1, which
imposes higher collision punishment, is denoted as Reward set 1.
The combination ra = 100, rcp = 80, and rap = rlp = 2, which
imposes higher punishment on low linear velocity and high angular
velocity, is denoted as Reward set 2.

At the beginning of the HiL test, three vehicles changed lanes with
no obstacles in the road. As shown in the upper figure in Fig. 11,
during the lane change, an obstacle (blue box) appears. The affected
vehicle started an avoidance process immediately, based on different
collision avoidance policies. All methods steered the vehicle to bypass
the obstacle and the vehicle continued its lane change task, as shown
in the lower figure in Fig. 11. Quantitative results are provided in
Table V. Since smoother velocity and heading angle trajectories not
only contribute to the stability of vehicle operation but also reduce
abrupt changes in control variables, I1 = 1

Nt

∑
i∈Ia

∑Nt
j=1 ai(j)

2

and I2 = 1
Nt

∑
i∈Ia

∑Nt
j=1 ηi(j)

2 are selected as performance indi-
cators of different local motion planning techniques. The DWA-based
method chose a significantly different path which requires more time
to complete the task. The result of the DDPG-based method is slightly
worse than that of the proposed method, showing the advantages of
the proposed consensus-based training method in achieving higher
reward value. Note that the proposed training method also converges
faster. The proposed method trained with Reward set 1 gets higher
punishment on collision and the resulting path is more conservative,
as the minimum distance between the vehicle and the obstacle is

larger. As for the model trained with Reward set 2, since it seeks a
lower angular velocity and a higher linear velocity, the resulting path
has a smaller orientation change when the vehicle starts the avoidance
process. However, the safety margin r must be kept and the vehicle
takes a longer time to bypass the obstacle.

VI. CONCLUSION

In this paper, the lane change motion planning and control problem
for multi-vehicles in an uncertain environment has been addressed
using a hierarchical control scheme. A trust region sequential con-
vex programming algorithm, equipped with a convex feasible set-
based collision avoidance strategy, served as the motion planner
to generate the optimized collision-free maneuver trajectory for a
group of vehicles. A line search process was designed to reduce
the error caused by the convexification process. To remove the
collision risk between vehicles and unexpected obstacles during
lane changing, we explore the possibility of applying a DRL-based
collision-free control method. A distributed consensus method is
designed to accelerate multi-agent training. Numerical simulation and
HiL tests were performed to confirm the enhanced performance of
the proposed design. From the results, it can be concluded that the
applied successive convex set approximation strategy and trust region
mechanism can noticeably contribute to improving the convergence
of the optimization process. In addition, the DRL-based controller
was able to drive vehicles to fulfill different lane change missions
without colliding with unexpected obstacles. As a result, we believe
the presented hierarchical framework is of interest to the research
community which is focusing on the development of optimization-
based multi-vehicle lane change motion planners and deep learning-
based collision-free motion controllers.

REFERENCES

[1] Y. Ji, Y. Tanaka, Y. Tamura, M. Kimura, A. Umemura, Y. Kaneshima,
H. Murakami, A. Yamashita, and H. Asama, “Adaptive motion planning
based on vehicle characteristics and regulations for off-road UGVs,”
IEEE Transactions on Industrial Informatics, vol. 15, no. 1, pp. 599–
611, Jan. 2019.

[2] H. Guo, C. Shen, H. Zhang, H. Chen, and R. Jia, “Simultaneous
trajectory planning and tracking using an MPC method for cyber-
physical systems: a case study of obstacle avoidance for an intelligent
vehicle,” IEEE Transactions on Industrial Informatics, vol. 14, no. 9,
pp. 4273–4283, Sep. 2018.

[3] J. Nilsson, J. Silvlin, M. Brannstrom, E. Coelingh, and J. Fredriksson,
“If, when, and how to perform lane change maneuvers on highways,”
IEEE Intelligent Transportation Systems Magazine, vol. 8, no. 4, pp.
68–78, Oct. 2016.

[4] R. Shome, K. Solovey, A. Dobson, D. Halperin, and K. E. Bekris,
“dRRT*: Scalable and informed asymptotically-optimal multi-robot mo-
tion planning,” Autonomous Robots, vol. 44, p. 443–467, 2020.

[5] S. D. Bopardikar, B. Englot, and A. Speranzon, “Multiobjective path
planning: Localization constraints and collision probability,” IEEE
Transactions on Robotics, vol. 31, no. 3, pp. 562–577, 2015.

[6] C. Sun, Q. Li, and L. Li, “A gridmap-path reshaping algorithm for path
planning,” IEEE Access, vol. 7, pp. 183 150–183 161, 2019.

[7] A. Wächter and L. Biegler, “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear programming,”
Mathematical Programming, vol. 106, no. 1, p. 25–57, Mar. 2006.

[8] B. Li, H. Liu, D. Xiao, G. Yu, and Y. Zhang, “Centralized and optimal
motion planning for large-scale AGV systems: A generic approach,”
Advances in Engineering Software, vol. 106, pp. 33–46, 2017.

[9] B. Gutjahr, L. Gröll, and M. Werling, “Lateral vehicle trajectory opti-
mization using constrained linear time-varying MPC,” IEEE Transac-
tions on Intelligent Transportation Systems, vol. 18, no. 6, pp. 1586–
1595, 2017.

[10] N. Goulet and B. Ayalew, “Distributed maneuver planning with con-
nected and automated vehicles for boosting traffic efficiency,” IEEE
Transactions on Intelligent Transportation Systems, vol. 23, no. 8, pp.
10 887–10 901, 2022.

[11] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

[12] D. Malyuta, T. P. Reynolds, M. Szmuk, T. Lew, R. Bonalli, M. Pavone,
and B. Açıkmeşe, “Convex optimization for trajectory generation: A
tutorial on generating dynamically feasible trajectories reliably and
efficiently,” IEEE Control Systems Magazine, vol. 42, no. 5, pp. 40–
113, 2022.

[13] Z. Wang, G. Li, H. Jiang, Q. Chen, and H. Zhang, “Collision-free naviga-
tion of autonomous vehicles using convex quadratic programming-based
model predictive control,” IEEE/ASME Transactions on Mechatronics,
vol. 23, no. 3, pp. 1103–1113, 2018.

[14] Y. Li and J. Ibanez-Guzman, “Lidar for autonomous driving: The
principles, challenges, and trends for automotive Lidar and perception
systems,” IEEE Signal Processing Magazine, vol. 37, no. 4, pp. 50–61,
2020.

[15] J. Yang, C. Wang, B. Jiang, H. Song, and Q. Meng, “Visual perception
enabled industry intelligence: State of the art, challenges and prospects,”
IEEE Transactions on Industrial Informatics, vol. 17, no. 3, pp. 2204–
2219, 2021.

[16] E. J. Molinos, Ángel Llamazares, and M. Ocaña, “Dynamic window
based approaches for avoiding obstacles in moving,” Robotics and
Autonomous Systems, vol. 118, pp. 112–130, 2019.

[17] S. Xie, J. Hu, P. Bhowmick, Z. Ding, and F. Arvin, “Distributed motion
planning for safe autonomous vehicle overtaking via artificial potential
field,” IEEE Transactions on Intelligent Transportation Systems, vol. 23,
no. 11, pp. 21 531–21 547, 2022.

[18] B. R. Kiran, I. Sobh, V. Talpaert, P. Mannion, A. A. A. Sallab, S. Yo-
gamani, and P. Pérez, “Deep reinforcement learning for autonomous
driving: A survey,” IEEE Transactions on Intelligent Transportation
Systems, pp. 1–18, 2021.

[19] Y. Zhang and M. M. Zavlanos, “Distributed off-policy actor-critic
reinforcement learning with policy consensus,” in 2019 IEEE 58th
Conference on Decision and Control (CDC), pp. 4674–4679, 2019.

[20] Y. Song, A. Romero, M. Müller, V. Koltun, and D. Scaramuzza, “Reach-
ing the limit in autonomous racing: Optimal control versus reinforcement
learning,” Science Robotics, vol. 8, no. 82, p. eadg1462, 2023.

[21] C. Liu, C. Lin, and M. Tomizuka, “The convex feasible set algorithm for
real time optimization in motion planning,” SIAM Journal on Control
and Optimization, vol. 56, no. 4, pp. 2712–2733, Jun. 2018.

[22] R. Chai, A. Tsourdos, A. Savvaris, S. Chai, and Y. Xia, “Two-stage
trajectory optimization for autonomous ground vehicles parking maneu-
ver,” IEEE Transactions on Industrial Informatics, vol. 15, no. 7, pp.
3899–3909, 2019.

[23] J. Ziegler and C. Stiller, “Fast collision checking for intelligent vehicle
motion planning,” in 2010 IEEE Intelligent Vehicles Symposium, pp.
518–522, Jun. 2010.

[24] L. Xie, R.-Z. He, H.-B. Zhang, and G.-J. Tang, “Oscillation phenomenon
in trust-region-based sequential convex programming for the nonlinear
trajectory planning problem,” IEEE Transactions on Aerospace and
Electronic Systems, vol. 58, no. 4, pp. 3337–3352, 2022.

[25] Y. Mao, M. Szmuk, and B. Açıkmeşe, “Successive convexification of
non-convex optimal control problems and its convergence properties,”
in 2016 IEEE 55th Conference on Decision and Control (CDC), pp.
3636–3641, 2016.

[26] R. Bonalli, T. Lew, and M. Pavone, “Analysis of theoretical and
numerical properties of sequential convex programming for continuous-
time optimal control,” IEEE Transactions on Automatic Control, vol. 68,
no. 8, pp. 4570–4585, 2023.

[27] R. Olfati-Saber and R. Murray, “Consensus problems in networks of
agents with switching topology and time-delays,” IEEE Transactions on
Automatic Control, vol. 49, no. 9, pp. 1520–1533, Sep. 2004.

[28] W. Liu, H. Niu, I. Jang, G. Herrmann, and J. Carrasco, “Distributed
neural networks training for robotic manipulation with consensus algo-
rithm,” IEEE Transactions on Neural Networks and Learning Systems,
vol. 35, no. 2, pp. 2732–2746, 2024.

[29] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “CARLA:
An open urban driving simulator,” in Proceedings of the 1st Annual
Conference on Robot Learning, pp. 1–16, 2017.

[30] Z. Wang, “Optimal trajectories and normal load analysis of hypersonic
glide vehicles via convex optimization,” Aerospace Science and Tech-
nology, vol. 87, pp. 357–368, 2019.

[31] D. Pardo, L. Möller, M. Neunert, A. W. Winkler, and J. Buchli,
“Evaluating direct transcription and nonlinear optimization methods for
robot motion planning,” IEEE Robotics and Automation Letters, vol. 1,
no. 2, pp. 946–953, 2016.

Tianhao Liu (Student Member, IEEE) received
the B.S. degree in automatic control from Nan-
jing University of Science and Technology, Nan-
jing, China in 2020 and received the master’s
degree in control science and engineering at
Beijing Institute of Technology, Beijing, China,
in 2023, where he has since been working on
his Ph.D. degree. His research interests are in
the area of optimal control and its applications in
unmanned vehicles.

Runqi Chai (Member, IEEE) received the B.S.
degree in information and computing science
from the North China University of Technology,
Beijing, China, in 2015 and the Ph.D. degree in
Aerospace Engineering from Cranfield Univer-
sity, Cranfield, U.K, in August 2018. He is cur-
rently a research fellow at Cranfield University.
His research interests include unmanned vehicle
trajectory optimization, guidance and control.

Senchun Chai (Senior Member, IEEE) received
the B.S. and master’s degrees in control sci-
ence and engineering from Beijing Institute of
Technology, Beijing, China in 2001 and 2004. He
received the Ph.D. degree in Networked Control
System from University of South Wales, Pon-
typridd, U.K., in 2007. He is currently a professor
of School of Automation with Beijing Institute
of Technology. His current research focuses on
flight control system, networked control systems,
and embedded systems.

Farshad Arvin (Senior Member, IEEE) received
the BSc degree in Computer Engineering, the
MSc degree in Computer Systems engineering,
and the PhD degree in Computer Science, in
2004, 2010, and 2015, respectively. Farshad
is an Associate Professor in Robotics in the
Department of Computer Science at Durham
University in UK. His research interests include
swarm robotics and autonomous multi-agent
systems.

Jinning Zhang received the MSc and PhD de-
gree in Aerospace Propulsion with Cranfield Uni-
versity, U.K in 2019 and 2022. She is currently
a Lecturer (Assistant Professor) in Aerospace
and Computational Engineering with University
of Leicester, UK. Her research interests include
energy management strategies and integrated
control system design for aerospace propul-
sion, AI for transport and energy systems, and
transportation-energy nexus.

Barry Lennox (Senior Member, IEEE) is a Pro-
fessor of Applied Control and Nuclear Engi-
neering Decommissioning and holds a Royal
Academy of Engineering Chair in Emerging
Technologies. He is Director of the Robotics
and Artificial Intelligence for Nuclear (RAIN)
Robotics Hub and Research Director of the Dal-
ton Cumbrian Facility. He is a Fellow of the
Royal Academy of Engineering, Senior Member
of the IEEE, Fellow of the IET and InstMC, and
a Chartered Engineer.

Citation on deposit:

Liu, T., Chai, R., Chai, S., Arvin, F., Zhang, J., &
Lennox, B. (2024). Fast Collision-Free Multi-Vehicle
Lane Change Motion Planning and Control
Framework in Uncertain Environments. IEEE

Transactions on Industrial Electronics, 71(12), 16602-16613.
https://doi.org/10.1109/tie.2024.3398674,

For final citation and metadata, visit Durham Research Online URL:
https://durham-repository.worktribe.com/output/3102527

Copyright Statement:

This accepted manuscript is licensed under the Creative Commons Attribution
4.0 licence. https://creativecommons.org/licenses/by/4.0/

https://durham-repository.worktribe.com/output/3085492

	3102527AAM
	Introduction
	Related works
	Motivation, Goals, and Contributions
	Layout

	Multi-AGV Lane Change Problem Description
	Vehicle Kinematics
	Boundary Constraints
	Collision Avoidance Constraints
	Overall Optimization Formulation
	Communication Topology

	Convex Feasible Set-based Algorithm
	Linearization of Equality Constraints
	Construction of Feasible Sets
	Trust Region Sequential Convex Programming

	DRL-based Collision-Free Tracking Control
	State Space and Action Space
	Reward Design
	Network Structure
	Integration of Actor-critic Off Policy Reinforcement Learning and Consensus Algorithm

	Simulation and HIL Studies
	Lane Change Scenarios and Parameter Specification
	Multi-Vehicle Lane Change Simulation Results
	Comparative Studies
	Comparison of Proposed Training Method and Standard DDPG Algorithm
	Hardware-in-the-loop Tests

	Conclusion
	References
	Biographies
	Tianhao Liu
	Runqi Chai
	Senchun Chai
	Farshad Arvin
	Jinning Zhang
	Barry Lennox

	Citation page-V1-2023

