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Abstract In this work, a class of efficient experimental and numerical methods
for recording sediment distributions in dam-break flows is developed and assessed.
A new experimental platform is developed and tested enabling accuracy and high
frame-per-second images to be generated and evaluated. The novelty of this study is
that the collected images are broken down into smaller cellular based images which
are individually assessed for their color contents. Every frame collected is first fil-
tered to exclude any background pixels and remove the effects of photography and
lighting, then the color spectra of the frame is analyzed and sensible filtering added
to remove the complex effects of fluid features including ripples and air bubbles.
Once these processes are complete, a simple color comparison can be utilized to as-
sess the sediment fraction of the flow in each frame and cell. The proposed method
is used on a small-scale dam-break problem and a four-stage breakdown of the dam-
break is given with measured sediment levels accounted for. Mathematical models
based on multilayer shallow water equations with mass exchange terms are devel-
oped in this study. The governing equations form a system of conservation laws
with source terms. As numerical methods we implement a fast, accurate and well-
balanced finite volume characteristics solver. Comparisons between experimental
and numerical results for the vertical distribution of sediments in a dam-break prob-
lem are also discussed.
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1 Introduction

Transport of sediments is a crucial aspect of modeling sedimentary flows, although
it is very hard to know exactly what mode of sediment transport is prevalent in any
flow. In general there are five modes of sediment transport; dissolved load, wash
load, suspended load, intermittently suspended (or bounding) load, and bed load.
Often the former three and latter two are amalgamated to give suspended and bed
load, see for instance [7, 10, 30, 31] and further reference are therein. Many ex-
periments for sediment transport have subsequently been conducted during the past
years on various bed forms. The one-dimensional natured experiments include the
small-scale dam-break problems were detailed in [11], and the stream over a dyke
was also studied in the Delft hydraulics laboratory [7]. There are also many two-
dimensional experimental studies including a partial dam-break reported in [36],
and the groin experiment conducted in [1]. These experimental investigations have
been very useful for quantitative and qualitative understandings of hydrodynamics
as well as morphodynamics at a laboratory scale. However, one aspect that is rarely
measured, is the vertical distribution of sediments within the fluid. This is mainly
due to its complex nature and the difficulties in sampling of developing flows with-
out altering the movement of sediments or the speed of fluids. In the present work,
these problems are overcame by utilizing a simple small scale one-dimensional flow
and image processing along with color content to measure both sediment transport
and water flow. This method still presents a number of difficulties such as, parallax
error, effects of lighting and water surface effects. These drawbacks are eliminated
in part by using the color content, disregarding the background among others, and
considering the images gathered in both the RGB in HSI color domains to give the
best results. It should be stressed that vertical distribution of sediments is very im-
portant for a full understanding of sediment transport in water flows. The techniques
implemented in our study would provide a new efficient and low cost approach for
gathering sediment distribution data in dam-break problems.

There exists many models for suspended sediments in water flows with different
empirical formulae for each type of load under study. One of the earliest and the
most recognized relation was formed from the work conducted by Shields in [34].
Indeed, Shields has created the foundation for a lot of the work conducted nowadays,
but it has a series of limits due to the ranges over which the data was generated
(such as grain size and Reynolds numbers). However, the line between the initiation
of motion and the entrainment of particles into the flow was, as Sheilds explained,
difficult to assess. Extensive work has been carried out to improve this analysis and
develop consistent relations for suspended sediments, see for example [8, 29, 25].
Most natural bodies of water in which sediment transport is a major feature, such
as rivers and coastal waters, may be approximated by shallow water flows obtained
by depth-averaging the complex free-surface flows, see [13, 26, 27, 41, 40, 14, 23]
among others. For the modeling of morphodynamics in shallow water flows, the
three most popular models are the Grass model [19], the Meyer-Peter & Muller
model [24] and the Van-Rijn model [29]. A large amount of work has also been
performed on the effects of water flows on sediment beds, see for example [32,
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39, 38, 5]. The predominant approach to sediment transport problems is to rely on
empirical data sets, or semi-empirical relations derived from these data sets, see
[33] among others. The scale of these approaches can vary widely, from particulate
tracking [15], to whole estuary simulations using sediment balance models [15].

In general, the incompressible Navier-Stokes equations have been widely used as
the basis for a large number of models and solutions in this field. However, the use
of a fully three-dimensional approach for these flows in sediment transport simula-
tions presents challenging formulations and it is computationally expensive. There-
fore, modelling simplifications are often preferable, see [23] and further references
are therein. One notable development in this direction consists of multilayer shal-
low water models which offer, a more efficient and accurate flow description. Both
miscible [3, 2, 18] and immiscible layered models [20] have been considered in
the literature. The advantage of both models is that they avoid the computationally
expensive solutions of three-dimensional flows while returning stratified velocities
(in two space dimensions). The shallow water equations, can be derived from the
non-stationary three-dimensional Navier-Stokes equations, see for example [3, 18].
In the presented work, a novel miscible multilayer model is developed, this model
includes movable beds and transport of sediments. The formulation of the model
consists of a set of multilayer shallow water equations coupled to a set of transport
equations for the suspended sediments in each layer, and a set of semi-empirical
equations for erosion and deposition are used. Intra-layer mass movement is cap-
tured through mass exchange terms in both the water flow and the sediment concen-
trations. Thus, each layer is able to have a varying sediment concentration and flow
velocities to it neighboring layers. Other models in [21] have similar resolution for
the vertical concentration, but the proposed multilayer model does not require com-
putationally demanding vertical discretizations. Recently, a similar work has been
extended to account for turbulent kinetic energy in [43]. The focus in the present
work is on developing a framework within which empirical or semi-empirical rela-
tions as those reported in [43] can be easily incorporated into the numerical model
as required. For the entrained sediments we use the equations proposed in [9] but
the presented formulation allows for other erosion and deposition equations to be
easily incorporated such as those reported in [16, 22, 19, 24].

Solving the multilayer shallow water equations numerically is a complex prob-
lem owing to their nonlinear nature as well as the source terms and the free-surface
aspects, compare [3, 2] among others. The inclusion of bed-load and suspended sed-
iment equations in the multilayer model creates even more complexities to a numer-
ical solver for this fully coupled system. The problem arises from the coupling terms
in these models that encompass derivatives of the unknown physical variables, that
the result in the system becoming non-conservative and even non-hyperbolic. As a
result, numerical methods originally developed for multilayer shallow water equa-
tions over fixed beds will encounter instabilities if applied individually to each layer.
In the current study, we implement the Finite Volume Characteristics (FVC) method
developed in [6] for solving single-layer shallow water equations. As well as being
second-order accurate, the FVC method circumvents the solution of Riemann prob-
lems as it is a predictor-corrector type method. In the predictor stage, the method of
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characteristics is used to reconstruct the numerical fluxes while the corrector stage
recovers to the conservation equations using the finite volume discretization. As
shown in [2, 31], the considered FVC method has been used to solve a class of
multilayer shallow water equations. As shown in these studies, the FVC method is
simple, conservative, non-oscillatory, and a practical solver for multilayer shallow
water flows over movable beds. In the present work, further improvements to the
FVC method have implemented including: (i) a third-order Runge-Kutta scheme is
applied to the time integration; (ii) a second-order splitting operation is used for
the solution of the source terms, and; (iii) a cubic Spline interpolation is utilized in
the predictor stage. We present numerical results in order to verify the multilayer
shallow water flows over erodible beds. Finally, we demonstrate the ability of the
proposed model for calculating lateral and vertical distributions of velocities for a
multilayer dam-break flow over erodible bed.

This paper is organized as follows: In Section 2 we present a full description of
the experimental set-up used and discuss the difficulties to overcome and potential
sources of errors. In Section 3 we introduce the mathematical equations governing
multilayer shallow water flows over a sedimentary topography. In Section 4, the
numerical method for solving the governing equations is formulated. Included in
this section is the reconstruction of numerical fluxes by applying the method of
characteristics and the discretization of source terms in the model. Experimental
and numerical results are presented in Section 5. Finally, Section 6 contains some
concluding remarks.

2 Experimental set-up for attaining vertical distribution of
sediments in dam-break flows

This section overviews the experimental methods used to calculate the vertical dis-
tribution of sediments in a one-dimensional dam-break flow. It focuses on both the
physical techniques that are involved in creating the dam-break, as well as overview-
ing the digital processing techniques required to extract the measured data. It further
describes the design and tuning process that was used to create accurate and repeat-
able results. Commercial image processing tools were used as they provide a basic
toolbox that could be quickly adapted for the purposes of this study. The sizing of
the entire experiment was of great concern and were dictated by the photographic
equipment available and the sediment sizes. There have been a number of small
scale one-dimensional dam-break problems which have already been investigated at
various lengths from, the 1.2 m Taipei experiment in [11] to the 6 m long Hanyang
University experiments in [28]. With the aim to achieve a 0.5 mm to pixel preci-
sion, a camera with 1080p resolution and 100 f ps is used in our experiment. For
the presented results, the bed is formed of a well-graded soil in the range of 1 mm
to 0.16 mm and with an averaged particle size d = 0.25 mm. Consequently, the
domain was set to a length of 900 mm and, to enable workability and minimal edge
effects, the domain width was fixed at 75 mm. The dam-break height was initially
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Fig. 1 Design illustration of the experimental rig showing a fixed bed used in the present work.

made at 100 mm. and following testing it was increased to 120 mm to amplify
the erosion observed. Having decided upon the overall dimensions, the mechanism
was designed. An electronically controlled pneumatic valve was used to minimize
human error and the opening time. The target set was to allow for a dam-break to
occur in less than 0.02 s. The available line pressure available was 10 bar and a
small tracking cylinder initially trialled. A range of designs were tested, a directly
coupled linear actuator in its simplest configuration was found to be the quickest
and most repeatable with an averaged opening time of 0.011 s. A bead of sealant
was placed in a rebate along the edges of the dam so as to seal the edged but not
impair the opening of the dam. The sealant reduced the averaged opening time to
0.018 s which was still acceptable. One conclusion that emerged early on, was that
even if the bed is compacted it will still would seep. A range of sediments were
trialled from ABS spheres at 6 mm to fine sand at 0.25 mm, nonetheless the seep-
age beneath the dam undermined to an impractical extent before a differential head
of 100 mm could be achieved. Consequently, a solid apron behind the dam was
implemented as shown in Figure 6.

In order to maximize effects of the high intensity lighting used, transparent ends
and a high-sided fixed-end tank were used. This diverged from other open-ended
or re-circulating tanks that are more normally used during studies of this type. The
dam is positioned at 330 mm from the left hand-side which allows 640 mm for
the dam-break to run over as shown in Figure 6. This maximizes the flow evolution
before it reaches the end of the tank, giving an experimental time of 0.42 s over
a fixed low slip bed and a 0.48 s over a high friction sand bed. The high quality
consumer grade camera was able to control for photographic concerns like white
balance amongst other concerns (these were also checked by eye and able to be
modified if required). All other laboratory conditions were maintained throughout
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Fig. 2 A sketch detailing the problem of parallax errors related to high-speed camera.

the experiments as far possible. In order to mitigate the errors produced by a single
camera recording, a variety of post-processing measures were implemented. The
first addressed was parallax error as shown in Figure 2, the greater the orthogonal
distance from the camera position the more skewed the image captured would be,
which would affect the sediment calculations. Three mitigations were put in place:
(i) the camera was centered at 450 mm not at the dam-break; (ii) a tele-centric lens
was used and a cell neighbor averaging calculation was implemented.

A parallax error also affected the vertical dimension of the images, though to a
lesser extent than in the horizontal dimension. The next issue was that the mapping
of pixels dominated by the bed into the fluid cells would artificially increase the
measured concentration. Balanced against the need to capture the bed-load this be-
came a complex issue. Two steps were used to reduce this error: first, the camera
was positioned at the bed height and as erosion in these experiments was minimal
this almost eradicated the problem. Second, the bed height was extracted at the light
change using the human eye (though in the future it is hoped to use a deep vision
approach). This was possible as the increased voids in bed load as compared to a
packed bed, created a noticeable light change. Algorithms were initially trialled to
discern this but proved to be less accurate and more time consuming than blowing
up the image and implementing a dragging point click interpolation method. Thus,
the following procedure is developed to correct these raw images and extract the
required data:

1. The white balanced was checked against the standard and corrected if necessary;
2. The bed and water surfaces were mapped by a point-click method and parallax

errors were computed;
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Fig. 3 A screenshot of the automated program used in the current work.

3. Irrelevant background pixels were removed and any remaining hue/lighting er-
rors were corrected by multiple HSI masks;

4. A sediment color chart was created for each experimental run using known high
and low areas;

5. The image was then broken down into cells and the depth-averaged concentration
by interpolated from the color chart and the cell average;

6. The results were checked against the quantity of erosion in the experiment. This
step also allows for an error measure to be made.

It should be stressed that, although this procedure requires some human interaction
in step 2, all other steps were automated and incorporated into a graphical user
interface (GUI) as shown in Figure 3.

3 Mathematical models for vertical distribution of sediments in
dam-break flows

Multilayer flow systems are mainly obtained using a vertical discretization of the
three-dimensional Navier-Stokes equations accounting for of shallow water assump-
tions, compare [2, 3, 4] and further references are therein. In the present study, we
consider the one-dimensional version of the model to each of the layers in the fluid
and include models for sediment transport accounting for mass exchange between
the layers and intra-layer forces between the erodible bed and the water flow. In a
multilayer system of a total number of M layers, the shallow water equations for
each layer k = 1,2, . . . ,M read as
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Fig. 4 A simple illustration of multilayer shallow water flows over erodible beds. Each layer k
(k = 1, 2, . . . , M ) is characterized with a water height hk , a water velocity uk , and a sediment
concentration ck . The initial bed is denoted by B.

∂hk

∂t
+
∂ (hkuk )

∂x
= Gk−1/2 − Gk+1/2,

(1)
∂ (hkuk )

∂t
+

∂

∂x

(
hku2

k +
1
2
gh2

k

)
= −ghk

∂B
∂x

+ Fk ,

where uk is the depth-averaged water velocity of the kth layer, B the bottom to-
pography, g the gravitational acceleration, and hk the water height of the kth layer
defined as

hk = lk H, k = 1, . . . ,M, (2)

where H is the total water depth and lk is the proportional height of the layer, see
Figure 4 for an illustration. In (1), Fk includes the intra-layer forces defined be-
low and Gk±1/2 are mass exchange terms between the layers including erosion and
deposition in the lower layer defined as

Gk−1/2 =




k∑
β=1

( ∂(hβuβ )
∂x

−lβ
M∑
γ=1

∂hγuγ
∂x

)
+

Ek − Dk

1 − p
, if k = 2, . . . ,M,

−
E1 − D1

1 − p
, if k = 1,

with Ek and Dk represent the entrainment and deposition terms in the upward and
downward directions, respectively. Following the same procedure as in[3], we sum
the first equation in (1) for all the layers to obtain a single equation for the total
water height H as

∂H
∂t

+

M∑
k=1

∂

∂x
(hkuk ) =

E1 − D1

1 − p
.
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In the current study, we also consider bed-load and suspended sediments within
the multilayer shallow water system (1). To this end, we define the depth-averaged
concentration ck for the kth layer as

ck =
ρk − ρw
ρs − ρk

, (3)

where p is the porosity, ρw the water density, ρs the sediment density and ρk is the
density of the water-sediment mixture in the layer k. Hence, the governing equations
we consider for modeling multilayer shallow water flows over erodible beds are
given as

∂H
∂t

+

M∑
k=1

∂(hkuk )
∂x

=
E1 − D1

1 − p
,

∂ (hkuk )
∂t

+
∂

∂x

(
hku2

k +
1
2
gh2

k

)
= −ghk

∂B
∂x
−

(ρs − ρw )
2ρk

gh2
k

∂ck
∂x

+ Fk ,

(4)
∂(hkck )
∂t

+
∂ (hkukck )

∂x
= Ek − Dk − ck+1/2Gk+1/2 + ck−1/2Gk−1/2 −

ε

(
∂2c∆+1/2

∂z2 −
∂2c∆−1/2

∂z2

)
,

∂B
∂t

= −
E1 − D1

1 − p
,

where E1 and D1 are the erosion and deposition rates on the bottom fluid layer,
respectively. In this study, the inter-layer diffusion in the concentration is handled
by considering the diffusion potential between two layers c∆,k−1/2 and c∆,k+1/2 and a
diffusion coefficient ε . Note that these terms are included in the model to handle the
sediment diffusion. In (4), the external force Fk acting on the kth layer accounting
for friction and momentum exchange effects is given by

Fk = F (u)
k

+ F (b)
k

+ F (w)
k

+ F (µ)
k

, (5)

with F (u)
k

is related to the momentum exchange between the layers by

F (u)
k

= uk+1/2Gk+1/2 − uk−1/2Gk−1/2 −
1
lk

(ρ0 − ρk )(Ek − Dk )uk
ρk (1 − p)

.

where ρ0 is the density of the saturated bed related to the porosity as

ρ0 = ρwp + ρs (1 − p),

and the intermediate velocity uk+1/2 is reconstructed using an upwind method based
on the sign of the mass exchange term as
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uk−1/2 =




uk−1, if Gk−1/2 ≥ 0,

uk , otherwise.

The vertical kinematic eddy viscosity term F (µ)
k

in (5) takes into account the friction
between neighboring layers as

F (µ)
k

=




−2ν
uk−1 − uk

(lk−1 + lk )H
, if k = M,

2ν
uk+1 − uk

(lk+1 + lk )H
− 2ν

ul−1 − uk
(lk−1 + lk )H

, if k = 2, . . . ,M − 1,

2ν
ul+1 − uk

(lk+1 + lk )H
, if k = 1,

where ν is the eddy viscosity. The external bed friction term F (b)
k

in (5) is given as

F (b)
k

=




−
gn2

b

H1/3 u1 |u1 |, if k = 1,

0, otherwise,

(6)

where nb is the Manning roughness coefficient. The surface wind force F (w)
k

in (5)
is defined as

F (w)
k

=




−
σ2ρa

H
w |w |, if k = M,

0, otherwise,

(7)

where w is the relative wind velocity at 10 m above the water surface and σ is the
wind stress coefficient. Note that for the bottom layer, an equation that relates the
effects of an erodible bed is included in the model (1). These equations are pre-
sented in a very general form such that appropriate empirical erosion and deposition
equations can be substituted with ease. Thus, to determine the entrainment and de-
position terms in (1) we assume a non-cohesive sediment and we use the empirical
relations reported in [9]

Dk =




ws (1 − Ca )mCa , if k = 1,

0, otherwise,
(8)

where ws is the deposition coefficient experimentally measured in [30, 42, 33], d
the averaged diameter of the sediment particle, m an exponent indicating the effects
of hindered settling due to high sediment concentrations, Ca = βcck is the near-bed
volumetric sediment concentration. Here, βc is a coefficient larger than unity used
to ensure that the near-bed concentration does not exceed (1 − p) and it is defined
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in [10] by

βc = min
(
2,

1 − p
ck

)
.

For the entrainment of the material the following relation is used

Ek =




ϕ
θ − θc

h1
u1d−0.2, if θ ≥ θc and k = 1,

0, otherwise,
(9)

where ϕ is a coefficient to control the erosion forces, θc is a critical value of Shields
parameter for the initiation of sediment motion and θ is the Shields coefficient de-
fined by

θ =
u2
∗

sgd
,

with s =
ρs

ρw
− 1 is the submerged specific gravity of sediment and u∗ is the friction

velocity defined as

u2
∗ =

√
g n2

b

h1/3 |u1 | .

Note that the equations used for the entrainment and deposition have been widely
used in the literature for the conventional single-layer shallow water flows over
erodible beds, see for example [30, 42, 33, 5]. It should also be pointed out that
no vertical velocities are calculated in the proposed model, but the vertical sediment
diffusion is a major problem for a formulation of this type. In this study, a sediment
diffusion coefficient ε is introduced in the multilayer model (4).

For ease of presentation, we re-arrange the governing equations (4) into a com-
pact vector form as

∂W
∂t

+
∂F(W)
∂x

= Q(W) + R(W), (10)

where W is the vector of conserved variables, F(W) is the vector of flux functions,
Q(W) and R(W) are the vectors of source terms defined by
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F(W) =

*..........................................
,

k∑
α=1

lαHuα

Hu2
1 +

1
2
gH2

Hu1c1

Hu2
2 +

1
2
gH2

Hu2c2

...

Hu2
k

+
1
2
gH2

Hu2
k

+
1
2
gH2

Hukck

0

+//////////////////////////////////////////
-

, Q(W) =

*.....................................
,

0

−gH
∂B
∂x
−

(ρs − ρw )
2ρ1

gl1H2 ∂c1

∂x

0

−gH
∂B
∂x
−

(ρs − ρw )
2ρ2

gl2H2 ∂c2

∂x

0
...

−gH
∂B
∂x
−

(ρs − ρw )
2ρk

glM H2 ∂ck
∂x

0

0

+/////////////////////////////////////
-

,

W =

*.........................................
,

H

Hu1

Hc1

Hu2

Hc2

...

Huk

Huk

Hck

B

+/////////////////////////////////////////
-

, R(W) =

*.......................................
,

E1 − D1

1 − p

−
1
l1

(
F (u)

1 + F (b)
1 + F (µ)

1

)
E1 − D1 − G3/2c3/2 − ε

∂2c∆,3/2
∂z2

−
1
l2

(
F (u)

2 + F (µ)
2

)
G5/2c5/2 − G3/2c3/2 + ε

∂2c∆,3/2
∂z2 − ε

∂2c∆,5/2
∂z2

...

−
1
lk

(
F (u)
k

+ F (w)
k

+ F (µ)
k

)
−GM−1/2cM−1/2 + ε

∂2c∆,M−1/2

∂z2

−
E1 − D1

1 − p

+///////////////////////////////////////
-

.

It should be stressed that the source term Q contains the first-order differential terms
with respect to the coordinate x, while the remaining forces are included in the
source term R. This structure is advantageous as it allows for a time splitting oper-
ator in (10), for which the source terms Q and R are treated separately in different
stages of the splitting.
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4 Numerical methods for vertical distribution of sediments in
dam-break flows

To integrate the system (4), time is divided into subintervals [tn , tn+1] with length
∆t = tn+1 − tn and the notation Wn is used to denote the value of a generic function
W at time tn . Here, a second-order splitting procedure, like[37] is used, and carried
out in three stages as:

Stage 1: Solve for W∗

∂W∗

∂t
= R(W∗), t ∈ [tn , tn+1/2],

(11)
W∗(tn ) = W(tn ).

Stage 2: Solve for W∗∗

∂W∗∗

∂t
+
∂F(W∗∗)

∂x
= Q(W∗∗), t ∈ [tn , tn+1],

(12)
W∗∗(tn ) = W∗(tn+1/2).

Stage 3: Solve for W∗∗∗

∂W∗∗∗

∂t
= R(W∗∗∗), t ∈ [tn+1/2, tn+1],

(13)
W∗∗∗(tn+1/2) = W∗∗(tn+1).

To complete the time integration, the explicit third-order Runge-Kutta method [35]
is used for each stage in (11)-(13). For instance, to advance the solution of (11) from
time tn to time tn+1 the following is used

W (1) = Wn + ∆tR(Wn ),

W (2) =
3
4

Wn +
1
4
W (1) +

1
4
∆tR(W (1)), (14)

Wn+1 =
1
3

Wn +
2
3
W (2) +

2
3
∆tR(W (2)).

The asterisk is dropped off of the variables for ease in the notation. Note that the
Runge-Kutta method (14) is total variation diminishing (TVD), third-order accu-
rate in time, and stable under the usual Courant-Friedrichs-Lewy (CFL) condition
involving eigenvalues of the system under study. It should also be noted that ex-
plicit expressions of the eigenvalues for the system (10) are not trivial to find and
as for multilayer shallow water equation over fixed beds there may exist situations
for which eigenvalues become complex. In these cases, the multilayer system (10)
is not hyperbolic and yields to the so-called Miles-Howard instability at the wa-
ter interfaces [12]. As a consequence, most finite volume methods which are based
on Riemann solvers would fail to resolve the system (10) for the multilayer shal-
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low water equations over erodible beds. In the present study, we consider the Finite
Volume Characteristics (FVC) method introduced in [6] and used in [2] for the nu-
merical solution of multilayer shallow water flows over fixed beds. In this section,
we briefly describe the FVC formulation for the system (10) and further details can
be found in [6, 2]. Note that the FVC method does not require the calculation of the
eigenvalues for the multilayer system (4). However, the selection of time steps is
carried out using the eigenvalues associated with the single-layer counterpart of the
system (4) which are defined in [5] as

λ1 = 0,
(15)

λ2,k = uk , λ3,k = uk −
√
ghk , λ4,k = uk +

√
ghk , k = 1,2 . . . ,M.

Note that the eigenvalues (15) are for the single-layer sediment transport system
associated with (4) using the water heights hk and not the total height H . This results
in a system of (3M + 1) equations for which each uncoupled layer, its associated
four eigenvalues are given by (15). It should also be stressed that similar approach
has been considered in [2] for multilayer shallow water flows over fixed beds for
which eigenvalues of it single-layer counterpart have been used in the simulations.
In the current study, the courant number is set to Cr = 0.85 in all the computations
and the time stepsize ∆t is adjusted at each step according to the CFL condition

∆t = Cr
∆x

max
k=1,2, ...,M

(
|λ1 | , ��λ2,k �� , ��λ3,k �� , ��λ4,k ��

) ,
where ∆x is the spatial discretization step, λ1, λ2,k , λ3,k and λ4,k are the approxi-
mated eigenvalues in (15).

4.1 Spatial discretization

The spatial domain is discretized into control volumes [xi−1/2, xi+1/2] centered at xi
with a step size ∆x. For the space discretization of the equations (12), the following
notations are used

Wi± 1
2
(t) = W(t, xi± 1

2
), Wi (t) =

1
∆x

∫ x
i+ 1

2

x
i− 1

2

W(t, x)dx,

to denote the point-values and the approximate cell-average of the variable W at
the gridpoint (t, xi± 1

2
) and (t, xi ), respectively. Integrating the equation (12) with

respect to space over the control volume, the following semi-discrete equations are
obtained

dWi

dt
+

Fi+1/2 − Fi−1/2

∆x
= Qi , (16)
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where Fi±1/2 = F(Wi±1/2) are the numerical fluxes at the cell interfaces x = xi±1/2.
In equation (12), Qi is a consistent discretization of the source term Q in (12).
In order to reconstruct the numerical fluxes F n

i∓1/2, the Method of Characteristics
(MoC) is applied to the advective version of the system (12). Without accounting
for the source term R(W) we reformulate the equations in (12) into the following
advective form

∂H
∂t

+

( M∑
j=1

l ju j

)
∂H
∂x

= −

M∑
j=1

l j H
∂u j

∂x
,

∂Qk

∂t
+ uk

∂Qk

∂x
= −Qk

∂uk
∂x
− gH

∂(H + B)
∂x

−
(ρs − ρw )

2ρk
glk H2 ∂ck

∂x
,

∂Pk

∂t
+ uk

∂Pk

∂x
= −Pk

∂uk
∂x

,

where the discharge Qk = Huk and the sediment remittance Pk = Hck . The above
system can also be rearranged in a compact vector form as

DkUk

Dt
= Sk (U) , k = 0,1,2, . . . ,2M, (17)

with Dk

Dt is the total derivative defined by

Dk

Dt
=
∂

∂t
+Uk

∂

∂x
, k = 0,1,2, . . . ,2M, (18)

where U = (U0,U1, . . . ,U2M )T , S (U) = (S0,S1, . . . ,S2M )T with

U =

*.........................
,

H

Q1

P1

...

QM

PM

+/////////////////////////
-

, S(U) =

*...........................
,

−

M∑
j=1

l j H
∂u j

∂x

−Q1
∂u1

∂x
− gH

∂ (H + B)
∂x

−
(ρs − ρw )

2ρ1
gl1H2 ∂c1

∂x

−P1
∂u1

∂x
...

−HuM
∂uM

∂x
− gH

∂ (H + B)
∂x

−
(ρs − ρw )

2ρM
glM H2 ∂cM

∂x

−PM
∂uM

∂x

+///////////////////////////
-

,

and the advection velocityUk is defined as
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Fig. 5 A schematic diagram showing a control volume and the main quantities used in the calcu-
lation of the departure points Xi+1/2(τ) that will reach xi+1/2 at time tn+1. The exact trajectory is
represented by a solid line and the approximate trajectory with a dashed line.

Uk =




M∑
j=1

l ju j , if k = 0,

u k + 1
2

, if k = 1,3,5, . . . ,

u k
2

, if k = 2,4,6, . . . .

(19)

Note that we used k = 0 in the above equations to only formulate the compact
advective form (17) for all the equations and it does not refer to any layer in the
system. The principal idea of the FVC method is to use the method of character-
istics to approximate the numerical fluxes in (16). Hence, the characteristic curves
associated with the system (17) are solutions of the initial-value problems

dXk, i+1/2(τ)
dτ

= Uk, i+1/2
(
τ,Xk, i+1/2(τ)

)
, τ ∈ [tn , tn+1] ,

(20)
Xk, i+1/2(tn ) = xi+1/2, k = 0,1, . . . ,2M.

where Xk, i+1/2(τ) is the departure point defined at time τ of a particle that will reach
xi+1/2 at time tn+1. It should be noted that the FVC method does not follow the flow
particles forward in time, as a Lagrangian method does, instead it traces backwards
the position at time tn of particles that will reach the points of a fixed mesh at time
tn+1, see Figure 5 for an illustration. Therefore, the FVC method avoids the grid
distortion difficulties that the conventional Lagrangian schemes have.

Accurate approximation of the characteristic curves Xk, i+1/2(tn ) is crucial to
the overall accuracy of the FVC method. Some authors approximate the solutions
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of (20) using a second-order explicit Runge-Kutta scheme, which is not accurate
enough to maintain a particle on its curved trajectory, see for instance [17]. In [6, 2],
a second-order extrapolation based on the mid-point rule is used to approximate the
solution of (20), but this method involves an iterative procedure which may become
computationally demanding. In the present study, we consider the third-order ex-
plicit Runge-Kutta method (14). Thus, the procedure to approximate the solution of
the differential equations (20) can be achieved by

X
(1)
k, i+1/2 = xk, i+1/2 − ∆tUn

k, i+1/2,

X
(2)
k, i+1/2 =

3
4

xk, i+1/2 +
1
4
X

(1)
k, i+1/2 −

1
4
∆tUn

k, i+1/2, (21)

Xk, i+1/2(tn ) =
1
3

xk, i+1/2 +
2
3
X

(2)
k, i+1/2 −

2
3
∆tUn

k, i+1/2.

It should be stressed that since the departure points Xk, i+1/2(tn ) and the stages
X

(1)
k, i+1/2 and X (2)

k, i+1/2 would not necessarily lie on a mesh point in the computa-
tional domain, the solution at the departure points must be obtained by interpolation
from known values at the gridpoints of the element where the points Xk, i+1/2(tn )
and the stages X (1)

k, i+1/2 and X (2)
k, i+1/2 are localized. In the current work, we use the

cubic Spline interpolation to approximate the solutions at the characteristics points.
Other high-order interpolation procedures can also be applied.

Once the characteristics curves Xk, i+1/2(tn ) in (20) are calculated, a solution at
the cell interface xi+1/2 is approximated as

Un+1
k, i+1/2 := Uk

(
tn+1, xi+1/2

)
= Ũk

(
tn ,Xk, i+1/2(tn )

)
, (22)

where Ũk
(
tn ,Xk, i+1/2(tn )

)
is the solution at the departure point Xk, i+1/2(tn ) ap-

proximated by the cubic interpolation using the gridpoints of the control volume
where it belongs i.e.

Ũk
(
tn ,Xk, i+1/2(tn )

)
= P

(
Uk

(
tn ,Xk, i+1/2(tn )

))
, (23)

where P is the cubic Spline interpolating operator. Notice that authors in [6, 2] used
the Lagrange interpolation polynomials in (23). In what follows we use the first-
order Euler scheme to illustrate the formulation of the FVC method but in all our
simulations the third-order Runge-Kutta scheme (14) is used. Thus, applied to the
equations (17), the characteristic solutions are computed in the predictor stage of
the FVC method as
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Hn+1
i+1/2 = H̃n

i+1/2 −
∆t
∆x

H̃n
i+1/2

M∑
k=1

lk
(
un
k, i+1 − un

k, i

)
,

Qn+1
k, i+1/2 = Q̃n

k, i+1/2 −
∆t
∆x

(
Q̃n

k, i+1/2

(
un
k, i+1 − un

k, i

)
+

gH̃n
i+1/2

((
Hn

i+1 + Bn
i+1) − (Hn

i + Bn
i

))
+ (24)

(ρs − ρw )
2 ρ̃n

k, i+1/2
glk

(
H̃n

i+1/2

)2 (
cn+1/2
i+1 − cn+1/2

i

))
,

Pn+1
k, i+1/2 = P̃n

k, i+1/2 −
∆t
∆x

P̃n
k, i+1/2

(
un
k, i+1 − un

k, i

)
,

where H̃n
i+1/2 = H

(
tn ,X0, i+1/2(tn )

)
, Q̃n

k, i+1/2 = Qk
(
tn ,Xk, i+1/2(tn )

)
and P̃n

k, i+1/2 =

Pk
(
tn ,Xk, i+1/2(tn )

)
are the solutions at the departure points Xk, i+1/2(tn ) computed

using the cubic Spline interpolation. To calculate the numerical fluxes Fi±1/2 =

F
(
Wi±1/2

)
, the intermediate states Wi±1/2 are updated using the characteristic so-

lutions Ui±1/2 in the predictor stage (24). Thus, using the first-order Euler scheme
for illustration only, the solution in the FVC method (16) is obtained using the fol-
lowing corrector stage

Hn+1 = Hn −
∆t
∆x

M∑
k=1

(
(lk Huk )ni+1/2 − (lk Huk )ni−1/2

)
,

Qn+1
k, i = Qn

k, i −
∆t
∆x

*
,

(
Hu2

k +
1
2
gH2

)n
i+1/2

−

(
Hu2

k +
1
2
gH2

)n
i−1/2

+
-
−

(25)
∆t
∆x

g *
,
Ĥn

i

(
Bn
i+1 − Bn

i−1

)
−

(ρs − ρw )
2 ρ̂n

k, i

lk
(
Ĥn

i

)2 (
cnk, i+1 − cnk, i−1

)+
-
,

Pn+1
k, i = Pn

k, i −
∆t
∆x

(
(Hukck )ni+1/2 − (Hukck )ni−1/2

)
.

For the reconstruction of the terms Ĥn
i and ρ̂n

k, i
, we use the same concept as in [6, 2]

to guarantee that the discretization of the flux gradients and source terms in (16) are
well balanced. Hence,

Ĥn
i =

1
4

(
Hn

i+1 + 2Hn
i + Hn

i−1

)
, ρ̂nk, i =

1
4

(
ρnk, i+1 + 2ρnk, i + ρnk, i−1

)
. (26)

Note that the discretization of equations (11) and (13) is straightforward and it is
omitted here. It should also be mentioned that the considered FVC method is fully
conservative by construction and the non-conservative system (17) is used only to
compute the intermediate states for the numerical fluxes in (16).
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Table 1 Sediment parameters for the bed type used in our simulations for the erosion and deposi-
tion formulae.

d p ϕ θc ws nb ε ρs

0.0625 mm 0.5 0.0004 0.0145 0.0002 0.011 0.005 1420 kg/m3

Fig. 6 Configuration of the scour after an apron domain (top) and a photo of the experimental
setup (bottom) used in the current study.

5 Experimental and numerical results

The aim of this section is to present both the collected data from the experimental
study and compare them to the numerical results obtained using the multilayer shal-
low water model. This should demonstrate that the measurements are reasonable
and validate the computed results. To this end the numerical model is first com-
pared with a three-dimensional Navier-Stokes solver using icoFOAM algorithm on
the OpenFOAM software for a dam-break problem over a fixed bed. Then, the ex-
perimental data is presented and compared to those results obtained using the FVC
method solving the multilayer shallow water equations. We present computational
results using the sediment characteristics listed in Table 1. These sediment param-
eters have been recommended in many experimental studies on sediment transport



20 Thomas Rowan and Mohammed Seaid

Fig. 7 Numerical results obtained for the water depth using the FVC method on four different
meshes for the dam-break problem over a fixed bed.

applications, see for instance [30, 42, 33]. The configuration of the domain along
with the experimental setup are illustrated in Figure 6. The experimental work was
carried out at the hydraulics laboratory at University of Durham. In our simulations,
the water density ρw = 1000 kg/m3, the gravity acceleration g = 9.81 m/s2 and
the number of layers in the multilayer shallow water model is fixed to 10 for all
examples in this section.

First we examine the mesh convergence in the proposed FVC method for solving
dam-break problems. To this end, we consider the case of dam-break problem over
a fixed bed. Hence, B = 0 and initially,

H (0, x, y) =




0.10 m, if x ≤ 0.33 m,

0.016 m, if x > 0.33 m,
u(0, x, y) = 0 m/s.

We consider four meshes with ∆x = 0.036 m, 0.018 , 0.009 m and 0.0045 m using
10 layers in the multilayer model. The obtained results for the water depth at time
t = 0.42 s are presented in Figure 7. As can be seen for the last two meshes with
∆x = 0.009 m and ∆x = 0.0045 m, the differences in the results obtained for the
water depth in Figure 7 are very small. It is easy to see that solutions obtained us-
ing ∆x = 0.036 m are far from those obtained by the other meshes. Increasing the
density of control volumes, the results for the ∆x = 0.009 m and ∆x = 0.0045 m
are roughly similar. Results obtained for the water velocity and not reported here for
brevity, show the same trends. This ensures grid convergence of the numerical re-
sults. Hence, the mesh with ∆x = 0.009 m is used in all our next computations. The
reasons for choosing this mesh structure lie essentially on the computational cost
required for each mesh configuration and also on the numerical resolution obtained.
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Fig. 8 Three-dimensional results obtained using OpenFOAM simulation for the dam-break prob-
lem over a fixed bed at time t = 0.42 s.

Fig. 9 Comparison between three-dimensional results obtained using OpenFOAM simulation, the
proposed multilayer model and the experimental results for the dam-break problem over a fixed
bed at time t = 0.42 s.

Our next concern is to validate our results to those obtained using the three-
dimensional Navier-Stokes equations. The objective is to discern the ability of the
presented model to capture sediment transport in both the horizontal and vertical
dimensions. Unfortunately, for this field of research the sedFOAM program, one of
the most highly advanced sediment tools in OpenFOAM, it is not able to simulate
the dam-break problem presented in this study. Thus, prior ot the addition of sedi-
ment to the domain, the dam-break over a fixed bed is considered and the IcoFOAM
solver is implemented. In Figure 8 we present the water free-surface obtained at
time t = 0.42 s for the three-dimensional simulations. Here, a mesh with 7569 el-
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ements and 4543 nodes is used in the three-dimensional computations along with a
fixed time step ∆t = 0.01. A comparison between the cross-section of the IcoFOAM
results at y = 0.05 and those obtained using the FVC method for 10-layer model
is depicted in Figure 9. The experimental results obtained for this case are also in-
cluded in this figure. It is clear from these results that the location and the speed
of the moving water front obtained using the multilayer model agree well to those
computed using the three-dimensional IcoFOAM model. Note that fluctuations with
different amplitudes appear in the three-dimensional results which are completely
absent in the results obtained using the multilayer model. These fluctuations are
mainly cause by the two-phase flow equations and turbulent effects accounted for in
the IcoFOAM model and are also in good agreement with the experimental for this
class of dam-break flows.

We next consider sediment transport in our experimental setup and compare the
measured results to those obtained using the FVC method solving the multilayer
shallow water equations. At time t = 0,

B(0, x, y) =




0 m, if x ≤ 0.33 m,

0.00475 m, if x > 0.33 m,
c(0, x, y) = 0,

and

H (0, x, y) =




0.12 m, if x ≤ 0.33 m,

0.016 m, if x > 0.33 m,
u(0, x, y) = 0 m/s.

In Figure 10 we present the experimental and numerical results obtained at two
different instants t = 0.23 s and t = 0.46 s. Here, we display the bed profile,
the water depth and the distribution of the sediments using the concentrations ck ,
k = 1,2, . . . 10. As the sediment is well distributed and the erosion rates are com-
parable, we do not observe ripple formation or any other effect of armoring, as the
experimental results demonstrate in these results. The results obtained for this dam-
break problem show that using a detailed description of sediments in the multilayer
shallow water model, it is possible to accurately represent the vertical distribution of
sediments constituting the bed. The proposed model perform very well for this case
and its capture the correct flow and sediments structures without requiring com-
plicated techniques or three-dimensional representations for the free-surface flows
over erodible beds. For a better insight, we depict in Figure 11 the bed profile B and
the averaged concentration c for the experimental and numerical simulations at time
t = 0.46 s. There is a good agreement between the results obtained using the exper-
imental setup and the multilayer shallow water model for both the bed and sediment
concentration distributions. The FVC method performs well for this test example
and produces highly accurate and stable numerical results using reasonably coarse
meshes. In general the sediment and flow features for this dam-break problem are
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Fig. 10 Experimental results (first column) and numerical results (second column) obtained for
the dam-break problem over an erodible bed at time t = 0.23 s (first row) and t = 0.46 s (second
row).

Fig. 11 Comparison between experimental and numerical results for the bed B (left) and the con-
centration c (right) obtained for the dam-break problem over an erodible bed at time t = 0.46 s.



24 Thomas Rowan and Mohammed Seaid

Fig. 12 Comparison between experimental and numerical results obtained for the dam-break prob-
lem over an erodible bed at time t = 0.23 s (first row) and t = 0.46 s (second row).

Table 2 Errors between the experimental and numerical results obtained for the bed, water height
and averaged concentration at four different times t = 0.12 s, 0.24 s, 0.35 s and 0.46 s.

B H c

t [s] L2-error L∞-error L2-error L∞-error L2-error L∞-error

0.12 1.34E-06 1.69E-04 2.14E-03 3.592=E-02 4.25E-02 1.82E-01

0.24 4.22E-06 7.73E-04 1.33E-03 2.07E-02 1.09E-01 1.72E-01

0.35 5.76E-06 9.52E-04 7.23E-04 1.36E-02 1.85E-01 2.12E-01

0.46 8.74E-06 1.58E-03 6.95E-04 1.13E-02 4.72E-01 2.23E-01

computed with no numerical artifacts or spurious oscillations. According to these
results the stability and shock capturing abilities of the FVC method are validated.

In Figure 12, we further compare the experimental and numerical results for this
dam-break problem over an erodible bed. Here, we plot the profiles of the bed and
water depth at two different times t = 0.23 s and t = 0.46 s. The dam collapses at
t = 0 and the flow system develops a shock wave heading downstream and a rar-
efaction wave traveling upstream. This is shown, in line with other experiments of
this type, in Figure 12. Furthermore, no localized undershoots or overshoots were
detected in either the flow velocity or the sediment concentration, even in the pres-
ence of steep gradients detected during the simulation. The results obtained for the
sediment concentrations shown in Figure 10 illustrate the sedimentary diffusion and
profiles of the sediment concentration can clearly be seen diffusing up through the
layers. The proposed FVC method accurately approximates the solution to this dam-
break problem over the erodible bed. Our final concern with this dam-break problem
is to quantify the errors on the obtained experimental and numerical results. To this
end, we present in Table 2, values of the L2-error and L∞-error between the exper-
imental and numerical results obtained for the bed B, water height H and averaged
concentration c evaluated at four different times t = 0.12 s, 0.24 s, 0.35 s and
0.46 s. Under the considered sediment conditions and for all times, the errors in
the sediment concentration are larger than those obtained for the bed and the water
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height. There is relatively low level of errors in our numerical simulations which is
deeply encouraging for the multilayer shallow water model proposed in this study.
To the knowledge of the authors, this is the first time that sediment concentration
has been computed and compared to a simulation in both the vertical and horizontal
dimensions for a dam-break problem.

6 Conclusions

A new class of experimental and numerical methods is presented in this study for the
vertical distribution of sediments in dam-break flows. The experimental tools em-
ploy a high-speed camera and image processing toolbox to extract the concentration
data for sediment transport. This new approach allows for the vertical distribution of
sediments in a flow to be accurately and efficiently assessed. These techniques have
been combined with a novel experimental setup that enable a small scale dam-break
to be investigated. Fine sand has been used in the experimental study and measure-
ments have been collected for its vertical distribution in the dam-break problem.
Through the development of this model, multilayer shallow water equations and
sediment transport equations (including erosion and deposition terms) have been
coupled and considered. Mass exchange terms are accounted for in the inter-layered
coupling for both water flow and sediment transport as well as including the ver-
tical sediment diffusion. In order to solve the coupled system, the finite volume
characteristics method was implemented along with a second-order splitting pro-
cedure to account for the source terms. The finite volume characteristics method
is second-order accurate and encompasses a predictor-corrector type procedure in
two stages. Firstly, the method reconstructs the numerical fluxes using the method
of characteristics. This results in an upwind discretization of the characteristic vari-
ables and avoids the computation of the Riemann problem. Secondly, the solution
is updated using the finite volume discretization of the conservation system. The
method combines the desirable qualities of the finite volume discretization and the
method of characteristics to create a simple solver for multilayer shallow water flows
over erodible beds. In future work it is expected to extend this method from two-
dimensional models in order to model a wider range of problems. It is also expected
to include the effects of turbulence in both flow fields and sediment transport.

The collected experimental data was used for comparisons to the numerical
results obtained using the proposed multilayer shallow water model. The results
have also used for validations with numerical results obtained using the three-
dimensional Navier-Stokes solver on the OpenFOAM software for a dam-break
problem over a flat bed. These comparisons revealed very encouraging results for
both the experimental method and the presented multilayer shallow water model. In
additions, the proposed finite volume characteristics method exhibited good shape,
high accuracy and stability behavior for all sediment transport regimes considered.
The experimental method is low cost and easily replicable with great promise in be-
ing adaptable to efficiently assess more complex problems like composite beds. The
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presented results demonstrate the capability of the multilayer models that can pro-
vide insight to complex suspended sediments and bed-load transport in dam-break
flows. Further work in this research field should include composite beds in multi-
phase flows as well as particle tracking for the vertical distribution of sediments in
dam-break flows. It is anticipated to use multiple cameras and composite images in
the future to provide three-dimensional data and sediment capture.
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