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Abstract

A stable and accurate Smoothed Particle Hydrodynamics (SPH) method is proposed for
solving elastodynamics in solid mechanics. The SPH method is mesh-free and it promises to
overcome most of disadvantages of the traditional finite element techniques. The absence of a
mesh makes the SPH method very attractive for those problems involving large deformations,
moving boundaries and crack propagation. However, the conventional SPH method still has
significant limitations that prevent its acceptance among researchers and engineers, namely the
stability and computational costs. In approximating unsteady problems using the SPH method,
attention should be given to the choice of time integration schemes as accuracy and efficiency of
the SPH solution may be limited by the timesteps used in the simulation. This study presents
an attempt to reconstruct unconditionally stable SPH method for elastodynamics. To achieve
this objective we implement an explicit Runge-Kutta Chebyshev scheme with extended stages
in the SPH method. This time stepping scheme adds in a natural way a stabilizing stage to
the conventional Runge-Kutta method using the Chebyshev polynomials. Numerical results
are shown for several test problems in elastodynamics. For the considered elastic regimes, the
obtained results demonstrate the ability of our new algorithm to better maintain the shape of
the solution in the presence of shocks.
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1 Introduction

Developing efficient numerical methods for solving solids and structures under large deformation has
attracted many researchers in the field of elastodynamics. The emphasis in most of these techniques
is on accurate simulations of deformation for complex engineering applications, see for example
[5, 35, 2, 17, 40]. Numerical treatment of the elastodynamic equations often present difficulties
due to the presence of advective terms and the coupling between the stress and displacement.
In many elastodynamic problems, the advective term is a source of computational difficulties and
nonphysical oscillations. It is known that standard Eulerian methods do not handle advective terms
very well unless small timesteps and highly refined grids are used in simulations. Most of these
methods uses explicit time stepping, incorporate some upstream weighting in their formulations to
stabilize the numerical procedure and are relatively easy to formulate and to implement.

Mesh-based techniques such as finite element and finite volume methods have been widely used
for solving partial differential equations governing solid mechanics. However, the accuracy of these
methods is affected by the quality of meshes, which hinders their applications to solving real prob-
lems in complex domains and with moving boundaries. Recently, some significant developments in
meshless methods for solving linear and nonlinear partial differential equations have been achieved.
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For instance, the meshless local Petrov-Galerkin and local boundary integral equations methods
were studied in [4, 33, 23]. These two methods basically transformed the original problem into a lo-
cal weak formulation and the shape functions were constructed from using the moving least-squares
approximation to interpolate the solution variables. The Smoothed Particle Hydrodynamics (SPH)
method was first developed in [22, 12]. In this method, the continuum domain is discretized into
particles carrying the field variables. These variables are calculated from the contribution of the
neighboring particles by means of a kernel function. The SPH is a truly meshless method based
on the transformation of differential equations into integral ones which are then discretized using a
distribution of moving particles. The SPH method has been traditionally applied in computational
fluid dynamics. In recent years, there has been a growing interest in applying SPH method to a
wide variety of problems in solid mechanics [21]. The main feature of SPH method is that it is a
particle based technique and does not require any underlying grid structure to represent the prob-
lem geometry. This avoids the difficulties associated with traditional mesh-based methods such as
maintaining the integrity and quality of the mesh under large deformation. The mesh-free nature
of the SPH method makes it ideally suited to modeling processes that involve large deformations
and discontinuities such as fracture, fragmentation and metal forming among others. It has given
relatively good results in many applications in both fluid and solid dynamics. Application of the
SPH methods to steady and time-dependent models has also been investigated, see for example
[13, 1, 41, 39, 6].

When approximating unsteady solid mechanics using the SPH method, attention should be
given to the selection of the time integration scheme. A fully implicit integration of the governing
equations often leads to methods that are unconditionally stable however, this procedure involves
the simultaneous solution of a large number of coupled linear equations. Moreover, for accuracy
reasons the timestep cannot be taken arbitrarily large, so these methods often become impractical.
On the other hand, the limitation of standard explicit numerical methods for elastodynamic equa-
tions is the stability restriction imposed on the timestep by the Courant-Friedrichs-Lewy (CFL)
conditions. For instance the explicit first-order Euler, second-order predictor-corrector, and the
fourth-order Runge-Kutta methods have been widely used in SPH simulations, see for example
[16, 13, 9]. However, time truncation errors dominate the accuracy of the solutions obtained by
these methods and are subjected to the CFL condition, which put a severe restriction on the size
of timesteps taken in the numerical simulations. The Runge-Kutta Chebyshev (RKC) method was
first proposed in [7] and is suitable for time integration of semi-discretized unsteady partial differ-
ential equations, compare [37]. The RKC method adds in a natural way a stabilizing stage to the
explicit conventional Runge-Kutta method using the Chebyshev polynomials. It is not subjected
to CFL restrictions and generates accurate solutions without oscillations and excessive numerical
diffusion even if large timesteps are taken in simulations. The emphasis in this work is on the time
integration of the resultant system of ordinary differential equations (ODE) generated from the
SPH space discretization of the transient elastodynamic problems. To the best of our knowledge,
solving elastodynamics using combined SPH and RKC method is reported for the first time.

The remainder of the paper is organized as follows. In Section 2 we formulate the SPH method
for elastodynamics. This section covers all relevant ingredients for the SPH method applied to
elastodynamics. Then, we introduce the RKC scheme and its implementation for solving the SPH
equations for elsatodynamic problems in Section 3. Section 4 presents the results and application
of our SPH algorithm. In particular, we consider an elastodynamic problem with known analytical
solution to quantify the accuracy of the new SPH method and an elastic beam under oscillatory
deformation. The proposed SPH method is also applied to simulate an elastic plate with a void
under compression. The presented results clearly show the overall performance of the proposed
Runge-Kutta Chebyshev SPH method. Finally, we conclude with some remarks in Section 5.
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2 SPH method for elastodynamics

The principal idea of the SPH method, is to approximate a generic variable f at the point Xi in
the computational domain using the contributions of the neighboring particles within a support
domain V as

fi =
N∑
j=1

fjWji∆Vj =
N∑
j=1

mj

ρj
fjWij , (1)

where the subscript j indicates a neighboring particle to the considered particle i, N is the total
number of particles in the domain V, Wij is the smoothing (kernel) function, ∆V = m/ρ represents
the volume of each particle inside the support domain V, m and ρ are the mass and density,
respectively. In general, the smoothing function should be compact, normalized and satisfies delta
conditions [21, 20]. An illustration of the smoothing function is shown in Figure 1 where κh
represents the radius of the support domain with κ is a constant and h is the smoothing length. In
the present work, we use the B-spline function frequently applied as a smoothing function in SPH
simulations, see for example [26]. The B-spline function is defined as

W (rij , h) = αd



2

3
− r̃2 +

1

2
r̃3, if r̃ < 1,

6(2− r̃)3, if 1 ≤ r̃ < 2,

0, if r̃ > 2,

(2)

where αd =
1

h
,

15

7πh2
and

3

2πh3
for one-, two-, and three-dimensional problems, respectively. Here

rij = |Xi −Xj |, with Xi and Xj represent respectively, the coordinates of particle i and j, and r̃
denotes the relative distance between particles i and j i.e.,

r̃ =
|Xi −Xj |

h
.

Note that the radius of the support domain in this smoothing function is 2h and when |rij | ≥ 2h
the smoothing function vanishes which means that there is no influence between particles i and
j. It is therefore evident that the smoothing length h significantly influences the accuracy and
efficiency of SPH simulations. In the current study, the smoothing length is set to h = 1.5∆d, with
∆d is the initial spacing between particles.

The spatial derivatives of a generic variable f can be approximated by applying the derivative
operator to the approximation (1) and using the Gauss theorem to obtain

∇fi =
N∑
j=1

mj

ρj
fj∇Wij . (3)

Obviously, for a particle near the boundary, the support domain lacks sufficient neighboring parti-
cles, compare Figure 2 for an illustration. To overcome this drawback we correct the approximation
(1) using the kernel gradient correction proposed in [34]. This correction procedure is based on the
normalized from

N∑
j=1

mj

ρj
(Xj −Xi)⊗∇Wij = I,

where I is the diagonal unit matrix. The kernel gradient correction is calculated by multiplying the
original gradient of smoothing function by an invertible matrix Li to restore first-order completeness
as

∇̃Wij = L−1
i ∇Wij ,
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Figure 1: Illustration of the support domain V and the smoothing function W used in the SPH
approximation.

where

Li =
N∑
j=1

mj

ρj
∇Wij ⊗ (Xj −Xi) .

For two-dimensional problems, the reversible matrix is obtained by

Li =


N∑
j=1

mj

ρj
xji

∂Wij

∂xi

N∑
j=1

mj

ρj
yji
∂Wij

∂xi

N∑
j=1

mj

ρj
xji

∂Wij

∂yi

N∑
j=1

mj

ρj
yji
∂Wij

∂yi

 .

Therefore, the approximation of the derivative of a function is given by

∇fi =
N∑
j=1

mj

ρj
fj∇̃Wij . (4)

Notice that the second derivative of the kernel function (2) is continuous and the leading truncation
error term is of order O(h2). The finite aspect of the kernel support means that only a limited
number of neighboring particles plays a role in all the sums in the conservation equations. In the
current study, this step is achieved by using the kd-tree searching method, see [15] among others.

2.1 Application to elastodynamic equations

In this section we formulate the SPH method for the partial differential equations governing elasto-
dynamics in solid mechanics. These equations consist of the conservation of mass and momentum
as

Dρ

Dt
= −ρ∇ · v,

(5)
Dv

Dt
=

1

ρ
∇σ + g,
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Figure 2: Truncation of the support domain and the kernel function on the boundary.

where ∇ =

(
∂

∂x
,
∂

∂y

)T
is the gradient operator, g is the acceleration due to body forces such as

gravity, ρ is the density, v = (vx, vy)
T is the velocity, σ is the stress tensor and

D

Dt
=

∂

∂t
+∇ · v is

the total derivative. Using the product rule of differentiation and the definition

∇ · σ =
∂σxx

∂x
+
∂σxy

∂y

∂σxy

∂x
+
∂σyy

∂y
,

the term
1

ρ
∇ · σ in (5) can be replaced by

1

ρ
∇ · σ = ∇ ·

(
σ

ρ

)
+
σ

ρ2
∇
(

1

ρ

)
.

For elastodynamic problems considered in this work, the total strain rate is given by

ε̇ =
1

2

(
∇v + (∇v)T

)
, (6)

and according to the Hooke’s law, we can write stress tensor as

σ̇ = 2Gė+K
(
tr (ε̇)

)
I, (7)

where ė = ε̇− 1

3
tr(ε̇)I is the deviatoric strain rate tensor and tr(ε̇) = ε̇xx+ ε̇yy; I is the kronecker’s

delta tensor, K is the elastic bulk modulus and G is the shear modulus which can be represented
by the Young’s modulus E and the Poisson’s ratio ν as

K =
E

3(1− 2ν)
and G =

E

2(1 + ν)
.

It should be stressed that when handling a large deformation problem, the Jaumann stress rate ˙̂σ,
introduced in [14] to account for the influence of rotation on the constitutive relations, is adopted
in our simulations to introduce the influence of rotation on the constitutive relations as

˙̂σ = σ̇ + σω − ωσ, (8)
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Then, equation (7) becomes

σ̇ = 2Gė+K

(
tr(ε̇)

)
I− σω + ωσ, (9)

where ω is the rotation tensor and it can be represented by the velocity gradient as

ω =
1

2

(
∇v− (∇v)T

)
. (10)

The system (5) is to be solved in a bounded spatial domain and for a time interval (0, T ] endowed
with given initial and boundary conditions. In practice, these conditions are problem dependent
and their discussion is postponed to section 4 where numerical examples are discussed.

To discretize the equations (5) in space we first cover the computational domain with a set of
particles and the velocity gradient is approximated as

∇vi =

N∑
j=1

mj

ρj
vj∇̃Wij . (11)

Since

N∑
j=1

mj

ρj
∇̃Wij = 0,

N∑
j=1

mj

ρj
(vj − vi)∇̃Wij =

N∑
j=1

mj

ρj
vj∇̃Wij − vi

N∑
j=1

mj

ρj
∇̃Wij =

N∑
j=1

mj

ρj
vj∇̃Wij ,

the approximation (11) reduces to

∇vi =
N∑
j=1

mj

ρj
(vj − vi)∇̃Wij . (12)

Hence, the spatial discretization of the equations (5) using the SPH method results in

Dρi
Dt

= −ρi
N∑
j=1

mj

ρj
(vj − vi) · ∇̃Wij ,

(13)

Dvi
Dt

=
N∑
j=1

mj

(
σj
ρ2
j

+
σi
ρ2
i

)
∇̃Wij .

The stress rate of small and large deformations (7) and (9) can also be expressed by the SPH
approximation of the velocity field as

Dσi
Dt

= 2Gėi +K

(
tr(ε̇i)

)
I, (14)

and
Dσi
Dt

= 2Gėi +K

(
tr(ε̇i)

)
I− σiωi + ωiσi, (15)

respectively. Here ε̇i and ωi are obtained by using the SPH approximation of the velocity field in
equations (6) and (10) as

ε̇i =
1

2

 N∑
j=1

mj

ρj
(vj − vi)∇̃Wij +

 N∑
j=1

mj

ρj
(vj − vi)∇̃Wij

T
 ,

ωi =
1

2

 N∑
j=1

mj

ρj
(vj − vi)∇̃Wij −

 N∑
j=1

mj

ρj
(vj − vi)∇̃Wij

T
 ,
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Figure 3: Treatment of boundary conditions using ghost particles in the SPH approximation.

and the approximation of the deviatoric strain rate tensor is computed as ėi = ε̇i −
1

3
tr(ε̇i)I.

The implementation of boundary conditions for the SPH method is carried out using ideas
presented in [24, 29, 30, 36, 5] among others. More precisely, for slip and no-slip boundary conditions
in our simulations, we adopt the treatment reported in [5] using ghost particles. Here, we generate
three layers of ghost particles outside the solid boundary with a uniform distribution as real particles
inside the domain. These particles are located parallel to the solid boundary with the spacing
distance ∆d/2 between first layer and solid boundary as shown in Figure 3. The ghost particles
will have the same density and mass as the corresponding real particles.

2.2 Artificial viscosity

In many applications in elastodynamics for shock propagation in solids, the numerical solution
obtained using the SPH method may present nonphysical oscillations. This is mainly because the
transition area for the shock wave does not cover a sufficiently larger length than the particle
spacing ∆d. As a consequence, the system leads to unstable solutions unless a special treatment
is accounted for in the SPH approximation of the governing equations. In this study, to improve
the stability of the SPH method and to damp out the nonphysical oscillations, we introduce the
artificial viscosity Πij into the momentum equations as

Dvi
Dt

=

N∑
j=1

mj

(
σj
ρ2
j

+
σi
ρ2
i

−ΠijI

)
∇̃Wij , (16)

where the artificial viscosity Πij is defined as [28]

Πij =


−αΠcijφij + βΠφ

2
ij

ρij
, if vij · rij < 0,

0, if vij · rij ≥ 0,

(17)

where rij = |Xi −Xj | is the distance between the particles i and j, vij = vi − vj is the difference
between the velocities of particles i and j, the function φij is defined by

φij =
hijvij · rij
|rij |2 + 0.01h2

ij

,
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with c is the wave speed in the material and it can be calculated as

c =

√
E

ρ
. (18)

In (17), cij , ρij and hij are the averaged wave speed, density and smoothing length between the
particles defined as

cij =
ci + cj

2
, ρij =

ρi + ρj
2

, hij =
hi + hj

2
.

The coefficients αΠ and βΠ appeared in (17) are used to control the artificial viscosity in the SPH
approximation, see for example [28]. Selection of the values for αΠ and βΠ are problem dependent
and for the purpose of this study we consider the values αΠ = βΠ = 2.5 suggested for SPH
simulation of solid mechanics in [19]. Note that the artificial viscosity (17) has been widely used
in the literature to improve the numerical stability and prevent the penetration between particles
during the compression.

2.3 Tensile instability

For many elsatodynamic problems, the numerical instability in SPH results are more serious for
the case under tension than its compression counterpart, see for example [14]. The author in [32]
performed the Fourier analysis for turbulence simulations and obtained the conclusion that this
instability is caused by the property of the kernel functions. Several techniques have been proposed
to overcome this difficulty in the SPH approximation. In [32], another smoothing function is used to
avoid particle clumping in the forced turbulence problem using the well-known Wendland kernel.
In [10, 11, 31], an approach based on the stress points has also been presented to remove this
numerical instability. A total Lagrangian formalism for the SPH method is proposed in [38] to
remove the instability. Authors in [25] proposed an artificial repulsive force to prevent neighboring
particles clump together under tension. This technique has been improved in [14] by accounting
for signs of principal stresses in the artificial repulsive force. This repulsive force is assumed to
be increased as two neighboring particles are moving closer. In this work, we consider this later
algorithm to deal with the tensile instability in our SPH approximation. Hence, the momentum
equation (16) is replaced by

Dvi
Dt

=
N∑
j=1

mj

(
σj
ρ2
j

+
σi
ρ2
i

−ΠijI + fnij (Ri + Rj)

)
∇̃Wij , (19)

where n is an exponent which dependents on fij and it is set to n = 4 in our simulations as
suggested in [25]. The repulsive factor fij is specified to represent effects of the distance between
two neighboring particles and it is defined as

fij =
Wij

W (∆d)
.

Note that since ∆d is the initial spacing of particles, W (∆d) is a constant. The above term
ensures that when the distance between two neighboring particles becomes smaller than ∆d, the
repulsive force term (Ri + Rj) turns to be more effective. According to [14], the components of
the artificial stresses can be determined by the principal stresses of the corresponding particle. In
two-dimensional problems, components of the artificial stresses can be represented by the standard
transformations. For instance, the rotation angle θi is calculated as

tan (2θi) =
2σxyi

σxxi − σ
yy
i

. (20)
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The stress tensor is transformed into principal stress and its components are expressed as

σ̄xxi = cos2 (θi)σ
xx
i + 2 sin (θi) cos (θi)σ

xy
i + sin2 (θi)σ

yy
i ,

(21)
σ̄yyi = sin2 (θi)σ

xx
i − 2 sin (θi) cos (θi)σ

xy
i + cos2 (θi)σ

yy
i .

The principal stress is also applied to identify the diagonal components of the artificial stress as

R̄xxi =


−ε σ̄

xx
i

ρ2
i

, if σ̄xxi > 0,

0, if σ̄xxi ≤ 0,

(22)

where ε is a parameter with values in [0, 1] and the minus sign in (22) is used to cancel part of the
stress in the case of tension (here σxxi > 0 indicate the state of tension). As suggested in [14] for
solid mechanics, we use ε = 0.3 in the numerical results presented in this study. The remaining
term R̄yyi can be simply calculated by changing the subscript xx by yy in the equation (22). Finally,
to transform the diagonal components of the artificial stress to the original coordinates we use

Rxxi = R̄xxi cos2 (θi) + R̄yyi sin2 (θi) ,

Ryyi = R̄xxi sin2 (θi) + R̄yyi cos2 (θi) , (23)

Rxyi = (R̄xxi − R̄
yy
i ) sin (θi) cos (θi) .

The term Rj can be calculated in a similar manner by replacing the subscript i with j in the
equations (20)-(23). Note that this approach only becomes effective when the particles clump
together under tension.

3 Runge-Kutta Chebyshev scheme

The solution procedure for equations (5) is complete when a time integration of the semi-discrete
SPH equations is selected. This stage can be handled by any implicit ODE solver, since they are
computationally without risk by virtue of their accuracy and unconditionally stability. This allows
for larger timesteps in the integration process. However, due to the large set of linear systems of
algebraic equations at each timestep, these methods may be computationally inefficient. As an
alternative, we use a class of explicit Runge-Kutta methods. Applied to the system (5), the SPH
discretization can be reformulated in a compact system of ODEs as

DU

Dt
= F (t,U) , t ∈ (0, T ], (24)

where U = (vx, vy, σxx, σyy, σxy, rx, ry)T , the right-hand side function F (t,U) is defined for each
particle i by

N∑
j=1

mj

(
σxx
j

ρ2j
+
σxx
i

ρ2i
−Πxx

ij + fnij(Rxx
i +Rxx

j )

)
∂W̃ij

∂x
+

N∑
j=1

mj

(
σxy
j

ρ2j
+
σxy
i

ρ2i
+ fnij(Rxy

i +Rxy
j )

)
∂W̃ij

∂y

N∑
j=1

mj

(
σyx
j

ρ2j
+
σyx
i

ρ2i
+ fnij(Ryx

i +Ryx
j )

)
∂W̃ij

∂x
+

N∑
j=1

mj

(
σyy
j

ρ2j
+
σyy
i

ρ2i
−Πyy

ij + fnij(Ryy
i +Ryy

j )

)
∂W̃ij

∂y

N∑
j=1

mj

ρj

(
D11vx

j −D11vx
i

)
∂W̃ij

∂x
+

N∑
j=1

mj

ρj

(
D12vy

j −D12vy
i

)
∂W̃ij

∂y

N∑
j=1

mj

ρj

(
D21vx

j −D21vx
i

)
∂W̃ij

∂x
+

N∑
j=1

mj

ρj

(
D22vy

j −D22vy
i

)
∂W̃ij

∂y

N∑
j=1

mj

ρj

(
D33vy

j −D33vy
i

)
∂W̃ij

∂x
+

N∑
j=1

mj

ρj

(
D33vx

j −D33vx
i

)
∂W̃ij

∂y

vx
i

vy
i



,

9



with Dij are the entries of the elastic matrix D for plane stress i.e.,

D =
E

(1− ν2)


1 ν 0

ν 1 0

0 0
1− ν

2

 .

To integrate the equations (24) we divide the time interval into subintervals [tn, tn+1] with duration
∆t = tn+1 − tn for n = 0, 1, . . . . We use the notation wn to denote the value of a generic function
w at time tn.

Difficulties often appear when the Jacobian of F, ∂F/∂U, has large eigenvalues. This may
give rise to numerical stiffness. Thus, time integration schemes for (24) depend strongly on the
spectral radius ρ (∂F/∂U), and for these reasons it is preferable that these schemes have to be
either implicit or explicit with large stability regions. In the current work, we consider the Runge-
Kutta Chebyshev (RKC) method studied in many references, see for example [7, 37, 8]. To solve
the system (24), the RKC scheme takes the form

U(0) = Ũn ,

U(1) = U(0) + µ̃1F
(0)

(25)

U(j) = µjU
(j−1) + νjU

(j−2) + (1− µj − νj)U(0) + µ̃jF
(j−1) + γ̃jF

(0), 2 ≤ j ≤ s ,

Un+1 = U(s) ,

where Ũn is the solution computed from the Lagrangian fractional step, F(j) denotes the term
F
(
tn + cj∆t,U

(j)
)

and U(j) are internal vectors for RKC stages. The coefficients in (25) are
available in analytical form for arbitrary s from [7, 37]. For convenience of the reader we include
the formulas for these coefficients. Consider the Chebyshev polynomial of the first kind of degree j

Tj(z) = cos(jarccosz), −1 ≤ z ≤ 1 .

Then,

ε =
2

13
, q0 = 1 +

ε

s2
, q1 =

T ′s(q0)

T ′′s (q0)
,

bj =
T ′′j (q0)

(T ′j(q0))2
, (2 ≤ j ≤ s), b0 = b2, b1 = b2 ,

and

µ̃1 = b1q1, µj = 2q0
bj
bj−1

, νj = − bj
bj−2

, µ̃j = 2q1
bj
bj−1

,

γ̃j = (1− bj−1Tj−1(q0))µ̃j , (2 ≤ j ≤ s) .

The coefficients cj are

cj =
T ′s(q0)

T ′′s (q0)

T ′′j (q0)

T ′j(q0)
≈ j2 − 1

s2 − 1
(2 ≤ j ≤ s), c1 =

c2

T ′2(q0)
≈ c2

4
, cs = 1 .

It should be pointed out that two criteria have been taken into consideration for the calculation of
the above coefficients namely, (i) the real stability boundary has to be as large as possible to obtain
good stability properties for the problem under study, and (ii) the application of the method with
arbitrary number of stages should not damage the convergence properties, that is, the accumulation
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of local errors does not grow without bound. Thus, the number of stages s in our SPH method and
the conventional RKC scheme varies with ∆t such that, see [37],

s = 1 +

[[√
1 +

ρ (∂F/∂U)

0.653

]]
, (26)

where [[ x ]] denotes the integer part of x. In our case, an upper bound for ρ (∂F/∂U) is estimated
once and for all by using Gerschgorin theorem and the relation (26) is replaced by

s = 1 +

[[√
1 +

c∆t

0.131∆d

]]
, (27)

where c is the wave speed in the material defined by (18) and ∆d is the initial spacing of particles
in the computational domain.

4 Numerical results and examples

To demonstrate the performance of the proposed SPH method, several examples are presented. For
the first example, an exact solution is readily available which makes it ideal for a quantitative as
well as qualitative validation of the considered SPH method. We also compare numerical results
obtained using different time stepping schemes in SPH method for this example. As a second
example we consider an oscillatory beam and in the third example we simulate elastic plate with a
void. For all these examples the material is assumed to be Magnesium with density ρ = 1738 kg/m3,
Young’s modulus E = 45× 109 Pa and Poisson ratio ν = 0.35. In line with hyperbolic systems of
conservation laws we also define the CFL number as

CFL = c
∆t

∆d
,

and the equation (26) becomes

s = 1 +

[[√
1 +

CFL

0.131

]]
. (28)

In all the computations reported herein, the CFL is set to a given value and the number of stages
s in the RKC scheme is adjusted according to the condition (28). The aim is to show that, using
reasonably low number of particles and large CFL values, the proposed method reproduces the
corresponding elastodynamic patterns and accurately captures the deformation structures with
little numerical diffusion, even after long time simulations.

4.1 Shock wave problem

In this example, we solve the propagation problem of a shock wave in a Magnesium bar with a length
of L = 1 m. Initially the bar is at rest with the right end of the bar is fixed while a compression
stress is applied on the left boundary using a stress σ0 = 8.8436× 106 Pa. The analytical velocity
of the shock wave in this problem can easily be calculated as v0 = σ0/

√
Eρ = 1 m/s. The wave

propagates along the bar with the speed c =
√
E/ρ = 5.0884× 103 m/s and when the wave arrives

at the fixed right end of the bar, the stress at this point becomes 17.6872 × 106 Pa. Since the
analytical solution is known, we evaluate the error function En at time tn for any generic function
W as

Eni = WExact(Xi, tn)−Wn
i ,

11
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Figure 4: Velocity (left) and stress (right) profiles along the bar at t = 0.12 ms using different time
stepping schemes.

where WExact and Wn
i are the analytical and numerical solutions respectively, evaluated at the

particle i and time tn. The aim of this test example is to assess the performance of the proposed
RKC scheme, the conventional explicit Euler scheme, the classical fourth-order explicit Runge-
Kutta (RK4) scheme and a second-order predictor-corrector (PC2) scheme in the SPH method.
The Euler and RK4 schemes have been widely used in the literature and their formulations to solve
the ODE system (24) are straightforward. The PC2 scheme has also been applied in conjunction
with SPH method to solve problems in both fluid dynamics and solid mechanics, see for example
[13, 27]. Its formulation to solve the system (24) can be carried out as

Un+ 1
2 = Un +

1

2
∆tF (tn,U

n) ,

Ûn+ 1
2 = Un +

1

2
∆tF

(
tn +

∆t

2
,Un+ 1

2

)
, (29)

Un+1 = 2Ûn+ 1
2 −Un.

In Figure 4 we display the profiles of velocity and stress solutions along the bar at t = 0.12 ms
using a collocation set of 250 particles and CFL = 0.6 for the considered time stepping schemes.
The time evolution of velocity and stress solutions at the mid point (x = L

2 ) of the bar is shown
in Figure 5. It is clear from these results that both the Euler and PC2 schemes exhibit oscillatory
behavior for the SPH solution of the velocity field. On the other hand the results obtained using
the RK4 and RKC schemes are similar and no oscillations have been detected in their solutions.
However, the RK4 scheme requires about the double of computational work compared to the RKC
scheme. Note that for the considered CFL value, the RKC scheme uses only two stages whereas
four stages are needed in the RK4 scheme. It should also be pointed out that for CFL > 0.6 the
Euler and PC2 schemes become unstable and the RK4 scheme becomes unstable for CFL > 1.2.
This is not the case for the RKC scheme as the results remain stable independently of the CFL in
this test problem. To further examine the effect of CFL on these schemes we present in Figure 6 the
velocity and stress profiles along the bar and in Figure 7 the time evolution of velocity and stress
solutions at the mid point of the bar using different values of CFL in both RK4 and RKC schemes.
Increasing the CFL in the RK4 scheme results in an increase of the numerical dissipation and for
CFL = 1 oscillations start to appear in the results. On the other hand, results obtained using the
RKC scheme remain stable independently from the values taken by CFL. No deterioration in the
accuracy has been detected in the numerical results obtained using the RKC scheme.
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Figure 5: Time evolution of velocity (left) and stress (right) for the shock wave problem at the mid
point of the bar using different time stepping schemes.
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Figure 6: Velocity profile along the bar at t = 0.12 ms using RK4 (left) and RKC (right) using
different values of CFL.

Next we examine the performance of RKC method using different numbers of particles in the
bar. To this end we display in Figure 8 the velocity and stress profiles along the bar and in
Figure 9 the time evolution of velocity and stress solutions at the mid point of the bar using three
different numbers of particles (NP) and a fixed CFL = 2.5. It is clear from these results that using
large number of particles in the simulation yields improved results with a noticeable reduction in
the numerical dissipation. Note that these results are obtained using a fixed timestep (calculated
from the definition of CFL) while the number of stages in RKC scheme varies according to the
equation (28). To quantify these results we summarize in Table 1 the L1- and L2-error norms for
the time stepping schemes considered in this study using different numbers of particles and different
timesteps. In this table we also include computational cost referred to by the CPU time associated
with each time stepping scheme. Examination of Table 1 shows that for low number of particles
and small timesteps the three schemes give roughly similar results with differences in the CPU
time. However, by increasing the number of particles or the value of timesteps, the results obtained
using by RKC scheme are slightly more accurate and efficient than results obtained by PC2 and
RK4 schemes, respectively. With increasing the number of particles or the value of timesteps, the
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Figure 7: Time evolution of stress and velocity for the shock wave problem at the mid point of the
bar using RK4 (left column) and RKC (right column).
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Figure 8: Velocity (left) and stress (right) profiles along the bar at t = 0.12 ms using RKC method
with different numbers of particles.
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Figure 9: Time evolution of velocity (left) and stress (right) for the shock wave problem at the mid
point of the bar using RKC method with different numbers of particles.
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Figure 10: Time evolution of velocity (left) and stress (right) for the shock wave problem at the
mid point of the bar using RKC method with different values of CFL and a fixed limit for number
of stages.
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PC2 and RK4 schemes go unstable (— in Table 1 corresponds to runs where the PC2 and RK4
schemes become unstable). It is worth remarking that for large numbers of particles or low values
of timesteps the CPU time in the RKC scheme becomes larger. For example, in a run with NP
= 1000 and ∆t = 11.8 µs the CPU time spent to perform a RKC step is more than twice that of
a RKC step using NP = 250 and ∆t = 11.8 µs. However, the same accuracy can be achieved by
RKC scheme with NP = 1000 and ∆t = 47.2 µs at low computational cost. Finally, we set a limit
to the number of stages as s = 10 and we perform the same simulations using different values for
CFL. The obtained results for the time evolution of velocity and stress solutions at the mid point
of the bar are presented in Figure 10. It is clear from this figure that the computed results do not
depend on the number of stages used in the RKC scheme and for a fixed bound for this number
the proposed method still produces stable results with large values of CFL. As can be seen from
the solutions displayed in the above figures and the errors presented in Table 1, high accuracy is
achieved in the SPH method with RKC scheme for this test example in terms of the considered
error norms. Hence, our next computations are realized using only the SPH-RKC scheme.

4.2 Oscillatory beam problem

This example solves a problem of oscillatory thin beam made of Magnesium with length and wide
denoted by L and W , respectively. The left end of the beam is fixed, the other end is free and a
perpendicular velocity vy is loaded on the beam at the initial time [14]. The purpose of this test
example is to examine the performance of the proposed SPH method for solving elastodynamic
problems in presence of large deformation. Here, the velocity vy at each point on the beam is
calculated from

vy
c

= Vf
M
(

cos (κx)− cosh (κx)
)
−N

(
sin (κx)− sinh (κx)

)
Q

, (30)

where c is the wave speed of the material, Vf is a factor used to control the magnitude of velocity,
and κ is a factor assumed to satisfy the condition

cos(κL) cosh(κL) = −1.

It is easy to verify that for this mode κL = 1.875, and the other factors in (30) are calculated as

M = sin (κL) + sinh (κL) ,

N = cos(κL) + cosh (κL) ,

Q = 2
(

cos (κL) sinh (κL)− sin (κL) cosh (κL)
)
.

For this oscillatory beam problem, the equation of frequency ω is given by [18]

ω =

√
EW 2κ4

12ρ
. (31)

In the first run with this example we set L = 0.5 m, W = 0.05 m, Vf = 0.02 and a set of
particles uniformly distributed along the beam with initial spacing ∆d = 0.0033 m are used in
our simulation. Figure 11 and Figure 12 present the distribution of the principal stress fields σ11

and σ22, respectively. The results are presented for four different times t = 73.7 µs, 1621.33 µs,
3316.37 µs and 4937.7 µs using a fixed CFL = 2.5. Note that for this value of CFL, the explicit
schemes considered in the previous example are unstable and therefore can not be used to solve
this problem whereas the RKC scheme is stable and it requires only five stages for the solution of
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Figure 11: Distribution of the principal stress field σ11 for the oscillatory beam problem using
SPH-RKC method at four different instants.
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Figure 12: Distribution of the principal stress field σ22 for the oscillatory beam problem using
SPH-RKC method at four different instants.
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Figure 13: Time evolution of displacement (left) and velocity (right) at the end of the beam with
different numbers of particles for the oscillatory beam problem using L = 0.5 m and W = 0.1 m.

this problem. It is clear that no oscillations or smearing of the deformation have been detected
in the computed results. As can be seen, good behavior is recovered by the proposed SPH-RKC
method for the considered elastodynamic conditions without any significant loss of accuracy. The
performance of the proposed SPH-RKC method is very attractive since the computed solutions
remain stable and accurate even for relatively coarse particle distributions without requiring small
timesteps for the stability of the explicit time stepping scheme.

To examine the effect of number of particles on the results for this example we plot in Figure
13 the time evolution of the displacement and velocity at the end of the beam using three sets of
particles with initial spacing ∆d = 0.01 m, 0.005 m and 0.0033 m. It is evident that, increasing
the number of particles in the simulation, the convergence is achieved in our SPH-RKC method
for this test example. A better resolution is obtained for larger number of particles and once this
number reaches a limit of ∆d = 0.0033 m the improvement in the results becomes minimal but
at higher computational cost. It should also be noted that for the results presented in this figure
the time step ∆t remains constant and the number of stages in RKC scheme is s = 3, 4 and 5
for ∆d = 0.01 m, 0.005 m and 0.0033 m, respectively. On the other hand, refining the number of
particles keeping constant the timestep, the considered Euler, PC2 and RK4 schemes yield spurious
oscillations and become unstable at the end.

To ascertain the quality of the resolution of SPH-RKC method for this example, we compare in
Table 2 the computed frequency to the theoretical frequency given by (31) using ∆d = 0.0033 m.
We consider two values for the beam width W and several values for the factor Vf to assess the
performance of the proposed SPH-RKC method to accurately capture the oscillatory behavior of
the beam. As can be seen, more accurate results are obtained for a beam with W = 0.05 m than
for the case with W = 0.1 m. The errors also decrease as the factor Vf becomes smaller and in all
cases the error is less than 9% for the case with W = 0.1 m and less than 5% for the other case with
W = 0.05 m. The computed solutions using the proposed SPH-RKC method seem to converge
to the physically relevant solutions in all selected test cases. The proposed SPH-RKC method
captures the elastic deformation accurately, does not diffuse the stress fields or give nonphysical
oscillations near the steep gradients.
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Table 2: Comparison results for the frequency using different values of Vf in the oscillatory beam
problem.

W = 0.1 m W = 0.05 m

Vf ωtheoretical ωSPH error ωtheoretical ωSPH error

0.05 2066 Hz 1888 Hz 8.62% 1033 Hz 982 Hz 4.94%

0.02 2066 Hz 1929 Hz 6.63% 1033 Hz 983 Hz 4.84%

0.01 2066 Hz 1943 Hz 5.95% 1033 Hz 1000 Hz 3.19%

0.005 2066 Hz 1943 Hz 5.95% 1033 Hz 1007 Hz 2.52%

0.002 2066 Hz 1943 Hz 5.95% 1033 Hz 1007 Hz 2.52%

0.001 2066 Hz 1943 Hz 5.95% 1033 Hz 1007 Hz 2.52%

4.3 Elastic plate problem with a void

Our final test example consists of an elastic plate with a void under compression. The material
is Magnesium and the plate is assumed to be squared with length L = 2 m including a circular
void with radius R0 = 0.3 m, see Figure 14. A fixed velocity of 0.2 m/s is applied on the top and
bottom boundaries of the plate and the remaining boundaries are kept free. Note that because
of the symmetry in this problem it is more efficient to consider only quarter of the computational
domain. The aim of this test example is to examine the performance of the proposed SPH-RKC
method to resolve complex stress features and to preserve the symmetry in the numerical solutions.
In addition, since the SPH-RKC method is a particle-based method, the distribution of particles
would influence the accuracy of its analysis. To illustrate this effect we consider three collocation
sets of particles namely squared distribution, radial distribution and equally radial distribution as
depicted in Figure 15. For a better insight, only a coarser view is illustrated in this figure. The
total number of particles for each collocation set is 897, 922 and 916 for the squared distribution,
the radial distribution and the equally radial distribution, respectively. In all our simulations for
this problem we use a fixed CFL = 2.5 and for this value of CFL we have found that the number
of stages in the RKC scheme does not overpass six stages.

Figure 16 presents the normal stresses σxy and σyy, and the velocity field obtained on each
collocation set at time t = 994.9097 ms. As can be seen from these results, both squared and radial
distributions exhibit nonphysical oscillations in the stress patterns. The results obtained on the
squared distribution also produce cracking effects on the void surface and localized velocity field in
the vicinity of the void. On the other hand the results obtained using the equally radial distribution
captures the correct deformation features and generates most accurate results. Theoretically, the
normal stress σyy on an infinite plate with a circular void under uniaxial compression loading can
be analytically calculated as [3]

σyy(x, 0) = σ∞

(
1 +

1

2

R2
0

x2
+

3

2

R4
0

x4

)
,

where σ∞ is the stress component on the edge of the plate. It is easy to verify from the above
equation that for x >> R0, the stress σyy on the edge of the circular void is about three times
greater than the reference stress σ∞. in Figure 17 we illustrate a comparison between profiles of
the normal stress σyy at y = 0 obtained for the considered collocation sets and the theoretical
stress. It is clear that for the considered elastodynamic conditions, the results obtained using the
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Figure 14: Configuration of the domain for the elastic plate with a void.

Figure 15: Squared distribution (left) radial distribution (middle) and equally radial distribution
(right) of particles for the elastic plate with a void.

equally radial distribution are more accurate than those obtained using the squared and radial
distributions. There is a good matching in the profile obtained using the equally radial distribution
and the theoretical solution. To quantify the accuracy in these distributions we list in Table 3 the
errors for the obtained results in L1 and L2 norms. It can be clearly seen that the SPH-RKC method
using equally radial distribution accurately solves this problem and it generates less computational
errors compared to SPH-RKC method using squared and radial distributions.

Our next concern is to compare the results computed using our SPH-RKC method to those
obtained using the conventional finite element method (FEM) for this test example. We consider
two sets of simulations with R0 = 0.3 m and R0 = 0.2 m. The meshes used in FEM contain 3025
nodes and 3222 nodes for the case with R0 = 0.3 m and R0 = 0.2 m, respectively. In Figure 18
we present cross-sections of the normal stress σyy at y = 0 and the corresponding errors in L1 and
L2 norms are summarized in Table 4. A simple examination of the presented results shows that
the FEM fails to accurately resolve the case with R0 = 0.3 m whereas results obtained using the
SPH-RKC method show good agreement with the analytical solution of this elastic plate problem.
For a void with small radius R0 = 0.2 m both FEM and SPH-RKC method yield comparable
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Figure 16: Normal stress σxy (first column), normal stress σyy (second column) and velocity field
(third column) for the elastic plate with a void using three different collocation sets: Squared
distribution (first row), radial distribution (second row) and the equally radial distribution (third
row).
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Figure 17: Cross-section at y = 0 of the normal stress σyy for the elastic plate with a void using
different particle distributions.
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Figure 18: Cross-section at y = 0 of the normal stress σyy using R0 = 0.3 m (left) and R0 = 0.2 m
(right) for the elastic plate with a void.
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Table 3: Errors in the cross-section at y = 0 of the normal stress σyy for the elastic plate with a
void using different particle distributions.

Squared distribution Radial distribution Equally radial distribution

L1-error 0.1811 0.2102 0.0307

L2-error 0.3320 0.2570 0.0375

Table 4: Errors in cross-sections at y = 0 of the normal stress σyy for the elastic plate with a void
using FEM and SPH-RKC method. The numbers between brackets refer to the number of nodes
in FEM and the number of particles in SHP-RKC method.

R0 = 0.2 m R0 = 0.3 m

FEM (3222) RKC-SPH (2560) FEM (3025) RKC-SPH (2459)

L1-error 0.0521 0.0304 0.6799 0.0272

L2-error 0.0537 0.0442 0.8084 0.0357

results but the SPH-RKC results are the most accurate.

Finally we illustrate in Figure 19 the the normal stresses σxy and σyy, and the velocity field in
the whole domain at three different instants using the equally radial distribution of particles. These
plots give a clear view of the overall elastic pattern and the effect of deformation on the structure of
normal stresses and velocity fields in the cavity. The new SPH-RKC method performs well for this
elastodynamic problem. It is also important to mention two points concerning the number of stages
s in the SPH-RKC method. First, the SPH-RKC method requires a large number of stages only
when high values of CFL are used in the simulation. Otherwise, two stages are sufficient for low
CFL values. This is relevant to the time integration of elsatodynamic problems where wave speed
changes within the time from one regime to another. Second, refining of the particle distribution
does not mean a decrease in timesteps, since the number of stages in RKC scheme can change.
This is a remarkable feature of the SPH-RKC satisfactorily handling procedures using adaptive
local particle refinement methods to resolve interfaces for elastodynamics in composite materials.

5 Conclusions

In this paper we have presented a stable explicit Runge-Kutta Chebyshev scheme for the time
integration in SPH simulation of elastodynamics. The method uses a class of SPH approximation
for discretization in space and it accurately resolves the elastodynamic features regardless whether
the deformation is compression or tension dominated. The considered method does not require
sever restrictions on the timesteps compared to the conventional explicit time stepping schemes used
in conjunction with the SPH method. From a practical viewpoint, the method is straightforward,
irrespective of the smoothness of the elastic media and the shape of the domain under consideration,
and easy to implement because no mesh is required and only radial distance between neighboring
particles is used to approximate the elastodynamic solutions. Validation of the method has been
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Figure 19: Normal stress σxy (first column), normal stress σyy (second column) and velocity fields
(third column) using equally radial distribution with 3504 particles at three different times: t =
331.6336 ms (first row) t = 663.2731 ms (second row) and t = 994.9097 ms (third row).
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carried out using several test problems on elastodynamics. The numerical results were compared
with those obtained using traditional time stepping schemes in SPH simulations. The method was
also applied to solve an elastic plate with a void under compression. The method exhibited good
shape, high accuracy and stability behavior, even coarse particle distributions and large timesteps
are used in computations. Quantitative comparisons have been made with other published works on
elastodynamics and a good agreement is found. The presented results demonstrate the capability
of the SPH method that can provide insight to complex elastodynamic features. In addition, the
computed results for all considered test examples verify the performance and robustness nature of
the numerical model.

Future work will concentrate on the extension of the proposed method to elastodynamic in three
space dimensions. From a modeling viewpoint, a more realistic model which takes into consideration
variations along the depth of elastic domains should be built. The present applications are a
relatively idealized two-dimensional model where only the depth-averaged variation is modeled.
A more realistic model with the use of Runge-Kutta Chebyshev SPH method is currently being
investigated. Future work will also concentrate on extending the proposed techniques for nonlinear
problems in elastodynamics.
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