
Computer Physics Communications 307 (2025) 109435

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Computational Physics

ExaGRyPE: Numerical general relativity solvers based upon the hyperbolic

PDEs solver engine ExaHyPE ✩

Han Zhang a,b,∗, Baojiu Li b, Tobias Weinzierl a, Cristian Barrera-Hinojosa c

a Department of Computer Science, Durham University, Upper Mountjoy, Stockton Rd, Durham, DH13LE, United Kingdom
b Institute for Computational Cosmology, Department of Physics, Durham University, Lower Mountjoy, South Rd, Durham, DH13LE, United Kingdom
c Instituto de Física y Astronomía, Universidad de Valparaíso, Gran Bretaña 1111, Valparaíso, Chile

A R T I C L E I N F O A B S T R A C T

Keywords:

Software design
Numerical relativity
Hyperbolic partial differential equations
Finite Differences
Adaptive mesh refinement
Domain decomposition
Task parallelism

ExaGRyPE describes a suite of solvers and solver ingredients for numerical relativity that are based upon
ExaHyPE 2, the second generation of our Exascale Hyperbolic PDE Engine. Numerical relativity simulations
are crucial in resolving astrophysical phenomena in strong gravitational fields and are fundamental in analyzing
and understanding gravitational wave emissions. The presented generation of ExaGRyPE solves the Einstein field
equations in the standard CCZ4 formulation under a 3+1 foliation and focuses on black hole space-times. It
employs a block-structured Cartesian grid carrying a higher-order Finite Difference scheme with full support
of adaptive mesh refinement (AMR), it facilitates massive parallelism combining message passing, domain
decomposition and task parallelism, and it supports the injection of particles into the grid as static data probes
or as moving tracers. We introduce the ExaGRyPE-specific building blocks within ExaHyPE 2, and discuss its
software architecture and compute-n-feel.
For this, we formalize the creation of any specific astrophysical simulation with ExaGRyPE as a sequence of
lowering operations, where a few abstract logical tasks are successively broken down into finer and finer tasks
until we obtain an abstraction level which can directly be mapped onto a C++ executable. The overall program
logic is fully specified via a domain-specific Python interface, we automatically map this logic onto a more detailed
set of numerical tasks, subsequently lower this representation onto technical tasks that the underlying ExaHyPE
engine uses to parallelize the application, before eventually the technical tasks in turn are mapped onto small
task graphs including the actual astrophysical PDE term evaluations, initial conditions, boundary conditions, and
so forth. These can be injected manually by the user, or users might instruct the solver on the most abstract
user interface level to use out-of-the-box ExaGRyPE implementations. We end up with a rigorous separation of
concerns which shields ExaGRyPE users from technical details and hence simplifies the development of novel
physical models. We present the simulations and data for the gauge wave, static single black holes and rotating
binary black hole systems, demonstrating that the code base is mature and usable. However, we also uncover
domain-specific numerical challenges that need further study by the community in future work.
1. Introduction

More than one hundred years ago, Einstein wrote his famous equa-
tions of General Relativity [1]. Revealing the intrinsic coupling of space
and time, those equations today lay the foundation of our understanding
of the space-time geometry of the Universe. The Einstein equations have
a rather compact mathematical formulation manifesting in ten highly
non-linear tensor equations. Due to their complexity, analytical solu-

✩ The review of this paper was arranged by Prof. David W. Walker.
* Corresponding author.

tions are notoriously difficult to find once the initial condition of the
system lacks strong symmetries, i.e. once we tackle setups of practical
relevance. We thus need numerical techniques.

The field of numerical relativity has been under active develop-
ment for many decades, and numerical simulations are now omnipresent
when studying astrophysical phenomena involving strong gravitational
fields. By recasting the Einstein field equations, numerical relativity re-
duces the underlying physics to a Cauchy initial value problem, which
Available online 15 November 2024
0010-4655/© 2024 The Author(s). Published by Elsevier B.V. This is an open access

E-mail addresses: dggx86@durham.ac.uk, zhanghan.lucky@gmail.com (H. Zhang

https://doi.org/10.1016/j.cpc.2024.109435
Received 18 June 2024; Received in revised form 16 October 2024; Accepted 12 No
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

).

vember 2024

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
mailto:dggx86@durham.ac.uk
mailto:zhanghan.lucky@gmail.com
https://doi.org/10.1016/j.cpc.2024.109435
https://doi.org/10.1016/j.cpc.2024.109435
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2024.109435&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Computer Physics Communications 307 (2025) 109435H. Zhang, B. Li, T. Weinzierl et al.

Fig. 1. Snapshot of two black holes orbiting around each other. The colored frame represents the conformal factor field 𝜙, while the arrows show the distribution of
the shift vector field 𝛽𝑖.
we can solve via standard numerical schemes: The space-time is cut into
a sequence of three-dimensional hypersurfaces, labeled by a global tem-
poral parameter. Every hypersurface represents one “time step”, which
is a snapshot or slice through the actual space-time [2]. Despite be-
ing a well-established approach, the number of mature and actively
developed open-source codes available to the community is limited
(e.g., BAM [3], gh3d2m [4], Einsteintoolkit [5], GRChombo [6],
SpEC [7], Dendro-GR [8], GR-Athena++ [9], SENR/NRPy+ [10] and
SACRA [11]. A more comprehensive list can be found in Table 1 of [12]).

The software packages share some similarities and have to tackle
similar technological and numerical challenges. First, numerical relativ-
ity codes have to be able to simulate a vast span of spatial scales (spatial
is to be read in the sense of numerical discretization of a space-time snap-
shot). They have to simulate over a huge computational domain, while
some features—around black holes—require a very detailed spatial res-
olution (Fig. 1). At the same time, explicit time-stepping remains the
state-of-the-art in the field, even though many astrophysical phenomena
of interest such as the merger of black holes require us to simulate them
over a long time span while explicit time-stepping yields tiny time-step
sizes. Second, numerical relativity codes usually cast Einstein’s equa-
tions into hyperbolic formulations under proper gauge choices, and its
combination with many nonlinear terms implies that we have to pick
our numerical techniques carefully to avoid numerical instabilities and
numerical inaccuracies introducing long-term pollution of the results.
Higher-order methods thus have established themselves as state-of-the-
art, while several further ingredients, such as appropriate boundary
conditions, have to be chosen carefully to fit the experimental challenge.
Finally, the complex equations lead to complicated compute kernels in-
volving potentially thousands of lines of code. The translation of PDE
terms into code is not simple. As a result of these three characteristics,
competitive numerical relativity codes have to combine sophisticated
software technology, e.g., good (strong) scalability plus efficiency, with
advanced numeric and a clear strategy how to master the arising code
complexity.

In this paper, we present ExaGRyPE (The General Relativity Solver
on ExaHyPE). It currently contains a suite of numerical relativity solvers
and related code blocks focusing on black hole spacetimes. ExaGRyPE is
based upon a from-scratch rewrite, i.e. a second generation of ExaHyPE
(An Exascale Hyperbolic PDE Engine) [13], which in turn uses a com-
2

plete rewrite of its underlying meshing framework Peano [14]. Besides
the core solvers, which are really just instances of ExaHyPE solvers, Ex-
aGRyPE adds many ingredients to ExaHyPE, and it compasses domain-
specific utilities. Astrophysical simulations have been conducted before
with the first-generation ExaHyPE [15]. However, ExaGRyPE is a com-
plete rewrite, brings all ingredients together to simulate systems of black
holes, and it comprises previously unavailable numerical ingredients. It
also implements a new, rigorous separation of concerns.

The evolving system adopted in our code is a recast version of CCZ4
(Conformal and covariant formulation of the Z4) [16], which transforms
the equations into a pure first-order formulation via a set of auxiliary
variables. This idea is first proposed in [15], serving as the foundation
for our code. Besides this original formalism where auxiliary variables
are introduced into the evolving system alongside the primary variables,
ExaGRyPE comes along with a second flavor: here, auxiliary variables
are derived from the primary variables in a post-processing stage af-
ter every time step. This feature enables users to implement a second-
order formulation similar to many other numerical relativity codes. With
lower-order and higher-order implementations of both formulations at
hand, in ExaGRyPE we implement both lower-order and higher-order
schemes (solvers) for both formulations, they provide the infrastructure
to investigate the numerical details and modifications of the underlying
physics. We even provide an ecosystem to couple various solvers, allow-
ing us to utilize different schemes according to the qualitative features
of the solution.

ExaGRyPE’s solvers combine several state-of-the-art numerical build-
ing blocks realized over patch-based AMR [17], but it rigorously strips
users from the opportunity to “program” their workflow. Instead, we
introduce a high-level, Python-based API (Application Programming In-
terface) in which users specify “what” they want to compute. Our code
then maps this specification onto a C++ code base, i.e. determines
“how” this is realized. This strict separation-of-concern follows the phi-
losophy introduced with Peano [14] and adopted by the first-generation
ExaHyPE code, too [13]. Eventually, the abstract specification yields one
relatively simple C++ base class, into which users can inject their ac-
tual PDE terms. ExaGRyPE provides pre-defined realizations for them.
We refer to this mapping of a high-level specification onto a running
code as lowering [18]. As a whole, solvers built with ExaGRyPE dif-
fer from other mainstream codes in the field: at no point can the user
control the simulation flow or orchestrate calculations; at no point, do

users have the opportunity to loop over resolution levels or mesh enti-

H. Zhang, B. Li, T. Weinzierl et al.

ties, and at no point can they decide how to distribute tasks between
ranks or accelerators, and so forth. These decisions are made by the ac-
tual engine under the hood. Our present contribution formalizes this
transition from the specification into a ready-to-run simulation as a se-
quence of lowering steps yielding a hierarchy of abstraction levels. Each
level serves a particular purpose or represents a particular knowledge
domain—numerical schemes or parallelization for example—and each
level can in itself be represented as a task graph.

Our driving vision behind this software design is that physicists
can puzzle their application together on a very abstract level, i.e. pick
solvers, domain size, simulation timespan, minimal resolution, and so
forth. We favor Python on this level. Scientific computing experts en-
large the set of available components where appropriate and necessary.
Our own ExaGRyPE development work for example contributes higher-
order Finite Difference (FD) schemes, novel GPU-focused task paral-
lelism [19,20] or bespoke boundary conditions. Performance experts
finally tune and optimize various code building blocks on the appro-
priate abstraction level (cmp. [21], e.g., for an example in the context
of ExaGRyPE). We consider this strict separation of responsibilities or
roles [22] and the hiding of the program complexity a blueprint for fu-
ture simulation software stacks.

The remainder of this paper is organized as follows: Section 2 intro-
duces the physics scenario we aim to simulate, served as an overview
of the domain challenge driving the development of ExaGRyPE. In Sec-
tion 3, we describe the technical ingredients that are newly developed
for ExaGRyPE and are essential for achieving stable and accurate simu-
lations in numerical relativity. We continue with an in-depth discussion
of the lowering of abstraction levels and highlight how they enable
us to deliver fast and efficient code, before we summarize the overall
code usage, i.e. the user’s look-n-feel (Section 4). Numerical results (Sec-
tion 5) demonstrate the validity of the approach and allow us to close
the paper with a summary of insights and identified future work and
challenges (Section 6). An extensive appendix provides reproducibility
information, details regarding the underlying physics and implementa-
tion remarks.

2. Problem statement

The space-time evolution equations used in ExaGRyPE stem from
the Z4 formulation of the Einstein field equations, where an additional
dynamic field 𝑍𝑎 and a corresponding damping term are added to the
system to enhance its stability (see Appendix B for the convention) [23,
24]:

𝑅𝑎𝑏−
1
2
𝑔𝑎𝑏𝑅+∇𝑎𝑍𝑏 +∇𝑏𝑍𝑎 − 𝑔𝑎𝑏∇𝑐𝑍𝑐 (1)

− 𝜅1[𝑛𝑎𝑍𝑏 + 𝑛𝑏𝑍𝑎 + 𝜅2𝑔𝑎𝑏𝑛𝑐𝑍
𝑐] = 8𝜋𝑇𝑎𝑏.

To solve these equations, our code uses the standard ADM (Arnowitt–
Deser–Misner) 3+1 space-time foliation [25]. It cuts the space-time into
a sequence of three-dimensional space-like hypersurfaces labeled by a
global scalar field 𝑡(𝑥𝑎) = const. The value of this scalar field is later
treated as the time parameter 𝑡 in the 3+1 simulation. The induced spa-
tial metric on the hypersurfaces is denoted by 𝛾𝑎𝑏 , and it is linked to the
space-time line element via

𝑑𝑠2 = −𝛼2𝑑𝑡2 + 𝛾𝑖𝑗
(
𝑑𝑥𝑖 + 𝛽𝑖𝑑𝑡

)(
𝑑𝑥𝑗 + 𝛽𝑗𝑑𝑡

)
, (2)

where the 𝛾𝑖𝑗 are the spatial parts of 𝛾𝑎𝑏. 𝛼 and 𝛽𝑖 are respectively the
lapse function and shift vector, representing the four degrees of freedom
of coordinates during the evolution (Fig. 2).

One can construct simulations with a formulation only including 𝛾𝑖𝑗 ,
the spatial component 𝐾𝑖𝑗 of the extrinsic curvature 𝐾𝑎𝑏 ∶= −1

2𝐧𝛾𝑎𝑏, 𝛼,
𝛽𝑖 and the 𝑍𝑎 field, as they already form a complete evolving system. We
further follow [16] and introduce a conformal factor 𝜙 and a conformal
metric �̃�𝑖𝑗 , such that
3

�̃�𝑖𝑗 ∶= 𝜙2𝛾𝑖𝑗 , 𝜙 = [det(𝛾𝑖𝑗)]−1∕6, (3)
Computer Physics Communications 307 (2025) 109435

Fig. 2. Illustration of the lapse function and shift vector. Given two neighboring
hypersurfaces labeled as Σ𝑡 and Σ𝑡 + Δ𝑡, the four-dimensional time vector 𝑂𝐵

can be decomposed into 𝑂𝐴 and 𝐴𝐵, which yield the proper time 𝛼 passed
for a normal observer at O in the coordinate time Δ𝑡, and the coordinate shift
between the two hypersurfaces. 𝐵 and 𝑂 have the same spatial coordinates
while the spatial coordinates of 𝐴 are different by −𝛽𝑖 .

and further define �̃�𝑖𝑗 , 𝐾 , Θ, Γ̂𝑖 following a similar approach in the
original formulation. Further details can be found in Appendix B. We
note that this formulation is just one of several candidates for a strongly
hyperbolic evolution system. Other options include the generalized-
harmonic formalism [26,27], the BSSN formalism [28,29], and other
variants within the “Z4 family”, such as the original Z4 [30] and Z4c
[31]. For ExaGRyPE, we have chosen to utilize CCZ4 to achieve better
control over singularities and gauge conditions in black hole spacetimes.

2.1. Gauge conditions

Our four degrees of freedom are determined by the evolution equa-
tions of the lapse field 𝛼 and shift vector 𝛽𝑖, which are called gauge
conditions. ExaGRyPE allows users to define their bespoke gauge condi-
tions, but common choices for the evolving system above are available
off-the-shelf.

The default evolution equation of 𝛼, which is also known as the time
slicing condition [32], is

(𝜕𝑡 − 𝛽𝑖𝜕𝑖)𝛼 = −𝛼2𝑔(𝛼)𝐾, (4)

where 𝑔(𝛼) is a positive scalar function depending only on the lapse. In
simulations of black hole spacetimes, a popular choice of this function
is 𝑔(𝛼) = 2∕𝛼, as it has a good property of avoiding singularities. The
resulting gauge equation is the 1+log condition given as

𝜕𝑡𝛼 = 𝛽𝑘𝐴𝑘 − 𝛼2𝑔(𝛼)
(
𝐾 −𝐾0 − 2𝑐Θ

)
(5)

in our notations. The source term gets modified accordingly as we im-
plement the CCZ4 formulation [16].

The default gauge equation we adopt for the shift vector 𝛽𝑖 in Exa-
GRyPE is the gamma-driver condition [33]:

𝜕𝑡𝛽
𝑖 = 𝛽𝑘𝐵𝑖

𝑘
+ 𝑓𝑏𝑖, (6)

𝜕𝑡𝑏
𝑖 − 𝛽𝑘𝜕𝑘𝑏

𝑖 = 𝜕𝑡Γ̂𝑖 − 𝛽𝑘𝜕𝑘Γ̂𝑖 − 𝜂𝑏𝑖. (7)

Here, 𝑏𝑖 is a helper vector field that enhances the hyperbolicity of the
system and also appears in the evolving system, cf. Eqs. (8) and (10).
This gauge is also called shifting shift. One can remove all advection terms
above to switch to the no-shifting shift variant, which is also available in
ExaGRyPE.

2.2. First- and second-order formulations

Collecting all derived quantities and the helper variables 𝑏𝑖 from the
gauge condition yields an evolving system over 24 variables

�⃗�(𝑡) =
(
�̃�𝑖𝑗 , 𝛼, 𝛽

𝑖,𝜙, �̃�𝑖𝑗 ,𝐾,Θ, Γ̂𝑖, 𝑏𝑖
)
(𝑡), (8)

with a first-order time-derivative and second-order spatial derivatives

defined in the hypersurface. Let

H. Zhang, B. Li, T. Weinzierl et al.

𝐴𝑖 ∶= 𝜕𝑖𝛼, 𝐵𝑖
𝑘
∶= 𝜕𝑘𝛽

𝑖, 𝐷𝑘𝑖𝑗 ∶=
1
2
𝜕𝑘�̃�𝑖𝑗 , 𝑃𝑖 ∶= 𝜕𝑖𝜙 (9)

be auxiliary variables. Adding them to the system and treating them as
further evolving variables yields a system of 58 independent variables
with

�⃗�(𝑡) =
(
�̃�𝑖𝑗 , 𝛼, 𝛽

𝑖,𝜙, �̃�𝑖𝑗 ,𝐾,Θ, Γ̂𝑖, 𝑏𝑖,𝐴𝑘,𝐵
𝑖
𝑘
,𝐷𝑘𝑖𝑗 , 𝑃𝑘

)
. (10)

This system is first-order in both space and time. Both formulations
can be phrased over 58 quantities. The first-order formulation (FO)
from Eq. (10) evolves all quantities. The second-order formulation (SO)
Eq. (8) evolves only 24 out of 58 entries, then computes (or “recon-
structs”) Eq. (9) from the new solution in a post-processing step, and
continues with the next time step which is fed by both the primary and
the reconstructed auxiliary quantities.

As a result, both the second-order and first-order formulations can be
schematically written in a first-order hyperbolic formulation of partial
differential equations (PDEs):

𝜕𝑡�⃗�+∇𝑖𝐹𝑖(�⃗�) +𝐵𝑖(�⃗�)∇𝑖�⃗� = 𝑆(�⃗�), (11)

with �⃗� ∶ ℝ3+1 ↦ ℝ𝑛, 𝑛 = 24 in SO or 58 in FO. We can use the same
numerical building blocks subject to an additional reconstruction step
for Eq. (9) for both formulations. In Eq. (11), �⃗� represents the array
of 58 evolving variables. 𝐹𝑖(�⃗�), 𝐵𝑖(�⃗�) and 𝑆(�⃗�) are the flux, non-
conservative product (NCP) and source term respectively. In the im-
plementation, we let the NCP absorb the flux term and hence have
∇𝑖𝐹𝑖(�⃗�) = 0 (cmp. Appendix B for details on the numerics and physics).

2.3. Initial conditions

For simple test scenarios where an analytical solution exists, Exa-
GRyPE can be initialized by directly setting every evolving variable to a
hard-coded initial value. We use this approach for the gauge wave setup,
for example.

For systems involving black holes, we adopt the Bowen-York solution

[34] to initialize the scenario. It assumes an initial space-time hypersur-
face with maximal slicing 𝐾 = 0 and conformal flatness �̄�𝑖𝑗 = 𝜂𝑖𝑗 . The
curvature on this hypersurface can be calculated analytically by the mo-
mentum 𝑃 𝑖 and spins 𝑆𝑖 of the black holes. The initial metric of the black
hole system is then derived from the moving puncture approach [35],
where a second-order elliptic equation is solved to obtain the conformal
factor numerically. The current version of ExaGRyPE links against the
TwoPunctures module from the numerical library Einsteintoolkit
[5], using the numerical approach introduced in [36].

2.4. Gravitational wave extraction

ExaGRyPE extracts the gravitational wave signal from the evolving
system using the Newman-Penrose approach [37]: we calculate the com-
plex scalar field 𝜓4 as

𝜓4 =(4) 𝐶𝑎𝑏𝑐𝑑𝑘
𝑎�̄�𝑏𝑘𝑐�̄�𝑑 . (12)

In this expression, (4)𝐶𝑎𝑏𝑐𝑑 is the four-dimensional Weyl tensor, and 𝑘𝑎

and �̄�𝑎 are two members of a null tetrad (Appendix C). 𝜓4 can be further
decomposed into a superposition of modes with the base 𝑠 = −2 spin-
weighted spherical harmonics −2𝑌𝑙𝑚:

𝜓4(𝑡, 𝑟, 𝜃,𝜙) =
∞∑
𝑙=2

𝑙∑
𝑚=−𝑙

𝜓𝑙𝑚
4 (𝑡, 𝑟)−2𝑌𝑙𝑚(𝜃,𝜙), (13)

where the coefficients (the mode strength) are found by the inner prod-
uct via spherical integrals

𝜓𝑙𝑚 =

𝜋

𝑑𝜃

2𝜋

−2𝑌
∗
𝑙𝑚
𝜓4 sin𝜃𝑑𝜙. (14)
4

4 ∫
0

∫
0

Computer Physics Communications 307 (2025) 109435

In ExaGRyPE, the spherical integration is done by the spherical t-design
scheme [38], where we interpolate the values of the integrated function
from the closest grid points onto a set of 𝑁 sample points on the sphere
of interest. It is shown that the average of those sample values is also
the average of the integrated function itself, i.e.

𝜋

∫
0

𝑑𝜃

2𝜋

∫
0

−2𝑌
∗
𝑙𝑚
𝜓4 sin𝜃𝑑𝜙 = 4𝜋

𝑁

𝑁−1∑
0

−2𝑌
∗
𝑙𝑚
𝜓4. (15)

The method is most effective when the function of interest has a degree
of freedom that is close to or lower than 𝑡 (i.e., it can be roughly de-
scribed by a polynomial up to the degree of 𝑡). 𝑁 needs to be increased
if we want higher accuracy by raising 𝑡. In the current version of Exa-
GRyPE, the default set of sample points is 𝑡 = 43 with 𝑁 = 948 from [39]
for a balance of accuracy and performance. In practice, sets of different
orders can be selected in the code, based on the accuracy requirements
of individual simulations.

3. Simulation building blocks

ExaGRyPE is based upon a rewrite of ExaHyPE. To the user, an Ex-
aGRyPE solver is a Python script which creates an ExaHyPE solver and
uses bespoke ingredients from ExaHyPE. All of these building blocks de-
signed for ExaGRyPE have been integrated into the ExaHyPE software
base. They are hence available to other solvers from other application
domains, too. However, they uniquely map the requirements arising
from astrophysical challenges onto code building blocks (Fig. 3).

3.1. Spatial discretization

As ExaHyPE solvers, ExaGRyPE relies on a block-structured Carte-
sian mesh [17] constructed through a spacetree formalism [40]: the
whole (three-dimensional) domain is embedded into a single cube and
split into three equal parts along each coordinate axis. This yields
33 = 27 smaller cubes. We continue recursively, i.e., decide for each cube
whether to refine it into 27 subcubes again. Our code base provides a
plug-in point for users to guide the refinement. The process yields an
adaptively refined Cartesian grid of cubes.

Every cube in this grid hosts a small Cartesian mesh (patch). Every
patch consists of 𝑝 × 𝑝 × 𝑝 mesh elements (again small cubes), and each
element holds either a piecewise constant solution of the evolving sys-
tem, i.e. defines one Finite Volume, or we read its center as a sample
point of the solution in a Finite Difference sense. 𝐾 additional layers
of elements are logically attached to the faces of the patches (Fig. 4).
Those extra layers are called halos. They provide data from neighboring
patches which are needed to update the solution in the current patch,
thus allowing the latter to advance one step in time without any further
data input. The patch carrying the actual evolving solution is hence the
minimal atomic unit of computation and represents the finest discretiza-
tion level.

Technically, faces hold copies of the closest volumes from both ad-
jacent patches. They hold data from 2𝐾 × 𝑝 × 𝑝 mesh elements. Prior
to the update of a cell, we glue the respective half of the face data and
patch data together to obtain our logic patch-plus-halo input data. Af-
ter the update, we write the new relevant data back into the 2𝑑 (𝑑 is
the number of space dimensions) adjacent faces of a patch.

Each solver picks its 𝐾 such that it can update its cell elements in-
dependently of all neighbor patches. For the traditional 3-point stencil,
𝐾 = 1 is sufficient.

3.2. Numerical solvers

The update of a patch is performed by a compute kernel. ExaHy-
PE’s baseline offers a generic Finite Volume (FV) kernel employing a
Rusanov Riemann solver with explicit time stepping, implementations

of Runge-Kutta Discontinuous Galerkin (RKDG) solvers, and ADER-DG

Computer Physics Communications 307 (2025) 109435H. Zhang, B. Li, T. Weinzierl et al.

Fig. 3. The overview of the code ingredients of ExaGRyPE, showing how the physics problem (application domain) is translated into the simulation code (building
blocks), bridged by the code base Peano and ExaHyPE: the targeted physics system can be seen as a Cauchy initial value problem with a set of PDEs, an initial
condition and a boundary condition. They are deployed on a computational grid following certain spatial discretization schemes and are handled by different code
modules. Our code supports adaptive mesh refinement to achieve flexible resolution. It also provides output of standard snapshot I/O with filtering and particle
tracer features, the latter is utilized as data probes.
Fig. 4. Two-dimensional, schematic illustration of patch and face data arrange-
ments in ExaHyPE 2: A two-dimensional patch with 5 × 5 mesh elements (vol-
umes) and a halo of width 𝐾 = 1 are used. Left: The faces host the halo data of
both adjacent patches. Right: Prior to the kernel invocation, we merge the cell
patch data and the data from the 2𝑑 adjacent faces into one (5 + 2) × (5 + 2)
patch augmented with its halo.

(arbitrary-high-order-method-using-derivatives DG). For ExaGRyPE, we
add a fourth-order Finite Differences (FD4) scheme that can be com-
bined with Runge-Kutta (RK) time stepping to fourth-order, too. It mir-
rors state-of-the-art solvers from the field (cmp. GRChombo). We use
exclusively FD4 in ExaGRyPE, while FV is also used in some bench-
mark and test implementations, as well as other applications based on
ExaHyPE (e.g. [41]).

Finite Volumes (FV) Our FV solver is a straightforward implementation
of a generic Rusanov scheme in an explicit Euler time integrator: each
volume is updated according to the flux through its six adjacent volume
interfaces. Let each volume host a constant function of 𝑄 ∈ ℝ𝑛. The time
stepping scheme of FV from Eq. (11) can be written as

�⃗�(𝑡+ 𝛿𝑡) = �⃗�(𝑡) + 𝛿𝑡𝑆(�⃗�) +
∑
𝑖∈𝑑

Flux±
𝑖
(�⃗�)|||𝜕𝑣, (16)
5

with the flux from the corresponding two faces in 𝑖 dimension:
Flux−𝑖 = 𝛿𝑡

𝛿𝑥

[
− 1

2

(
�⃗�− �⃗�−

)
𝐵𝑖

(1
2
(�⃗�+ + �⃗�−)

)
(17)

− 𝜂 max
(
𝜆max(�⃗�), 𝜆max(�⃗�−)

)(
�⃗�− �⃗�−

)]
,

Flux+𝑖 = 𝛿𝑡

𝛿𝑥

[
− 1

2

(
�⃗�+ − �⃗�−

)
𝐵𝑖

(1
2
(�⃗�+ + �⃗�−)

)
(18)

+ 𝜂 max
(
𝜆max(�⃗�+), 𝜆max(�⃗�)

)(
�⃗�+ − �⃗�−

)]
,

where 𝐵𝑖 is the NCP term along the 𝑖th dimension, �⃗�+ and �⃗�− are the
volume solutions left and right of the considered volume, 𝛿𝑥 is the vol-
ume size, and 𝜂 is a problem-specific constant with a default value of
0.5. We have used 𝜕𝑡�⃗� =

(
�⃗�(𝑡+ 𝛿𝑡) − �⃗�(𝑡)

)
∕𝛿𝑡 as the Euler time inte-

gration scheme. This yields a 7-point stencil coupling each volume to its
face-connected neighbors: 𝐾 = 1 is sufficient to realize this scheme, and
we need the ExaGRyPE specification to provide a function that evalu-
ates the non-conservative product 𝐵𝑖 for a given input, as well as one
that returns the maximum eigenvalue 𝜆max(�⃗�) along a coordinate axis
for the flux calculations. For the current CCZ4 equations, ExaGRyPE fol-
lows the conservative upper estimate for this eigenvalue from the work
[15].

Finite Differences (FD4) To implement the fourth-order finite difference
solver in ExaHyPE, ExaGRyPE samples the solution in the center of the
mesh elements. Therefore, the FD4 scheme can use the same storage
scheme as the FV scheme besides a larger (𝐾 = 2) halo.

On this grid over sample points, we use central finite differences with
a “tensor product” approach. For 𝐾 = 1, we could construct a seven-
point stencil by cutting the Taylor expansion’s second-order term. In
ExaGRyPE, we adopt the fourth-order accuracy scheme which requires
𝐾 ≥ 2 (we use 𝐾 = 3 in the practice of the code for KO dissipation, see

below). Its time-stepping scheme is

H. Zhang, B. Li, T. Weinzierl et al.

�⃗�(𝑡+ 𝛿𝑡) = �⃗�(𝑡) + 𝛿𝑡𝑆(�⃗�)− (19)

−
∑
𝑖∈𝑑

𝐵𝑖
𝛿𝑡

12𝛿𝑥𝑖

[
8
(
�⃗�𝑖+ − �⃗�𝑖−

)
−
(
�⃗�𝑖++ − �⃗�𝑖−−

)]
,

where the 𝑖+ and 𝑖− upper indices of quantities indicate the relative
position of the indexed quantities with the current grid point along
𝑖 direction, and the number of signs specifies the distance. Again we
have used 𝜕𝑡�⃗� =

(
�⃗�(𝑡+ 𝛿𝑡) − �⃗�(𝑡)

)
∕𝛿𝑡. As all the approximation hap-

pens within the truncation of the Taylor expansion, it is sufficient for the
user code to provide an implementation of 𝐵𝑖 to the compute kernel. As
our default kernel of ExaGRyPE, readers are referred to Appendix D for
more details on the FD4 solver.

The fourth-order differences can be combined with an arbitrary-
order time step integrator. ExaGRyPE indeed provides Runge-Kutta
schemes up to order four, where we would naturally hit the Butcher
barrier. However, by default, we use a first-order Runge-Kutta scheme,
i.e. an explicit Euler as higher-order time integration yield to be non-
economical given its extra computational cost, see Section 5.1.

Time step size calculation The admissible time step size of all explicit
schemes is subject to the Courant–Friedrichs–Lewy (CFL) condition/con-
straint with

Δ𝑡 < 𝐶
|𝛿𝑥|

(2𝑅− 1)𝜆max
, (20)

where 𝐶 < 1 is a user-specified safety parameter that may vary in dif-
ferent simulations and 𝑅 is the order of the Runge-Kutta scheme (𝑅 = 1
for Euler). Our scheme employs a global time-stepping scheme and thus
uses the smallest global volume length |𝛿𝑥| to guide Eq. (20). For all
present experiments, it remains invariant over time as we fix the finest
resolution (static refinement) in our simulations which naturally clus-
ters around the black hole.

The time step size calculation again requires the solver to evaluate
𝜆max over each patch after it has been updated and we continue to use
the same evaluation as we introduced in the Finite Volume solver above.
This quantity encodes the fastest propagation speed of the quantities in
our system. As it changes over time we have to restrict it globally and
adopt the time step size accordingly.

Kreiss-Oliger damping Astrophysical solutions with explicit time step-
ping are notoriously vulnerable to numerical instabilities. It therefore is
helpful to involve a penalty term in the evolution equation, as it smooths
out solutions affected by numerical inaccuracies in certain regions of the
domain, such as those near physical or AMR boundaries.

This smoothing is often done using the so-called Kreiss-Oliger (KO)
dissipation [42], which traditionally evaluates a higher-order term (a
“fourth-order curvature” for example) for second-order PDEs. Its order
needs to exceed that of the kernel updating scheme to avoid introducing
larger numerical errors in smoothing. As we work with the fourth-order
accuracy in FD4, ExaGRyPE employs the KO term with 𝑁 = 3 (i.e., the
term use value of cells up to three points away) in the code and makes
this feed into our evaluation equation (19) with a user-defined parame-
ter to suppress oscillations (Appendix D). The KO term can be calibrated
or switched off upon demand.

Explicit gradient reconstruction In the first-order formulation, all 58
variables of Eq. (10) are updated by the numerical scheme on a patch
(Algorithm 1). In the second-order formulation, however, only the pri-
mary variables Eq. (8) are evolved. After that, the remaining auxiliary
variables Eq. (9) are calculated from those primary variables. We up-
date the solution, compute the auxiliary variables, i.e., their gradients,
in a postprocessing step, and feed them into the subsequent time step
again. With this scheme, we can realize a second-order formulation
even though all PDEs are written down as first-order (Algorithm 2). For
the auxiliary variables, we use a central fourth-order finite difference
6

scheme again (D.1).
Computer Physics Communications 307 (2025) 109435

3.3. Domain decomposition

ExaHyPE splits the computational domain spanned by the spacetree
along the Peano space-filling curve (SFC) [14]. The embedded patches
are atomic, i.e. never split. Segments along the SFC then can be deployed
among ranks and threads, i.e., we facilitate domain decomposition be-
tween ranks and on ranks. It is a non-overlapping domain decomposi-
tion.

Non-overlapping here is to be read logically: Each volume or degree
of freedom within any patch has a unique owner, i.e., a unique thread
on a unique rank that is responsible for updating it. The patch data
replicated within the faces establish an effective overlap of 2𝐾 .

The copy from patch data into faces happens after every time step.
We use this copied data in the neighboring patch in the subsequent mesh
sweep. Therefore, no direct, synchronous data exchange of face data is
required. Instead, we can send out data in one mesh traversal and receive
it prior to the subsequent one. With this non-blocking data transfer, our
code allows for some overlap of communication and computations.

3.4. Task parallelism and GPU offloading

Patch updates in ExaHyPE are atomic units. Patches are not sub-
divided further. Therefore, ExaHyPE models them as tasks, and Peano
provides one abstract interface which allows us to spawn them into
either Intel’s TBB, OpenMP, or plain C++ tasks. We also offer an ex-
perimental SYCL back-end.

The task creation patterns realize the paradigm of enclave tasking
[43]: tasks that do not feed into MPI or are adjacent to adaptive mesh
resolution transitions are spawned into our tasking backend of choice.
ExaHyPE refers to them as enclave tasks. Other tasks are executed di-
rectly with high priority. Once they terminate, we trigger all MPI data
exchange and AMR mesh inter-grid transfer operators, while the tasking
back-end now handles the enclave tasks.

This principle can be used to offload batches of enclave tasks in one
rush to an accelerator: we collect the enclave tasks without any side ef-
fects, i.e., those that do not alter the global solver state, in a separate
queue. Once the number of buffered tasks in this queue exceeds a pre-
scribed threshold, we bundle them into one meta task and ship them off
to the GPU [20,21]. The remaining enclave tasks are handed over to our
task back-end of choice. For the GPU offloading, we support OpenMP,
SYCL and C++ offloading.

3.5. Boundary treatment

Boundary conditions in ExaHyPE 2 are implemented through the
halo layers of faces that are adjacent to the global domain boundary.
Such faces hold elements �⃗�out and �⃗�in. After each mesh sweep or the
initialization step, the array �⃗�in holds a valid copy of the data within the
adjacent patch. To facilitate an update of this patch, we have to manu-
ally set the �⃗�out, as there is no adjacent patch here, and we can use this
“reconstruction” step to impose appropriate boundary conditions.

To implement a homogeneous Neumann boundary condition, we
simply set �⃗�out = �⃗�in for example. For solvers that host multiple halo
layers for their time-stepping scheme, i.e. 𝐾 ≥ 2, we apply the initializa-
tion scheme to specify the values in the ghost volumes layer by layer: we
move from the element layer closest to the domain boundary outwards
(Fig. 5).

While ExaHyPE 2 ships a variety of pre-defined boundary treatments,
one particular type of boundary condition required by ExaGRyPE is the
Sommerfeld (radiative) boundary condition [33] to mitigate the effect
of open-domain boundaries. It eliminates spurious modes arising from
homogeneous Newmann boundary conditions, by effectively suppress-
ing wave-like reflection and enforces that the wave at the boundary
only travels out of the domain. The mathematical formulation of the

Sommerfeld boundary condition reads as

Computer Physics Communications 307 (2025) 109435H. Zhang, B. Li, T. Weinzierl et al.

Algorithm 1 Time stepping scheme (explicit Euler) for the fourth-order finite difference solver of ExaGRyPE in the first-order formulation.

for each patch in Domain do

for each volume in patch do

compute source term 𝑆(�⃗�)
𝑅𝐻𝑆

�⃗�
←Δ𝑡 ⋅ 𝑆(�⃗�)

for 𝑖 = 𝑥, 𝑦, 𝑧 do ⊳ Run over all elements in the patch
compute fourth-order Finite Difference (Δ�⃗�)𝑖 ⊳ Eq. (D.1)

compute non-conservative product 𝐵𝑖(�⃗�)(Δ�⃗�)𝑖
compute KO term (𝐾𝑂

�⃗�
)𝑖 ⊳ Eq. (D.6)

end for

𝑅𝐻𝑆
�⃗�
←𝑅𝐻𝑆

�⃗�
−
∑

𝑖 Δ𝑡 ⋅𝐵𝑖(�⃗�)(Δ�⃗�)𝑖
𝑅𝐻𝑆

�⃗�
←𝑅𝐻𝑆

�⃗�
+
∑

𝑖 Δ𝑡 ⋅ (𝐾𝑂
�⃗�
)𝑖

�⃗�← �⃗�+𝑅𝐻𝑆
�⃗�

𝑡 ← 𝑡 +Δ𝑡

compute 𝜆𝑚𝑎𝑥 to inform next time step
end for

end for

Algorithm 2 Time-stepping scheme with an explicit Euler for the fourth-order finite difference solver of ExaGRyPE in the second-order formulation.

for each patch in Domain do

for each volume in patch do

compute Source 𝑆(�⃗�𝑝𝑟𝑖)
𝑅𝐻𝑆

�⃗�𝑝𝑟𝑖
←Δ𝑡 ⋅𝑆(�⃗�𝑝𝑟𝑖)

for 𝑖 = 𝑥, 𝑦, 𝑧 do

compute fourth-order FDs (Δ�⃗�𝑝𝑟𝑖)𝑖 ⊳ Eq. (D.1)

compute NCP 𝐵𝑖(�⃗�𝑝𝑟𝑖)(Δ�⃗�𝑝𝑟𝑖)𝑖
compute KO term (𝐾𝑂

�⃗�𝑝𝑟𝑖
)𝑖 ⊳ Eq. (D.6)

end for

𝑅𝐻𝑆
�⃗�𝑝𝑟𝑖

←𝑅𝐻𝑆
�⃗�𝑝𝑟𝑖

−
∑

𝑖 Δ𝑡 ⋅𝐵𝑖(�⃗�𝑝𝑟𝑖)(Δ�⃗�𝑝𝑟𝑖)𝑖
𝑅𝐻𝑆

�⃗�𝑝𝑟𝑖
←𝑅𝐻𝑆

�⃗�𝑝𝑟𝑖
+
∑

𝑖 Δ𝑡 ⋅ (𝐾𝑂
�⃗�𝑝𝑟𝑖

)𝑖
�⃗�𝑝𝑟𝑖 ← �⃗�𝑝𝑟𝑖 +𝑅𝐻𝑆

�⃗�𝑝𝑟𝑖

for 𝑖 = 𝑥, 𝑦, 𝑧 do

compute fourth-order FDs of the primary (Δ�⃗�𝑝𝑟𝑖)𝑖
Assign the auxiliary variables �⃗�𝑎𝑢𝑥 ← (Δ�⃗�𝑝𝑟𝑖)𝑖

end for

𝑡 ← 𝑡 +Δ𝑡

compute 𝜆𝑚𝑎𝑥 to inform next time step
end for

end for
𝜕𝑡𝑄+ 𝑐
𝑟

𝑥𝑖

𝜕𝑖𝑄 = − 𝑐

𝑟
(𝑄−𝑄ini)

||||𝜕Ω, 𝑖 ∈ {1,2,3} (21)

where 𝑟 =
√

𝑥2 + 𝑦2 + 𝑧2 is the coordinate distance from the system’s
origin to the considered boundary position and 𝑥𝑖 ∈ {𝑥, 𝑦, 𝑧} is the co-
ordinate perpendicular to the considered boundary. 𝑄ini is the value of
evolving quantities at the boundary in the initial condition, as it serves
as a “background” and thus does not enter the wave-like equation. 𝑐 is
the wave speed, i.e., the eigenvalue of the characteristic matrix of the
evolution system.

In the code, the derivatives are replaced by corresponding finite dif-
ferences. To initialize layer 3 of a FD4 setup with 𝐾 = 3 along a vertical
boundary face (cmp. Fig. 5) we compute

1
𝛿𝑡

(
𝑄𝑛+1

3 −𝑄𝑛
3
)
+ 𝑐

𝑟

𝑥𝑖𝛿𝑥𝑖

(
𝑄𝑛

3 −𝑄𝑛
2
)
= − 𝑐

𝑟

(
𝑄𝑛

3 −𝑄ini

)
, (22)

with an element size of 𝛿𝑥𝑖. The indices for the 𝑦 and 𝑧 directions are
omitted as they are all the same in this case. The upper indices 𝑛 and
𝑛 +1 represent the previous and current time step. As we work our way
outside of the domain to fill all layers of the boundary data iteratively,
𝑟, 𝑐, and 𝑥𝑖 in Eq. (22) need to be adjusted accordingly.

3.6. Adaptive mesh refinement

Adjacent patches are coupled with each other through their shared
faces. On a regular grid, keeping face data consistent with its adjacent
7

cells requires trivial one-to-one copies. Special care is needed along
mesh refinement transitions, i.e., along the boundary where the res-
olution changes between patches. However, the principle remains the
same: adjacent patches communicate through their shared faces.

Logically, we can read the adaptive meshing over a spacetree struc-
ture as a mechanism to span ragged, non-overlapping Cartesian meshes:
the patches of one resolution form one regular mesh which has holes
where the code decides to use a finer or coarser resolution, respectively.
This means we encounter “boundary” faces on this level, where the �⃗�out
are not set by an adjacent patch.

The �⃗�out data on such hanging faces are initialized from the coarser
volumes prior to the mesh traversal. We interpolate. The counterpart
is the restriction. Both schemes are implemented exclusively over face
data. Alternative implementations [44] realize the interpolation over
the patches themselves, i.e. use a volumetric restriction. While ExaHyPE
facilitates such volumetric coupling in principle (cmp. discussion be-
low), we do not use expensive volumetric coupling in ExaGRyPE’s use
cases presently. Furthermore, we write the interpolation rules down
with a tensor-product approach which ignores diagonal coupling, i.e.,
interpolation of elements that are not aligned along a coordinate axis,
and we use exclusively a trilinear scheme.

Denoting the quantities of the volumes in the coarse and fine faces
are 𝑄𝑐

𝑖,𝑗,𝑘
and 𝑄𝑓

𝑖,𝑗,𝑘
, the interpolation map can be written down as

𝑄
𝑓

𝑖,𝑗,𝑘
= 𝑃𝑥

𝑖𝑙
𝑃

𝑦
𝑗𝑚

𝑃 𝑧
𝑘𝑛
𝑄𝑐

𝑙,𝑚,𝑛
, (23)

where 𝑃𝑥, 𝑃 𝑦, and 𝑃 𝑧 are the matrices responsible for the corresponding

one-dimensional map. Analogously, we obtain the matrix 𝑅𝑖

H. Zhang, B. Li, T. Weinzierl et al.

Fig. 5. Schematic illustration of boundary initialization for 𝐾 = 3: Half of the
face’s solution data is outside the domain (right, light blue). We need to initialize
the outside layers of the boundary (𝑄𝑛+1

3,𝑗,𝑘, 𝑄𝑛+1
4,𝑗,𝑘, 𝑄𝑛+1

5,𝑗,𝑘) from values inside the
domain to impose proper boundary conditions and allow the adjacent patch to
continue its time stepping with valid halo data. We first assign the values 𝑄3,𝑗,𝑘

use 𝑄2,𝑗,𝑘 by treating them as �⃗�out and �⃗�in in the boundary condition function,
then assign the values 𝑄4,𝑗,𝑘 using 𝑄3,𝑗,𝑘, and finally assign the values 𝑄5,𝑗,𝑘 use
𝑄4,𝑗,𝑘 to fill all three layers. We work our way outwards. More sophisticated
schemes setting all values in one go are feasible within ExaHyPE yet not used
within ExaGRyPE. (For interpretation of the colors in the figure(s), the reader
is referred to the web version of this article.)

𝑄𝑐
𝑖,𝑗,𝑘

=𝑅𝑥
𝑖𝑙
𝑅

𝑦
𝑗𝑚

𝑅𝑧
𝑘𝑛
𝑄

𝑓

𝑙,𝑚,𝑛
(24)

for the restriction (see Appendix E for the exact formulation of those
matrices). ExaGRyPE currently defaults to averaging for the restriction.

ExaHyPE’s face-centric scheme is convenient to implement, as it al-
lows users to solely focus on face-to-face interactions. We also can use it
to construct interpolations and restrictions over multiple levels of refine-
ment automatically: we recursively apply the intergrid transfer operator.
ExaGRyPE does not enforce any 2:1 balancing [45]. One might want to
call 3:1 balancing for Peano as we use tri-partitioning, which enforces
that the cells adjacent to any face differ in size at most by one level of
refinement, i.e., a factor of three in Peano. No such constraint exists,
although users might want to impose it manually.

The logic where to refine or coarsen can be realized by the user. Ex-
aGRyPE ships with examples of how to use feature-based refinement for
example, where the maximal difference between any two adjacent ele-
ments within a patch triggers either a refinement or coarsening in the
subsequent time step. This allows for solution-driven, dynamic adaptive
mesh refinement. However, the present experiments with ExaGRyPE all
use a static refinement: we know where the black holes reside or the
orbits on which they rotate initially, and prescribe concentric spheres
of refinement levels around these areas. Dynamical adaptive mesh re-
finement is not free and induces load-balancing challenges. The static
refinement circumnavigates these.

There are three open research questions to study: First, codes without
2:1 balancing are prone to strong reflections along the resolution transi-
tions, as high-frequency waves cannot escape regions of high resolution
[46]. Second, higher-order interpolation might be required to match
the higher-order spatial discretion of the solvers, and we have already
observed improvement in solution by using the second-order scheme
in certain benchmarks below. Finally, our resolution transition scheme
does not guarantee the conservation of the interpolated and restricted
physical quantities, which may unexpectedly affect the long-term evo-
lution of the spacetime.

3.7. Volumetric coupling of multiple solvers

In ExaHyPE, the mesh can carry multiple solvers at the same time.
8

In such a case, they run parallel while the code traverses the mesh. Ex-
Computer Physics Communications 307 (2025) 109435

aGRyPE’s solvers can be composed, i.e., they can be told to run in-sync.
This way, solvers with different time step sizes (e.g., different 𝜆max),
solvers with different time integrators, or solvers with different mesh
resolutions are kept synchronous: we can, for example, disable them for
some mesh traversals or manually prescribe their time step size.

This is a synchronization or coupling of the global solvers’ states.
ExaGRyPE can also couple different solvers per patch: if a spacetree cube
holds two patches—of an FD4 and an FV solver, e.g.—we can hook into a
patch update postprocessing step and manually overwrite either of them
after each time step. This way, it is possible for ExaGRyPE, for example,
to run an FV solver around a black hole and to use FD4 further away, we
conduct a simulation test based on this and report in Section 5.2. The
feature is typically combined with a localization of the solvers, where
each solver holds data only for some cubes of the underlying spacetree.

3.8. Particle tracers as data probes

ExaHyPE features particles which are embedded into the compu-
tational mesh. This feature originally has been introduced to support
Particle-in-Cell schemes [47]. In ExaGRyPE, we use it to realize tracers.
Particles are inserted into the mesh for data probing and object tracking.
They are not evolved independently, but instead either follow evolving
variable fields in PDEs—the quantities in �⃗� which represent a veloc-
ity field for example—or are spatially invariant and simply record the
values in �⃗� at this point.

Particles allow users to track the solution’s evolution at certain points
in the domain without high I/O overhead, as they sample the solution in
one point and do not require us to dump large output files. If they move,
they yield trajectory information of important objects in the domain.
Adding tracers to an ExaGRyPE simulation involves three stages:

• Initialization. The users specify the number and initial coordinates
of the tracers. ExaHyPE offers two approaches for initializing the
tracer coordinates: one can set the coordinates explicitly by writing
them down in the ExaGRyPE specification script from where they are
passed into ExaHyPE, or we can provide a coordinate file. Besides
the coordinates, users also need to specify what evolving variables
the tracers need to plot.

• Data Projection. Users then decide which and how the solver’s val-
ues on the patches are projected onto tracer attributes. ExaGRyPE
currently uses trilinear interpolation, i.e., it uses the values within
the closest 2𝑑 elements (Finite Volumes or Finite Difference sam-
ple points) to determine the value at the tracer particles. Along with
the projection instructions, users can declare three quantities which
serve as velocity field 𝑣𝑖 for the tracers. If specified, the tracers’ po-
sitions are updated using an explicit Euler time integrator

𝑥𝑡+𝛿𝑡
𝑖

= 𝑥𝑡
𝑖 + 𝛿𝑡𝑣𝑡𝑖, (25)

where 𝑥𝑡
𝑖

is the position of the considered tracer at time 𝑡, and 𝑣𝑡
𝑖

is
the velocity reconstructed from the solver solution. It allows tracers
to follow the flows within the simulation. 𝛿𝑡 can be set to the solver’s
time step size.

• Data dumping. Tracers record “their” values in each and every time
step. ExaGRyPE can instruct them to dump this chronological data
into output files in CSV format. For large-scale simulations, Ex-
aHyPE 2 offers various thresholds to control the dumping: users can
ask tracers to dump in fixed code time intervals, or to dump when
recorded variables or tracking positions have changed substantially.
To reduce the memory footprint, the recording can be lossy, i.e., only
record new values whenever their relative difference to previously
recorded values exceeds a certain threshold.

The tracer module is used in ExaGRyPE extensively as the “extractor”

of gravitational wave signals and for black hole puncture trackers.

Computer Physics Communications 307 (2025) 109435H. Zhang, B. Li, T. Weinzierl et al.

Fig. 6. Starting from an abstract specification (which solvers to use, initial mesh resolution, total runtime, time in-between plots, . . .), we generate a tailored series
of tasks in multiple steps. We lower the representation from a high-level description into something that reflects the C++ implementation one-to-one.
4. Functional decomposition and software architecture

An ExaHyPE project forms the starting point of any ExaGRyPE en-
deavor. It is eventually translated into a set of C++ classes defining the
actual executable. It is lowered in multiple steps into the actual execu-
tion code. In ExaGRyPE, we rely on Python bindings for an ExaHyPE
project, while the actual code is represented by a Peano project that can
be translated one-to-one into C++ code. The starting point is hence an
instance of exahype2.Project in Python.

Once an ExaHyPE project, aka instance of the Python class, is set up,
we lower it into a sequence of four tasks: initial mesh generation, solu-
tion initialization, time stepping and I/O steps. Every ExaGRyPE project
consists of these fundamental steps, where plotting and time stepping
are iteratively executed. The lowering is a mere task sequence instanti-
ation. From hereon, we focus on the time step.

An ExaHyPE project hosts an arbitrary number of solvers. The
solvers’ time-stepping scheme determines how many mesh traversals
we need to implement in one time step, as well as the semantics per
traversal. Let a solver be a Runge-Kutta scheme of order 𝑘 ≤ 4. Ex-
aHyPE lowers a time step into four mesh traversals. For 𝑘 > 4, we hit the
Butcher barrier [48] and hence require additional mesh sweeps. This
lowering follows the solver’s time stepping specification. Besides the
translation into a sequence of mesh traversals, a solver carries meta in-
formation such as maximum mesh size, patch dimensions 𝑝, the halo
size 𝐾 or the number of unknowns. This yields a specification of the
required data structures: an ExaGRyPE FD4 for example makes the low-
ering fit a 𝑝 × 𝑝 × 𝑝 patch into each cell, equip the faces with an overlap
of three, i.e. a 2 ⋅ 3 × 𝑝 × 𝑝 patch, and store helper data for the selected
Runge-Kutta scheme such as temporary storage for the right-hand sides.
The solver also informs the lowering process what global parameters the
solver has to host—such as 𝜆max—and how they are exchanged and kept
consistent. For multiple solvers, our translation into a lower abstraction
level ensures automatically that solvers are kept in sync.

Once the nature of a mesh sweep is known, we can lower it once
more into fundamental tasks over mesh entities: Per cell, we know how
to equip the current time step or Runge-Kutta guess data with halo data
information, i.e., how to reconstruct the (𝑝 + 2𝐾) × (𝑝 + 2𝐾) × (𝑝 + 2𝐾)
patch, which compute kernel (update of a patch) to invoke, which halo
data to exchange, which AMR criteria to evaluate, which patch post-
processing to call, and so forth. We take the numerical recipe and lower
it onto a task graph over the actual mesh in use.

The compute kernels themselves can be lowered one final time: a
9

time step in a Finite Volume scheme for example maps onto a sequence
of 𝑑-dimensional loops over all volumes within a patch [19]. Per vol-
ume, we evaluate the actual PDE terms. This is the lowest level within
ExaGRyPE’s cascade of abstraction levels: within this final lowering step,
we create a C++ class per solver. It allows the user to hook into manda-
tory steps of the simulation such as the refinement control or the patch
initialization, but it notably also provides a method stub per PDE term in
use. This empty stub has to be filled by the user. Alternatively, users can
define in the top-level specification which functions have to be called for
the PDE terms, the initialization, the refinement criterion, and so forth.
If specified, the final lowering step inserts these function calls into the
stub. ExaGRyPE provides pre-defined functions for all features used in
the present manuscript.

Our description of ExaGRyPE’s abstraction levels relies on multi-
ple levels of abstraction layers. Users provide an abstract description in
Python. From this specification layer, we can break down the workflow
into finer and finer logical representations. This lowering is completely
hidden from the user—it is realized in the ExaHyPE engine layer—and
it relies on a task language (Fig. 6). On the higher abstraction levels,
the tasks describe sequences of activities that are performed to produce
the simulation output (application blueprint or workflow). Once we break
down these activities into activities per mesh entity (mesh actions) [14],
we obtain a real task graph over the mesh: what has to be done for a cell
exclusively relies on the fact that all adjacent hanging faces have been
interpolated completely and the halo layers of the adjacent faces of the
2𝑑 faces of this cell have been made consistent. Data along a face that is
to be exchanged via MPI to keep the halos for the subsequent time step
consistent can be sent out immediately after the corresponding adjacent
cell has finished its kernel. This list is not comprehensive.

All lowering down onto mesh traversals and activities per mesh en-
tity is automated. We implement it within the ExaHyPE engine once our
ExaGRyPE description has built up the program specification. It is only
the very last step that links back to actual user code and might require
manual intervention unless the used implementations are inserted into
the specification script as well.

4.1. Static software architecture

As ExaGRyPE is built on top of ExaHyPE, it inherits its multi-layer
static architecture (Fig. 7). A technical architecture wraps away var-
ious external libraries such as OpenMP, TBB and MPI, but also I/O
facilities such as HDF5. In ExaGRyPE, we can hence swap different mul-
tithreading backends in and out. It is written in plain C++ although

some subcomponents use extensions such as SYCL or OpenMP pragmas.

H. Zhang, B. Li, T. Weinzierl et al.

Fig. 7. The schematic architecture of the C++ libraries used within ExaGRyPE.
The Python layer on top mirrors the core architecture, but can omit representa-
tions of the technical architecture and third-party tools in Python.

The technical architecture is a utility collection used by all of our
code. Peano is the actual AMR and mesh traversal component. It is writ-
ten in C++. Its design principles follow the “don’t call us, we call you”
paradigm introduced with its third generation [14], i.e. this component
owns the mesh and its traversal. While it runs through the mesh, it is-
sues events such as “I read this vertex for the first time” [40]. Codes can
hook into these events to realize the actual solver semantics.

ExaHyPE is such a code. Per solver and solver flavor (different opti-
mization variants of each solver exist for example), it provides classes
and functions that plug into these events. It is all written in C++ and
also uses routines from Peano as well as the technical architecture. As
many features within ExaHyPE are used by multiple solvers or even
other applications built on top of Peano, they are modeled as separate
toolboxes: inside the C++ core of Peano plus ExaHyPE we functionally
decompose the code again.

ExaGRyPE adds additional domain-specific features on top of Ex-
aHyPE, but also makes contributions to ExaHyPE’s core functionality.
The latter includes a solver for fourth-order Finite Differences that uti-
lizes the block-structured routines or bespoke boundary conditions for
example. Other features such as the implementation of the CCZ4 PDE
terms or the KO damping are domain-specific and kept separate from the
ExaHyPE core. Here, ExaGRyPE is a strict extension of ExaHyPE. These
extensions comprise also routines to initialize the simulation setup.
While Peano and ExaHyPE are independent of third-party libraries or,
through the technical architecture, shielded from them, the initializa-
tion routines within ExaGRyPE link to the Einsteintoolkit [5].

All of ExaGRyPE, ExaHyPE and Peano are written in plain C++ with
a technical architecture which separates them from extensions such as
SYCL. While we do use metaprogramming in many places, a lot of these
C++ ingredients are rather independent and not tied together. Instead,
Peano offers a Python wrapper that can represent a whole Peano appli-
cation including its Makefile, global variables/settings and so forth.
This Python wrapper comprises all the glue code required to link certain
components to each other. For example, it exactly defines which mem-
ory is to be allocated per spacetree cube, which functions are to be called
whenever we run through a face throughout the mesh traversal, and so
forth. The Python component represents the lowest level of our auto-
matic code lowering and can be translated one to one onto C++ glue
code, i.e., a working executable linking to all static Peano, ExaHyPE and
10

ExaGRyPE libraries comprising all building blocks.
Computer Physics Communications 307 (2025) 109435

The C++ architecture is mirrored by the Python API. We do not need
a representation for the technical architecture or any third-party library
underneath. The most basic representation is the Python Peano layer
which represents a Peano C++ application exactly plus all required
build information (makefile). All toolboxes have their Python equiv-
alent such that we can add them to a Peano project and configure them
on the Python level throughout the lowering process. ExaHyPE adds an
additional Python abstraction on top, where individual objects repre-
sent solvers, data structure definitions, and so forth. On this level, we
also explicitly host the main routine.

On top of the ExaHyPE Python layer, we install the ExaGRyPE
layer, which reflects the program specification and offers many domain-
specific helper routines. In this code design, all lowering can be done
exclusively in Python. Objects within the lower Python layers however
often correspond one-to-one to C++ objects.

4.2. Programming workflow

We run through the structure and programming of a ExaGRyPE
solver by means of a simple gauge wave benchmark. The example
highlights how the individual simulation steps manifest in Python in-
structions and illustrates how they inform the lowering. Every ExaHyPE
project follows the same structure (Algorithm 3): we create a project
and hence implicitly define the application blueprint (Fig. 6) with its
four distinct phases.

The project is manually lowered down into a Peano project, which is
the one-to-one equivalent of C++ source code. Consequently, we dump
this project then onto disk. We assume that all ExaGRyPE, Peano and
ExaHyPE libraries have been built before using either the autotools
or CMake. The Python script automatically picks up the used configu-
ration arguments and creates an appropriate Makefile alongside the
generated C++ code. Load balancing, additional third-party libraries,
or global I/O settings all can be added to the Peano project before we
write to disk. While ExaHyPE allows users to define their own load-
balancing strategy, the current version of ExaGRyPE utilizes the default
built-in option. We plan to conduct a full investigation of load balancing
strategies in future work along with the performance analysis.

4.2.1. Solver configuration

The actual ExaGRyPE solver has to be added to the ExaHyPE project
before triggering the lowering. While the creation is close to trivial (Al-
gorithm 4), different variants are on the table about how to connect the
vanilla PDE solver to the actual physics (Fig. 3). Without any further
information, the lowering yields an empty C++ class that users have
to fill (Algorithm 5). After that, the lowering process will create almost
all simulation code without any further user interference. Only on the
very lowest level, when we actually evaluate the PDE terms or the re-
finement criterion or require initial values, it will call routines from the
PDE solver.

As an alternative to the manual filling of the routines in C++, all
solvers in ExaHyPE offer a set_implementation routine. With this
one, users can inject C++ code directly into the generated code from the
Python API. ExaGRyPE provides wrappers around the generic ExaHyPE
solvers. There is a set of bespoke Finite Volume solvers, bespoke FD4
solvers, and so forth. They already set some default implementations,
configure halo layer sizes, or set the correct number of unknowns.

Grid construction As the first step of the simulation, Peano constructs
the computational grid and builds the corresponding spacetree. In this
stage, it also already splits up the computational domain following the
advice of the load balancing metrics. Peano offers plug-in points to guide
the mesh refinement, and ExaHyPE automatically runs through all the
ExaGRyPE solvers searching for the minimum of their maximum mesh
sizes. It ensures that the initialization starts from a sufficiently fine grid.

Once we have a reasonably fine initial mesh, ExaHyPE starts to query

the solver objects if a certain area should be refined. In this stage, the

Computer Physics Communications 307 (2025) 109435H. Zhang, B. Li, T. Weinzierl et al.

Algorithm 3 Baseline structure of any ExaGRyPE solver within ExaHyPE.

1: project = exahype2.Project(namespace = ["benchmarks", "exahype2", "ccz4"], name = "CCZ4", executable="test ")
2: project.set_global_simulation_parameters(dimensions = 3, offset = [-0.5, -0.5, -0.5], domain_size = [1, 1, 1], periodic_boundary_conditions = [True, True, True],

end_time = 1.0,. . .)
3: project.set_Peano4_installation(directory=. . . , build_mode=peano4.output.CompileMode.Release)
4: ⊳ Parse Peano’s configuration
5: . . . ⊳ Actual solver construction
6: peano4_project = project.generate_Peano4_project()
7: ⊳ Lowering
8: peano4_project.generate()
9: ⊳ Spill out C++ code plus Makefile

Algorithm 4 Creating an actual ExaGRyPE solver is a two-liner.

1: my_solver =
2: exagrype.api.CCZ4Solver_FD_GlobalAdaptiveTimeStep(name="CCZ4FD", patch_size=9, min_volume_h=. . .)
3: project.add_solver(my_solver)
Algorithm 5 By default, ExaHyPE creates one (empty) class per solver.
Users can fill this one manually. The class signature resembles the ex-
ample given as a pseudo-code below. The (generated) superclass holds
generic information passed into the Python representation such as the
used patch size 𝑝.

1: class ...::exahype2::ccz4::CCZ4FD: public ...::exahype2::ccz4::Ab-
stractCCZ4FD {

2: virtual RefinementCommand refinementCriterion (
3: double Q[58],
4: const Vector<Dimensions,double>& x,
5: . . .
6:) override;

7: virtual void initialCondition (
8: double Q[58], // out
9: const Vector<Dimensions,double>& x,

10: . . .
11:) override;

12: virtual void NCP (
13: double Q[58],
14: const Vector<Dimensions,double>& x,
15: . . .
16: int normal,
17: double BgradQ[58] // out
18:) override;

19: . . .
20: };

solvers do not yet have a solution at hand. Either we hard-code the
initial refinement pattern, or we make the algorithm run through a
decision logic which analyses “if we had a solution here, would we re-
fine”. This implements a feature-based initial refinement. The present
case studies all use hard-coded patterns, adopting static grids where
the finest resolution covering the whole interested region. The re-
finement criterion can be either written into the C++ template or
injected the implementation of the C++ code directly from Python
via my_solver.set_implementation(refinement_criterion
= "my fancy C++ code snippet"). The dynamic grid refinement
during evolution is also available in ExaGRyPE and can tag volumes for
refinement either based on coordinates, similar to the “Tracker-based
AMR” in [49], or based on variables, similar to the “tagging on gradien-
t” in [50]. This dynamic feature is not used for the current benchmarks,
and a full investigation is left for future work.

Grid initialization As soon as the initial grid is initialized, i.e., as soon
as ExaHyPE’s main logic realizes that the grid does not change any-
more, and as soon as the initial load balancing has terminated, the code
switches into the initialization phase. ExaHyPE now embeds the actual
compute data structure, i.e., the patches, into the spacetree cubes and
11

then runs through each element (Finite Volume or FD sample point) and
sets the initial value. This happens by calling the solvers’ initialCon-
dition routine.

Algorithm 6 The initial conditions for the Gauge wave setup can be set
directly through the Python interface. It injects C++ code snippets into
the generated solver that call a ExaGRyPE C++ factory function setting
the Gauge wave data.

1: my_solver.set_implementation(initial_conditions="""
2: for (
3: int i=0;
4: i<NumberOfUnknowns+NumberOfAuxiliaryVariables;
5: i++
6:) Q[i] = 0.0;
7: ::applications::exahype2::ccz4::gaugeWave(Q, x, 0);
8: """)

Our present ExaGRyPE solvers realize two different approaches for
this: for simple setups where we know the analytical solution, the func-
tion body of initialCondition is hard-coded and assigns the initial
values of evolving variables directly. This happens for the gauge wave
benchmark, e.g., for which ExaGRyPE provides a helper function (Algo-
rithm 6).

For more complex setups such as the black hole system where a nu-
merical solution is required that obeys the Hamiltonian constraints, we
link against the TwoPuncture module from Einsteintoolkit. It cal-
culates the spacetime quantities 𝛾𝑖𝑗 , 𝐾𝑖𝑗 and 𝛼 from the specified physi-
cal parameters like masses and momenta of the black holes. ExaGRyPE
provides a wrapper which converts the basic spacetime quantities (𝛾𝑖𝑗 ,
𝐾𝑖𝑗) from the external library into the ones that ExaGRyPE utilizes (�̃�𝑖𝑗 ,
�̃�𝑖𝑗 , 𝜙, 𝐾).

If combined with FD4, ExaGRyPE offers a fourth-order finite differ-
ence helper function to compute the first derivative feeding into the
auxiliary variables (9). This is a post-processing step which can be com-
bined with any initial condition.

Evolution equations (timestepping) The actual PDE evolution is pre-
configured in all ExaGRyPE solvers, i.e. they call set_implemen-
tation for the non-conservative product and source code through-
out the construction, and they also provide an implementation of the
𝜆max calculation. Users can redefine and alter it, but our present ex-
periments all rely on the default settings. The three core routines are
re-implementations in C++ of the Fortran implementations of [15], al-
though we modified some Fortran code entries to align them with the
CCZ4 formulation as outlined in the Appendix.

An explicit time stepping over the CCZ4 formulation yields solu-
tions which violate the CCZ4 constraints [51]. The default ExaGRyPE
solvers therefore add a post-processing of �⃗� to each time step’s compu-
tational kernel. It enforces the two algebraic constraints det(�̃�𝑖𝑗) = 1 and

tr(�̃�𝑖𝑗) = 0 point-wisely: the corresponding evolving variables in �⃗� are

H. Zhang, B. Li, T. Weinzierl et al.

over-written to satisfy the constraints, i.e. the traceless property is re-
achieved by removing the trace from every component of the tensor, and
the unity of determinant is re-achieved by rescaling every component.

If an FD4 solver with a second-order formulation is instantiated, Ex-
aGRyPE’s solvers add an additional mesh sweep to each solver which
serves as an epilogue to each time step. It reconstructs the derivatives
(Section 3.2). The additional mesh sweep is necessary, as the reconstruc-
tion requires some inter-patch/MPI data exchange to get all halo data
consistent.

Further features Boundary conditions can be injected via set_imple-
mentation but are set to Sommerfeld by default. The routine to control
dynamic adaptive mesh refinement defaults to ExaHyPE’s Keep com-
mand, i.e., the mesh is neither refined nor coarsened. More advanced
setups might want to alter this behavior.

4.2.2. I/O and post-processing

ExaHyPE dumps data into a bespoke patch format, which can dump
patches with cell- or vertex-associated degrees of freedom, higher-order
polynomials or mesh metadata with low overhead and without any con-
straints on dynamic adaptivity. The mesh can change from each and
every data dump. The dump is realized through a writer in the techni-
cal architecture. Peano ships a Python tool to merge and convert them
into the standard VTU files, which is compatible with various visualiza-
tion software. The realization relies on the VTK/Paraview software.

Given the scale of the simulations, dumping all 58 equations over
the whole computational domain results in large output files. Therefore,
we incorporated a data filter into our code. This filter enables users to
selectively extract slices and clips from the domain. One can also specify
what variables are to be included in the output files.

This in-situ filtering reduces the I/O pressure significantly. Auxil-
iary variables used as helper quantities in the evolution for example are
often omitted in the snapshots. If phenomena are known to show in-
trinsic symmetry or invariance along certain coordinate axes—cmp. the
static single black hole scenario which has rotational symmetry or the
gauge wave setup which effectively yields a one-dimensional evolution
of interest—we can boil down the output file sizes significantly.

Besides mere filtering, we can also compute accuracy metrics in situ:
if enabled, Hamiltonian and Momentum constraints (B.37)–(B.38) are cal-
culated after each time step and attached to the evolving quantities �⃗� as
“additional variables”. As the calculation of the extra quantities is sepa-
rated from the computational kernel, ExaGRyPE offers a big freedom to
pick the computational rule or cardinality of the output. We can calcu-
late intermediate quantities, e.g., the Ricci tensor 𝑅𝑖𝑗 or the conformal
connection function Γ̃𝑖, for testing purposes.

4.2.3. Tracers

Algorithm 7 A one-liner adds tracers to an ExaGRyPE solver.

1: my_solver.add_tracer(
2: name="Tracer",
3: coordinates=[[-0.4251, 0, 0], [0, 0, 0], [0.4251, 0, 0]],
4: project=project,
5: number_of_entries_between_two_db_flushes = 100,
6: data_delta_between_two_snapsots = 1e-8,
7: . . .
8:)

Each ExaGRyPE solver is pre-prepared to host tracers (Algorithm 7).
If they are added, the solver automatically picks an appropriate inter-
polation scheme and informs Peano that appropriate particle handling
is to be added. Multiple tracer types can be added to each solver.

Tracers write their outcome into a plain CSV file for all unknowns
from �⃗� specified plus the tracers’ position. ExaGRyPE also automati-
cally assigns each tracer a unique ID, such that post-processing scripts
12

can track their evolution over many time spans. The I/O capabilities of
Computer Physics Communications 307 (2025) 109435

a tracer can be configured such that updates to the CSV file are written
if and only if enough particles have altered their state, i.e., we can con-
strain the output frequency. We can furthermore configure after which
relative change of a particle quantity we consider the particle worth
writing a trajectory update into the database.

Tracers unfold significant potential once we couple it with the in-situ
post-processing: for the 𝜓4 calculation for example, we calculate the 𝜓4
quantities following Section 2.4 and attach them to the solution vector
�⃗�. Rather than plotting, we interpolate it onto the tracers and let them
record the 𝜓4 evolution over time. Once the tracers are arranged over a
sphere, they enter the integral (15) to extract the gravitational waves.

Puncture trackers are different tracers. They move. We drop the vir-
tual particles into the initial locations of the black holes and specify
the opposite shift vector −𝛽𝑖 to serve as their velocity. They feed into
the explicit Euler time integrator (Section 3.8). The trajectories of those
particles represent the movement of the black holes.

4.2.4. Coupling

Coupling of two ExaGRyPE solvers starts from the creation of two
solvers within the Python script which are both added to the ExaHyPE
project. Without further steps, these solvers run completely independent
of each other. Different to all steps previously, coupling requires users
to run through a series of steps:

First, one solver has to determine the other solver’s time step sizes.
Each solver’s generated C++ class allows users to overwrite the routine
startTimeStep which is the canonical place to let one discard its own
time step size determined by the 𝜆max, and instead use the other solver’s
step size. From here on, the two solvers run in-sync.

Second, it might be reasonable to restrict the computational domain
of one solver, unless we want both solvers to cover the whole domain
and to couple volumetrically everywhere. For this, ExaHyPE solvers can
redefine an internal function _store_cell_data_default_guard
and similar routines for faces such that the solver’s area, i.e. where it
exists, is narrowed down. The routines return a C++ statement which
has to be evaluated into a boolean expression.

Finally, the solvers have to be coupled. For doing this, all solvers host
an attribute _action_set_preprocess _solution which is by
default None. We reset it to an instance of exahype2.solvers.rkfd-
.actionsets .PreprocessReconstructedSolutionWithHalo,
e.g., and inject the interpolation/restriction from one solver to the other
here. Again, a simple if statement can localize the operations.

5. Numerical results

In this section, we present ExaGRyPE simulation results for various
physical scenarios. We begin with a standard gauge wave benchmark
and then examine a black hole space-time setup, discussing both the
single Schwarzschild black hole and the binary black hole merger. The
tests are used to validate the correctness of the code implementation.
While they affirm that the code base is working properly and reasonably
robust for numerical astrophysics applications, they also reveal required
optimizations and challenges that will be addressed in the future.

5.1. Gauge wave

The gauge wave scenario is one of the standard test cases for nu-
merical relativity codes [52]. A flat Minkowski spacetime is considered
and no actual “physical” phenomenon occurs in the system, i.e. solution
characteristics should stay invariant under a consistent and robust nu-
merical scheme. For this, we slice the static space-time by performing a
time-dependent coordinate transformation:

𝑡 = 𝑡− 𝐴

2𝑘𝜋
cos[𝑘𝜋(𝑥− 𝑡)], (26)

�̂� = 𝑥+ 𝐴

2𝑘𝜋
cos[𝑘𝜋(𝑥− 𝑡)], and (27)
�̂� = 𝑦, �̂� = 𝑧, (28)

H. Zhang, B. Li, T. Weinzierl et al.

Fig. 8. The profile of �̃�11 along 𝑥-axis at code time 0.5 for different solvers: FV-
RK1 (red solid), FD4-RK1 (blue solid), FD4-RK2 (green dashed) and FD4-RK4
(orange dotted).

which transcribes the original Minkowski metric 𝑑𝑠2 = −𝑑𝑡2 + 𝑑�̂�2 +
𝑑�̂�2 + 𝑑�̂�2 into

𝑑𝑠2 = −𝐻(𝑥, 𝑡)𝑑𝑡2 +𝐻(𝑥, 𝑡)𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2, (29)

𝐻(𝑥, 𝑡) = 1 −𝐴 sin[𝑘𝜋(𝑥− 𝑡)]. (30)

It yields a gauge wave propagating along the x-axis (positive-wards)
with an amplitude of 𝐴. As we know the complete four-dimensional
metric here, and the related quantities can be read straightforwardly:

𝛼 =
√

𝐻, 𝛽𝑖 = 0, 𝜙 =𝐻−1∕6, and (31)

𝐾𝑥𝑥 = −
𝜕𝑡𝐻

2𝛼

= −𝑘𝜋𝐴

2
cos[𝑘𝜋(𝑥− 𝑡)]

{1 −𝐴 sin[𝑘𝜋(𝑥− 𝑡)]}1∕2
, (32)

𝐾𝑖𝑗,others = 0, (33)

𝐾 = 𝛾𝑖𝑗𝐾𝑖𝑗 =
𝐾𝑥𝑥

𝐻

= −𝑘𝜋𝐴

2
cos[𝑘𝜋(𝑥− 𝑡)]

{1 −𝐴 sin[𝑘𝜋(𝑥− 𝑡)]}3∕2
. (34)

The static zero shift 𝛽𝑖 = 𝜕𝑡𝛽
𝑖 = 0 and the harmonic slicing 𝑓 (𝛼) = 1 are

adopted as the gauge conditions for this scenario. Despite its simplic-
ity, this test poses a highly nontrivial challenge to the formulation and
implementations of numerical relativity codes, as the periodicity, wave
shape and amplitude have to be preserved over a long time span [53].

The first simulation test we report in this subsection utilizes a com-
putational domain Ω = [−0.5, 0.5]3 on a regular grid subject to pe-
riodic boundary conditions. Periodic boundary conditions are also a
newly added feature released with ExaHyPE 2 as opposed to the first-
generation code. We divide the domain into 162 volumes per dimension,
thus leading to a volume size of 0.006173. AMR is not enabled for this
test.

We pick 𝐴 = 0.1, 𝑘 = 2 for the physical parameters. For the running
parameters, we follow previous literature, setting 𝜅1 = 1.0, 𝜅2 = 0, 𝜅3 = 0
and 𝑒 = 𝑐 = 𝜏 = 1.0. 𝜇 = 0.2 keeps the impact of the constraints small
(cmp. reports in [15]). As for the solver-specific parameters, the coeffi-
cient of the KO dissipation 𝜖 is set to be 8.0 and a CFL ratio of 𝐶 = 0.1 is
adopted. The parameters 𝑓 and 𝜂 are irrelevant as the shift vector does
not evolve in the gauge wave scenario.

We illustrate the simulation result at code time 𝑇 = 0.5 in Fig. 8.
It shows the profiles of �̃�11 along the 𝑥-axis for different kernels (FV,
FD4-RK1, FD4-RK2 and FD4-RK4), employed with the first-order for-
mulation. All the solvers yield the correct traveling speed and phase of
13

the wave. However, the Finite Volume solver suffers from severe am-
Computer Physics Communications 307 (2025) 109435

Fig. 9. Convergence behavior of FD4 with three different time integrators for dif-
ferent CFL constants. The convergence of the final error depends on the relative
magnitude of the contributing terms, i.e., spatial and temporal discretization er-
rors. See the text for detailed explanations.

plitude damping, and a similar dissipation is also observed in the black
hole benchmarks. Consequently, we have chosen to use the FD4 scheme
as our default solver.

On the other hand, different orders of the RK schemes give rather
consistent results against the analytical solution. To further investigate
different effects from the temporal discretization scheme, we calculate
the 𝐿2 error of the Hamilton constraint as

𝐿2,𝐻 ∶=

√∑
𝑖(𝐻𝑖

simulated −𝐻theoretical)2

𝑛
, (35)

where 𝑛 is the total number of grid points, and we always have
𝐻theoretical = 0. We conduct a convergence study for different orders of
the RK scheme based on this accuracy metric at code time 𝑡 = 0.4 and re-
port the result in Fig. 9. A similar study can be conducted for any other
reasonably small time stamp, and long-term effects will be the subject of
study later. All physical and running parameters of tests here are iden-
tical to the first benchmark above except for the KO coefficient, which
is set to 0.1.

In our explicit time-stepping scheme, three terms contribute to the
𝐿2 error:

1. The spatial discretization error of the physical quantities, which is
the same for all setups and scales with the mesh size in a convergence
speed ∼ ℎ4.

2. The time discretization error due to the Runge-Kutta scheme of
choice. Through Eq. (20), the chosen time step size correlates lin-
early to the mesh size, thus following the convergence line ∼ ℎ𝑘

where 𝑘 is the order of the RK scheme.
3. The influence of the KO term, which is an artificial construct and

hence constitutes an error in itself. It has a convergence speed ∼ ℎ5

(see Appendix D).

How the 𝐿2 error in our tests converges depends on which term takes the

lead in magnitude. As shown in Fig. 9, for the RK1 scheme, the temporal

H. Zhang, B. Li, T. Weinzierl et al.

Fig. 10. Long-term evolution of the 𝐿2 error with first-order (RK1) and second-
order (RK2) time-integrator for the same gauge wave setup. The CFL constraint
and KO term weight are chosen to dampen the constraint violation effectively.
The low-order temporal scheme exhibits significant error accumulation, eventu-
ally leading to a crash, while the second-order scheme maintains a more stable
error evolution throughout the simulation.

discretization error is quite large and results in an expected convergence
speed ∼ ℎ1 in the Hamiltonian constraint violation (blue lines with circle
markers). RK2 and RK4 have relatively small temporal errors and if we
have a too-large KO coefficient, then term 3 would overtake the leading
term in error and yield an incorrect fifth-order convergence speed (not
shown). When a proper (small) KO coefficient is set, the RK4 prediction
also shows an expected fourth-order convergence (blue line with trian-
gle markers). However, if the orders of spatial and temporal schemes do
not match, the convergence of the final error will depend on the compar-
ison of the magnitudes of each term. To demonstrate this, we plot two
lines of the RK2 scheme with different CFL ratios, i.e., different sizes of
the time steps. When the timestep is small (CFL = 0.1, red dotted line
with square markers), the RK2 scheme shows nearly identical error mag-
nitude and convergence speed with the RK4 line, indicating we are in
a regime dominated by spatial discretization errors. On the other hand,
in the big timestep case (CFL = 1.5, red solid line with square markers),
the temporal discretization error is big enough and takes the lead, thus
the line shows ∼ ℎ2 convergence speed as we expected. We also iden-
tify more complex convergence behavior for the RK2 scheme when an
intermediate time step size is used (0.1 < CFL < 1.5). We hope to inves-
tigate the convergence properties of ExaGRyPE’s numerical schemes in
more detail in future work.

For a code with known convergence behavior and a reasonably cho-
sen damping through the KO term and the CFL factor, we expect to be
able to run long-term simulations. Simulations without a damping term
are in turn expected to become unstable after a while [16]. This hy-
pothesis is subject to our final gauge wave experiment. Unfortunately,
our data suggest that a mere application of the KO correction plus a
reasonably small CFL factor is not sufficient to construct a long-term
stable solution (Fig. 10): Even though the error seems to plateau after
a while, it “suddenly” explodes within the plateauing region. Plots of
the wave profile just before the error explosion reveal that the wave the
pattern becomes skewed (not shown): The original sinusoidal pattern
approaches a smoothed-out sawtooth profile, i.e. we observe some stiff-
ening of the numerical solution. This is still a smooth effect, i.e. difficult
for an artificial KO term to flag.

Convergence studies at a certain sample point consequently are in-
sufficient to make statements on the long-term applicability of a code
base. They might suggest that low-order time integrators are capable of
long-term evolution of the system as long as we are willing to accept the
resulting temporal discretization error. However, in practice, errors in
the time evolution accumulate and eventually render the simulation un-
14

stable, i.e. make the scheme consistent but not converging. We need to
Computer Physics Communications 307 (2025) 109435

employ a high-order temporal discretization scheme (RK2 or RK4) that
matches our high spatial discretization order to construct stable schemes
for the gauge wave. Our results demonstrate that a second-order tem-
poral scheme has significantly reduced the 𝐿2 error and stabilizes the
simulation, as shown by the black lines in Fig. 10.

The exact interplay of the KO term, CFL condition, Hamiltonian con-
straint violation, and long-term stability has to be the subject of future
studies. We notably cannot make statements yet if this behavior results
from an error accumulation that only arises for particular stationary or
quasi-stationary solutions. Empirical data suggest that this is the case
and that notably outflow conditions allow the error to escape from the
domain (see the single black hole benchmark below). From hereon we
pick reasonably small CFL factors and assume that the solution remains
stable and consistent, while the arising error is dominated by the tem-
poral discretization order.

5.2. Single Schwarzschild black hole

We next examine a single Schwarzschild black hole. This is yet an-
other stationary test, where all numerical ingredients have to be care-
fully balanced against each other such that the initial setup effectively
yields a long-term stable, time-invariant solution. The black hole is
placed at the origin of the three-dimensional domain, with an ADM mass
𝑀 = 1 and zero spin 𝑆 = 0. All initial conditions for this test stem from
the TwoPuncture module of the Einsteintoolkit library and the ini-
tial lapse is set to

𝛼 = 1
2

⎛⎜⎜⎝
1 − 1

2 (𝑀∕𝑟)

1 + 1
2 (𝑀∕𝑟)

+ 1
⎞⎟⎟⎠ . (36)

Other initial profiles and lapses (e.g., a power of conformal factor) are
also used in other numerical codes. However, convergence from differ-
ent setups has been observed: different initial lapses evolve into nearly
the same static solution. The initial shift vector is set to zero. Also, the
extrinsic curvature 𝐾𝑖𝑗 vanishes in the initial condition: its trace is zero
as we assume the maximal slicing 𝐾 = 0, and its residual is zero as no
linear or angular momentum is presented in this system. Finally, we also
assume conformal flatness in the initial condition, i.e. �̃�𝑖𝑗 = 1.

Besides the lapse field 𝛼, the only non-trivial quantity in the initial
condition of this scenario is the conformal factor 𝜙, which can be solved
analytically as its source term now vanishes. The solution of its equation
is

𝜙 ≡ 𝜓−2 =
(
1 + 𝑀

2𝑟

)−2
. (37)

The domain in this test has a size of [−9𝑀, 9𝑀]3. We use three
levels of SMR (Static Mesh Refinement) based on the radial distance
from the origin, which refines the domain at radius 𝑟 = 7𝑀 and once
again at 𝑟 = 3𝑀 . As we adopt a three-partition [14], the volume size of
each level are [0.333𝑀, 0.111𝑀, 0.037𝑀]. Sommerfeld conditions (Sec-
tion 3.5) suppress reflections along the domain boundary. No volume
center coincides with the origin to avoid resolving numerical infinity at
the puncture location.

For setup and running parameters, we adopt 𝜅1 = 0.1, 𝜅2 = 0, 𝜅3 =
0.5, 𝑒 = 𝑐 = 𝜏 = 1.0 and 𝜇 = 0.2 for a similar evolving system as the orig-
inal CCZ4 system [16]. The fully functional gamma driver condition is
employed for the evolution of the shift vector 𝛽𝑖 in the black hole sys-
tem, and we set the parameters as 𝑓 = 0.75 and 𝜂 = 1 in Eqs. (B.14) and
(B.20). The KO coefficient and the CFL ratio remain at 8.0 and 0.1, re-
spectively, and the simulation runs until a code time of 𝑇 = 240 with the
RK1 temporal scheme. All figures below utilize 𝑥 ∶= 𝑟∕𝑀 as the unit of
distance for simplicity.

Semi-singularity around black hole Over an initial ramp-up phase, our
code yields a stable evolution of the space-time for ExaGRyPE’s second-
order formulation (Fig. 11). The solution approaches the static solu-

tion as expected [54]. However, a first-order formulation for the same

H. Zhang, B. Li, T. Weinzierl et al.

Fig. 11. Profiles of 𝜙, 𝛼, 𝐾 and �̃�11 along the 𝑥-axis at four-time stamps 𝑇 ∈
{30, 60, 120, 240} for a single Schwarzschild black hole subject to a second-
order formalism.

setup is not stable, the simulation crashes due to an unphysical solution
(Fig. 12). While the second-order formulation yields a rather smooth
and long-term stable solution, the first-order formulation develops in-
stabilities around the center, which eventually lead to the crash. The
same experiment with a higher-order time integrator brings the crash
15

forward in time for the first-order formulation.

Fig. 12. Comparison of the 𝜙 field of the single Schwarzschild black hole at timest
maps illustrate a 2d cutting through the black hole center (upper panels), while the
Computer Physics Communications 307 (2025) 109435

One possible explanation for the instability of the first-order formu-
lation is that the derivatives of the auxiliary variables become large
compared to those of the primary variables. Their errors are hence rel-
atively large, too. For example, a primary quantity with a magnitude of
0.05 (a typical value for the conformal factor around puncture) would
have a derivative around unity given a volume size of 0.04. Even a 1%
numerical error within the derivative evolution therefore has a high im-
pact.

The second-order formulation avoids this issue as the first-order
derivatives are re-calculated every time step. They do not decouple
from the primary variables (i.e., evolving upon their own evolution
equations) and amplify themselves. It is not clear if a recalibration of
additional damping terms could tackle the first-order instabilities which
are inherent due to the semi-singularity of the solution close to the black
hole. The derivatives are physically large. Adaptive mesh refinement can
possibly mitigate this effect, but it may only serve to postpone the nu-
merical difficulties in time.

Challenges arising around refinement boundaries Aggressive SMR intro-
duces its specific challenges: with SMR, the evolution of a second-order
formulation with KO damping remains stable until a distortion appears
around the resolution boundary (𝑟 = 3𝑀), where the fine grid transi-
tions into a coarser resolution. There, 𝐾 and 𝛼 show a discontinuity
of the gradient which gets amplified over time. �̃�11 also exhibits fluc-
tuations around the resolution boundary. The pattern is more clearly
shown in Fig. 13, where the profiles for violation of the Hamiltonian
constraint 𝐻 are plotted along the positive x-axis, at six timestamps.
Any violation around the black hole located at the center of the domain
gets damped. However, the fluctuations along the resolution boundary
(𝑟 = 3𝑀) continue to grow and start to propagate inwards. The sim-
ulation is likely to become unstable when the fluctuations reach the
puncture. This is confirmed by Fig. 14, where we plot the evolution of
the 𝐿2 error of the Hamiltonian constraint up to code time 120. The
𝐿2 error in the first-order formulation increases quickly, departs from
the stable second-order counterpart around 20 code time, and leads to a
crash later. In contrast, the second-order formulation can provide a sta-
ble solution for the puncture all the time and shows continuous damping
of the constraint violation until the errors at the refinement boundary
start to take the lead and amplify the violations.

Any adaptive mesh resolution transition on non-conformal meshes
is known to trigger reflections of outgoing waves: We have hanging
vertices and hanging faces, i.e. fine grid vertices with less than 2𝑑 ad-

jacent cells on the finest mesh level and faces where the left and the

amp 𝑇 = 36 in the second-order (left) and first-order formulation (right). Color
profiles track 𝜙 along the 𝑥-axis (lower panels).

Computer Physics Communications 307 (2025) 109435H. Zhang, B. Li, T. Weinzierl et al.

Fig. 13. Violation of the Hamiltonian constraints 𝐻 for the Schwarzschild black hole along the positive 𝑥-axis at 𝑇 ∈ {10, 20, 40, 80, 160, 240}.

Fig. 14. Evolution of the 𝐿2 error of the Hamiltonian constraint 𝐻 and the magnitude of Momentum constraint |𝑀| for the single black hole scenario in two
formulations. First-order and second-order formulations give nearly identical evolution initially, but eventually the former becomes unstable and crashes. The
second-order formulation can run stably until the errors raised on the refinement boundary become non-negligible.
right adjacent cell are of different size. Let a wave travel from a fine
mesh patch through a face into an adjacent coarser one. High-frequency
modes stemming from the fine-resolution domain cannot be represented
on an adjacent coarser grid and hence are reflected back into the direc-
tion they are coming from. For dynamic simulations as encountered for
moving black holes, these spurious reflections typically do not cause ma-
jor stability issues. For the stationary black hole, however, we observe
that the reflection waves are caught within the fine resolution domain
and eventually amplify each other over time. They accumulate. A sta-
tionary black hole instead can create standing error waves that grow
larger over time.

ExaGRyPE’s out-of-the-box linear interpolation and restriction sche-
mes are not powerful enough to handle our highly non-linear PDE sys-
tem over a long simulation span if we encounter a stationary black
hole resolved with mesh refinement. However, as long as black holes
move, the KO dissipation is sufficient to compensate for any spurious
reflections. A more general solution is to implement higher-order inter-
polation and restriction schemes, which can provide higher accuracy
around the refinement boundary. We have already observed a signifi-
cant improvement in reflection suppression when we apply a second-
order scheme in our recent tests of single black hole spacetimes (not
16

shown). The refinement transition strategies play an important role in
achieving high-quality numerical relativity simulations (e.g., see discus-
sion in [49] and [50]), and we plan to report more comprehensively on
how different strategies affect the simulation behavior of ExaGRyPE in
future work.

Coupled numerical schemes Finite Volumes rule itself out as a global
solver due to their high dissipation and high computing cost and mem-
ory footprint vs. accuracy. We need a very fine mesh to compete with
a higher-order scheme. However, we recognize that the KO term used
to stabilize FD4 injects numerical diffusion, i.e., mimics what we suffer
from with FV, is in itself a “magic” stabilization term lacking a physical
motivation.

It is hence a natural idea to combine different schemes. We use FD4
throughout the domain. However, we also use the FV scheme around
the black hole (Fig. 15, upper panel). It is a localized solver typically
covering seven patches around the puncture. Its Dirichlet boundary val-
ues are projected from the FD4 solution. Within the overlap region, the
FV scheme is considered to be valid and overwrites the corresponding
FD4 solution after each time step, served as a limiter. We assume the
CFL condition is dominated by

ℎ

𝛿𝑡 ≤ 𝐶

𝑝2
, (38)

H. Zhang, B. Li, T. Weinzierl et al.

Fig. 15. An FV ExaGRyPE solver is embedded within an FD4 scheme such that
it covers the stationary black hold (top). The FV solution on a significantly finer
mesh yields a smooth representation of the solution around the black hole and
overwrites the behavior of FD4 there. 𝑇 = 3 (bottom).

where we have a polynomial degree of 𝑝 = 4 for the FD4 solver and
𝑝 = 1 for FV. To match the time step sizes, the FV patch size is 42 times
larger (per dimension) than its FD4 cousin, i.e., contains 163 times more
volumes per patch.

The profile of the 𝜙 field of the two solvers shows a stronger smooth-
ness of the FV scheme around the black hole (Fig. 15, lower panel). As
the FV solution overwrites FD4 in the center, while the FD4 solution
determines the halo data of the FV solution, the solutions appear to
overlap. However, only the FV scheme evolves without interference.

The solver coupling (Sections 3.7 and 4.2.4) complements spatial
adaptivity with numerical adaptivity, where the numerical scheme
changes throughout the domain. It is a realization of the classic a poste-
riori limiter concept [15]. The Finite Volume patches serve as a tool to
resolve the semi-singularities of the solution as well as a sponge suck-
ing up any high-frequency error modes. Its overly dissipative character
is now used as a feature rather than a challenge.

While the coupling is an appealing concept to create smooth, stable
solutions without the need to use an artificial KO damping, i.e. solely due
to first-order numerical principles, several challenges remain: tests with
ExaGRyPE suggest that a direct overwrite of the FD4 solution can some-
times yield spurious waves similar to the reflections from the refinement
boundary. ExaGRyPE hence offers averaging and lets the “validity” of
the FV scheme fade in: Directly around the black hole, the FV scheme
dominates. Further away, FD4 yields a valid solution to and the FV so-
17

lution is not even computed. In-between, we have a buffer zone. Both
Computer Physics Communications 307 (2025) 109435

solvers run and the eventual result is a weighted average between the
two solutions. The averaging shifts from “all FD4” over “predominantly
FD4” over to “predominantly FV”. While this seems to yield higher-
quality data, the precise effects have yet to be studied. It is also an open
question of how big the FV region around the black hole has to be cho-
sen overall. If it is too small, the damping effect of the FV region does
not cover the unstable domain and we suffer from instabilities again.
If it is too large, the numerical dissipation of FV pollutes the result in
the region we are interested in. The biggest challenge arising from the
coupled approach, however, is the likely difficult load balancing, as al-
most all computing effort is spent on a few FV patches of a very high
resolution. We aim to investigate and explore more the potential of this
coupling scheme in future work.

5.3. Rotating binary black hole merger

We finally switch to an equal-mass rotating black hole merger sim-
ulation. To construct the correct initial condition that allows for quasi-
circular orbits, we utilize one set of the computed parameters from
[55] through ExaGRyPE’s ported TwoPuncture component. The binary
black holes both have a bare (puncture) mass of 𝑚+ = 𝑚− = 0.46477
and zero spin, 𝑆+ = 𝑆− = 0. Their initial distance is 𝑑 = 4𝑀 . The
black holes are located at the coordinates [2𝑀, 0, 0] and [−2𝑀, 0, 0]
respectively, and rotate on the 𝑥-𝑦 plane, with the initial linear momen-
tum 𝑃 𝑖

± = [0, ±0.19243𝑀, 0]. This setup corresponds to an ADM mass
of 𝑀 = 0.5 for each black hole and a total ADM mass of the system
𝑀tot = 0.98074.

The average initial lapse

𝛼 = 1
2

⎛⎜⎜⎝
1 − 1

2

(
𝑚−∕𝑟−

)
− 1

2

(
𝑚+∕𝑟+

)
1 + 1

2

(
𝑚−∕𝑟−

)
+ 1

2

(
𝑚+∕𝑟+

) + 1
⎞⎟⎟⎠ , (39)

with vanished initial shift is used. Otherwise, we preserve the black hole
settings, i.e. 𝜅1 = 0.1, 𝜅2 = 0, 𝜅3 = 0.5, 𝑒 = 𝑐 = 𝜏 = 1.0 and 𝜇 = 0.2. The
gamma driver gauge condition uses the parameters 𝑓 = 0.75 and 𝜂 =
1. Compared to the FD4 setup, no modifications are made to the KO
coefficient (8) and the CFL ratio (0.1). We also use the RK1 temporal
scheme for this scenario, and convergence tests have confirmed that
we achieve the expected order (∼ ℎ1) of convergence across different
resolutions with it (test not shown).

We employ a domain of [−12𝑀, 12𝑀]3 with three levels of SMR.
The domain gets refined at radius 𝑟 = 9𝑀 and again at 𝑟 = 5𝑀 around
the center of the coordinate system, where we assume the black holes
to merge. We obtain FD spacings at each level of [0.333𝑀, 0.111𝑀,

0.037𝑀]. Sommerfeld boundary conditions are used. We run both the
first-order and second-order formulation for this test, taking into ac-
count previously described stability challenges for the former once the
black holes have merged.

The binary black holes complete one-and-a-half circular orbits before
they merge at a code time of 𝑇 ≈ 70. The system continues to evolve as a
single black hole until 𝑇 ≈ 120, where we terminate the simulation. The
rotation and merging processes in the simulation are relatively smooth
and subject to only limited violations of the constraints (Figs. 16 and
17). As the punctures are rotating, the shift vector exhibits a spiral pat-
tern. Its reversed direction at the puncture location indicates the velocity
direction of the puncture, i.e., we can use it to inform ExaGRyPE’s trac-
ers from Section 3.8 (Fig. 18). The spiral pattern in the post-merge stage
shows that the remnant of the merged black holes carries a spin. Besides
the actual physical data, some fluctuation starts to creep into the sim-
ulation. It stems from the resolution transitions and gets magnified in
the post-merge phase. In line with previous experiments, the first-order
formulation encounters instability after merging and soon runs into a
crash. However, it can properly resolve the rotation of black holes before
that. The dynamic behavior of the first-order and second-order scheme
are presented in Fig. 19, both schemes have the same trajectories un-

til the approaching punctures accumulate errors and start to affect the

Computer Physics Communications 307 (2025) 109435H. Zhang, B. Li, T. Weinzierl et al.

Fig. 16. The snapshots of the conformal factor 𝜙 and the violation of the Hamiltonian constraints 𝐻 at time stamps 𝑇 ∈ {10, 25, 50, 80} over three-dimensional
warped wireframes and surfaces, respectively.
evolution. Furthermore, Fig. 20 shows the evolution of the 𝐿2 error of
the Hamiltonian constraint 𝐻 and the magnitude of Momentum con-
straint |𝑀| for both formulations. The first-order formulation can not
stabilize the post-merge remnant as it degenerates back to a static sin-
gle black hole. In contrast, the second-order formulation remains stable
and shows a continuous damping of the constraints violation.

To further validate the accuracy of our code, we conducted a bench-
mark comparison with GRChombo using the same initial physical con-
ditions. Our simulation replicates the same dynamics with the published
code, where the black holes complete approximately one and a half
orbits before entering the ring-down phase. Minor differences in the
puncture positions were observed over time, which may be from the dif-
ference in initial lapse conditions—GRChombo uses a conformal-factor-
power initial lapse, while we use an averaged initial lapse. Notably,
these differences decrease when higher resolutions or higher-order tem-
poral schemes are employed in our simulation, suggesting a qualitative
convergence (not shown). A more robust comparison should be made in
terms of observables, such as gravitational waveforms. We plan to con-
duct a more comprehensive study with large-scale benchmarks in future
work.

Overall, the rotation and pre-merger phase are accurately captured
in our benchmark, and the locations of the punctures are correctly
tracked by the (inverse) shift vector guiding the tracers. The simula-
18

tion of the dynamic behavior is stable, which supports the argument
that any constraint violation is “traveling” through the domain, might
be reflected at AMR boundaries, but eventually leaves the domain. We
avoid the accumulation of numerical errors at specific locations as long
as the black holes move.

5.4. Context of experimental studies

Our application successfully completes a rotating binary black hole
merger. It is able to handle both the approach phase as well as the actual
ringdown. Our studies focus on the introduction of numerical ingredi-
ents within ExaGRyPE. They validate that the software is fully opera-
tional and prepared for more challenging benchmarks on larger scales,
which will be crucial for further verifying its accuracy and performance.
Here, we have to combine all ingredients and notably study a larger com-
putational domain to avoid boundary artifacts (cmp. squeeze-in effect
in Fig. 19) and obtain realistic measurements. Further stationery tracers
(cmp. Section 5.1) then can be used to sample the solution on a huge
sphere around the area of interest. With such samples, we can finally
calculate 𝜓4 and its mode quantities.

Our data illustrates how delicate CCZ4 simulations react to numer-
ical inaccuracies. We have seen two schools of thought in literature
to tackle the intrinsic instabilities which are due to the nonlinear na-
ture of the equations, their complexity, and notably pollution to the

long-term quality of the numerical approximation: The first school arti-

Computer Physics Communications 307 (2025) 109435H. Zhang, B. Li, T. Weinzierl et al.

Fig. 17. Snapshots of the gauge quantities, lapse 𝛼 and shift vector 𝛽𝑖 , for Fig. 16 as color map or vector field respectively.
Fig. 18. The trajectories of the two punctures in the binary black hole
merger test. The two black holes ± are initially located at [𝑥, 𝑦, 𝑧] =
[2𝑀, 0, 0], [−2𝑀, 0, 0]. The trajectories for the final ring-down stage were re-
moved for clarity. The kink observed in the initial stage of the + puncture arises
from a minor inconsistency in data output as the tracer transitions between
different subpartitions managed by separate MP threads. The symmetric trajec-
tories that follow confirm that there is no underlying computational error.

ficially damps equation components such that instabilities materializing
in high-frequency solution components diffuse away. Kreiss-Oliger dissi-
pation stands in this tradition, and we implemented it for both first-order
and second-order formulation. We notice that these additional terms
lack, to the best of our knowledge, physical motivation. Groups seem to
pick the damping calibration depending on their simulation setup, but
systematic studies on its impact are rare. Typically, we find papers lack-
19

ing systematic studies if this artificial term can pollute the long-term
solution as well for some setups, e.g., with strong shock fronts. It re-
mains subject of future work to assess to which degree the magnitude of
the KO dissipation and other damping components in the evolution sys-
tem play a pivotal role in the quality of the simulation outcome, i.e., if
larger or certain choices introduce artificial long-term damping similar
to the effects we documented for FV.

The other school of thought uses traditional numerical schemes (a
limiter) to damp out instabilities. A posteriori limiting as used in ADER-
DG methods [15] stands in this tradition. However, we notice that the
subgrid Finite Volume method that we use as a posteriori limiter is very
costly, and we are not aware of systematic studies on how to couple the
limiter spatially and temporally into the domain to avoid global over-
dissipation.

Our data cannot conclusively answer if first-order or second-order
formulations of the underlying Einstein equations are superior. The
second-order formulations fit more naturally to the PDEs of the nu-
merical relativity and it is widely used by codes of other groups with
Finite Difference kernels. In our benchmarks, the second-order formula-
tion prevents error accumulations in the derivative calculation and thus
provides better stability in static black hole systems. Meanwhile, first-
order formulations allow us to provide more generic implementations
to deploy new solvers–indeed we can drop them into FV and DG for-
mulations quite naturally—and we can realize them with smaller data
overlaps and hence less synchronization effort. The halos for example
can be chosen smaller, and we do not need additional auxiliary variable
reconstruction steps. This is an important property for future large-scale
simulations, as data movements dominate the compute cost. Indeed, our
second-order ExaGRyPE variant is about a factor of two slower than its
first-order cousin.

ExaGRyPE is not a finished software product but a tool suite offering
some important astrophysical simulation tools. Several sophisticated in-
gredients are not yet available with this release paper yet might have
a substantial impact on simulation outcomes. Notably, the effects of
higher-order interpolation along the AMR resolution boundaries have
to be studied. We may assume that coefficient optimization as described
in [56] yields a smoother and more stable resolution transition in our

code which might suppress the error accumulation for quasi-stationary

Computer Physics Communications 307 (2025) 109435H. Zhang, B. Li, T. Weinzierl et al.

Fig. 19. Evolution of the 𝜙 field in the central region at 𝑡 ∈ {10, 20, 30, 40}. We compare the data stemming from a first-order formulation (left) to the second-order
formulation (right).

Fig. 20. Evolution of the 𝐿2 error of the Hamiltonian constraint 𝐻 and the magnitude of Momentum constraint |𝑀| for the binary black hole scenario for both
formulations. The second-order formulation is stable throughout the evolution and shows a continuous damping of the violations after the merge. The first-order
formulation can capture the dynamics of black holes correctly and yields only a slight increase in error during the rotation phase. However, it runs into a crash soon
after the merge, when the system degenerates back to a single black hole scenario.
setups. For the dynamic phases, we have yet to study the impact of
dynamic adaptive mesh refinement on the solution quality, while tech-
niques such as manual curl cleaning [51] might help us to make the
simulation overall more stable and accurate.

ExaGRyPE provides the infrastructure to study various solver vari-
ants and arrangements of ingredients. Its clear separation of concerns al-
lows us to inject new components easily. Notably, we can even compose
and couple them freely. It is subject of future work to study the impact
of many numerical techniques, to understand them, and to construct
simulation codes that are long-term stable and yield high-quality out-
puts. Our initial data suggests that this might be best achieved through
a dynamic combination of ingredients and by giving up on the con-
cept of a “one solver for numerical astrophysics”. It might be better to
switch between different solvers and numerical techniques, balancing
between computational efficiency (first-order vs. second-order) and sta-
bility (higher order vs. low order discretizations).

6. Discussion and conclusion

Our work introduces ExaGRyPE, a suite of solvers and related code
modules designed for conducting numerical relativity simulations on
ExaHyPE 2. The latter is a rewrite of the ExaHyPE PDE solver engine
20

from [13]. The rewrite has been motivated by the urge that we wanted
to design a simulation software base which realizes a clear separation of
concerns on all levels and yields a composable software stack such that
we can relatively quickly study new physical and numerical approaches
in computational astrophysics. Our presentation focuses on the software
design in the context of this application domain.

The software design of ExaGRyPE is guided by the concept of lower-
ing, which is inspired by the compiler construction community: we aim
for a very high-level API exposing the software to the user in Python. It
allows the user to specify what is to be computed. This high-level speci-
fication is then successively lowered into a numerical representation of
the compute steps and from hereon into technical views which even-
tually are mapped onto plain C++ code. The mantra here is that the
lowering and the underlying code base determine where (on a parallel
computer), when (in which order) and how (generic provision of some
numerical ingredients) the specification is realized in the source code.

To implement this vision and to showcase the applicability and ma-
turity of the design, the ExaGRyPE endeavor had to add further building
blocks to the underlying ExaHyPE engine, and we had to run an exten-
sive set of numerical experiments. The experiments demonstrate that
our code is fully operational, but also raise further questions, notably
around the numerical stability of any composition of ingredients and
the philosophical question if first- or second-order formulations are su-

perior. Many aspects of these questions are intrinsically tied to this

H. Zhang, B. Li, T. Weinzierl et al.

area of research and have been documented, either implicitly or ex-
plicitly, by other codes and groups, too. We consider it a strength of
ExaGRyPE that we can quite flexibly study and swap different method-
ological ingredients to address these fundamental research questions,
although the present work does not yet provide answers to many of
them. The unique solver coupling features of ExaGRyPE make it an ideal
tool for more advanced numerical relativity simulations. For instance,
it allows the combination of a finite volume scheme for the matter field
with a finite difference scheme for the spacetime background, leading
to higher-quality simulations of relativistic hydrodynamics in scenarios
such as black hole accretion and neutron star spacetimes. In the same
way, undergoing extensions to the particle toolbox—currently used for
the tracers—could enable general-relativistic smoothed particle hydro-
dynamics (SPH) simulations [57–59].

The success of any astrophysical code hinges upon the question of
to which degree the code is able to scale up and to exploit modern
machinery efficiently. They allow users to conduct astrophysics simu-
lations with larger scale and higher accuracy. Our presentation largely
neglects these aspects and focuses on software and domain challenges.
However, we note that our strict separation of concerns and lowering
approach yields a software architecture where supercomputing consid-
erations can generically enter the software design in lower abstraction
levels, i.e. performance engineering can be realized without domain ex-
pertise. Further to that, our lowering formalism uses the notion of tasks,
i.e. expresses concurrency explicitly. We have started to publish work
on how to exploit these properties—for example by offloading sets of
tasks to GPUs [20]—and will make supercomputing aspects subject of
future publications using the ExaGRyPE software architecture.

CRediT authorship contribution statement

Han Zhang: Writing – review & editing, Writing – original draft, Vi-
sualization, Validation, Software, Methodology, Investigation, Formal
analysis, Data curation, Conceptualization. Baojiu Li: Writing – review
& editing, Visualization, Validation, Supervision, Software, Resources,
Project administration, Methodology, Investigation, Funding acquisi-
tion, Formal analysis, Conceptualization. Tobias Weinzierl: Writing
– review & editing, Visualization, Validation, Supervision, Software,
Resources, Project administration, Methodology, Investigation, Fund-
ing acquisition, Formal analysis, Conceptualization. Cristian Barrera-

Hinojosa: Writing – review & editing, Validation, Investigation, Formal
analysis.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgements

Part of the work was completed during the PhD studies of Han Zhang,
funded by the Chinese Scholarship Council (CSC) - Durham University
Joint PhD Studentship. We gratefully acknowledge the valuable discus-
sions and assistance provided by our colleagues Holger Schulz, Anne
Reinarz, Francesco Fambri, Mario Wille, and Dominic Charrier, as well
as researchers from the GRChombo group, Katy Clough, Eugene Lim
and Lorenzo Rossi.

Our work has been supported by the UK’s ExCALIBUR programme
through its cross-cutting project EX20-9 Exposing Parallelism: Task Par-

allelism (Grant ESA 10 CDEL) made by the Met Office and the EPSRC
DDWG projects PAX–HPC (Gant EP/W026775/1) and An ExCALIBUR
Multigrid Solver Toolbox for ExaHyPE (EP/X019497/1). BL acknowl-
edges additional support from European Research Council (ERC-StG-
716522) and Science and Technology Facilities Council (ST/I00162X/1,
21

ST/P000541/1, ST/X001075/1) during this project. Particular thanks
Computer Physics Communications 307 (2025) 109435

are due to Intel’s Academic Centre of Excellence at Durham Univer-
sity. This work has made use of Durham’s Department of Computer
Science NCC cluster. Development relied on the DiRAC@Durham fa-
cility managed by the Institute for Computational Cosmology on behalf
of the STFC DiRAC HPC Facility (www .dirac .ac .uk). The equipment was
funded by BEIS capital funding via STFC capital grants ST/K00042X/1,
ST/P002293/1, ST/R002371/1 and ST/S002502/1, Durham University
and STFC operations grant ST/R000832/1. DiRAC is part of the National
e-Infrastructure.

Appendix A. Experiments

The following section describes how to reproduce our results. We
assume that we rerun the experiments against the latest version of Peano
which contains the latest version of ExaHyPE. However, all ExaGRyPE
experiments here are made with the tag version 2024ExaGRyPE.

The code base is available directly from our gitlab [60]. Peano pro-
vides support for cmake and the autotools. We present the autotools
configuration here (Algorithm 8).

As Peano is a generic framework used for multiple projects, we have
to enable ExaGRyPE-specific extensions plus their dependencies manu-
ally. In the code snippet, we enable the block-structured data manage-
ment, ExaHyPE and the particle toolbox which provides us with tracer
facilities. Setups might want to add -with-multithreading=x,
where x can be either omp (OpenMP), tbb Intel’s Threading Build-
ing Blocks, or cpp (native C++ threading). Further to that, multi-node
experiments require a build with -with-mpi=mpiicpc, where the ar-
gument is the MPI C++ compiler wrapper to be used. GPU extensions
are enabled via -with-gpus=omp if OpenMP 5 offloading is to be used
[20]. The switch -with-gpus=sycl enables offloading via SYCL [19].

Specific CXXFLAGS, LDFLAGS and LIBS complement the configura-
tion, and vary depending on your working platform. For initialization
of current black hole experiments, the GSL library [61] math library
is needed to support the TwoPuncture module from EinsteinToolkit.
The make instruction in Algorithm 8 builds a set of static libraries which
will be used by every ExaGRyPE application.

Every ExaGRyPE application is realized through a Python script,
which uses ExaHyPE’s Python API lowering into Peano’s Python mod-
ules. They then generate exclusively C++ code plus a makefile. The
C++ code is linked against the static Peano and ExaHyPE modules as
well as the astrophysics-specific ExaGRyPE source files. We eventually
end up with one big executable reflecting the ExaGRyPE script settings:
Peano realizes a strict “we create one executable comprising all required
input settings” paradigm, i.e. from hereon no further input data are
required. The generated makefile parses the configure settings and
adopts all the configurations settings from there, i.e. we do not have to
re-specify compilers, features or compiler and linker settings.

A.1. Gauge wave

The gauge wave benchmark simulates a simple standing wave in a
domain with periodic boundary conditions (Algorithm 9). This setup uti-
lizes the first order formulation, and by adding -so flag one can switch
to the second order formulation. The setup as specified uses tracer mark-
ers at script-specified points which track the solution in these points. The
outcome is a single text table file (.csv). We ship matplotlib scripts with
the repository, which will produce “seismograms” at the tracer points.

A.2. Single black hole

The Algorithm 10 builds a small benchmark of the single black hole
scenario, which one can use for tests and profiling. The output is very
likely to be unphysical as the resolution is quite low.

The Algorithm 11 constructs the standard static single black hole
simulation used to produce snapshots and results in the main content.

This setup requires a significant amount of computational resources.

http://www.dirac.ac.uk

Computer Physics Communications 307 (2025) 109435H. Zhang, B. Li, T. Weinzierl et al.

Algorithm 8 Clone repository, create autotools environment and build Peano’s and ExaHyPE’s core libraries.

git clone https://gitlab .lrz .de /hpcsoftware /Peano
cd Peano
libtoolize; aclocal; autoconf; autoheader; cp src/config.h.in
automake --add-missing
./configure –enable-blockstructured –enable-particles –enable-exahype
make

Algorithm 9 The Gauge Wave benchmark.

cd application/exahype2/ccz4
python3 ccz4.py -impl fd4-rk1-adaptive -s gauge -maxh 0.05 -minh 0.05 -ps 3 -plt 0.1 -et 0.5 -exn test –domain_r 0.5 –ReSwi 0 -cfl 0.1 –KOSigma 8.0
-tracer 1 ⊳ Invokes make internally
./peano4_test
pvpython ../../../python/peano4/visualisation/render.py solution-CCZ4.peano-patch-file

Algorithm 10 The Single Black Hole benchmark.

cd application/exahype2/ccz4
python3 ccz4.py -impl fd4-rk1-adaptive -s single-puncture -maxh 0.05 -minh 0.05 -ps 3 -plt 0 -et 0.01 -exn test –domain_r 0.5 –ReSwi 1 -cfl 0.1 –KOSigma 8.0 -so
./peano4_test
pvpython ../../../python/peano4/visualisation/render.py solution-CCZ4.peano-patch-file

Algorithm 11 The Single Black Hole Productive Run.

cd application/exahype2/ccz4
python3 ccz4.py -ext adm -impl fd4-rk1-adaptive -s single-puncture -maxh 0.4 -minh 0.04 -ps 6 -plt 0.5 -et 240 -exn sbh –domain_r 9.0 –ReSwi 7 -cfl 0.1 -outdir
/path/to/your/storage/ –KOSigma 8.0 -sommerfeld -so
./peano4_sbh
cd /path/to/your/storage/
pvpython ../../../python/peano4/visualisation/render.py solution-CCZ4.peano-patch-file

Algorithm 12 The binary Black Hole Productive Run.

cd application/exahype2/ccz4
python3 ccz4.py -impl fd4-rk1-adaptive -s two-punctures -maxh 0.4 -minh 0.04 -ps 8 -plt 0.5 -et 120 -exn bbh –domain_r 12.0 –ReSwi 6 -cfl 0.1 -outdir
/path/to/your/storage/ –KOSigma 8.0 –BBHType 2 -sommerfeld -so -ext Psi4
./peano4_bbh
cd /path/to/your/storage/
pvpython ../../../python/peano4/visualisation/render.py solution-CCZ4.peano-patch-file
A.3. Binary black hole

Algorithm 12 builds an application for production runs on the ro-
tating binary black hole scenario, used to produce data for the main
content. Similarly, this setup is computational-resource demanding.

Appendix B. Spacetime foliation and evolution equations

This appendix gives an overview of the problem formulation of Exa-
GRyPE and also lists all the evolution equations used in the code.

Throughout the paper, we have chosen the (−, +, +, +) metric sig-
nature and followed the standard Einstein convention of summing over
repeated indices. We use the Latin letters 𝑎, 𝑏, …, for spacetime indices
which run from 0 to 3, following the abstract index notation. Tensor com-
ponents are labeled by Greek letters 𝜇, 𝜈, …, and indices running from 1
to 3 are labeled using the middle part of the Latin alphabet (𝑖, 𝑗, 𝑘, …) as
usual. Finally, we will use the geometrized unit system where both the
gravitational constant and the speed of light are set to unity, 𝑐 =𝐺 = 1.

The evolution equations for the spacetime utilized by ExaGRyPE are
from the Z4 formulation of Einstein field equations, where an extra alge-
bra dynamic field 𝑍𝑎 and corresponding damping term are added into
the system to enhance stability [23,24]:

𝑅𝑎𝑏 −
1
2
𝑔𝑎𝑏𝑅+∇𝑎𝑍𝑏 +∇𝑏𝑍𝑎 − 𝑔𝑎𝑏∇𝑐𝑍𝑐−

𝜅1[𝑛𝑎𝑍𝑏 + 𝑛𝑏𝑍𝑎 + 𝜅2𝑔𝑎𝑏𝑛𝑐𝑍
𝑐] = 8𝜋𝑇𝑎𝑏.

(B.1)

To solve the evolution equations, our code uses the standard ADM
3+1 spacetime foliation which cuts the spacetime into a set of three-
22

dimensional spacelike hypersurfaces labeled by a global time scalar field
𝑡(𝑥𝑎). The spatial metric on those hypersurfaces is named 𝛾𝑎𝑏 , and linked
to the spacetime metric

𝑑𝑠2 = −𝛼2𝑑𝑡2 + 𝛾𝑖𝑗
(
𝑑𝑥𝑖 + 𝛽𝑖𝑑𝑡

)(
𝑑𝑥𝑗 + 𝛽𝑗𝑑𝑡

)
, (B.2)

where 𝛾𝑖𝑗 are the spatial part of 𝛾𝑎𝑏 . 𝛼 and 𝛽𝑖 are called lapse functions
and shift vector fields, representing four degrees of freedom of coor-
dinates during the evolution. Their relations with the time axis 𝑡𝑎 are
illustrated in Fig. 2.

The unit normal vector on the spacelike hypersurface 𝑛𝑎 is given by

𝑛𝑎 ∶= −𝛼𝑔𝑎𝑏∇𝑏𝑡, (B.3)

and the extrinsic curvature 𝐾𝑎𝑏, a dynamic variable determining the
evolution of the spatial structure, can be defined as the Lie derivatives
of the spatial metric over 𝑛𝑎 :

𝐾𝑎𝑏 ∶= −1
2
𝐧𝛾𝑎𝑏. (B.4)

Similar to the spatial metric 𝛾𝑎𝑏 , 𝐾𝑎𝑏 is a spatial tensor. We therefore can
only track the evolution of its spatial part, i.e., 𝐾𝑖𝑗 , in our simulations.

One can already conduct simulations in this stage as 𝛾𝑖𝑗 , 𝐾𝑖𝑗 , 𝛼, 𝛽𝑖

with 𝑍𝑎 field form a complete evolution system. We further follow [16]
and introduce a conformal factor 𝜙 and a conformal metric �̃�𝑖𝑗 , such that

�̃�𝑖𝑗 ∶= 𝜙2𝛾𝑖𝑗 , 𝜙 = [det(𝛾𝑖𝑗)]−1∕6. (B.5)

The second equation guarantees that �̃�𝑖𝑗 has a unit determinant. We
also decompose the extrinsic curvature into its trace part 𝐾 = 𝐾𝑖𝑗𝛾

𝑖𝑗
and traceless part 𝐴𝑖𝑗 , using the same scaling as for the metric:

https://gitlab.lrz.de/hpcsoftware/Peano

H. Zhang, B. Li, T. Weinzierl et al.

�̃�𝑖𝑗 ∶= 𝜙2𝐴𝑖𝑗 = 𝜙2(𝐾𝑖𝑗 −
1
3
𝐾𝛾𝑖𝑗). (B.6)

The 𝑍𝑎 represents four additional evolving variables, which are divided
into its temporal component Θ ∶= −𝑛𝑎𝑍

𝑎 = 𝛼𝑍0 and spatial component
𝑍𝑖 ∶= 𝛾𝑎

𝑏
𝑍𝑏. The latter is included in the evolution system by adding to

the contracted Christoffel symbol:

Γ̂𝑖 ∶= Γ̃𝑖 + 2�̃� 𝑖𝑗𝑍𝑗 , Γ̃𝑖 ∶= �̃� 𝑗𝑘Γ̃𝑖
𝑗𝑘
, (B.7)

where Γ̃𝑖
𝑗𝑘

is the Christoffel symbol for the conformal metric �̃�𝑖𝑗

Γ̃𝑖
𝑗𝑘

= 1
2
�̃� 𝑖𝑙

(
𝜕𝑗 �̃�𝑘𝑙 + 𝜕𝑘�̃�𝑗𝑙 − 𝜕𝑙�̃�𝑗𝑘

)
. (B.8)

For the first-order formulation, ExaGRyPE further introduces the follow-
ing auxiliary variables:

𝐴𝑖 ∶= 𝜕𝑖𝛼, 𝐵𝑖
𝑘
∶= 𝜕𝑘𝛽

𝑖,

𝐷𝑘𝑖𝑗 ∶=
1
2
𝜕𝑘�̃�𝑖𝑗 , 𝑃𝑖 ∶= 𝜕𝑖𝜙.

(B.9)

These variables satisfy the natural second-order constraints as

𝜕𝑘𝐴𝑖 − 𝜕𝑖𝐴𝑘 = 0, 𝜕𝑘𝐵
𝑖
𝑙
− 𝜕𝑙𝐵

𝑖
𝑘
= 0,

𝜕𝑘𝐷𝑙𝑖𝑗 − 𝜕𝑙𝐷𝑘𝑖𝑗 = 0, 𝜕𝑘𝑃𝑖 − 𝜕𝑖𝑃𝑘 = 0.
(B.10)

Because �̃�𝑖𝑗 is traceless 𝛾𝑖𝑗 �̃�𝑖𝑗 = 0 and �̃� = det(�̃�𝑖𝑗) = 1, we also have

𝜕𝑘
(
�̃� 𝑖𝑗 �̃�𝑖𝑗

)
= 𝜕𝑘�̃�

𝑖𝑗 �̃�𝑖𝑗 + �̃� 𝑖𝑗𝜕𝑘�̃�𝑖𝑗 = 0, �̃� 𝑖𝑗𝐷𝑘𝑖𝑗 = 0. (B.11)

The formulation of the evolution system in ExaGRyPE is given as the
following nine equations for primary variables:

𝜕𝑡�̃�𝑖𝑗 = 𝛽𝑘2𝐷𝑘𝑖𝑗 + �̃�𝑘𝑖𝐵
𝑘
𝑗 + �̃�𝑘𝑗𝐵

𝑘
𝑖 −

2
3
�̃�𝑖𝑗𝐵

𝑘
𝑘
−

2𝛼
(
�̃�𝑖𝑗 −

1
3
�̃�𝑖𝑗 tr �̃�

)
− 𝜏−1(�̃� − 1)�̃�𝑖𝑗 ,

(B.12)

𝜕𝑡𝛼 = 𝛽𝑘𝐴𝑘 − 𝛼2𝑔(𝛼)
(
𝐾 −𝐾0 − 2𝑐Θ

)
, (B.13)

𝜕𝑡𝛽
𝑖 = 𝛽𝑘𝐵𝑖

𝑘
+ 𝑓𝑏𝑖, (B.14)

𝜕𝑡𝜙 = 𝛽𝑘𝑃𝑘 +
1
3
𝜙
(
𝛼𝐾 −𝐵𝑙

𝑙

)
, (B.15)

𝜕𝑡�̃�𝑖𝑗 − 𝛽𝑘𝜕𝑘�̃�𝑖𝑗 −𝜙2 [−∇𝑖∇𝑗𝛼 + 𝛼
(
𝑅𝑖𝑗 +∇𝑖𝑍𝑗 +∇𝑗𝑍𝑖

)]TF
= �̃�𝑘𝑖𝐵

𝑘
𝑗 + �̃�𝑘𝑗𝐵

𝑘
𝑖 −

2
3
�̃�𝑖𝑗𝐵

𝑘
𝑘
+ 𝛼�̃�𝑖𝑗 (𝐾 − 2Θ𝑐)−

2𝛼�̃�𝑖𝑙�̃�
𝑙𝑚�̃�𝑚𝑗 ,

(B.16)

𝜕𝑡𝐾 − 𝛽𝑘𝜕𝑘𝐾 +∇𝑖∇𝑖𝛼 − 𝛼
(
𝑅+ 2∇𝑖𝑍

𝑖
)

= 𝛼𝐾(𝐾 − 2Θ𝑐) − 3𝛼𝜅1
(
1 + 𝜅2

)
Θ,

(B.17)

𝜕𝑡Θ− 𝛽𝑘𝜕𝑘Θ− 1
2
𝛼𝑒2

(
𝑅+ 2∇𝑖𝑍

𝑖
)

= 1
2
𝛼𝑒2

(2
3
𝐾2 − �̃�𝑖𝑗 �̃�

𝑖𝑗
)
− 𝛼Θ𝐾𝑐 −𝑍𝑖𝐴𝑖

− 𝛼𝜅1
(
2 + 𝜅2

)
Θ,

(B.18)

𝜕𝑡Γ̂𝑖 − 𝛽𝑘𝜕𝑘Γ̂𝑖 − 2𝛼�̃�𝑘𝑖𝜕𝑘Θ− �̃�𝑘𝑙𝜕(𝑘𝐵
𝑖
𝑙) − 𝑠

1
3
�̃� 𝑖𝑘𝜕(𝑘𝐵

𝑙
𝑙)

− 2𝛼�̃�𝑖𝑘�̃�𝑛𝑚𝜕𝑘�̃�𝑛𝑚 + 4
3
𝛼�̃�𝑖𝑗𝜕𝑗𝐾 = 2

3
Γ̃𝑖𝐵𝑘

𝑘
− Γ̃𝑘𝐵𝑖

𝑘

+ 2𝛼
(
Γ̃𝑖
𝑗𝑘
�̃�𝑗𝑘 − 3�̃�𝑖𝑗

𝑃𝑗

𝜙

)
− 2𝛼�̃�𝑘𝑖

(
Θ
𝐴𝑘

𝛼
+ 2

3
𝐾𝑍𝑘

)
− 2�̃�𝑖𝑗𝐴𝑗 − 4𝛼�̃�𝑖𝑘𝐷𝑛𝑚

𝑘
�̃�𝑛𝑚 − 2𝛼𝜅1�̃� 𝑖𝑗𝑍𝑗

+ 2𝜅3
(2
3
�̃� 𝑖𝑗𝑍𝑗𝐵

𝑘
𝑘
− �̃� 𝑗𝑘𝑍𝑗𝐵

𝑖
𝑘

)
,

(B.19)

𝜕𝑡𝑏
𝑖 − 𝛽𝑘𝜕𝑘𝑏

𝑖 = 𝜕𝑡Γ̂𝑖 − 𝛽𝑘𝜕𝑘Γ̂𝑖 − 𝜂𝑏𝑖, (B.20)

and four equations for the auxiliary variables, if the first-order scheme
23

is used:
Computer Physics Communications 307 (2025) 109435

𝜕𝑡𝐴𝑘 − 𝛽𝑙𝜕𝑙𝐴𝑘 + 𝛼2𝑔(𝛼)
(
𝜕𝑘𝐾 − 𝜕𝑘𝐾0 − 2𝑐𝜕𝑘Θ

)
+ 𝛼𝑔(𝛼)�̃�𝑛𝑚𝜕𝑘�̃�𝑛𝑚 =𝐵𝑙

𝑘
𝐴𝑙 + 2𝛼𝑔(𝛼)𝐷 𝑛𝑚

𝑘
�̃�𝑛𝑚

−
[
2𝛼𝑔(𝛼) + 𝛼2𝑔′(𝛼)

] (
𝐾 −𝐾0 − 2𝑐Θ

)
𝐴𝑘,

(B.21)

𝜕𝑡𝐵
𝑖
𝑘
− 𝛽𝑙𝜕𝑙𝐵

𝑖
𝑘
− 𝑓𝜕𝑘𝑏

𝑖 + 𝛼2𝜇
�̃�𝑖𝑗

𝜙

(
𝜕𝑘𝑃𝑗 − 𝜕𝑗𝑃𝑘

)
− 𝛼2𝜇�̃�𝑖𝑗 �̃�𝑛𝑙

(
𝜕𝑘𝐷𝑙𝑗𝑛 − 𝜕𝑙𝐷𝑘𝑗𝑛

)
=𝐵𝑙

𝑘
𝐵𝑖

𝑙
,

(B.22)

𝜕𝑡𝐷𝑘𝑖𝑗 − 𝛽𝑙𝜕𝑙𝐷𝑘𝑖𝑗 + 𝑠
(
− 1

2
�̃�𝑚𝑖𝜕(𝑘𝐵

𝑚
𝑗) −

1
2
�̃�𝑚𝑗𝜕(𝑘𝐵

𝑚
𝑖)

+ 1
3
�̃�𝑖𝑗𝜕(𝑘𝐵

𝑚
𝑚)

)
+ 𝛼𝜕𝑘�̃�𝑖𝑗 − 𝛼

1
3
�̃�𝑖𝑗 �̃�

𝑛𝑚𝜕𝑘�̃�𝑛𝑚

=𝐵𝑙
𝑘
𝐷𝑙𝑖𝑗 +𝐵𝑙

𝑗𝐷𝑘𝑙𝑖 +𝐵𝑙
𝑖𝐷𝑘𝑙𝑗 −

2
3
𝐵𝑙

𝑙
𝐷𝑘𝑖𝑗

− 𝛼
2
3
�̃�𝑖𝑗𝐷

𝑛𝑚
𝑘

�̃�𝑛𝑚 −𝐴𝑘

(
�̃�𝑖𝑗 −

1
3
�̃�𝑖𝑗 tr �̃�

)
,

(B.23)

𝜕𝑡𝑃𝑘 − 𝛽𝑙𝜕𝑙𝑃𝑘 −
1
3
𝜙
(
𝛼𝜕𝑘𝐾 − 𝜕(𝑘𝐵

𝑙
𝑙)

)
− 1

3
𝛼𝜙�̃�𝑛𝑚𝜕𝑘�̃�𝑛𝑚

=𝐵𝑙
𝑘
𝑃𝑙 +

1
3
(
𝛼𝐾 −𝐵𝑙

𝑙

)
𝑃𝑘 +

1
3
𝜙𝐾𝐴𝑘 −

2
3
𝛼𝜙𝐷 𝑛𝑚

𝑘
�̃�𝑛𝑚.

(B.24)

Most of the symbols already appear in the context above and are self-
explaining. The TF index means the Trace-Free part of the quantities,
i.e., 𝑅TF

𝑖𝑗
= 𝑅𝑖𝑗 −

1
3 𝛾𝑖𝑗𝛾

𝑘𝑙𝑅𝑘𝑙 . tr �̃� = 𝛾𝑖𝑗 �̃�𝑖𝑗 is the trace of the conformal
traceless extrinsic curvature. There are several red terms added to the
evolution systems, using the constraints (B.11) above for a more sym-
metric characteristic matrix [15]. Those terms are only employed in the
first formulation in ExaGRyPE and are removed in the second-order for-
mulation. The 𝑔(𝛼) function is the one defined in the slicing condition in
Section 2.1, and the “1+log” slicing corresponds to 𝑔(𝛼) = 2∕𝛼. Several
new parameters are also introduced for numerical optimization:

• 𝜏 represents the relaxation time to enforce the algebraic constraints
(det �̃�𝑖𝑗 = 1);

• 𝑒 is the cleaning speed for Hamiltonian constraint, following the idea
of [62];

• 𝜇 > 0 in equation (B.22) determines the effect of the terms from the
constraints;

• 𝑐 controls the contribution from some algebraic source terms in Z4
systems. Its default value is 1 when the original CCZ4 is used [16].

The standard hyperbolic Gamma driver shift gauge is given above but
for some physical scenarios, we also provide the option of the static
(zero) shift condition.

The evolution equations above are not completed as we abbreviate
some key quantities for readability. The whole system is closed with the
evolving quantities using the following list of relations:

𝜕𝑘�̃�
𝑖𝑗 = −2�̃� 𝑖𝑛�̃�𝑚𝑗𝐷𝑘𝑛𝑚 ∶= −2𝐷𝑖𝑗

𝑘
, (B.25)

Γ̃𝑘
𝑖𝑗 = �̃�𝑘𝑙

(
𝐷𝑖𝑗𝑙 +𝐷𝑗𝑖𝑙 −𝐷𝑙𝑖𝑗

)
, (B.26)

𝜕𝑘Γ̃𝑚
𝑖𝑗 = −2𝐷𝑚𝑙

𝑘

(
𝐷𝑖𝑗𝑙 +𝐷𝑗𝑖𝑙 −𝐷𝑙𝑖𝑗

)
+ �̃�𝑚𝑙(𝜕(𝑘𝐷𝑖)𝑗𝑙

+ 𝜕(𝑘𝐷𝑗)𝑖𝑙 − 𝜕(𝑘𝐷𝑙)𝑖𝑗),
(B.27)

Γ𝑘
𝑖𝑗 = Γ̃𝑘

𝑖𝑗 −
1
𝜙
�̃�𝑘𝑙

(
�̃�𝑗𝑙𝑃𝑖 + �̃�𝑖𝑙𝑃𝑗 − �̃�𝑖𝑗𝑃𝑙

)
, (B.28)

𝜕𝑘Γ𝑚
𝑖𝑗 =− 2𝐷𝑚𝑙

𝑘

(
𝐷𝑖𝑗𝑙 +𝐷𝑗𝑖𝑙 −𝐷𝑙𝑖𝑗

)
+ �̃�𝑚𝑙

[
𝜕(𝑘𝐷𝑖)𝑗𝑙 + 𝜕(𝑘𝐷𝑗)𝑖𝑙 − 𝜕(𝑘𝐷𝑙)𝑖𝑗

]
+ 2

𝜙
𝐷𝑚𝑙

𝑘

(
�̃�𝑗𝑙𝑃𝑖 + �̃�𝑖𝑙𝑃𝑗 − �̃�𝑖𝑗𝑃𝑙

)
− 2

𝜙
�̃�𝑚𝑙

(
𝐷𝑘𝑗𝑙𝑃𝑖 +𝐷𝑘𝑖𝑙𝑃𝑗 −𝐷𝑘𝑖𝑗𝑃𝑙

)
− 1

𝜙
�̃�𝑚𝑙

[
�̃�𝑗𝑙𝜕(𝑘𝑃𝑖) + �̃�𝑖𝑙𝜕(𝑘𝑃𝑗) − �̃�𝑖𝑗𝜕(𝑘𝑃𝑙)

]
1 𝑚𝑙

()
(B.29)
+
𝜙2 �̃� �̃�𝑗𝑙𝑃𝑖𝑃𝑘 + �̃�𝑖𝑙𝑃𝑗𝑃𝑘 − �̃�𝑖𝑗𝑃𝑘𝑃𝑙 ,

H. Zhang, B. Li, T. Weinzierl et al.

𝑅𝑚
𝑖𝑘𝑗

= 𝜕𝑘Γ𝑚
𝑖𝑗 − 𝜕𝑗Γ𝑚

𝑖𝑘
+ Γ𝑙

𝑖𝑗Γ
𝑚
𝑙𝑘
− Γ𝑙

𝑖𝑘
Γ𝑚
𝑙𝑗
, 𝑅𝑖𝑗 =𝑅𝑚

𝑖𝑚𝑗 , (B.30)

∇𝑖∇𝑗𝛼 = 𝜕(𝑖𝐴𝑗) − Γ𝑘
𝑖𝑗𝐴𝑘, (B.31)

𝜕𝑘Γ̃𝑖 = −2𝐷𝑗𝑙

𝑘
Γ̃𝑖
𝑗𝑙
+ �̃� 𝑗𝑙𝜕𝑘Γ̃𝑖

𝑗𝑙
, (B.32)

𝑍𝑖 =
1
2
�̃�𝑖𝑗

(
Γ̂𝑗 − Γ̃𝑗

)
, 𝑍𝑖 = 1

2
𝜙2 (Γ̂𝑖 − Γ̃𝑖

)
, (B.33)

∇𝑖𝑍𝑗 =𝐷𝑖𝑗𝑙

(
Γ̂𝑙 − Γ̃𝑙

)
+ 1

2
�̃�𝑗𝑙

(
𝜕𝑖Γ̂𝑙 − 𝜕𝑖Γ̃𝑙

)
− Γ𝑙

𝑖𝑗𝑍𝑙, (B.34)

𝑅+ 2∇𝑘𝑍
𝑘 = 𝜙2�̃� 𝑖𝑗

(
𝑅𝑖𝑗 +∇𝑖𝑍𝑗 +∇𝑗𝑍𝑖

)
. (B.35)

Notice the second-order constraints (B.10) are used to “symmetrize” the
spatial derivatives of the auxiliary variables in some equations and re-
lations. In code practice, we also use a simplified expression for the
modified Ricci tensor 𝑅𝑖𝑗 + 2∇(𝑖𝑍𝑗) from [50]:

𝑅𝑖𝑗+2∇(𝑖𝑍𝑗) =

− 1
2
�̃�𝑘𝑙𝜕𝑘𝜕𝑙�̃�𝑖𝑗 + �̃�𝑘(𝑖𝜕𝑗)Γ̂𝑘 + 1

2
Γ̂𝑘𝜕𝑘�̃�𝑖𝑗

+ �̃� 𝑙𝑚
(
Γ̃𝑘
𝑙𝑖
Γ̃𝑗𝑘𝑚 + Γ̃𝑘

𝑙𝑗
Γ̃𝑖𝑘𝑚 + Γ̃𝑘

𝑖𝑚Γ̃𝑘𝑙𝑗

)
+ 1

𝜙

(
∇̃𝑖∇̃𝑗𝜙+ �̃�𝑖𝑗 �̃�

𝑘𝑙∇̃𝑘∇̃𝑙𝜙
)
− 2

𝜙2 �̃�𝑖𝑗 �̃�
𝑘𝑙𝜕𝑘𝜙𝜕𝑙𝜙

+ 2
𝜙3𝑍

𝑘
(
�̃�𝑖𝑘𝜕𝑗𝜙+ �̃�𝑗𝑘𝜕𝑖𝜙− �̃�𝑖𝑗𝜕𝑘𝜙

)
,

(B.36)

with ∇̃𝑖∇̃𝑘𝜙 = 𝜕𝑖𝜕𝑘𝜙 − Γ̃𝑘
𝑖𝑗
𝜕𝑘𝜙 the second conformal covariant derivative

of 𝜙 and Γ̃𝑘𝑖𝑗 ∶= �̃�𝑘𝑙Γ̃𝑙
𝑖𝑗

the newly-defined lowered Christoffel symbol.
There are two extra physical (ADM) constraints can be derived from

the 3+1 foliation of (B.1), which are the Hamiltonian Constraint

𝐻 ∶=𝑅+ 2
3
𝐾2 − �̃�𝑖𝑗 �̃�

𝑖𝑗 , (B.37)

and Momentum Constraints

𝑀𝑖 ∶= �̃�𝑘𝑙
(
𝜕𝑘�̃�𝑙𝑖 − 2Γ̃𝑚

𝑙(𝑖�̃�𝑘)𝑚 − 3�̃�𝑖𝑘

𝑃𝑙

𝜙

)
− 2

3
𝜕𝑖𝐾. (B.38)

The matter source terms are dropped as we currently focus on the vac-
uum solution. According to the Bianchi identities, if the constraints are
zero at the initial hypersurface (which is guaranteed by the Bowen-York
solution), they vanish through the whole evolution [63]. Any deviation
from zero can be seen as a result from the numerical errors. Therefore,
they are widely used in numerical relativity code as accuracy metrics to
assess the quality of the simulations. We examine the violation of the
constraints in our simulation tests in Section 5.

Appendix C. 𝝍𝟒 in ExaGRyPE

The complex scalar field 𝜓4 is written as

𝜓4 =(4) 𝐶𝑎𝑏𝑐𝑑𝑘
𝑎�̄�𝑏𝑘𝑐�̄�𝑑 , (C.1)

where (4)𝐶𝑎𝑏𝑐𝑑 is the four-dimensional Weyl tensor, and 𝑘𝑎 and �̄�𝑎 are
two members of a null tetrad. A tetrad is a set of four null vectors that
form a complete basis, and we name them 𝑙𝑎, 𝑘𝑎, 𝑚𝑎 and �̄�𝑎. The tetrad
is constructed such that the 𝑙𝑎 and 𝑘𝑎 are radial outgoing and ingoing
vectors respectively, and only non-vanishing inner products between
them are:

−𝑙𝑎𝑘𝑎 =𝑚𝑎�̄�𝑎 = 1. (C.2)

In our code, the unit vectors in three spatial directions are calculated
from a Gram-Schmidt orthonormalization of the following vectors [35]:

𝑣𝑖 = [−𝑦,𝑥,0]→ 𝑣𝑖∕
√

𝐿𝑣𝑣, (C.3)

𝑢𝑖 = [𝑥, 𝑦, 𝑧]→ (𝑢𝑖 − 𝑣𝑖𝐿𝑣𝑢)∕
√

𝐿𝑢𝑢, (C.4)

𝑤𝑖 = 𝛾𝑖𝑗𝜖𝑗𝑘𝑙𝑣
𝑘𝑢𝑙 → √
24

(𝑤𝑖 − 𝑣𝑖𝐿𝑣𝑤 − 𝑢𝑖𝐿𝑢𝑤)∕ 𝐿𝑤𝑤, (C.5)
Computer Physics Communications 307 (2025) 109435

where 𝐿 represents the inner product of corresponding vectors, i.e.,
𝐿𝑣𝑢 ∶= 𝛾𝑖𝑗𝑣

𝑖𝑢𝑗 . Combining with the temporal unit vector, 𝑒𝑎
𝑡
=
[
𝛼−1,

−𝛼−1𝛽𝑖
]
, the tetrad is given as

𝑙𝑎 = 1√
2
[𝛼−1,−𝛼−1𝛽𝑖 + 𝑢𝑖], (C.6)

𝑘𝑎 = 1√
2
[𝛼−1,−𝛼−1𝛽𝑖 − 𝑢𝑖], (C.7)

𝑚𝑎 = 1√
2
[0,𝑤𝑖 + 𝑖𝑣𝑖], (C.8)

�̄�𝑎 = 1√
2
[0,𝑤𝑖 − 𝑖𝑣𝑖]. (C.9)

On the other hand, the Weyl tensor can be simplified to [64]

𝜓4 = (𝐸𝑖𝑗 − 𝑖𝐵𝑖𝑗)�̄�𝑖�̄�𝑗 , (C.10)

where 𝐸𝑖𝑗 and 𝐵𝑖𝑗 are the spatial parts of the so-called electric and mag-
netic parts of the Weyl tensor. Their expression in the Z4 system is

𝐸𝑖𝑗 =
(
𝑅𝑖𝑗 −𝐾𝑚

𝑖𝐾𝑗𝑚 +𝐾𝑖𝑗 (𝐾 −Θ) +𝐷(𝑖𝑍𝑗) − 4𝜋𝑆𝑖𝑗

)TF
, (C.11)

𝐵𝑖𝑗 =
1
2
(
𝜖𝑚𝑛𝑖𝐷

𝑚𝐾𝑗
𝑛 + 𝜖𝑚𝑛𝑗𝐷

𝑚𝐾𝑖
𝑛
)TF

. (C.12)

TF is the trace-free index with the same definition as in Appendix B.
Considering the systems only involve black holes, the source term in
equation (C.11) is zero. The final expression of 𝜓4 is given by combining
Eqs. (C.11), (C.12) and (C.9), putting them back in Eq. (C.10).

Appendix D. Formulation for the kernel FD4 solver

The code utilizes the five-point stencil in one dimension to approxi-
mate the derivatives in fourth-order accuracy:

𝜕𝑄 (𝑥)
𝜕𝑥

||||𝑥0 = 1
12𝛿𝑥

[
8
(
𝑄+ −𝑄−)− (

𝑄++ −𝑄−−)]
+(

𝛿𝑥4
)
,

(D.1)

where 𝑥0 is the grid point of interest, the + and − upper indices of
quantities indicate the relative position of the indexed quantities with
the current grid point, and the number of signs specifies the distance,
e.g., 𝑄++ ∶=𝑄(𝑥0 + 2𝛿𝑥), 𝑄− ∶=𝑄(𝑥0 − 𝛿𝑥). We have omitted the vec-
tor symbol of the evolving variables 𝑄 for simplicity.

Notice that we can apply this formulation to any spatial-dependent
function, therefore the divergence of the flux is given as:

𝜕𝐹

𝜕𝑥

||||𝑥0 = 1
12𝛿𝑥

[
8
(
𝐹+ − 𝐹−)− (

𝐹++ − 𝐹−−)]
+(

𝛿𝑥4
)
.

(D.2)

Equipped with the relations (D.1) and (D.2), we can derive the time
stepping scheme of the fourth-order finite difference (FD4) solver from
(11):

�⃗�(𝑡+ 𝛿𝑡) = �⃗�(𝑡) + 𝛿𝑡𝑆(�⃗�) (D.3)

−
∑
𝑖

𝛿𝑡

12𝛿𝑥𝑖

[
8
(
𝐹 𝑖+
𝑖

− 𝐹 𝑖−
𝑖

)
−
(
𝐹 𝑖++
𝑖

− 𝐹 𝑖−−
𝑖

)]
−
∑
𝑖

𝐵𝑖
𝛿𝑡

12𝛿𝑥𝑖

[
8
(
𝑄𝑖+ −𝑄𝑖−)− (

𝑄𝑖++ −𝑄𝑖−−)] ,
where we have used the forward finite differences for the time deriva-
tives, i.e. 𝜕𝑡�⃗� =

(
�⃗�(𝑡+ 𝛿𝑡) − �⃗�(𝑡)

)
∕𝛿𝑡 for a timestep of size 𝛿𝑡. The

index 𝑖 goes from 1 to 3 and indicates the direction of the neighboring
points we are looking into. The five-point stencil of (D.1) is the cen-
tral difference and it is our preferred choice in most cases. However,
some terms may need a lopsided stencil to capture specific features or
behaviors, especially those that may lead to asymmetric patterns in the

system, e.g. the advection terms of the CCZ4 system [65] in numerical

H. Zhang, B. Li, T. Weinzierl et al.

Fig. E.21. The illustration of the face structures on the coarse and fine side of
a refinement transition boundary. The mapping between them determines the
strategy of the refinement transition in the application. For the interpolation, we
need to calculate the outer half of the fine face (the light red squares on the right)
using the information of the coarse face. On the other hand, we need to compute
the outer half of the coarse face (the light blue squares on the left) utilizing the
fine face for a restriction scheme. The layers of the faces are labeled from c0 to
c5 and f0 to f5 respectively, it is not the actual enumeration we employed in the
actual code.

relativity, which appear in our application as well. The left and right
lopsided stencils with also the fourth-order accuracy are

𝜕𝑄 (𝑥)
𝜕𝑥

||||𝑥0 = 1
12𝛿𝑥

[
−𝑄−−− + 6𝑄−− − 18𝑄− + 10𝑄+ 3𝑄+] ,
if 𝛽𝑥 > 0

(D.4)

𝜕𝑄 (𝑥)
𝜕𝑥

||||𝑥0 = 1
12𝛿𝑥

[
−3𝑄− − 10𝑄+ 18𝑄+ − 6𝑄++ +𝑄+++] ,
if 𝛽𝑥 ≤ 0.

(D.5)

To avoid numerical errors of high-frequency modes, we also introduce
the standard Kreiss-Oliger (KO) dissipation at order 𝑁 = 3 in the code
as a low-pass filter. Its form in one dimension is [42]:

KO(3) = 𝜖

64𝛿𝑥
(𝑄−−−−6𝑄−− + 15𝑄− − 20𝑄

+ 15𝑄+ − 6𝑄++ +𝑄+++),
(D.6)

where 𝜖 is a user-defined parameter to control the strength of the numer-
ical dissipation. This term has a convergence speed ∼ 𝛿𝑥5 which can be
easily verified by counting the Taylor expansion coefficients. The final
numerical dissipation term is the sum over all directions of Eq. (D.6).

Appendix E. Matrices for tensor product interpolation &
restriction

The adaptive mesh in ExaHyPE 2 is constructed by refining patches
recursively in three partitions and creating new patches accordingly,
and refinement transition of multiple levels is not allowed in the code.
Therefore, the difference in patch length can only be a factor of three.
As all patches in the domain have the same number of volumes, we,
therefore, shall have 𝛿𝑥coarse = 3𝛿𝑥fine.

For the interpolation scheme compatible with our default FD4 ker-
nel, the outer half of a face contains three layers, i.e., layers f0, f1 and
f2 in Fig. E.21. The face of the coarse patch, on the other hand, inputs as
a whole. Assuming our patches contain 𝑝 volumes per dimension, this
scheme yields a map from 6𝑝2 variables to 3 × (3𝑝)2 variables. The cur-
rent implementation of ExaGRyPE adopts the tensor product approach
to perform this mapping, which decomposes the high-dimensional map
into the product of three one-dimensional maps. Assuming the volumes
in the coarse and fine faces are 𝑄𝑐

𝑖,𝑗,𝑘
and 𝑄𝑓

𝑖,𝑗,𝑘
, the interpolation map
25

can be written as
Computer Physics Communications 307 (2025) 109435

𝑄
𝑓

𝑖,𝑗,𝑘
= 𝑃𝑥

𝑖𝑙
𝑃

𝑦
𝑗𝑚

𝑃 𝑧
𝑘𝑛
𝑄𝑐

𝑙,𝑚,𝑛
, (E.1)

where 𝑃𝑥, 𝑃 𝑦, and 𝑃 𝑧 are the matrices responsible for the corresponding
one-dimensional map. As we shall have a symmetry for the two dimen-
sions parallel to the face normal, the two matrices for mappings along
them are identical. The matrix for the mappings parallel to the face nor-
mal and along the face normal are labeled as 𝑃 ∥ and 𝑃⟂, respectively.

Matrix 𝑃 ∥ should have a size of 3𝑝 × 𝑝, as it maps 𝑝 coarse volumes
to 3𝑝 fine volumes; on the other hand, matrix 𝑃⟂ has a size of 3 × 6, as
it maps 6 coarse layers to 3 fine layers (only the outer half of the fine
face needs the interpolation). The 𝑃 ∥ and 𝑃⟂ matrices of the trilinear
interpolation scheme we currently adopt read as

𝑃 ∥ =

⎛⎜⎜⎜⎜⎜⎝

4∕3 −1∕3 0 0 0 ...

1 0 0 0 0 ...

2∕3 1∕3 0 0 0 ...

1∕3 2∕3 0 0 0 ...

0 1 0 0 0 ...

0 2∕3 1∕3 0 0 ...

....

⎞⎟⎟⎟⎟⎟⎠
, (E.2)

𝑃⟂ =
(0 1∕3 2∕3 0 0 0

0 0 1 0 0 0
0 0 2∕3 1∕3 0 0

)
. (E.3)

In this scheme, we apply a simple linear interpolation to compute the
value in the fine volumes according to the relative positions of the clos-
est two coarse volumes. The extrapolation is used for those volumes at
the edge of the considered fine face. There is no such requirement in the
case of 𝑃⟂ as all three layers of the fine face are inside the coarse face.
We also implement the matrices for the zero-order piecewise constant
interpolations as

𝑃
∥
const =

⎛⎜⎜⎜⎜⎜⎝

1 0 0 0 0 ...

1 0 0 0 0 ...

1 0 0 0 0 ...

0 1 0 0 0 ...

0 1 0 0 0 ...

0 1 0 0 0 ...

....

⎞⎟⎟⎟⎟⎟⎠
, (E.4)

𝑃⟂
const =

(0 0 1 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0

)
. (E.5)

This means that we use the value in the coarse volume (layer) if the
targeted fine volume (layer) is within it. It is the most straightforward
interpolation one may have.

The restriction, which is the reverse procedure of the interpolation,
has a similar expression to interpolation:

𝑄𝑐
𝑖,𝑗,𝑘

=𝑅𝑥
𝑖𝑙
𝑅

𝑦
𝑗𝑚

𝑅𝑧
𝑘𝑛
𝑄

𝑓

𝑙,𝑚,𝑛
, (E.6)

where we label the restriction matrix as 𝑅. Similarly, we define the
matrix 𝑅∥, which maps 3𝑝 fine volumes to 𝑝 coarse volumes, and the
matrix 𝑅⟂, mapping 6 fine layers to 3 coarse layers.

In the code practices, we incorporate two versions of matrix 𝑅∥ : one
for the injection (constant) scheme and the other for the average scheme.
However, only one version of 𝑅⟂ is implemented in the code as the cor-
responding scheme of zero-order accuracy yields significant numerical
errors.

The matrix 𝑅∥ for the injection scheme is

𝑅
∥
injection =

⎛⎜⎜⎜⎝
0 1 0 0 0 0 0 0 0 ...

0 0 0 0 1 0 0 0 0 ...

0 0 0 0 0 0 0 1 0 ...

0 0 0 0 0 0 0 0 0 ...

...

⎞⎟⎟⎟⎠ . (E.7)

In this scheme, we utilize the value in the central volume per three fine
volumes for the coarse volume, as this central volume has the same
central coordinate (in this parallel direction) as the restricted coarse
volume. The matrix 𝑅∥ for the average scheme is

𝑅
∥
average =

⎛⎜ 1∕3 1∕3 1∕3 0 0 0 0 ...

0 0 0 1∕3 1∕3 1∕3 0 ...
⎞⎟ . (E.8)
⎜⎝ 0 0 0 0 0 0 1∕3 ...

...
⎟⎠

H. Zhang, B. Li, T. Weinzierl et al.

The average of the three corresponding fine volumes is used to assign
the coarse volume and provide improved accuracy.

The version of matrix 𝑅⟂ implemented in the code is

𝑅⟂ =
(0 0 0 1∕3 1∕3 1∕3

0 0 0 0 −2 3
0 0 0 0 −5 6

)
. (E.9)

This matrix uses a combination of average and extrapolation for the
map along the face normal. Notice the enumeration depends on the face
orientation rather than relative position. So the right half of the matrix
instead of the left half represents the inner part of the fine face (layers
f3, f4 and f5).

Data availability

Appendix A provides detailed instructions on reproducing the data
used in the manuscript.

References

[1] A. Einstein, Die grundlage der allgemeinen relativitätstheorie, 354 (7) (1916)
769–822, https://doi .org /10 .1002 /andp .19163540702.

[2] L. Rezzolla, O. Zanotti, Relativistic Hydrodynamics, 2013.
[3] B. Brügmann, W. Tichy, N. Jansen, Numerical simulation of orbiting black holes,

92 (21) (2004) 211101, https://doi .org /10 .1103 /PhysRevLett .92 .211101, pub-
lisher: American Physical Society.

[4] F. Pretorius, Numerical relativity using a harmonic decomposition, in: APS April
Meeting Abstracts, in: APS Meeting Abstracts, vol. 2004, 2004, R13.006.

[5] F. Löffler, J. Faber, E. Bentivegna, T. Bode, P. Diener, R. Haas, I. Hinder, B.C.
Mundim, C.D. Ott, E. Schnetter, G. Allen, M. Campanelli, P. Laguna, The Einstein
toolkit: a community computational infrastructure for relativistic astrophysics, Class.
Quantum Gravity 29 (11) (2012) 115001, https://doi .org /10 .1088 /0264 -9381 /29 /
11 /115001.

[6] K. Clough, P. Figueras, H. Finkel, M. Kunesch, E.A. Lim, S. Tunyasuvunakool, Gr-
chombo: numerical relativity with adaptive mesh refinement, Class. Quantum Grav-
ity 32 (24) (2015) 245011, https://doi .org /10 .1088 /0264 -9381 /32 /24 /245011.

[7] The spectral Einstein code (spec), Website, http://www .black -holes .org /SpEC .html.
[8] M. Fernando, D. Neilsen, H. Lim, E. Hirschmann, H. Sundar, Massively parallel

simulations of binary black hole intermediate-mass-ratio inspirals, 41 (2) (2019)
C97–C138, https://doi .org /10 .1137 /18M1196972.

[9] B. Daszuta, F. Zappa, W. Cook, D. Radice, S. Bernuzzi, V. Morozova, GR-athena++:
puncture evolutions on vertex-centered oct-tree adaptive mesh refinement, 257 (2)
(2021) 25, publisher: IOP Publishing.

[10] I. Ruchlin, Z.B. Etienne, T.W. Baumgarte, SENR/NRPy+: numerical relativity in sin-
gular curvilinear coordinate systems, 97 (6) (2018) 064036, publisher: APS.

[11] T. Yamamoto, M. Shibata, K. Taniguchi, Simulating coalescing compact binaries by
a new code (SACRA), 78 (6) (2008) 064054, publisher: APS.

[12] D. Hilditch, Solving the Einstein equations numerically, arXiv :2405 .06035 [gr -qc].
[13] A. Reinarz, D.E. Charrier, M. Bader, L. Bovard, M. Dumbser, K. Duru, F. Fambri, A.-A.

Gabriel, J.-M. Gallard, S. Köppel, L. Krenz, L. Rannabauer, L. Rezzolla, P. Samfass,
M. Tavelli, T. Weinzierl, Exahype: an engine for parallel dynamically adaptive sim-
ulations of wave problems, Comput. Phys. Commun. 254 (2020) 107251, https://
doi .org /10 .1016 /j .cpc .2020 .107251.

[14] T. Weinzierl, The Peano software-parallel, automaton-based, dynamically adaptive
grid traversals, ACM Trans. Math. Softw. 45 (2) (Apr. 2019), https://doi .org /10 .
1145 /3319797.

[15] M. Dumbser, F. Guercilena, S. Köppel, L. Rezzolla, O. Zanotti, Conformal and co-
variant z4 formulation of the Einstein equations: strongly hyperbolic first-order
reduction and solution with discontinuous Galerkin schemes, Phys. Rev. D 97 (2018)
084053, https://doi .org /10 .1103 /PhysRevD .97 .084053.

[16] D. Alic, C. Bona-Casas, C. Bona, L. Rezzolla, C. Palenzuela, Conformal and covariant
formulation of the z4 system with constraint-violation damping, Phys. Rev. D 85
(2012) 064040, https://doi .org /10 .1103 /PhysRevD .85 .064040.

[17] A. Dubey, A.S. Almgren, J.B. Bell, M. Berzins, S.R. Brandt, G. Bryan, P. Colella, D.T.
Graves, M. Lijewski, F. Löffler, B. O’Shea, E. Schnetter, B. van Straalen, K. Weide,
A survey of high level frameworks in block-structured adaptive mesh refinement
packages, CoRR 74 (12) (2016) 3217–3227.

[18] C. Lattner, M. Amini, U. Bondhugula, A. Cohen, A. Davis, J. Pienaar, R. Riddle, T.
Shpeisman, N. Vasilache, O. Zinenko, Mlir: a compiler infrastructure for the end of
Moore’s law, arXiv preprint, arXiv :2002 .11054, 2020.

[19] C.M. Loi, H. Bockhorst, T. Weinzierl, SYCL compute kernels for ExaHyPE, in: Pro-
ceedings of the 2024 SIAM Conference on Parallel Processing for Scientific Comput-
ing (PP), 2024, pp. 90–103.

[20] M. Wille, T. Weinzierl, G. Brito Gadeschi, M. Bader, Efficient GPU offloading with
OpenMP for a hyperbolic finite volume solver on dynamically adaptive meshes, in: A.
Bhatele, J. Hammond, M. Baboulin, C. Kruse (Eds.), High Performance Computing,
26

Springer Nature Switzerland, 2023, pp. 65–85.
Computer Physics Communications 307 (2025) 109435

[21] B. Li, H. Schulz, T. Weinzierl, H. Zhang, Dynamic task fusion for a block-structured
finite volume solver over a dynamically adaptive mesh with local time stepping, in:
A.-L. Varbanescu, A. Bhatele, P. Luszczek, B. Marc (Eds.), High Performance Com-
puting, Springer International Publishing, Cham, 2022, pp. 153–173.

[22] J.-M. Gallard, L. Krenz, L. Rannabauer, A. Reinarz, M. Bader, Role-oriented code
generation in an engine for solving hyperbolic pde systems, in: G. Juckeland, S. Chan-
drasekaran (Eds.), Tools and Techniques for High Performance Computing, Springer
International Publishing, Cham, 2020, pp. 111–128.

[23] C. Bona, T. Ledvinka, C. Palenzuela, M. Žáček, General-covariant evolution formal-
ism for numerical relativity, Phys. Rev. D 67 (2003) 104005, https://doi .org /10 .
1103 /PhysRevD .67 .104005.

[24] C. Gundlach, G. Calabrese, I. Hinder, J.M. Martín-García, Constraint damping in the
z4 formulation and harmonic gauge, Class. Quantum Gravity 22 (17) (2005) 3767,
https://doi .org /10 .1088 /0264 -9381 /22 /17 /025.

[25] R. Arnowitt, S. Deser, C.W. Misner, Republication of: the dynamics of general
relativity, 40 (9) (2008) 1997–2027, https://doi .org /10 .1007 /s10714 -008 -0661 -1,
arXiv :gr -qc /0405109.

[26] L. Lindblom, M.A. Scheel, L.E. Kidder, R. Owen, O. Rinne, A new generalized har-
monic evolution system, 23 (16) (2006) S447–S462, https://doi .org /10 .1088 /0264 -
9381 /23 /16 /s09, publisher: IOP Publishing.

[27] B. Szilágyi, D. Pollney, L. Rezzolla, J. Thornburg, J. Winicour, An explicit harmonic
code for black-hole evolution using excision, 24 (12) (2007) S275–S293, https://
doi .org /10 .1088 /0264 -9381 /24 /12 /s18, publisher: IOP Publishing.

[28] T.W. Baumgarte, S.L. Shapiro, Numerical integration of Einstein’s field equations,
59 (2) (1998) 024007, https://doi .org /10 .1103 /PhysRevD .59 .024007, publisher:
American Physical Society.

[29] M. Shibata, T. Nakamura, Evolution of three-dimensional gravitational waves: har-
monic slicing case, 52 (10) (1995) 5428–5444, https://doi .org /10 .1103 /PhysRevD .
52 .5428, publisher: American Physical Society.

[30] C. Bona, T. Ledvinka, C. Palenzuela, M. Žáček, Symmetry-breaking mechanism for
the z4 general-covariant evolution system, Phys. Rev. D 69 (2004) 064036, https://
doi .org /10 .1103 /PhysRevD .69 .064036.

[31] D. Hilditch, S. Bernuzzi, M. Thierfelder, Z. Cao, W. Tichy, B. Brügmann, Compact
binary evolutions with the z4c formulation, 88 (8) (2013) 084057, https://doi .org /
10 .1103 /PhysRevD .88 .084057, publisher: American Physical Society.

[32] C. Bona, J. Massó, E. Seidel, J. Stela, New formalism for numerical relativity, 75 (4)
(1995) 600–603, https://doi .org /10 .1103 /PhysRevLett .75 .600, publisher: Ameri-
can Physical Society.

[33] M. Alcubierre, B. Brügmann, P. Diener, M. Koppitz, D. Pollney, E. Seidel, R. Taka-
hashi, Gauge conditions for long-term numerical black hole evolutions without ex-
cision, 67 (8) (2003) 084023, https://doi .org /10 .1103 /PhysRevD .67 .084023, pub-
lisher: American Physical Society.

[34] J.M. Bowen, J.W. York, Time-asymmetric initial data for black holes and black-hole
collisions, 21 (8) (1980) 2047–2056, https://doi .org /10 .1103 /PhysRevD .21 .2047,
publisher: American Physical Society.

[35] B. Brügmann, J.A. González, M. Hannam, S. Husa, U. Sperhake, W. Tichy, Calibration
of moving puncture simulations, 77 (2) (2008) 024027, https://doi .org /10 .1103 /
PhysRevD .77 .024027, publisher: American Physical Society.

[36] M. Ansorg, B. Brügmann, W. Tichy, Single-domain spectral method for black
hole puncture data, 70 (6) (2004) 064011, https://doi .org /10 .1103 /PhysRevD .70 .
064011, publisher: American Physical Society.

[37] E. Newman, R. Penrose, An approach to gravitational radiation by a method of spin
coefficients, 3 (3) (2004) 566–578, https://doi .org /10 .1063 /1 .1724257.

[38] J.S. Brauchart, P.J. Grabner, Distributing many points on spheres: minimal energy
and designs, 31 (3) (2015) 293–326, https://doi .org /10 .1016 /j .jco .2015 .02 .003.

[39] R. Womersley, Efficient spherical designs with good geometric properties, Website,
http://web .maths .unsw .edu .au /~rsw /Sphere /EffSphDes /index .html.

[40] T. Weinzierl, M. Mehl, Peano—a traversal and storage scheme for octree-like adap-
tive Cartesian multiscale grids, SIAM J. Sci. Comput. 33 (5) (2011) 2732–2760,
https://doi .org /10 .1137 /100799071.

[41] H. Zhang, T. Weinzierl, H. Schulz, B. Li, Spherical accretion of collisional gas in
modified gravity i: self-similar solutions and a new cosmological hydrodynamical
code, 515 (2) (2022) 2464–2482, https://doi .org /10 .1093 /mnras /stac1991.

[42] H. Kreiss, J. Oliger, Methods for the Approximate Solution of Time Dependent Prob-
lems, GARP Publications Series, SELBSTVERL. FEBR., 1973, https://books .google .
co .uk /books ?id =wj9szwEACAAJ.

[43] D. Charrier, B. Hazelwood, T. Weinzierl, Enclave tasking for dg methods on dynam-
ically adaptive meshes, SIAM J. Sci. Comput. 42 (3) (2020) C69–C96.

[44] M.J. Berger, P. Colella, Local adaptive mesh refinement for shock hydrodynamics,
82 (1) (1989) 64–84, https://doi .org /10 .1016 /0021 -9991(89)90035 -1.

[45] H. Sundar, R.S. Sampath, G. Biros, Bottom-up construction and 2:1 balance refine-
ment of linear octrees in parallel, 30 (5) (2008) 2675–2708, https://doi .org /10 .
1137 /070681727.

[46] J.G. Baker, J.R. van Meter, Reducing reflections from mesh refinement interfaces in
numerical relativity, 72 (10) (2005) 104010, https://doi .org /10 .1103 /PhysRevD .
72 .104010, publisher: American Physical Society.

[47] T. Weinzierl, B. Verleye, P. Henri, D. Roose, Two particle-in-grid realisations on
spacetrees, 52 (2016) 42–64, https://doi .org /10 .1016 /j .parco .2015 .12 .007.

[48] J.C. Butcher, Numerical Methods for Ordinary Differential Equations, John Wiley &

Sons, 2016.

http://refhub.elsevier.com/S0010-4655(24)00358-8/bib08C3ACF9BC4461F744288BFC14ED60D6s1
https://doi.org/10.1002/andp.19163540702
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib08C3ACF9BC4461F744288BFC14ED60D6s1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bibEDA4932CB60934F73D673EBECAB70DC4s1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib1A7B8A7F177E024E1685E780C47649C6s1
https://doi.org/10.1103/PhysRevLett.92.211101
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib1A7B8A7F177E024E1685E780C47649C6s1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib1A7B8A7F177E024E1685E780C47649C6s1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib26F519A2F3136FA5F89BBE6B431ECC70s1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib26F519A2F3136FA5F89BBE6B431ECC70s1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib4941D7C96BFF7F4476A74658B50B8D99s1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib4941D7C96BFF7F4476A74658B50B8D99s1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib4941D7C96BFF7F4476A74658B50B8D99s1
https://doi.org/10.1088/0264-9381/29/11/115001
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib4941D7C96BFF7F4476A74658B50B8D99s1
https://doi.org/10.1088/0264-9381/29/11/115001
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib4941D7C96BFF7F4476A74658B50B8D99s1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bibD8657002E421AD9088B2D747BEC3DB9As1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bibD8657002E421AD9088B2D747BEC3DB9As1
https://doi.org/10.1088/0264-9381/32/24/245011
http://refhub.elsevier.com/S0010-4655(24)00358-8/bibD8657002E421AD9088B2D747BEC3DB9As1
http://www.black-holes.org/SpEC.html
http://refhub.elsevier.com/S0010-4655(24)00358-8/bibD95EC0698C91797E190B1508C2D91B24s1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib69609776D50FF1D52565DACE42F67EC2s1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib69609776D50FF1D52565DACE42F67EC2s1
https://doi.org/10.1137/18M1196972
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib69609776D50FF1D52565DACE42F67EC2s1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bibFEE75D732341AEE4E3FEDC5E42AD62FDs1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bibFEE75D732341AEE4E3FEDC5E42AD62FDs1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bibFEE75D732341AEE4E3FEDC5E42AD62FDs1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib670B1D945BDA470D00770E322D133D73s1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib670B1D945BDA470D00770E322D133D73s1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bibED500EC4E44A8C17F3F947E04BDD0CEBs1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bibED500EC4E44A8C17F3F947E04BDD0CEBs1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib343899F41BAADD6CE95D547C74315162s1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bibBAE5E4E17A25C2F8F613715828275150s1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bibBAE5E4E17A25C2F8F613715828275150s1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bibBAE5E4E17A25C2F8F613715828275150s1
https://doi.org/10.1016/j.cpc.2020.107251
http://refhub.elsevier.com/S0010-4655(24)00358-8/bibBAE5E4E17A25C2F8F613715828275150s1
https://doi.org/10.1016/j.cpc.2020.107251
http://refhub.elsevier.com/S0010-4655(24)00358-8/bibBAE5E4E17A25C2F8F613715828275150s1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib62EEC4A6FDD1B8DD6B6955037F16F04Ds1
https://doi.org/10.1145/3319797
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib62EEC4A6FDD1B8DD6B6955037F16F04Ds1
https://doi.org/10.1145/3319797
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib62EEC4A6FDD1B8DD6B6955037F16F04Ds1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib7A20D32415E152676E9B1AB95EC3BBE2s1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib7A20D32415E152676E9B1AB95EC3BBE2s1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib7A20D32415E152676E9B1AB95EC3BBE2s1
https://doi.org/10.1103/PhysRevD.97.084053
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib7A20D32415E152676E9B1AB95EC3BBE2s1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib21FAA696B1258C538A400884CF5AC161s1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib21FAA696B1258C538A400884CF5AC161s1
https://doi.org/10.1103/PhysRevD.85.064040
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib21FAA696B1258C538A400884CF5AC161s1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib75C864E0BF78E7FC562158AD20E27340s1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib75C864E0BF78E7FC562158AD20E27340s1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib75C864E0BF78E7FC562158AD20E27340s1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib75C864E0BF78E7FC562158AD20E27340s1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib07A64D85FED1874D299D1D2799AFF8F6s1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib07A64D85FED1874D299D1D2799AFF8F6s1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib07A64D85FED1874D299D1D2799AFF8F6s1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib39988FC578445F96753575854EB76648s1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib39988FC578445F96753575854EB76648s1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib39988FC578445F96753575854EB76648s1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib21349268D1B68A55E247DAE4536D73BCs1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib21349268D1B68A55E247DAE4536D73BCs1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib21349268D1B68A55E247DAE4536D73BCs1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib21349268D1B68A55E247DAE4536D73BCs1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bibC80DB934BB29C55E1244C364A567C657s1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bibC80DB934BB29C55E1244C364A567C657s1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bibC80DB934BB29C55E1244C364A567C657s1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bibC80DB934BB29C55E1244C364A567C657s1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bibC1DE06E8F6BED3B554902124EAD52DD9s1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bibC1DE06E8F6BED3B554902124EAD52DD9s1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bibC1DE06E8F6BED3B554902124EAD52DD9s1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bibC1DE06E8F6BED3B554902124EAD52DD9s1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib195ACC5EAF6890D8DF2F10F116DBF4C9s1
https://doi.org/10.1103/PhysRevD.67.104005
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib195ACC5EAF6890D8DF2F10F116DBF4C9s1
https://doi.org/10.1103/PhysRevD.67.104005
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib195ACC5EAF6890D8DF2F10F116DBF4C9s1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib5B85E77A70A0699462786DA1B3EFDDBAs1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib5B85E77A70A0699462786DA1B3EFDDBAs1
https://doi.org/10.1088/0264-9381/22/17/025
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib5B85E77A70A0699462786DA1B3EFDDBAs1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bibD96258AAEDEB5032279019CC8F80C86Fs1
https://doi.org/10.1007/s10714-008-0661-1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bibD96258AAEDEB5032279019CC8F80C86Fs1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bibD96258AAEDEB5032279019CC8F80C86Fs1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib2559332CA42551438530F8A517F5132Bs1
https://doi.org/10.1088/0264-9381/23/16/s09
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib2559332CA42551438530F8A517F5132Bs1
https://doi.org/10.1088/0264-9381/23/16/s09
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib2559332CA42551438530F8A517F5132Bs1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bibE3C73CD5351BF51E0CEC0ECAAFA95448s1
https://doi.org/10.1088/0264-9381/24/12/s18
http://refhub.elsevier.com/S0010-4655(24)00358-8/bibE3C73CD5351BF51E0CEC0ECAAFA95448s1
https://doi.org/10.1088/0264-9381/24/12/s18
http://refhub.elsevier.com/S0010-4655(24)00358-8/bibE3C73CD5351BF51E0CEC0ECAAFA95448s1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib57ADA2ED6D11A7E6AAF53BE86EF80E7Fs1
https://doi.org/10.1103/PhysRevD.59.024007
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib57ADA2ED6D11A7E6AAF53BE86EF80E7Fs1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib57ADA2ED6D11A7E6AAF53BE86EF80E7Fs1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib10A82C4DB9D5F7228BFAB9F8F2AA017Ds1
https://doi.org/10.1103/PhysRevD.52.5428
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib10A82C4DB9D5F7228BFAB9F8F2AA017Ds1
https://doi.org/10.1103/PhysRevD.52.5428
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib10A82C4DB9D5F7228BFAB9F8F2AA017Ds1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib9F1268F052598106E7C07F2187446D52s1
https://doi.org/10.1103/PhysRevD.69.064036
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib9F1268F052598106E7C07F2187446D52s1
https://doi.org/10.1103/PhysRevD.69.064036
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib9F1268F052598106E7C07F2187446D52s1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib416BBD0424E73D7AFD19069758A784F2s1
https://doi.org/10.1103/PhysRevD.88.084057
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib416BBD0424E73D7AFD19069758A784F2s1
https://doi.org/10.1103/PhysRevD.88.084057
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib416BBD0424E73D7AFD19069758A784F2s1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib8093F1574B56681E41471265B12E6026s1
https://doi.org/10.1103/PhysRevLett.75.600
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib8093F1574B56681E41471265B12E6026s1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib8093F1574B56681E41471265B12E6026s1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib88ACF13F177BFF49DD69BA1886286F73s1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib88ACF13F177BFF49DD69BA1886286F73s1
https://doi.org/10.1103/PhysRevD.67.084023
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib88ACF13F177BFF49DD69BA1886286F73s1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib88ACF13F177BFF49DD69BA1886286F73s1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib7CD3212B721E8BC95BF5E5E53E5C0480s1
https://doi.org/10.1103/PhysRevD.21.2047
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib7CD3212B721E8BC95BF5E5E53E5C0480s1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib7CD3212B721E8BC95BF5E5E53E5C0480s1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bibD0A5ECD7ED86FACA8362382F732FDD12s1
https://doi.org/10.1103/PhysRevD.77.024027
http://refhub.elsevier.com/S0010-4655(24)00358-8/bibD0A5ECD7ED86FACA8362382F732FDD12s1
https://doi.org/10.1103/PhysRevD.77.024027
http://refhub.elsevier.com/S0010-4655(24)00358-8/bibD0A5ECD7ED86FACA8362382F732FDD12s1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib35142D7E9256B9B5F8114FB102D9C851s1
https://doi.org/10.1103/PhysRevD.70.064011
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib35142D7E9256B9B5F8114FB102D9C851s1
https://doi.org/10.1103/PhysRevD.70.064011
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib35142D7E9256B9B5F8114FB102D9C851s1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bibAB194E022699B672956D4A4DE8311322s1
https://doi.org/10.1063/1.1724257
http://refhub.elsevier.com/S0010-4655(24)00358-8/bibAB194E022699B672956D4A4DE8311322s1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib9B501BA8F511EFD22069D1F781BDF8D3s1
https://doi.org/10.1016/j.jco.2015.02.003
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib9B501BA8F511EFD22069D1F781BDF8D3s1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bibF2579861ED1DEFFEDD98155F8F2DE6D2s1
http://web.maths.unsw.edu.au/~rsw/Sphere/EffSphDes/index.html
http://refhub.elsevier.com/S0010-4655(24)00358-8/bibF2579861ED1DEFFEDD98155F8F2DE6D2s1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib253E470376967355FF927161F573FD6Cs1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib253E470376967355FF927161F573FD6Cs1
https://doi.org/10.1137/100799071
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib253E470376967355FF927161F573FD6Cs1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bibC356F8E01BD0297F8F90290B48488B72s1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bibC356F8E01BD0297F8F90290B48488B72s1
https://doi.org/10.1093/mnras/stac1991
http://refhub.elsevier.com/S0010-4655(24)00358-8/bibC356F8E01BD0297F8F90290B48488B72s1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bibAB6F262C6A78DB6789E97EC43053F91Bs1
https://books.google.co.uk/books?id=wj9szwEACAAJ
http://refhub.elsevier.com/S0010-4655(24)00358-8/bibAB6F262C6A78DB6789E97EC43053F91Bs1
https://books.google.co.uk/books?id=wj9szwEACAAJ
http://refhub.elsevier.com/S0010-4655(24)00358-8/bibAB6F262C6A78DB6789E97EC43053F91Bs1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib077E91000069B95DE1D5E500505627C6s1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib077E91000069B95DE1D5E500505627C6s1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bibE0A115D0F8949017DD8449D5D5460CE5s1
https://doi.org/10.1016/0021-9991(89)90035-1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bibE0A115D0F8949017DD8449D5D5460CE5s1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib75C8C324634DEDEB5901A83C18B85C25s1
https://doi.org/10.1137/070681727
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib75C8C324634DEDEB5901A83C18B85C25s1
https://doi.org/10.1137/070681727
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib75C8C324634DEDEB5901A83C18B85C25s1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib814395B0D620554D5D9C5286C8B5D265s1
https://doi.org/10.1103/PhysRevD.72.104010
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib814395B0D620554D5D9C5286C8B5D265s1
https://doi.org/10.1103/PhysRevD.72.104010
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib814395B0D620554D5D9C5286C8B5D265s1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib0967FF620659A7F3C686A441B39E3768s1
https://doi.org/10.1016/j.parco.2015.12.007
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib0967FF620659A7F3C686A441B39E3768s1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib2B2D815C89559CF5EDD5C82E2EC45F0Ds1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib2B2D815C89559CF5EDD5C82E2EC45F0Ds1

Computer Physics Communications 307 (2025) 109435H. Zhang, B. Li, T. Weinzierl et al.

[49] A. Rashti, M. Bhattacharyya, D. Radice, B. Daszuta, W. Cook, S. Bernuzzi, Adaptive
mesh refinement in binary black holes simulations, 41 (9) (2024) 095001, https://
doi .org /10 .1088 /1361 -6382 /ad36a5, arXiv :2312 .05438 [gr -qc].

[50] M. Radia, U. Sperhake, A. Drew, K. Clough, P. Figueras, E.A. Lim, J.L. Ripley, J.C.
Aurrekoetxea, T. França, T. Helfer, Lessons for adaptive mesh refinement in numer-
ical relativity, 39 (13) (2022) 135006, https://doi .org /10 .1088 /1361 -6382 /ac6fa9,
publisher: IOP Publishing Ltd.

[51] M. Dumbser, F. Fambri, E. Gaburro, A. Reinarz, On glm curl cleaning for a first order
reduction of the ccz4 formulation of the Einstein field equations, J. Comput. Phys.
404 (2020) 109088, https://doi .org /10 .1016 /j .jcp .2019 .109088.

[52] M. Alcubierre, G. Allen, C. Bona, D. Fiske, T. Goodale, F.S. Guzmán, I. Hawke, S.H.
Hawley, S. Husa, M. Koppitz, C. Lechner, D. Pollney, D. Rideout, M. Salgado, E.
Schnetter, E. Seidel, H.-a. Shinkai, D. Shoemaker, B. Szilágyi, R. Takahashi, J. Wini-
cour, Towards standard testbeds for numerical relativity, 21 (2) (2003) 589, https://
doi .org /10 .1088 /0264 -9381 /21 /2 /019.

[53] M.C. Babiuc, S. Husa, D. Alic, I. Hinder, C. Lechner, E. Schnetter, B. Szilágyi, Y. Zlo-
chower, N. Dorband, D. Pollney, J. Winicour, Implementation of standard testbeds
for numerical relativity, 25 (12) (2008) 125012, https://doi .org /10 .1088 /0264 -
9381 /25 /12 /125012.

[54] M. Hannam, S. Husa, D. Pollney, B. Brügmann, N.A. Murchadha, Geometry and
regularity of moving punctures, 99 (24) (2007) 241102, https://doi .org /10 .1103 /
PhysRevLett .99 .241102, publisher: American Physical Society.

[55] W. Tichy, B. Brügmann, Quasiequilibrium binary black hole sequences for puncture
data derived from helical killing vector conditions, 69 (2) (2004) 024006, https://
doi .org /10 .1103 /PhysRevD .69 .024006, publisher: American Physical Society.

[56] P. McCorquodale, P. Colella, A high-order finite-volume method for conservation
laws on locally refined grids, 6 (1) (2011) 1–25, https://doi .org /10 .2140 /camcos .
2011 .6 .1, publisher: MSP.

[57] S. Rosswog, Relativistic smooth particle hydrodynamics on a given background
spacetime, Class. Quantum Gravity 27 (11) (2010) 114108, https://doi .org /10 .
1088 /0264 -9381 /27 /11 /114108.

[58] D. Liptai, D.J. Price, General relativistic smoothed particle hydrodynamics, arXiv :
1901 .08064, 1 2019, https://doi .org /10 .1093 /mnras /stz111.

[59] S.J. Magnall, D.J. Price, P.D. Lasky, H.J. Macpherson, Inhomogeneous cosmology
using general relativistic smoothed particle hydrodynamics coupled to numerical rel-
ativity, Phys. Rev. D 108 (10) (2023) 103534, https://doi .org /10 .1103 /PhysRevD .
108 .103534, arXiv :2307 .15194.

[60] hpcsoftware, Peano: A framework for high performance numerical solvers on adap-
tive Cartesian grids, https://gitlab .lrz .de /hpcsoftware /Peano, 2024.

[61] M. Galassi, J. Davies, J. Theiler, B. Gough, G. Jungman, P. Alken, M. Booth, F. Rossi,
D.R. Johnson, GNU Scientific Library Reference Manual, 3rd edition, Network The-
ory Ltd., Bristol, UK, 2009.

[62] A. Dedner, F. Kemm, D. Kröner, C.-D. Munz, T. Schnitzer, M. Wesenberg, Hyperbolic
divergence cleaning for the MHD equations, 175 (2) (2002) 645–673, https://doi .
org /10 .1006 /jcph .2001 .6961.

[63] S. Frittelli, Note on the propagation of the constraints in standard 3+1 general
relativity, 55 (10) (1997) 5992–5996, https://doi .org /10 .1103 /PhysRevD .55 .5992,
publisher: American Physical Society.

[64] M. Alcubierre, Introduction to 3+1 Numerical Relativity, Oxford University Press,
2008.

[65] Y. Zlochower, J.G. Baker, M. Campanelli, C.O. Lousto, Accurate black hole evolu-
tions by fourth-order numerical relativity, 72 (2) (2005) 024021, https://doi .org /
10 .1103 /PhysRevD .72 .024021, publisher: American Physical Society.
27

http://refhub.elsevier.com/S0010-4655(24)00358-8/bib372F0D09EAD6A1B6A3B93755225868F4s1
https://doi.org/10.1088/1361-6382/ad36a5
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib372F0D09EAD6A1B6A3B93755225868F4s1
https://doi.org/10.1088/1361-6382/ad36a5
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib372F0D09EAD6A1B6A3B93755225868F4s1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib8385FFA332C2600A86B09C0D16BA616Es1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib8385FFA332C2600A86B09C0D16BA616Es1
https://doi.org/10.1088/1361-6382/ac6fa9
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib8385FFA332C2600A86B09C0D16BA616Es1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib8385FFA332C2600A86B09C0D16BA616Es1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bibB257400D0F82ACFA35ACA2039318814Cs1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bibB257400D0F82ACFA35ACA2039318814Cs1
https://doi.org/10.1016/j.jcp.2019.109088
http://refhub.elsevier.com/S0010-4655(24)00358-8/bibB257400D0F82ACFA35ACA2039318814Cs1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bibB79398D02B9507418AC7334C50BD481Es1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bibB79398D02B9507418AC7334C50BD481Es1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bibB79398D02B9507418AC7334C50BD481Es1
https://doi.org/10.1088/0264-9381/21/2/019
http://refhub.elsevier.com/S0010-4655(24)00358-8/bibB79398D02B9507418AC7334C50BD481Es1
https://doi.org/10.1088/0264-9381/21/2/019
http://refhub.elsevier.com/S0010-4655(24)00358-8/bibB79398D02B9507418AC7334C50BD481Es1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib1CA00B76AD5F69462D653DF25015EC31s1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib1CA00B76AD5F69462D653DF25015EC31s1
https://doi.org/10.1088/0264-9381/25/12/125012
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib1CA00B76AD5F69462D653DF25015EC31s1
https://doi.org/10.1088/0264-9381/25/12/125012
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib1CA00B76AD5F69462D653DF25015EC31s1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bibE1472B6094DF00BD1B4B9DADE3A297EDs1
https://doi.org/10.1103/PhysRevLett.99.241102
http://refhub.elsevier.com/S0010-4655(24)00358-8/bibE1472B6094DF00BD1B4B9DADE3A297EDs1
https://doi.org/10.1103/PhysRevLett.99.241102
http://refhub.elsevier.com/S0010-4655(24)00358-8/bibE1472B6094DF00BD1B4B9DADE3A297EDs1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bibD6F2601107DF80D36A1518320D446E71s1
https://doi.org/10.1103/PhysRevD.69.024006
http://refhub.elsevier.com/S0010-4655(24)00358-8/bibD6F2601107DF80D36A1518320D446E71s1
https://doi.org/10.1103/PhysRevD.69.024006
http://refhub.elsevier.com/S0010-4655(24)00358-8/bibD6F2601107DF80D36A1518320D446E71s1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bibE79BD81C4C6A6B43643A5952CDDE492Bs1
https://doi.org/10.2140/camcos.2011.6.1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bibE79BD81C4C6A6B43643A5952CDDE492Bs1
https://doi.org/10.2140/camcos.2011.6.1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bibE79BD81C4C6A6B43643A5952CDDE492Bs1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib518A51D5F266E8C289F07507698B8360s1
https://doi.org/10.1088/0264-9381/27/11/114108
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib518A51D5F266E8C289F07507698B8360s1
https://doi.org/10.1088/0264-9381/27/11/114108
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib518A51D5F266E8C289F07507698B8360s1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib241662EC0E64682D6810E1F2EEDE3ABAs1
https://doi.org/10.1093/mnras/stz111
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib241662EC0E64682D6810E1F2EEDE3ABAs1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib171A0936DB0DF75C3D0C475CD63D5BB2s1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib171A0936DB0DF75C3D0C475CD63D5BB2s1
https://doi.org/10.1103/PhysRevD.108.103534
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib171A0936DB0DF75C3D0C475CD63D5BB2s1
https://doi.org/10.1103/PhysRevD.108.103534
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib171A0936DB0DF75C3D0C475CD63D5BB2s1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bibB9279BC73178456B9EE3B9BD0A125B42s1
https://gitlab.lrz.de/hpcsoftware/Peano
http://refhub.elsevier.com/S0010-4655(24)00358-8/bibB9279BC73178456B9EE3B9BD0A125B42s1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib49B784B2D6B911FF90FADE8C013BE43Cs1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib49B784B2D6B911FF90FADE8C013BE43Cs1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib49B784B2D6B911FF90FADE8C013BE43Cs1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib9CDCFA2FC4E88B4764363876F4F36B82s1
https://doi.org/10.1006/jcph.2001.6961
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib9CDCFA2FC4E88B4764363876F4F36B82s1
https://doi.org/10.1006/jcph.2001.6961
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib9CDCFA2FC4E88B4764363876F4F36B82s1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib5553C3541C853AD7B72FDFE89191A49Fs1
https://doi.org/10.1103/PhysRevD.55.5992
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib5553C3541C853AD7B72FDFE89191A49Fs1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib5553C3541C853AD7B72FDFE89191A49Fs1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bibC24CC9B0D3077710DBDD2C004E7D07F4s1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bibC24CC9B0D3077710DBDD2C004E7D07F4s1
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib51A2C5CC2D14CDC10E216B8BD62474A1s1
https://doi.org/10.1103/PhysRevD.72.024021
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib51A2C5CC2D14CDC10E216B8BD62474A1s1
https://doi.org/10.1103/PhysRevD.72.024021
http://refhub.elsevier.com/S0010-4655(24)00358-8/bib51A2C5CC2D14CDC10E216B8BD62474A1s1

	ExaGRyPE: Numerical general relativity solvers based upon the hyperbolic PDEs solver engine ExaHyPE
	1 Introduction
	2 Problem statement
	2.1 Gauge conditions
	2.2 First- and second-order formulations
	2.3 Initial conditions
	2.4 Gravitational wave extraction

	3 Simulation building blocks
	3.1 Spatial discretization
	3.2 Numerical solvers
	3.3 Domain decomposition
	3.4 Task parallelism and GPU offloading
	3.5 Boundary treatment
	3.6 Adaptive mesh refinement
	3.7 Volumetric coupling of multiple solvers
	3.8 Particle tracers as data probes

	4 Functional decomposition and software architecture
	4.1 Static software architecture
	4.2 Programming workflow
	4.2.1 Solver configuration
	Grid construction
	Grid initialization
	Evolution equations (timestepping)
	Further features

	4.2.2 I/O and post-processing
	4.2.3 Tracers
	4.2.4 Coupling

	5 Numerical results
	5.1 Gauge wave
	5.2 Single Schwarzschild black hole
	5.3 Rotating binary black hole merger
	5.4 Context of experimental studies

	6 Discussion and conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Appendix A Experiments
	A.1 Gauge wave
	A.2 Single black hole
	A.3 Binary black hole

	Appendix B Spacetime foliation and evolution equations
	Appendix C ψ4 in ExaGRyPE
	Appendix D Formulation for the kernel FD4 solver
	Appendix E Matrices for tensor product interpolation & restriction
	Data availability
	References

