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ABSTRACT
A central aim of multiscale modeling is to use results from the Schrödinger equation to predict phenomenology on length scales that far
exceed those of typical molecular correlations. In this work, we present a new approach rooted in classical density functional theory (cDFT)
that allows us to accurately describe the solvation of apolar solutes across length scales. Our approach builds on the Lum–Chandler–Weeks
(LCW) theory of hydrophobicity [K. Lum et al., J. Phys. Chem. B 103, 4570 (1999)] by constructing a free energy functional that uses a
slowly varying component of the density field as a reference. From a practical viewpoint, the theory we present is numerically simpler and
generalizes to solutes with soft-core repulsion more easily than LCW theory. Furthermore, by assessing the local compressibility and its critical
scaling behavior, we demonstrate that our LCW-style cDFT approach contains the physics of critical drying, which has been emphasized as
an essential aspect of hydrophobicity by recent theories. As our approach is parameterized on the two-body direct correlation function of the
uniform fluid and the liquid–vapor surface tension, it straightforwardly captures the temperature dependence of solvation. Moreover, we use
our theory to describe solvation at a first-principles level on length scales that vastly exceed what is accessible to molecular simulations.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0223750

I. INTRODUCTION

Many of the most fundamental processes in nature, including
protein folding, crystallization, and self-assembly, occur in solu-
tion. Far from being an innocent bystander, the solvent often
plays a vital role in determining the static and dynamic behav-
iors of these complex processes,1–4 owing to the delicate balance
of solute–solute, solute–solvent, and solvent–solvent interactions.
This provides a strong motivation to faithfully describe solvation
behavior across a broad range of fields, from biological and chemi-
cal to physical and materials sciences. Solutes of interest can range
in length scale from microscopic species5 and nano-particles6 to
macromolecules7 and extended surfaces.8 Solvation is a multiscale
problem.

The solvent, of course, comprises individual molecules. Molec-
ular simulations, therefore, provide a natural approach to describe
solvation and bestow fine details at time and length scales that
can be challenging to access with experimental approaches alone.
Depending upon the approximations made in describing the inter-
molecular interactions, molecular simulations provide one of the

most accurate means to estimate solvation free energies. Yet the
relatively high computational cost associated with molecular sim-
ulations makes their routine use for solutes much larger than small
organic compounds cumbersome and inefficient.9

Implicit solvation models alleviate the computational burden
by describing the solvent degrees of freedom as a structureless
continuum.10–13 Such approaches are numerically efficient, making
it possible to routinely handle large macromolecules in solution. The
major drawback of implicit solvation models, however, is their fail-
ure to account for essential solvent correlations that may hold a
prominent role in the process under investigation (see, e.g., Ref. 2).
They also often make assumptions concerning the validity of macro-
scopic laws applied to the microscopic domain, which can lead to
inconsistent results.14 For these reasons, approaches that provide
a coarse-grained description of solvation while retaining informa-
tion about essential molecular correlations become very appealing.
Such approaches should, for example, capture changes in the average
equilibrium density field upon changing the solute–solvent interac-
tion, as depicted in Fig. 1, without resorting to explicitly averaging
microscopic degrees of freedom.
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FIG. 1. “Semi-implicit” solvation with cDFT. Our aim is to accurately describe aque-
ous solvation without explicitly sampling microscopic degrees of freedom, yet still
retain information on essential correlations. This is shown schematically in (a).
Such an approach should be able to predict, e.g., the average solvent density ρ(r)
around a solute, as depicted in (b). The solid blue lines represent ρ(r + R)/ρu for
hard-sphere solutes of radius R = 0.3 nm (left) and R = 3 nm (right), where ρu is
the uniform density of the bulk fluid. The cDFT that we derive relies upon finding an
appropriate slowly varying density ρs (dashed blue line) that can act as a suitable
reference system.

Motivated by both the seminal Lum–Chandler–Weeks (LCW)
theory15 and more recent developments in molecular density func-
tional theory (mDFT),16–21 in this article we present a classical
density functional theory (cDFT)22–24 for the solvation of apolar
solutes. Although our approach differs from the original LCW
theory, it retains the essential feature of appropriately accounting
for both slowly and rapidly varying components of the density field,
as shown in Fig. 1(b). From a practical viewpoint, the theory we
present lends itself more readily to numerical evaluation than LCW
theory, including application to solutes with soft repulsive cores and
attractive tails. Moreover, as we will discuss, our approach also offers
conceptual advantages.

II. RELEVANT BACKGROUND THEORY: cDFT
FOR SOLVATION

The central quantity in any cDFT approach is the grand
potential functional,

Ωϕi[ρ] = F intr[ρ] − μ∫ dr ρ(r) + ∫ dr ρ(r)ϕi(r), (1)

where ρ(r) is the average of a microscopic density field of the fluid,
whose chemical potential is μ and F intr is the intrinsic Helmholtz
free energy functional independent of the external potential ϕi. The
grand potential functional Ωϕi is minimized by the corresponding
equilibrium density ρi, which satisfies

c(1)i (r) = ln [Λ3ρi(r)] + βϕi(r) − βμ, (2)

where Λ is the thermal wavelength, β = 1/(kBT), kB is the Boltz-
mann constant, T is the temperature, and c(1)i is the one-body direct
correlation function,

c(1)i (r) = −β
δF (ex)

intr
δρ(r)

RRRRRRRRRRRρi

, (3)

with F (ex)
intr as the excess contribution to F intr. Equations (1)–(3) are

written for any general scalar external potential; in the context of
solvation, the external potential describes the solute–solvent inter-
actions. In such cases, we will drop the subscript i for the quantities
in Eq. (2).

While cDFT is in principle an exact theory, in general, approxi-
mations for F (ex)

intr are required. For hard sphere systems, functionals
based on Rosenfeld’s fundamental measure theory have proven
highly successful.25–27 Moreover, in cases where hard spheres act
as a suitable reference fluid, attractive interactions can be reason-
ably treated in a mean-field fashion.23 While approaches based on
fundamental measure theory may capture some of the essential
physics of more complex liquids such as water, it is unreasonable
to expect quantitative agreement. Instead, in such cases, the mDFT
approach16–21 has shown great promise. The essential idea behind
mDFT is that one can use the two-body direct correlation function,

c(2)u (∣r − r′∣) =
δc(1)(r)
δρ(r′)

∣

ρu

= − β
δ2 F (ex)

intr
δρ(r)δρ(r′)

RRRRRRRRRRRρu

, (4)

obtained from simulations of the bulk fluid of uniform density ρu to
parameterize the grand potential functional

Ωϕ[ρ] = Ω0[ρu] + ∫ dr ρ(r)ϕ(r) + Δu F (id)intr [ρ]

−
kBT

2 ∫ dr∫ dr′ δuρ(r) c(2)u (∣r − r′∣) δuρ(r′)

+ Fbridge[ρ(r)]. (5)

In Eq. (5), Δu F (id)intr is the change in the ideal contribution to F intr
between systems with uniform and non-uniform density fields,

Δu F (id)intr [ρ] = kBT ∫ dr [ρ(r) ln(
ρ(r)
ρu
) − δuρ(r)], (6)

where δuρ(r) = ρ(r) − ρu. The “bridge” functional, Fbridge, accounts
for contributions to the excess part of F intr beyond quadratic order
in δuρ(r). The solvation free energy is simply

Ωsolv[ρ(r)] = Ωϕ[ρ(r)] −Ω0[ρu]. (7)

Neglecting Fbridge amounts to the hypernetted-chain approxi-
mation (HNCA) of integral equation theories.28 Furthermore, upon
linearizing Δu F (id)intr , mDFT within the HNCA is equivalent, up to
a small correction factor, to Chandler’s Gaussian field theory for
solvation.29,30 Aside from being numerically tractable, the HNCA
provides reasonable accuracy for small solutes. However, as we have
emphasized, solvation is a multiscale problem. To see this, consider
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that the solute simply excludes solvent density within a radius R of its
center. Whereas within the HNCA, Ωsolv scales indefinitely with the
solute’s volume,29–32 for large enough solutes we know from macro-
scopic theory that it scales with the solute’s surface area, i.e., Ωsolv
∼ 4πγR2, where γ is the liquid–vapor surface tension. Many previous
studies have shown that for water under ambient conditions, this
“hydrophobic crossover” occurs at R ≈ 1 nm.15,33–36

The failure of the HNCA for large solutes arises because it can-
not describe water’s proximity to its liquid–vapor coexistence at
ambient conditions.23,37 A natural progression, then, is to attempt
to encode the physics of coexistence through Fbridge, while main-
taining reference to the homogeneous fluid with density ρu. Such
an approach has been used with some success within the mDFT
framework for simple point charge water models.20,21 However, as
we show in the supplementary material, existing bridge functionals
of this kind are generally not robust to the choice of water model. We
also note that attempts to use the “hard-sphere bridge functional”
for water18,38,39 have proved problematic, failing to describe simul-
taneously the pressure and surface tension.20 In this article, we will
instead follow more closely the key idea underlying LCW theory: the
fluid’s density can be separated into a slowly varying component that
can sustain interfaces and liquid–vapor coexistence and a rapidly
varying component that describes the local structure on microscopic
length scales.15,40

In the following, we will outline how these ideas from LCW
theory can be used to develop a cDFT approach to describe the sol-
vation of apolar solutes across both small and large length scales.
We will validate our theory against available simulation data for the
solvation of both hard- and soft-core solutes. We will show that the
physics of critical drying, which is essential for a faithful description
of solvophobicity on large length scales, is well-described. We will
also demonstrate that our approach captures a distinguishing feature
of solvophobicity in complex liquids such as water—the “entropic
crossover”—that is absent in simple liquids. We will use our the-
ory to describe the hydrophobic effect at an ab initio level on length
scales inaccessible to molecular simulations.

III. A cDFT BUILT ON SEPARATION OF LENGTH
SCALES
A. Expansion about an inhomogenous density

In the HNCA, the uniform fluid is assumed to act as a suitable
reference density. In principle, we can perform a similar procedure
where, instead of choosing a fluid of uniform density, we suppose
that there exists some inhomogeneous, but slowly varying, density
field ρs(r) that acts as a suitable reference. In line with Eq. (1),
ρs minimizes the grand potential functional Ωϕs prescribed by a
slowly varying external potential ϕs(r). Performing the expansion
around ρs gives

F (ex)
intr [ρ] =F

(ex)
intr [ρs] − kBT ∫ dr c(1)s (r)δsρ(r)

−
kBT

2 ∫ dr∫ dr′ δsρ(r)c(2)s (r, r′)δsρ(r′) + ⋅ ⋅ ⋅ ,

(8)

where δsρ(r) = ρ(r) − ρs(r), and the one- and two-body direct cor-
relation functions are defined in an analogous manner to Eqs. (2)

and (4). Upon addition of F (id)intr to Eq. (8) and substitution of
c(1)s according to its definition [Eq. (2)], we arrive at a slightly
modified version of Eq. (5),

Ωϕ[ρ] = Ωϕs[ρs] + ∫ dr [ϕ(r) − ϕs(r)]ρ(r) + Δs F (id)intr [ρ]

−
kBT

2 ∫ dr∫ dr′ δsρ(r) c(2)s (r, r′) δsρ(r′) + ⋅ ⋅ ⋅ , (9)

where the change in the ideal contribution Δs F (id)intr [ρ] is given anal-
ogously to Eq. (6). If ϕs were known [and assuming that c(2)s can
be reasonably approximated], the reference density ρs would result
from minimization of Ωϕs and, in turn, ρ from minimization of
Eq. (9). For example, with ϕs(r) = 0, the HNCA is recovered. In
the general context of solvation, however, the appropriate choice for
ϕs is unknown.

B. Specifying an appropriate inhomogeneous
reference using coexistence solutions

Prescribing a general form for ϕs is challenging. As we are
interested in liquid water at thermodynamic states close to coexis-
tence, we adopt a strategy that exploits the fact that, at coexistence,
inhomogeneous density fields minimize the grand potential when
subject to appropriate boundary conditions. For example, in a planar
geometry, solutions corresponding to the free liquid-vapor inter-
face are obtained by minimizing the grand potential at coexistence,
subject to the conditions

ρ(z → −∞) = ρv and ρ(z →∞) = ρl,

where ρv and ρl are the vapor and liquid densities, respectively, at
coexistence.

It is tempting to try and use such coexistence solutions directly
as the reference density ρs. However, the above-mentioned example
demonstrates the associated challenges. Imagine a liquid in contact
with a planar hard wall. Close to coexistence, the average solvent
density profile will resemble that of a free liquid–vapor interface
with a well-defined separation from the wall. In contrast, in the
above-mentioned example, any density profile corresponding to free
translation of the interface is equally plausible. We therefore seek
a procedure that allows us to “pick” the appropriate coexistence
solution. In fact, with the approximations that we will make, the
coexistence solutions will ultimately only enter implicitly in our
approach. To this end, we introduce a second expansion around
an “auxiliary” reference density, ρr, which is an equilibrium solu-
tion at coexistence. Expanding the slowly varying reference density
ρs around ρr, we write

c(1)s (r) = c(1)r (r) + ∫ dr′ c(2)r (r, r′)δrρs(r′) + ⋅ ⋅ ⋅ , (10)

where δrρs(r) = ρs(r) − ρr(r) and again, the one- and two-body
direct correlation functions are defined in an analogous manner to
Eqs. (2) and (4). Substituting Eq. (10) into Eq. (8) and keeping both
expansions to second order, we obtain
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F (ex)
intr [ρ] = F (ex)

intr [ρs] − kBT ∫ dr c(1)r (r)δsρ(r)

−
kBT

2 ∫ dr∫ dr′ δsρ(r)c(2)s (r, r′)δsρ(r′)

− kBT ∫ dr∫ dr′ δsρ(r)c(2)r (r, r′)δrρs(r′). (11)

The final term acts to couple differences between ρ(r) and ρs(r)with
differences between ρs(r) and ρr(r). As before, we will add F (id)intr

to Eq. (11). We will also substitute c(1)r according to Eq. (2), with
ϕr = δμ = μ − μcoex, where μcoex is the chemical potential at coexis-
tence. The grand potential then reads

Ωϕ[ρ] = F intr[ρs] − μ∫ drρs(r) − δμ∫ dr δsρ(r)

+ ∫ dr ϕ(r)ρ(r) + Δr F (id)intr [ρ] − Δr F (id)intr [ρs]

−
kBT

2 ∫ dr∫ dr′ δsρ(r) c(2)s (r, r′) δsρ(r′)

− kBT ∫ dr∫ dr′ δsρ(r) c(2)r (r, r′) δrρs(r′), (12)

where the changes in the ideal contribution are now relative to the
auxiliary reference. The resulting equilibrium solvent density is

ρ(r) = ρr(r) exp [βδμ + ∫ dr′ c(2)r (r, r′) δrρs(r′)]

× exp [−βϕ(r) + ∫ dr′ c(2)s (r, r′) δsρ(r′)]. (13)

At this point, we stress the conceptual difference compared to sim-
ply expanding around ρs; provided that we have some procedure for
specifying ρs to suit our needs, we do not need to know ϕs. Instead,
we have transferred the problem to specifying the appropriate
boundary conditions for ρr.

In the context of solvation, how to choose boundary condi-
tions on ρr is not immediately obvious. Moreover, we appear to
have complicated matters, as we now need to deal with three density
fields (ρ, ρs, and ρr). We will now outline a series of approximations
that enable us to consider a theory expressed explicitly in terms of
ρ and ρs only, as well as a procedure to “pick” an appropriate slowly
varying reference density.

The first simplifying approximation that we make, which is
reasonable near coexistence, is

ρs(r) ≈ ρr(r) exp [βδμ + ∫ dr′ c(2)r (r, r′) δrρs(r′)], (14)

such that Eq. (13) can be written approximately as

ρ(r) ≈ ρs(r) exp [−βϕ(r) + ∫ dr′ c(2)s (r, r′) δsρ(r′)]. (15)

To construct a procedure for specifying ρs that keeps it sufficiently
close to ρ while maintaining a slowly varying nature, we introduce
the following “pseudofunctional,”

Ω̃ψ[ρs] = F intr[ρs] − μ∫ drρs(r) + ∫ dr ψ(r; [ρ, ρs]) ρs(r). (16)

We use the term “pseudofunctional” because ψ is not an exter-
nal potential; it depends parametrically on both ρ(r) and ρs(r),

and penalizes differences between ρ and ρs, while ensuring that
ρs remains slowly varying. (We will specify a form for ψ below.)
In this sense, it is not a functional in the usual cDFT sense, and
we have introduced it simply as a computational tool to obtain an
appropriate slowly varying reference.

As ρs is slowly varying, F intr[ρs] can be reasonably approxi-
mated by the square gradient form

F intr[ρs] − μ∫ drρs(r) ≈ ∫ dr [ω(ρs) +
m
2
∣∇ρs(r)∣2], (17)

where ω(ρs) is the local grand potential density. Assuming that m is
independent of ρs, minimizing Ω̃ψ with respect to ρs gives

ω′(ρs) −m∇2ρs(r) + ψ(r) = 0, (18)

where ω′ indicates partial differentiation with respect to ρs.
Equations (15) and (18) provide a self-consistent set of equa-

tions for ρ and ρs that do not feature ρr explicitly. To calculate the
grand potential given by Eq. (12), however, still requires ρr, owing
to the ideal terms and the final double integral. Considering the
latter, as ρ = ρs far from the solute, nonzero contributions to the
integral are localized to regions close to the solute. Moreover, close
to coexistence, we anticipate that δrρs is small. In practice, then,
we simply ignore the final term in Eq. (12) when computing the
free energy. By similar reasoning, we also approximate Δr F (id)intr [ρ]
− Δr F (id)intr [ρs] ≈ Δs F (id)intr [ρ]. When calculating the grand potential,
we, therefore, adopt the simpler approximate form

Ωϕ[ρ] ≈ ∫ dr [ω(ρs) +
m
2
∣∇ρs(r)∣2] − δμ∫ dr δsρ(r)

+ ∫ dr ϕ(r)ρ(r) + Δs F (id)intr [ρ]

−
kBT

2 ∫ dr∫ dr′ δsρ(r) c(2)s (r, r′) δsρ(r′). (19)

Equations (15), (18), and (19) provide the formal equations of
our approach for the equilibrium density and grand potential. How-
ever, for practical calculations, a form for the potential ψ(r; [ρ, ρs])

needs to be specified. In this work, we will not explore ways to sys-
tematically optimize ψ. While, in principle, the fact that ψ does not
enter the grand potential explicitly offers some flexibility in specify-
ing its form, it is not completely arbitrary; as mentioned previously,
it ought to penalize differences between ρ(r) and ρs(r) while ensur-
ing that ρs(r) remains slowly varying. (In addition, see below where
we discuss our approach in the context of LCW theory.) With these
considerations in mind, our choice for ψ is guided by the final term
in Eq. (12). Specifically, we assume that c(2)r can be separated as

c(2)r (r, r′) = c(2)r,0 (r, r′) + c(2)r,1 (r, r′), (20)

with c(2)r,0 (r, r′) ≃ 0 for ∣r − r′∣ > ℓ, where ℓ is a molecular length scale,
accounting for rapid variations. Conversely, c(1)r,1 is slowly varying
over length scales comparable to ℓ. In keeping with the requirements
for ψ, we, therefore, prescribe

ψ(r) = −kBT ∫ dr′ c(2)r,1 (r, r′)[ρ(r′) − ρs(r′)]. (21)
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C. Connecting to LCW theory for a practical cDFT
scheme

With the form for ψ given by Eq. (21), together with Eqs. (15)
and (18), the approximate cDFT that we have derived bears a strik-
ing resemblance to LCW theory. Indeed, ψ plays the role of the
“unbalancing potential” in Ref. 15. The formal similarity can be
made more apparent if we introduce the coarse-graining procedure,

ρ(r) = ∫
dr′ c(2)r,1 (r, r′)ρ(r′)

∫dr′ c(2)r,1 (r, r′)
. (22)

Equation (18) then reads

ω′(ρs) = m∇2ρs(r) + 2a(r)[ρ(r) − ρs(r)], (23)

with

2a(r) = kBT ∫ dr′ c(2)r,1 (r, r′). (24)

Note that, if we were interested in a Lennard-Jones fluid, this rela-
tionship between the coarse-grained density and the correlation
function is identical to that specified by Weeks in the context of local
molecular field theory,40 in which c(2)r,1 is treated in a random phase
approximation. [Although also note that Eqs. (15), (18), and (19) do
not constitute a random phase approximation.] In this case, there is
a notion of “unbalanced attractive interactions,” and in the original
LCW theory,15 it was argued that such unbalanced forces in water
could be described by a similar coarse graining over an appropriate
length scale that describes the range of attractive interactions.

Our cDFT-based approach does not emphasize the role of
unbalanced attractive forces. In Eq. (22), we see that the slowly
varying component of the two-body direct correlation function
provides a natural means to coarse-grain the density fields. How-
ever, it is cumbersome to evaluate. Expressing ψ in terms of the
coarse-grained density fields as in Eq. (23), therefore, also serves a
practical purpose, as we can estimate its value with an approximate
coarse-graining, e.g.,

ρ(r) ≈
1

(2πλ2
)

3/2 ∫ dr′ exp(−
∣r − r′∣2

2λ2 )ρ(r′). (25)

Along with the coarse-graining length λ, we now treat a as a para-
meter that needs to be determined. As detailed in the supplementary
material, we estimate their values by using a hard sphere refer-
ence fluid for which c(2)r,0 is known. For liquid water at 300 K and
βδμ ≈ 10−3 (corresponding to ρu ≈ 33.234 nm−3 for SPC/E water),
we obtain an acceptable range of the coarse-graining parameters
a ≈ 200–300 kJ cm3 mol−2 and λ ≈ 0.08–0.11 nm. Values in this
range for λ are much smaller than that used in the original LCW
theory (λ ≈ 0.38 nm), although they are comparable to the coarse-
graining length derived in Ref. 36 for a lattice-based version of
LCW theory that emphasizes the importance of capillary wave
fluctuations.

To complete our theory for practical purposes, we adopt

ω(ρs) = ωcoex(ρs) − ρsδμ, (26)

where ωcoex takes a quartic form

ωcoex(ρs) =
C
2
(ρs − ρl)

2
(ρs − ρv)

2

+
D
4
(ρs − ρl)

4
(ρs − ρv)

4h(ρs − ρv)h(ρl − ρs), (27)

where h(ρs) is the Heaviside step function. The curvature at the min-
ima is determined by C, whose value we set to be consistent with
the compressibility of the bulk fluid χu. Together, D and m deter-
mine γ and the shape of the free liquid–vapor interface. Details of
our parameterization procedure are provided in the supplementary
material. In most of what follows, we will treat m as a constant
independent of density; for spherical solutes, this yields the correct
limiting behavior for both R→ 0 and R→∞. For R in the crossover
regime, we will show that the extra flexibility afforded by allowing
m to vary in a systematic, yet practical, way with ρs yields
quantitative agreement for intermediate solute sizes.

All that is left to establish is the two-body correlation function
c(2)s (r, r′). We adopt the following simple form:

c(2)s (r, r′) ≈ c(2)u (∣r − r′∣)ρs(r)ρs(r′)ρ−2
u , (28)

which is exact in the limits of homogeneity and low density and
interpolates smoothly between these two regimes. While other rea-
sonable approximations could be made for c(2)s (r, r′), ours is in the
same spirit as the one adopted by LCW theory for the susceptibility.
This highlights one of the key differences with Ref. 18, which also
attempted to recast ideas from LCW theory in a cDFT framework
but with correlations of a uniform fluid. In addition, this previous
work also used the coarse-grained density ρ̄ directly in a square gra-
dient functional rather than isolating the slowly varying component
ρs as we have here.

In this section, we have derived a cDFT for solvation that
aims to describe both the short-wavelength perturbations induced
by effects of excluded volume and the physics of liquid–vapor
coexistence relevant for larger solutes. We have also described
approximations for the coarse-grained density and inhomogeneous
two-body direct correlation function that facilitate numerical evalu-
ation. While our theory is appropriate for arbitrarily complex forms
of apolar solute–solvent interaction, for demonstrative purposes,
we will focus on spherical solutes and planar walls. These sim-
ple geometries, however, are sufficient to make connections with
existing theories and highlight the advantages of our approach.

IV. SOLVATION OF SPHERICAL SOLUTES, BOTH HARD
AND SOFT

We first consider the paradigmatic test case for any theory
of hydrophobicity: the solvation of a hard-sphere solute in water
under ambient conditions (T = 300 K, βδμ ≈ 10−3). To this end,
in Figs. 2(a) and 2(b), we present ρ(r) and Ωsolv obtained from
self-consistent solutions of Eqs. (15) and (23), parameterized for
a simple point charge model of water (SPC/E43), as we increase
the solute radius R. First treating m as a constant (dotted line in
Fig. 2), we see that our cDFT approach broadly captures the behav-
ior observed in molecular simulations,33 with Ωsolv increasing with
volume for small solutes before crossing over to Ωsolv/4πR2

∼ γ for
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FIG. 2. Solvation of spherical apolar solutes with cDFT. By solving Eqs. (15) and
(23) self-consistently, we have obtained ρ(r) and Ωsolv, shown in (a) and (b),
respectively, for hard-sphere solutes of different R centered at the origin. When
using m(ρ∗

s ) [(b), solid line], our theory is in quantitative agreement with results
from molecular simulations.33 If we take m to be independent of density [(b), dotted
line], we find qualitative agreement, but Ωsolv is overestimated for R ≳ 0.5 nm. In
both cases, Ωsolv/4πR2 ∼ γ = 63.6 mJ m−2 (indicated by the blue arrow41), as
R →∞. In (c) and (d), we show corresponding results for a LJ solute, and again,
we observe good agreement with molecular simulations.42 Note that we have used
the same parameterization as (a) and (b). All results from our theory have been
obtained for SPC/E water (T = 300 K, βδμ ≈ 10−3, a = 200 kJ cm3 mol−2 and
λ = 0.08 nm).

R ≳ 1 nm. Like previous treatments rooted in LCW theory, how-
ever, we also see that these results overestimateΩsolv in the crossover
regime.

Empirically, agreement with simulation results in the crossover
regime could be attained by reducing the value of m. In the con-
text of our theory, this implies that the optimal reference density
for finite R has a sharper interface than the free liquid-vapor inter-
face. Simply reducing m in such a manner, however, would result in
an incorrect limiting behavior as R→∞. However, this observation
motivates us to vary m in a linear fashion with a characteristic feature
of the slowly varying density ρ∗s . Specifically, ρ∗s is the value where
ρs = ρ for the first time as r increases. Further details are provided in
the supplementary material. As we see in Fig. 2(b) (solid line), with
m(ρ∗s ), our cDFT describes the simulation data quantitatively.

For hard spheres in water, the main advantage of our approach
compared to LCW theory is primarily conceptual: Ωsolv follows
directly from the minimization of Ωϕ, as opposed to relying on, e.g.,
thermodynamic integration.34,44,45 From a practical viewpoint, the
cDFT approach is also numerically simpler to implement, as dis-
cussed in detail in Ref. 29. However, its main advantages compared
to LCW theory become apparent once we depart from the solva-
tion of ideal hydrophobes. In LCW theory, it is assumed that the
solute–solvent interaction can be separated into repulsive and attrac-
tive contributions, ϕ = ϕrep + ϕatt. While ϕatt can be accounted for

straightforwardly in the slowly varying part, ϕrep must be approx-
imated by a hard-core potential, and the solvent density is solved
subject to the constraint ρ(r) = 0 inside the solute.30 For cDFT
approaches such as ours, such an approximation is not needed.
Instead, we simply minimizeΩϕ with the appropriate solute–solvent
interaction ϕ. To illustrate this, in Figs. 2(c) and 2(d), we show
results from our theory for the solvation of Lennard-Jones solutes
of effective radius R (see supplementary material) with a constant
well-depth of ϵ = 0.5 kJ mol−1. Using the same parameterization
for m(ρ∗

s ) as for hard spheres, our results for Ωsolv are in good
agreement with available simulation data.42

V. THE PHYSICS OF CRITICAL DRYING
IN AN LCW-STYLE THEORY

The motivations for our work primarily stem from the desire to
develop “semi-implicit” solvation models that retain information on
essential solvent correlations. To that end, the results we have pre-
sented so far are promising. However, the physics of hydrophobicity
is important in its own right. While LCW theory should be con-
sidered a seminal contribution in this area, subsequent work from
Evans, Wilding, and co-workers46–51 emphasizes the central role of
the critical drying transition that occurs in the limit of a planar sub-
strate with vanishing, or very weak, attractive interactions with the
solvent. The extent to which critical drying is captured by LCW
theory (or its subsequent lattice-based derivatives2,36,52) is, however,
unclear. Although not equivalent to LCW theory, we can use our
cDFT approach to shed light on the extent to which it contains the
physics of critical drying.

A key quantity in critical drying phenomena is the local
compressibility,

χ(r) = (
∂ρ(r)
∂μ
)

T
, (29)

which in practice is obtained from a finite-difference approximation
(see supplementary material). Evans, Wilding, and co-workers argue
that the structure of χ(r) provides one of the most robust indicators
of hydrophobicity or, more generally, “solvophobicity.”

In the specific case of solvation of hard spheres, χ(r) should
exhibit a pronounced maximum that increases in both magnitude
and position with increasing R. In Fig. 3(a), we present χ(r) from
our theory, parameterized for the coarse-grained mW water model54

at T = 426 K.55 We see good agreement between the results from
our theory compared to grand canonical Monte Carlo (GCMC)
simulations by Coe et al.51 In particular, for the largest solute inves-
tigated, R ≈ 4.1 nm, we see that the maximum value of χ(r) is over
40 times larger than its bulk counterpart χu. In the supplementary
material, we also present results where the strength of attractive
solute–solvent interactions is decreased, which also compare favor-
ably to GCMC simulations. In the context of an LCW-style theory
such as ours, we can also isolate the slowly varying component of the
local compressibility χs(r), by replacing ρ(r) with ρs(r) in Eq. (29).
As one might expect, as R increases, so does the significance of χs. It
is clear, however, that contributions from the rapidly varying density
are still important, even for solute sizes that far exceed R = 1 nm, the
colloquial hydrophobic crossover point, as seen in the inset.
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FIG. 3. The local compressibility described by an LCW-style cDFT. In (a), we show
χ(r) around different sized hard-sphere solutes, as indicated by the values of R
in the legend, centered at the origin. The results from our theory (left) are in good
agreement with GCMC simulations from Ref. 51 (right). The inset shows χs(r), the
contribution from the slowly varying density, which becomes increasingly important
as R increases, though contributions from the rapidly varying part are still signifi-
cant. All results are for the mW water model (T = 426 K, βδμ ≈ 10−3, a = 300 kJ
cm3 mol−2, and λ = 0.11 nm). In (b), we investigate the behavior of χ near a pla-
nar hard wall as δμ→ 0. Consistent with a binding potential analysis,53 our theory
yields ln χ(ℓeq) ∼ −ln βδμ (right), where ℓeq is the distance of the maximum in χ
from the wall. We also observe ℓeq ∼ −ln βδμ (left). Circles show results from the
theory, and dashed lines indicate the expected scaling relation.

A more stringent test of critical drying comes not from com-
parison to molecular simulations but from known scaling behaviors
of χ from binding potential analyses.53 Specifically, for a fluid in
contact with a planar hard wall, it can be shown that, close to coex-
istence, χ(ℓeq) ∼ δμ−1, where ℓeq is the position of the maximum
in χ. Moreover, ℓeq ∼ −ln βδμ. As seen in Fig. 3(b), the LCW-style
cDFT approach that we have derived obeys both of these scaling
relations. This is far from a trivial result. At face value, the physics
of critical drying and the emphasis placed on liquid–vapor inter-
face formation by LCW theory seem unrelated. By recasting the
essential underpinnings of LCW theory in the context of cDFT, we
begin to paint a unifying picture of these two different views on
hydrophobicity.

VI. MULTISCALE SOLVATION FROM FIRST PRINCIPLES
The physics of critical drying discussed so far is an essential

component of hydrophobicity at large length scales. Moreover, it
is common to both simple and complex fluids that exhibit solvo-
phobicity. A distinguishing feature of solvophobicity in complex
fluids such as water, however, is the “entropic crossover.” For small
solutes, Ωsolv increases with increasing T, while for larger solutes
it decreases. This behavior has implications for the thermodynam-
ics of protein folding56 and has been attributed to a competition

of microscopic length scales (i.e., solvent reorganization in the first
and second solvation shells) that is absent in simple fluids.57 Here,
we will demonstrate that our cDFT approach captures this entropic
crossover. Moreover, we will do it from first principles.

Factors of kBT aside, temperature dependence in Eqs. (15) and
(23) enters implicitly through c(2)u and γ. As the approach that we
have developed does not assume a simple pairwise additive form for
the interatomic potential, the combination of our theory with recent
advances in machine-learned interatomic potentials (MLIPs) means
we face the exciting prospect of describing, from first principles, the
temperature dependence of solvation across the micro-, meso-, and
macroscales.

For illustrative purposes, we model water with RPBE-D3, a
generalized gradient approximation (electronic) functional58 with
dispersion corrections.59 To obtain c(2)u , we have performed our own
simulations of bulk water at the liquid density along the coexistence
curve, using the MLIP described in Ref. 60, which also provides
γ(T). In Fig. 4(a), we present results from self-consistent solutions of
Eqs. (15) and (23) for temperatures ranging from 300 to 550 K. Note
that, in the absence of information in the crossover regime, we have

FIG. 4. Temperature-dependence of multiscale solvation from first principles.
Parameterizing our theory on a first principles representation of water (RPBE-D3),
we can predict solvation behavior on length scales inaccessible to molecular simu-
lations. This is demonstrated in (a), where we present Ωsolv/4πR2 for hard sphere
solutes at different temperatures, as indicated in the legend. The inset highlights
the “entropic crossover” that is present in water but not simple liquids.56,57,61 All
results are obtained for the liquid at coexistence with a = 300 kJ cm3 mol−2 and
λ = 0.08 nm. In (b), we summarize the cDFT approach to multiscale modeling.
Compared to explicit and implicit solvation approaches, the theory we present
instead sacrifices some molecular details but treats the remaining essential
correlations consistently across all length scales.
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simply taken m to be independent of density. For all temperatures,
we observe the hydrophobic crossover. Importantly, this occurs at
progressively smaller values of R as T increases; we observe the
entropic crossover. These results demonstrate that the LCW-style
cDFT that we have developed can be used to faithfully coarse-grain
solvent effects while maintaining essential molecular correlations
to model phenomenology at a first principles level across a broad
range of length scales. This approach is summarized schematically
in Fig. 4(b).

VII. CONCLUSIONS AND OUTLOOK
We have presented a cDFT for the solvation of apolar solutes in

water, which is accurate at both small and large length scales. Simi-
lar to mDFT, we encode information about the liquid’s small length
scale fluctuations by parameterizing our functional on the two-body
direct correlation function obtained from simulations of the bulk
fluid. In contrast to previous approaches, however, the grand poten-
tial that we construct is not based on an expansion around the
uniform bulk fluid. Rather, from the outset, our theory acknowl-
edges that the perturbations induced in the solvent density field by
large solutes are too severe for the uniform fluid to act as a suitable
reference. In this work, we therefore establish a self-consistent cDFT
framework that permits the use of an inhomogeneous and slowly
varying density field as a reference system.

The theory that we have outlined is similar in spirit to, and
indeed motivated by, the seminal work on the hydrophobic effect of
Ref. 15. By placing the ideas of LCW theory in the context of cDFT,
not only do we gain a numerical advantage, but we also provide
conceptual insights. For example, the grand potential that we derive
[Eq. (12)] suggests a natural form for the “unbalancing potential”
that specifies the coarse-graining; the coarse-graining function is
the slowly varying part of a two-body direct correlation function
of an inhomogeneous density field. This insight, as we explore in
the supplementary material, justifies a coarse-graining length scale
much smaller than the molecular diameter of a water molecule that
one might naively expect.

Our approach also allows us to connect the ideas of LCW theory
directly with more recent theoretical descriptions of hydrophobic-
ity from Evans, Wilding, and co-workers.48,49 Specifically, the local
compressibility in the presence of large hydrophobes obtained with
our approach compares favorably to results obtained by GCMC
simulations,51 and we show that its variation with chemical poten-
tial obeys known critical scaling behaviors. We also demonstrate
that our approach, similar to previous LCW treatments,56 captures
the temperature dependence of the hydrophobic effect. It is a curi-
ous observation that lattice-based theories of hydrophobicity36,52,62

that aim to improve LCW have emphasized the importance
of capillary wave fluctuations; these do not enter explicitly in
our theory. Nonetheless, our results for the local compressibil-
ity and the good agreement with solvation free energies obtained
from molecular simulations suggest that we capture the most
salient aspects of the interfacial fluctuations necessary to describe
hydrophobicity.

A general theory of solvation should also describe the polariza-
tion field induced by charged species such as ions. This is a challeng-
ing problem beyond the scope of the present study. There are, how-
ever, reasons to be optimistic. For example, the mDFT framework

already demonstrates that orientational correlations of the bulk fluid
can be used to construct density functionals that describe polar-
ization;19 introducing the results from our work should amount to
a straightforward modification of the present mDFT framework.
Insights from Weeks’ local molecular field theory may also prove
useful in developing new functionals45,63–67 (see Refs. 45 and 68
for discussions on the relationship between cDFT and local molec-
ular field theory), as could ideas from integral equation theories
(see, e.g., Refs. 69 and 70). In a recent study, Sammüller et al. adopted
an entirely different approach by using deep neural networks to con-
struct the free energy functional.71 Whether such an approach can be
used for polar fluids remains to be seen, but it shows great promise.
In the context of apolar solvation, our results raise the question of
whether machine learning can be made easier by first separating the
functional into slowly and rapidly varying contributions. Notwith-
standing the obvious areas for future development, the results of
our work demonstrate a significant step toward efficient, and fully
first-principles, multiscale modeling of solvation.

VIII. METHODS
Here, we provide a brief overview of the methods used; full

details are provided in the supplementary material. All molecular
simulations have been performed with the LAMMPS simulation pack-
age.72 To maintain the temperature, we used the CSVR thermostat.73

For simulations of SPC/E water,43 long-ranged electrostatic inter-
actions were evaluated using the particle–particle particle–mesh
method,74 such that the RMS error in the forces was a factor of
105 smaller than the force between two unit charges separated by
0.1 nm.75 The rigid geometry of the SPC/E water molecules was
imposed with the RATTLE algorithm.76 For simulations of the neu-
ral network surrogate model60 of RPBE-D3,58,59 we used the n2p2
package interface77 with LAMMPS. cDFT calculations were performed
with our own bespoke code, which we have made publicly avail-
able. Minimization was performed self-consistently using Picard
iteration.

SUPPLEMENTARY MATERIAL

The supplementary material includes further details on param-
eterizing the functional, simulation details, further details on the
numerical implementation of the functional, a comparison to molec-
ular density functional theory, and details on evaluating the local
compressibility.
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