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Abstract

We investigate fine structure changing collisions in 3’Rb vapour upon D, excitation in a thermal
vapour at 75 °C; the atoms are placed in a 0.6 T axial magnetic field in order to gain access to
the hyperfine Pashen-Back regime. Following optical excitation on the D, line, the exothermic
transfer 5P3/,, — 5P/, occurs as a consequence of buffer-gas collisions; the 87Rb subsequently
emits a photon on the D, transition. We employ single-photon counting apparatus to monitor the
D, fluorescence, with an etalon filter to provide high spectral resolution. By studying the D;
fluorescence when the D, excitation laser is scanned, we see that during the collisional transfer
process the m quantum number of the atom changes, but the nuclear spin projection quantum
number, m/, is conserved. A simple kinematic model incorporating a coefficient of restitution in
the collision accounted for the change in velocity distribution of atoms undergoing collisions,
and the resulting fluorescence lineshape. The experiment is conducted with a nominally
‘buffer-gas free’ vapour cell; our results show that fine structure changing collisions are
important with such media, and point out possible implications for quantum-optics experiments
in thermal vapours producing entangled photon pairs with the double ladder configuration, and
solar physics magneto-optical filters.

Keywords: thermal vapours, state changing collisions, ‘buffer-gas free’,
hyperfine Paschen-Back regime

1. Introduction and well-understood atom-atom interactions [1]. Thermal
atomic vapours find utility in applications spanning from
the fundamental: electromagnetically induced transparency [2,
3]; nonlinear and quantum optics [4]; cooperative effects in
confined geometries [5]; through to the applied: magneto-
metry [6]; THz imaging [7]; narrowband optical filters [8]. A
noteworthy feature of using thermal atomic vapours is the sim-
plicity of both the experimental set up and modelling few-level
atom-light interactions [9]. One branch of quantum optics
where thermal vapours find great utility is that of producing
heralded entangled photon pairs [10-14].

Hot atomic vapours are work horses of modern atomic phys-
ics experiments. These media are ideally suited for quantum-
optics and atom-light interaction experiments as they com-
bine: a large resonant optical depth; long coherence times;
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The spectroscopic investigation of the interactions of alkali-
metal vapours with buffer-gases (such as inert gases, Nj)
has been thoroughly studied historically; see, for example,
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the textbooks [15, 16] for an overview. The collisional
relaxation of excited state population and the concomitant
optical line broadening and shift are understood compre-
hensively experimentally and theoretically [17]. In many
coherent population trapping and magnetometry experiments—
including chip-scale atomic clocks—in miniaturised vapour
cells a limiting feature can be the ground state coherence relax-
ation time being limited by collisions of the alkali-metal atoms
with the cell wall. The standard approach to reduce the relax-
ation rate is to add buffer-gas to the cell, as the diffusion
rate of the atoms out of the laser beam towards the cell walls
is reduced [18-22]. There is a trade off, with higher buffer-
gas pressure leading to too large a collisional rate, leading
to an optimal gas pressure for optimising the contrast of nar-
row resonances [23]. There is much current interest in real-
ising vapour cell devices with functionalised cells [24] and
micro-machined deep silicon atomic vapour cells [25]. Recent
work has demonstrated nitrogen buffer-gas pressure tuning in a
micro-machined vapour cell [26]. Another example of enhan-
cing the application by adding a buffer-gas is when using cas-
caded atomic magneto optical filters [27] to monitor the solar
magnetic field [28-30] where optimising line shapes by shift-
ing and broadening lines is routine. A field that exploits the
fine-structure changing collisions of alkali-metal atoms when
subject to high buffer-gas collisions is that of generating high-
powered lasers with diode-pumped alkali lasers [31-33].

There are examples where the collisions associated with
a buffer gas can have deleterious effects on the desired
performance; for example, the degradation of the figure-
of-merit in Faraday filters [34]. The nonlinear process of
nondegenerate four wave mixing (FWM) can be employed,
with two driving fields producing an entangled photon
pair. Such a system has been widely studied in differ-
ent geometries: the ‘double lambda’ [35-38], ‘double lad-
der’ [39-42] and ‘diamond’ schemes [43—47]. In Rb a well-
studied double ladder scheme involves 5S;/,—5P3,,—5Ds;
or 55;/,—5P;,,—5D;/, transitions, whereas the diamond
scheme uses 5S;,,—5P;3/,—5D;/, [48-50]. State-changing
collisions can degrade the performance of thermal vapour
single-photon sources [49, 50].

The study of fine-structure changing collisions in a thermal
vapour with excitation of ’Rb atoms with D, (780 nm) light
and monitoring D; (795 nm) fluorescence performed in the
hyperfine Paschen Back (HPB) regime is the topic of study of
the present investigation.

In the HPB regime the Zeeman shift exceeds the ground
state hyperfine interaction. Recent work utilising the HPB
regime spans the fundamental [51-53], through to the applied
[54, 55]. An estimate of the field needed to gain access to
the HPB regime is Bupp = Ant/ s, Where Ay is the magnetic
dipole constant for the ground term, and pg is the Bohr mag-
neton; this is evaluated to be 0.24 T for ¥Rb [1]. Numerous
experimental studies have been performed in the HPB regime
with Rb [56-62]. The spectroscopy of Rb is considerably
easier to interpret when in the HPB regime because the separ-
ation of the optical transitions arising from the Zeeman inter-
action exceeds the Doppler width, leading to isolated atomic
lines being observed [63—65]. Of particular relevance to this

study, investigating fine-structure changing collisions in the
HPB regime makes the interpretation of the data significantly
easier.

A schematic of our investigation is illustrated in figure 1
(a). Upon optical excitation, buffer gas collisions can transfer
the Rb atom from the 5P;; state to the 5Py /5, but also in the
reverse direction, from 5P/, state to the 5P, state. The first
of these transfers, 5P3/, — 5Py/;, is an exothermic process,
meaning that energy is transferred from the internal state of the
atom to the kinetic energy of the colliding atoms. The second,
5Py/; — 5P3/,, is an endothermic process, meaning Kinetic
energy from the colliding atoms is transferred to the internal
energy of the Rb atom, and subsequently the light. The second
process is therefore energetically unfavourable, and happens
at a lower rate.

Previous experimental studies have comprehensively meas-
ured the cross-sections of these state changing collisions for a
range of atomic species with a wide range of molecular col-
lision partners [66—68]. Here, we do not attempt to reproduce
these investigations; rather, we use a narrowband etalon fil-
ter [69, 70] to spectrally resolve the fluorescence. In combin-
ation with non-degeneracy of energy levels provided by the
large magnetic field, we gain further insight into fine-structure
changing collisions.

The rest of this paper is organised as follows: section 2 out-
lines the experimental details; in section 3 the experimental
results are presented; in section 4 we describe a simple kin-
etic collisions model that is used to predict the velocity distri-
bution of the atoms after fine-structure changing collisions; in
section 5 we present and analyse results obtained with a differ-
ent buffer gas. Finally, we present our conclusions in section 6.

2. Experimental details

The experimental setup is shown in figure 1(b). We use a
2 mm long, isotopically enriched 98% 8’Rb vapour cell, which
is nominally ‘buffer-gas free’, in an axial magnetic field of
0.6 T, produced by two cylindrical ‘top hat’ NdFeB perman-
ent magnets. The field is uniform across the length of the cell
at the 0.1% level [72]. The central transmission frequency of
the etalon filter is referenced using a laser resonant with the
D; (795 nm) Rb absorption line. Left-hand circularly polar-
ised D, (780 nm) light is aligned through the vapour cell for
buffer-gas induced D, fluorescence detection. A lens of focal
length 200 mm focuses the beams to waists of 100+5 pm
X 7845 um (780 nm) and 65+5 um x 90£5 um (795 nm)
inside the cell. After the vapour cell, the output light is re-
collimated using a lens of focal length 200 mm and split
into two paths using a 50:50 beam splitter cube. An inter-
ference filter is inserted into each path; in the reflected path
of the beam splitter cube, the excitation (input) light is extin-
guished, leaving only the light produced from collisional trans-
fer, while the opposite occurs for the transmission path. This
set-up has the advantage that several signals can be monitored
simultaneously. First, the transmission of the input D, light
can be monitored on a photodiode (PD1) whilst the laser fre-
quency is scanning; this trace serves as a reference marker.
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Figure 1. (a) Rubidium energy levels. When D light is incident, D, light is produced and vice versa; this is due to collisions transferring
population between the two P states shown. b) Schematic of the experimental apparatus. The vapour cell is situated between magnets (grey
blocks) producing a 0.6 T axial field. The input light can be either D, (780 nm) or D; (795 nm) laser light, whereas the output light consists
of both Dy and D> light. The output light is detected on two photon counters; one with and one without an etalon filter, necessary for
high-resolution spectral filtering [70]. A photograph of the etalon filter is shown left of the experimental apparatus. PBS: Polarising beam

splitter; \/4: Quarter waveplate; L: Lens; Exp. Cell: 2mm long 98% %

Rb vapour cell; PD: Photodiode; BS: Beam splitter; IF: Interference

filter; EF: Etalon filter. c) Number density dependence of 795 nm fluorescence rate when 780 nm light is incident on the vapour. At low
number densities (and therefore temperatures), up to around 86 °C, the D; (795 nm) fluorescence count rate increases linearly with number
density; the dominating collisions in this regime are between Rb and buffer gas atoms, as pictorially represented by the colliding spheres,

red and blue, respectively, inset. In the next region, between 86 °C and 110 °C, that relationship is close to quadratic (o<

NI.SiO.]) due to

Rb-Rb collisions (only red colliding spheres shown inset). Above 110 °C the increase begins to level off, and then decrease, as the medium
becomes optically thick, and fewer of the produced photons escape the medium and are detected.

Second, the light produced from collisional transfer (i.e. D;
light) is coupled down a multimode fibre, the output of which
is divided into two by a 50:50 beam splitter such that the D,
fluorescence can be monitored on two separate photon coun-
ters (PC1 and PC2). The bandwidth of the interference fil-
ters are much broader than the widths of the resonance fea-
tures (see figure 2 top panel as an example), hence the need
for a second ultra narrow-band (typically narrower than the
resonance features) filter for fine spectral resolution. We use
an etalon filter (EF) on the optical path before PC2. An EF
consists of a high-reflection coated plano-convex lens held

in a temperature stabilised mount (see inset to figure 1(b)).
It has a full-width-at-half-max (FWHM) of 130 MHz and a
central frequency that can be tuned by altering its temper-
ature. The central frequency is stable to 10 MHz over a 2
h period [70]. Inputting D; light through the set-up, before
fluorescence measurements using D; light are recorded by the
photon counters, enables the central frequency of the etalon to
be aligned onto one of the D; resonance features. An example
of the etalon transmission, which is detected on photodiode
PD2, and the D; resonance features, which is detected on
photodiode PD1 when the interference filter is removed, is
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Figure 2. Energy levels involved in the Rb D, (D) transitions at 0.6 T, which are between the 5S; , and 5P/, (5P;2) energy levels. The
my and my are labelled accordingly. The absorption spectra of linearly polarised light resonant with the D, (D) transitions at 75 °C is shown
in the top panel. The light blue (purple) arrows, and corresponding lines above, mark o™ (o ™) transitions excited by left— (right-) hand

circularly polarised light [71].

shown in figure 3(a). Once the EF has been tuned to the cor-
rect resonance and has stabilised, the interference filter before
PD1 isreplaced and the D, input light is replaced with D; input
light ready for the experiment to commence.

The vapour cell is heated to 75°C, which is required to
increase the Rb number density in the vapour cell to get
appreciable absorption. When the temperature is too high, the
medium becomes optically thick and we see saturation effects.
To understand the collisional processes that occur inside the
vapour cell, we must consider when the Rb atoms are likely
to collide with a buffer gas atom (inter-species collisions)
and when they might collide with another Rb atom (intra-
species collisions). At low temperatures (<86 °C), as shown
in figure 1(c), the dominating collisions are between Rb and
buffer gas atoms. Inter-species collisions can transfer the Rb
atom to: the other 5P state (inter-manifold); to a different level
within the same 5P state (intra-manifold); or back down to
the ground state (quenching). At higher temperatures (86 °C—
110°C), we also see Rb—Rb collisions [73]; these can cause
the same type of transfer processes as stated in the inter-
species case.

In order to understand the processes occurring in the colli-
sions we need a clear picture of the energy levels in 8’Rb; this
enables us to understand which transitions are available to us,

and what wavelengths and polarisations of light will excite (or
be produced by) these transitions.

Figure 2 shows theoretical predictions of the o+ D, trans-
itions, which has a wavelength of 780 nm, and the o~ D trans-
itions, which has a wavelength of 795 nm. The effect of the
0.6 T magnet on the 5S /5, 5P3 /5, and 5P /, state energy levels
are shown. In zero-field F' and my are good quantum numbers,
however when we move into the HPB regime, the states split
and regroup such that the good quantum numbers are now m;
and my. These states are grouped in sets of four levels, with
a common my, with each state having a different m;. The my
and my states are labelled in figure 2 accordingly. The theoret-
ical absorption spectra of linearly polarised light, with & || ?,
resonant with the D, (left) and D; (right) is shown in the top
panel, respectively. The light blue (purple) arrows, and corres-
ponding lines above, mark o™ (¢ ™) transitions excited by left-
(right-) hand circularly polarised light [71]".

I Note that in this geometry, where we collect forward-scattered fluorescence,
7 transitions cannot be detected.
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3. Experimental results

3.1. Spectral filtering the output fluorescence

Figure 3 shows the complete dataset when we scan the
frequency of the D, input light, while the etalon filter
central frequency has been positioned on one of the D,
hyperfine transmission frequencies. We use left-hand cir-
cularly polarised D, input light to drive the ot trans-
itions. In this example, the etalon filter has been centred on
(my = 1/2, my = 3/2 — my = —1/2, my; = 3/2), as
shown in figure 3(a). In figure 3(b) the transmission spectrum
of the D, input laser light is shown, while figure 3(c) shows
the normalised detection rate of the D; photons as the D, laser
frequency is scanned. The grey trace in panel (c) shows the
D, fluorescence collected on a photon counter (PC2) without
the narrowband etalon filtering; this trace contains no spec-
tral information of the D; photons other than they are in the
range 793-797 nm (due to the interference filter in the collect-
ing path transmitting at (795 £2) nm. As expected, the rate of
D; photon production is higher when more D, resonant laser
light is absorbed by the medium.

The inclusion of the etalon filter provides higher-resolution
spectral information. From panels (a) and (b) we learn that
when D, light is at the frequency of the left-most D, hyper-
fine transition, the D; photons produced by the medium, via
collisional transfer, are at the frequency of the left-most D,
hyperfine transition, which is a decay from an excited state
5Py /> with my = 1/2,m; = 3 /2. There are only two D, input
detunings which cause the production of these D; photons:
these detunings correspond to exciting the atoms into the 5P
my=3/2,m;y=3/2and my = 1/2,m; = 3/2 excited states.

Translating the central frequency of the etalon transmission
to a different D transition changes the fluorescence spectrum,
which is evident in figure 4. Viewing this in combination with
the energy level diagram in figure 2, we summarise the trans-
itions in table 1.

We deduce that during the collisional transfer process,
which transfers an atom from the 5Pz, state to the 5Py,
state, the m; quantum number of the atom can change,
but the nuclear spin projection quantum number, my, is
preserved.

3.2. Spectral profile of the output fluorescence

Not only can analysis with the etalon filter inform us of which
states the collisional transfer populates, it can also be used to
determine the spectral characteristics of the emitted fluores-
cence, namely the lineshape and the linewidth. Figure 5(d)
emonstrates the spectral distribution of the produced D; fluor-
escence by fixing the D, laser frequency and moving the
central frequency of the etalon transmission in the observa-
tion path. The measured profile is a good fit to a Lorentzian
lineshape. Since each fluorescence-measurement point meas-
ures a range of frequencies given by the profile of the etalon,

a)
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Figure 3. D, left-hand circularly polarised input laser light, D,
fluorescence collected. At 75 °C, in the regime where collision rate
is first order with respect to Rb concentration and Rb-buffer gas
collisions dominate. Panel (a) shows the etalon transmission profile
on a 795 nm laser scan relative to the D; absorption lines. Here the
etalon is positioned on the left most transition (m; = 1/2,my;

= 3/2—=my = —1/2,m; = 3/2). Panel (b) shows a 780 nm laser
scan over the D, transition lines. Panel (c) shows the fluorescence
detected when the laser scan is that of panel (b). Both yellow
(without etalon) and purple (with etalon) traces show fluorescence
that has passed through a narrow band interference filter with a
central transmission frequency of 795 nm. Zero probe detuning for
panel (a) panels (b) and (c) is the weighted D; (D3) line centre of
naturally abundant Rb in zero magnetic field [74].

the measured profile is a convolution of the etalon profile and
the profile of the emitted fluorescence”. The etalon profile is
known to be a Lorentzian [70], and it can be shown that the
convolution of two Lorentzians produces a third Lorentzian
with a FWHM of I'y = I'y +1I'; [75]. Therefore we determ-
ine that the fluorescence spectrum is also close to Lorentzian,
and that its width is the difference between the measured width
and the width of the etalon filter used to take the measurement.

2 Note that for a fixed central frequency of the etalon transmission, the atomic
fluorescence passing through the etalon is filtered, i.e. spectrally narrower.
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Table 1. State change during collisions.

D, excitation
transition
lmy,mr) — |mj,my)

D, fluorescence
transition

! I
|mJamI> — ‘mhm’)

11/2,3/2) —13/2,3/2)
|—1/2,3/2) —11/2,3/2)
[1/2,1/2) —13/2,1/2)
|—1/2,1/2) = |1/2,1/2)
[1/2,—1/2) —|3/2,—1/2)
|—1/2,—1/2) —»|1/2,—1/2)
[1/2,-3/2) —13/2,-3/2)

| —1/2,-3/2) = [1/2,-3/2)

|—1/2,3/2) —
11/2,3/2)
|—1/2,1/2) —
11/2,1/2)
|—1/2,-1/2) —
|1/27_1/2>
|—1/2,-3/2) —
11/2,-3/2)

Therefore we conclude that the fluorescence is approximately
Lorentzian with a FWHM of approximately 270 MHz.

4. A collision model and comparison with
experiment

4.1. A simple kinematic model

To better understand the fluorescence spectral profiles we
observe, we create a basic model of the collisions in the
medium. We use a simple hard-sphere-collisions picture [76],
which we expect to be valid as we are in the classical scat-
tering regime. We use a simple Monte-Carlo model to simu-
late the collisions, and to explain the FWHM and lineshape of
the emitted fluorescence (as shown in figure 5). We carry out
these operations array-wise, and model 10 million collisions,
which runs in approx 30 s on an Intel Core i5 processor. The
model results shown in this section use a buffer gas of molecu-
lar nitrogen, N,. Other likely candidates for residual buffer gas
in a cell, such as CHy, He, Ne, Ar, are all considerably lighter
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d \\ ®  Fluorescence
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Figure 5. Upper panel shows the relative intensity of D,
fluorescence (red dots) as the etalon transmission frequency is
altered, with a Lorentzian fit to the measured fluorescence rate
profile (black dashed line). This is the convolution of the etalon
transmission profile (130 MHz Lorentzian) and the fluorescence
profile emitted by the atoms. Zero detuning is the central resonance
frequency of the m; = 3/2 o~ Dy absorption line. Residuals are
shown beneath.

than Rb, so choosing a different buffer gas has a negligible
effect on the final results.

For each collision we initialise the x, y and z velocities of
both (Rb and buffer gas) atoms. In the experiment (measuring
the spectral profile of the fluorescence) we excite with a res-
onant D, (780nm) beam directed along the z-axis, so only
interact with atoms which have v, <T'/k, [77], where T is
the natural linewidth of the excitation transition, and k, the z-
component of the light wavevector (though in this case k = k).
In the model, v, of all Rb atoms is set to be 0 m/s, and all other
velocity components are randomly chosen from a Gaussian
distribution at 7=75 °C. We use a simple spheres colliding
picture (like that illustrated in figure 1) to calculate the velo-
cities of both particles after the collision. To do this we also
randomly select an impact angle for each collision, and from
this calculate the contact normal vector, 7. We then calculate
the relative velocity along the contact vector

Veel = (VRp — VButr) - - (D

The velocities after the collision, with i denoting the ‘interme-
diate’ state of our calculation, are given by

. . 2mpufr
VRbi = VRb — Vrel —————— 11, (2)
MBuff + MRb
and
. . 2mgy,
VBuff,i = VBuff + Vel —————n. (3)
MBuff + MRb

These solutions are the velocities of both particles after a
perfectly elastic collision, and do not take into account the
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energy change from the state change which occurs during the
collision.

During the collision the internal energy of the Rb atom
decreases as it transitions to a lower energy state. We propose
that this energy is transferred to the kinetic energy of the col-
liding particles. A collision in which energy in released, and
the final total kinetic energy of the particles exceeds the initial
kinetic energy, is known as a ‘superelastic’ collision [78] and
has a coefficient of restitution, e > 1 [79]. We use this concept
to include the state change into the kinetic model as follows.
The calculation is carried out in the centre-of-mass (cm) frame

R MRbVRb,i T MBuffVBuft,i
Vem = y “
MRb + MBuff

and final velocities are given by

VRt = (VRbi — Vem) - € + Vem, 5

and
‘_;Buff,f = (‘7Buff,i - ch) “e+ Vem. (6)

Again, i denotes the previously calculated intermediate velo-
cities, f the final velocities, and e is the coefficient of
restitution.

The extra energy we are adding in the collision is AE, the
energy difference between the 5P3, and 5P, states. At our
operating temperature, 75 °C, this energy is very similar to
the thermal energy of the atoms, kg7 =~ AE. The coefficient
of restitution, e, is numerically calculated to conserve the total
energy over a large number of collisions, n, such that

1 1
Z |:2mRbV2Rb,i + imBuffVZBuff,i + AE]

n

1
= Z [ MROVin s+ 2mBuffV%;un f] %)

This results in a value of e =1.3.

We obtain a fluorescence lineshape from the calculated
velocities by histogramming the final Rb velocities along
the observation axis (initially v,), and converting velocity
to detuning, via Av =v,/A. The fluorescence lineshape in
this direction is independent ofv, and v,. Figure 6 shows the
modelled velocity distributions along (i) z, (ii) x, and (iii) y.
Distributions are plotted before (a), and after the collision,
without (b) and with (c) the extra energy from the state change
via a coefficient of restitution of 1.3. It can be seen that the dis-
tributions in x and y, which start Gaussian, are changed very
little by the collision, though they are broadened slightly when
the extra energy is included: (c)-(ii) and (c)-(iii). The distribu-
tion in z, on the other hand, changes significantly. Initially all
atoms have v, = 0, as shown in figure 6(a)-(i). After the col-
lision, when the extra energy is not included as in figure 6(b)-
(1), the distribution still has a high narrow peak at v = 0, and a
prominent cusp. Including the extra energy via the coefficient
of restitution e = 1.3 gives the distribution in figure 6(c)-(i),
which is broader, less cusped, and closer to Lorentzian. This
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Figure 6. Simulated D; (795 nm) atomic velocity distributions
along (i) z, (ii) x and (iii) y before the collision (a), and after the
collision, without (b) and with (c) the extra energy from the state
change via a coefficient of restitution of 1.3.

lineshape is in agreement with previous studies where velo-
city changing collisions have been observed to have cusped
lineshapes [80, 81]and a cusped lineshape collision kernel has
been described [82].

4.2. Comparison with experiment

To compare the theoretical model with the lineshape we meas-
ure in the experiment, the velocity distribution in figure 6(c)—
(1) is converted to a frequency profile and convolved with the
known etalon filter profile.

Figure 7 shows a fit of the model to a Lorentzian, after con-
volution with the 130 MHz Lorentzian filter profile. The width
of this profile is now 390 MHz, which matches very closely
the 400 MHz measured profile as shown in figure 5. The fit is
excellent, with residuals of <1%.

5. Fine-structure changing collisions with different
buffer gases and alkali metals

5.1 Different buffer gases with Rb

The vapour cell used in the studies discussed so far was nom-
inally ‘buffer-gas free’. However, we have shown that there is
some additional gas present due to collisional transfer. Since
the additional gas, or gases, in our vapour cell is unknown,
we have repeated the studies discussed previously with vapour
cells with known buffer gases and concentrations. These cells
are cubes with side lengths of 1 mm and contain methane and
molecular hydrogen, which is known to produce a combined
additional broadening of 24 MHz [83]. One of these cells also
contains a large amount of helium, which provides another 300
MHz additional broadening [84, 85].
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Figure 7. Fit of the model to a Lorentzian, after convolution with
the 130 MHz Lorentzian etalon filter profile. The width of this
profile is 390 MHz, and is a very good fit to the Lorentzian.

The fluorescence spectra for the He-broadened cell are
shown in figure 8. The D, input light is scanned over the o
absorption lines (transmission spectrum shown in figure 8(a))
and the D, fluorescence is shown in panel (b) with and without
the etalon filter. Shown inset is the position of the central
frequency of the etalon transmission with respect to the D,
absorption features.

As previously, spectra were taken in the low temperature
regime, at 75 °C. We observed the same m; conservation pat-
tern in both cells, despite the additional 300 MHz broadening
meaning the transition peaks are no longer well distinguished.
We would expect the temperature—collision rate graph, equi-
valent to figure 1(c) for the main vapour cell, to switch from
the linear to the quadratic regime at a different temperat-
ure, because the buffer gas number density is higher, and the
different buffer gas will have a different collisional cross-
section. Therefore the crossover point, where Rb—Rb state
changing collisions happen at a higher rate than Rb-buffer
state changing gas collisions will occur at a higher different
temperature.

5.2. Different alkali metals

Rb happens to have a fine structure splitting approximately
equal to kg7 at 75 °C. Table 2 shows how the splitting var-
ies in alkali metal atoms at 100 °C. Heavy alkali atoms have a
smaller ratio meaning the collisional transfer is less favour-
able. In the lighter elements, such as K and Na however,
the ratio increases. In experiments where the presence of
fine-structure changing collisions can have deleterious effects,
such as heralded-single-photon generation, Cs would be less
affected than the lighter metals. By contrast, fine structure
changing collisions are likely to be prominent in vapour cells
with the lighter metals, and the difference in wavelength of
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Figure 8. In 300 MHz He-broadened cell. D, scanning laser light
in, D; fluorescence output light. (a) D, transmission spectrum. (b)
Fluorescence without etalon (grey) and with etalon (purple, yellow,
red) transmitting on | — 1/2,3/2 ) — |1/2,3/2) transition,

| -1/2,—1/2) —|1/2,—1/2) transition and

| —1/2,-3/2) — |1/2,—3/2), respectively, as shown in the inset.
Zero probe detuning is the weighted D, line centre of naturally
abundant Rb in zero magnetic field.

Table 2. Table of ratios of thermal energy to P-state fine-structure
splitting in alkali metal atoms, at 100 °C.

Atom ksT/AE at 100°C
Na 15

K 4.5

Rb 1.1

Cs 0.48

the D, and D; transitions is also smaller making it more
difficult to separate with standard interference filters. This
is particularly relevant for solar physics applications, where
heated vapour cells of Na and K are used in magneto-optical
filters [28-30].

6. Conclusions and outlook

Using an etalon filter we were able to obtain high-resolution
spectral information about fine-structure changing collisions
in 3Rb upon D, excitation in the hyperfine Paschen-Back



J. Phys. B: At. Mol. Opt. Phys. 57 (2024) 235002

C R Higgins et al

regime. Our data show that during the collisional transfer
process 5P3 /5 — 5Py /5, the m; quantum number of the atom
changes, but the nuclear spin projection quantum number, m1;,
is conserved, as expected. A simple kinematic model incorpor-
ating a coefficient of restitution in the collision accounted for
the change in velocity distribution of atoms undergoing colli-
sions, and the resulting fluorescence lineshape.

At 0.6 T, the ratio of the fine structure interval to the
Zeeman splitting is approximately 700. Therefore, within the
simple kinematic model, the energy available in a collision is
independent of which excited state collides. This will continue
to be true for all experimentally achievable fields in our labor-
atory. In rubidium, for fields greater than 100 T [86], we enter
the Paschen-Back regime, where the states in the D; and D,
manifold mix. There will be collisions with buffer gas, which
change the internal atomic states; these states are labelled with
the quantum numbers m; and myg in this regime therefore the
description ‘fine-structure’ changing is no longer relevant. For
fields beneath 0.25 T the Zeeman splitting is smaller than the
Doppler width, and in this regime analysing fluorescence is
much more difficult. The decoupling of nuclear and electron
spin occurs at different magnetic field strengths for the ground
and excited states. m} and m/ remain good quantum numbers
for 87Rb for fields down to 10 mT [83]. Our study involves
fine structure changing collisions between excited states in
rubidium, therefore we expect our conclusions to hold down
to 10 mT.

The vapour cell used in this investigation was nominally
‘buffer-gas free’. We have shown that using photon-counting
apparatus to detect fine-structure collisions provides a sens-
itive method to detect the presence of buffer-gas in such
cells. When there is a large amount of buffer-gas present
the additional pressure broadening can be measured from
a fit to a Voigt profile [87]. Measuring fine-structure chan-
ging collisions by monitoring fluorescence could be used to
measure the buffer-gas pressure, in the low-buffer-gas regime
where the additional line broadening would be difficult to
measure.
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