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1 Introduction

Chern-Simons (CS) theory is the quintessential topological quantum field theory (TQFT),
with numerous applications and appearances throughout condensed matter and high-energy
physics. Even the simplest abelian CS theory plays a prevalent role in the study of anomalies,
level/rank and boson/fermion dualities, defects in higher-dimensional theories, and in the
quantum field theories of spin liquids and the fractional quantum hall effect.

The literature is host to a multitude [1–8] of distinct formulations of Chern-Simons
theory on the lattice, whose variety reflects the lack of universality familiar from continuum
quantum field theory. In a previous paper [9] we realized U(1)k CS theory as a lattice gauge
theory on a Euclidean spacetime lattice using the modified Villain formalism [10, 11]. This
framework can be used to endow lattice models with key features at finite lattice spacing
which in a conventional discretization would only emerge in the continuum limit.1 The present
paper follows up on our previous work [9] and is dedicated to the canonical quantization of
abelian CS theory on a spatial lattice within the Villain Hamiltonian [17] approach. Given
the long list of works on this subject, one may wonder what new insights can be gained by
revisiting this problem. We find that the lattice Hamiltonian formulation provides useful
perspectives on certain crucial features of CS theory which were preserved by our spacetime
discretization, such as compactness of the gauge group, level quantization, the framing of
Wilson lines, the anomalous 1-form symmetry, and more.

1See e.g. refs. [12–24] for applications of this formalism, and especially refs. [22–24] which employ the
modified Villain approach to ‘doubled’ CS theory on the lattice.
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Figure 1. The physical observables in the compact U(1) Chern-Simons theory on the lattice are
framed Wilson lines, or ribbon operators. The ordinary Wilson lines at the two edges of the ribbon
are connected by a surface operator built from integer-spectrum Villain fields, such that the ribbons
as a whole are gauge-invariant and topological — they only depend on the homology class of the line
C̃ on the dual lattice which defines their support.

One of the main advantages of working in the Hamiltonian formulation is that we have
direct access to the Hilbert space. The building blocks of our lattice CS theory are gauge
fields on links and discrete integer fields on plaquettes, which are each associated with
infinite-dimensional Hilbert spaces. However, it is well-known that the Hilbert space of CS
theory in the continuum has a finite dimension equal to kg, where k is the level and g is the
genus of the spatial manifold. This apparent discrepancy is resolved in the following way: the
physical Hilbert space of our lattice model is actually a projection of the infinite-dimensional
Hilbert space down to a finite-dimensional constrained Hilbert space. There are three types
of constraints: the local Gauss law implementing ‘small’ gauge transformations, a discrete
1-form Gauss law implementing ‘large’ gauge transformations, and a non-local constraint
which projects out unframed Wilson lines. Together, these constraints imply that the only
non-trivial operators are framed, topological Wilson loops, whose algebra results in a physical
Hilbert space whose dimension matches that of the continuum theory exactly.

In addition to repeating much of the analysis of ref. [9] in the canonical formalism, we go
further and discuss how to formulate the odd-level CS theories, which in the continuum are
spin-TQFTs requiring a choice of (and exhibiting a dependence on) spin structure. Using the
method of ‘fermion condensation’ well-known in the TQFT literature [25, 26], we construct a
consistent Hilbert space for the odd-k CS theories and show that Wilson loops have the spin
structure-dependence expected from the continuum. In our view this comprises a significant
step towards establishing nonperturbative lattice-level fermion-boson dualities, and of placing
the decades-old idea of flux-attachment [27, 28] on equal footing with particle-vortex duality,
which originated on the lattice [29, 30]. For similar work in this direction but without explicit
Chern-Simons terms on the lattice, see refs. [31, 32].

Much of the literature on lattice CS theory was concerned by the presence of additional
gauge field zero modes in the most obvious discretization of the continuum CS term. As
summarized in ref. [9], these zero modes turn out to be crucial, rather than detrimental,
as they capture the need for framing — i.e. the fact that the physical Wilson lines in CS
theory are ribbons rather than lines [33]. As mentioned above and discussed in more detail
below, these zero modes are associated with additional constraints which must be imposed
on the Hilbert space which project out all unframed Wilson lines. The need for additional
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constraints was noticed in refs. [3, 4] but deemed unphysical — these authors gave an
alternative discretization of (continuum time) abelian CS theory without zero modes (see
ref. [7] for the generalization to an arbitrary graph). Roughly speaking these constructions
correspond to choosing a framing in the time direction. In contrast, we take the view that the
zero modes are a crucial part of the quantization procedure, and our resulting lattice theory
makes manifest certain global aspects which are obscured in these alternative formulations.

We begin in section 2 by discussing the non-compact CS theory with gauge group R.
The zero modes and non-local constraints leading to framing are already present in this
simple starting point. In section 3 we introduce discrete Villain fields to gauge a subgroup of
the 1-form symmetry of the non-compact model, making the gauge group U(1) = R/2πZ.
Without additional ingredients, consistency of the gauging procedure quantizes the level k
to be an even integer. Canonically conjugate to the Villain field is a compact scalar which
plays the role of the monopole operator, and carries electric charge k. We discuss the algebra
of Wilson loops, its relation to the ’t Hooft anomaly of the Zk 1-form symmetry, and the
implications for ground state degeneracy. Then in section 4 we introduce a pair of Majorana
fermions on each plaquette, and use them to consistently quantize the odd level theories in
a way which depends on the spin structure of the spatial lattice. We conclude in section 5
with directions for future work.

2 Warmup: the non-compact theory

Consider Hamiltonian lattice gauge theory [34] formulated on a rectangular spatial lattice Λ
where time is real, continuous, and non-compact. We work on a spatial lattice with L1 and
L2 sites in each direction and periodic boundary conditions, so that the spatial topology is
that of a torus. We denote the sites, links, and plaquettes by x, ℓ, p, sometimes using vectorial
notation so that x = x is the site at x, ℓ = (x, i) is the link starting at x pointing in the i
direction, and p = (x, 12) is the plaquette whose lower left corner is at x. Throughout the
paper we use the language of cochains and lattice differential forms. Functions on sites, links,
and plaquettes are called 0-, 1-, and 2-cochains, with Ci(R) denoting the set of R-valued
i-cochains. We make heavy use of cup products, which are the lattice analogs of wedge
products in de Rham cohomology. See appendix A for explicit expressions for the exterior
derivatives and cup products on the 2d square lattice.2

Our starting point is a real link field (i.e. a real-valued 1-cochain) aℓ = ax,i together
with a real field (a0)x on sites (i.e. a real-valued 0-cochain) representing the spatial and time
components of the non-compact R gauge field. We begin with the lattice action

S = k

4π

∫
dt
∑
p∈Λ

[
(a ∪ (ȧ− da0))p − (a0 ∪ da)p

]
, (2.2)

2We will repeatedly use the following crucial formulas — one is the analog of the Leibniz rule, or ‘summation
by parts’

d(α ∪ β) = dα ∪ β + (−1)p α ∪ dβ,

and the other is an identity capturing the lack of super-commutativity of cup products:

α ∪ β − (−1)pq β ∪ α = (−1)p+q+1 [d(α ∪1 β) − dα ∪1 β − (−1)p α ∪1 dβ] , (2.1)

where α, β are p- and q-cochains respectively. Here ∪1 is the cup-1 product, which vanishes unless p, q ≥ 1.
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with k an arbitrary real number. Summing by parts, the above can also be written as

S = k

4π

∫
dt
∑
p∈Λ

[
(a ∪ ȧ)p − (da ∪ a0 + a0 ∪ da)p

]
. (2.3)

In the standard lattice notation it is

S = k

4π

∫
dt
∑

x

[
ϵijax,i ȧx+î,j − (a0)x ((da)x−s,12 + (da)x,12)

]
, (2.4)

where the sum over i, j = 1, 2 is implicit. Here î denotes a unit vector in the direction of i
and we have defined s ≡ 1̂ + 2̂. Now consider the gauge transformation

a→ a+ dλ , a0 → a0 + λ̇ , (2.5)

where λ is a real valued 0-cochain with compact support in the infinite time direction. The
action is invariant under the above gauge transformation (which is easiest to see in the
cup-product formulation). Explicitly,

∆S = k

4π

∫
dt
∑
Λ

[
dλ ∪ ȧ+ a ∪ dλ̇+ dλ ∪ dλ̇− da ∪ λ̇− λ̇ ∪ da

]
= k

4π

∫
dt
∑
Λ

[
∂t(dλ ∪ a)− d(λ̇ ∪ a)− d(a ∪ λ̇) + d(λ ∪ dλ̇)

]
,

(2.6)

using the Leibniz rule. Since we take time to be non-compact and the spatial lattice has
no boundary, the gauge variation vanishes.

From the above action we see that the canonical momentum of a0 is zero, forcing a
Gauss constraint3

Gx = (da)x−s,12 + (da)x,12 = 0 . (2.7)

Note that this is not what we expect in the CS theory in the continuum, where the flux of a
is set to zero, which renders Wilson lines topological. The reason for the above constraint
instead of da = 0 is the lack of graded commutativity of the cup product.

We proceed with the quantization. We write the action in terms of the momentum
space fields

ax,i =
1√
V

∑
p
ãp,i e

ip·x , (2.8)

where ãp,i = ã†−p,i, and V = L1L2 is the spatial volume. The action becomes

S = k

4π

∫
dt
∑

p
ϵij ãp,i ˙̃a−p,j e

−ipi , (2.9)

3The Hamiltonian would be proportional to a0(. . . ), and since the canonical momentum of a0 has to
commute with the Hamiltonian, we must have that (. . . ) = 0.
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plus terms we omitted that vanish when the Gauss constraint is imposed. We can integrate
by parts to write this as

S = k

8π

∫
dt
∑

p
ϵij(e−ipi + eipj ) ãp,i ˙̃a−p,j = 1

2

∫
dt
∑

p
K(p)ij ãp,i ˙̃a−p,j , (2.10)

where

K(p)ij = k

4π

(
0 e−ip1 + eip2

−eip1 − e−ip2 0

)
= k

4πϵij(e
−ipi + eipj ) (2.11)

obeys the antisymmetry property K(p)ij = −K(−p)ji. Since the action is first order in time
derivatives, we can simply read off that the conjugate momentum to ãp,i is K(−p)jiã−p,j =
−K(p)ij ã−p,j .4 The commutation relations would be obtained by inverting K(p)ij . However,
K(p)ij vanishes on a special set of momenta, namely p such that p1 + p2 = π mod 2π,
making it singular. As we will repeatedly refer to these special momentum modes throughout
the paper, it will be convenient to define

Pstaggered = {p | p1 + p2 = π mod 2π} . (2.12)

The size of this set depends sensitively on the lengths of the torus, and is equal to

|Pstaggered| =

gcd(L1, L2) if lcm(L1, L2) is even,
0 if lcm(L1, L2) is odd.

(2.13)

If p ∈ Pstaggered, the vanishing of K(p)ij simply means that the conjugate momentum for
ãp,i vanishes,

Πp,i = 0, p ∈ Pstaggered . (2.14)

In the following we will refer to this constraint as the ‘framing constraint,’ for reasons which
will become clear soon.

We can proceed with the modes for which p ̸∈ Pstaggered. For these modes, K(p)ij

is invertible,

(K(p)−1)ij = −1
2

(4π
k

)2 1
1 + cos(p1 + p2)

K(p)ij , (2.15)

so the commutation relations are given by

[ãp,i, ãq,j ] = iδp,−q(K(−p)−1)ij = −2πi
k
ϵij δp,−q

eipi + e−ipj

1 + cos(p1 + p2)
. (2.16)

In the quantum theory, the physical Hilbert space is defined via the remaining constraints:
the Gauss law (2.7) and the framing constraint (2.14). The Gauss law plays the familiar
role as the generator of gauge transformations, which act trivially on the physical Hilbert

4This conclusion also follows from a more careful analysis using Dirac brackets. In this approach one has
second-class constraints relating momenta and coordinates Πp,i = − 1

2K(p)ij ãp,j , along with the Gauss law
constraint. See appendix B for more details, along with an example of this approach in a simpler setting.
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Figure 2. A framed Wilson line in the non-compact R Chern-Simons theory. Here we show the curve
C̃ on the dual lattice and its Poincaré dual ⋆[C̃].

space. As a result, gauge non-invariant operators are projected out from the theory. In
momentum space, the Gauss law reads

G̃p = (1 + ei(p1+p2))ϵij(1− eipj )ãp,i = 0 , (2.17)

which clearly commutes with the constraints Πp,i = 0 for p ∈ Pstaggered because precisely
these modes are not constrained by the Gauss law. Hence these constraints are first-class
and we can consistently set the canonical momenta for the Pstaggered modes to zero.

When the canonical momentum Π of some coordinate X vanishes, only states which are
translationally invariant in X contribute. In other words, in such a situation the physical
states can all be thought of as

∫
dX |X⟩ where |X⟩ are eigenstates of the operator X. This

means that the expectation value of operators of the type eiαX with α ∈ R, which transform
under the action of Π, will vanish on the physical Hilbert space.

A generic local operator Ox will contain the peculiar modes with p ∈ Pstaggered. However
it is easy to project out these modes by instead considering the sum Ox +Ox+s. The Fourier
modes of this operator are

Õp(1 + eip1+ip2)eip·x (2.18)

which identically vanishes whenever p ∈ Pstaggered. Moreover, the expectation value of any
operator eiOx will generically vanish because of the peculiar modes, but eiOx+iOx+s will not.

To see the connection to framing, let us apply this logic to Wilson loops. A naive Wilson
loop W (C) on a generic contour C contains the Pstaggered modes and is a vanishing operator
on the Hilbert space! However, the framed Wilson loop

e
i q
2
∑

(x,i)∈C
(ax,i+ax+s,i) , (2.19)

does not contain the Pstaggered modes and is a genuine operator in the theory. The framing
constraint is so named because it projects out all unframed Wilson loops, leaving framed
loops as the only physical operators (which, as we will see soon, are also topological). We can
write a general framed Wilson loop in a simple way using cup products. Let C̃ be a contour
on the dual lattice, and [C̃]ℓ̃ denote the 1-cochain on the dual lattice whose value is the
oriented number of times the link ℓ̃ is traversed by C̃. Finally, we denote by (⋆[C̃])ℓ = [C̃]⋆ℓ
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its Hodge dual which is equal to the number of oriented times C̃ intersects the link ℓ.5 The
framed Wilson loop is simply

Ŵq(C̃) = ei
q
2
∑

⋆[C̃]∪a−a∪⋆[C̃] , (2.20)

where the sum is over all plaquettes of the lattice. Since we are in the non-compact R gauge
theory, q can be an arbitrary real charge. See figure 2 for an example of a framed Wilson line.

The number of vanishing canonical momenta depends sensitively on the lengths of the
torus L1, L2, and one may wonder whether the requirement that Wilson loops be framed
also depends on the torus geometry. Such dependence would be rather unphysical. The
more precise statement is that the framing constraint sets to zero any unframed Wilson loop
which cannot be written in terms of framed Wilson loops. For instance, if L1 and L2 are odd,
Pstaggered is empty, and there are no vanishing canonical momenta — correspondingly, there
are ordinary Wilson loops in this theory. The crucial point is that in this case, each ordinary
unframed Wilson line can be written as a product of framed Wilson lines. We show an
example in figure 3. The upshot is that regardless of the geometry of the torus, the physical
operators in the theory are framed Wilson loops, with the framing dictated by our convention
for the cup products in eq. (2.2). More specifically, as we explain in detail in appendix A,
there are four inequivalent choices for the cup products on the square lattice. The choice
we have made in the main text corresponds to framing Wilson lines ‘up and to the right,’
i.e. by displacement by s = 1̂ + 2̂. The other three choices for cup products correspond to
displacements by −s and displacements by ±(1̂ − 2̂).

Let us now return to position space and write down the commutation relations between
link fields. The commutator between two links is in fact non-local. But the commutator of a
single link with a pair of links shifted by s is ultra-local and given by

[ax,i, ay,j + ay+s,j ] =
1
V

∑
p,q

[ãp,i, ãq,j ](1 + ei(q1+q2))eip·x+iq·y

= −2πi
k

1
V

∑
p
ϵij

eipi + e−ipj

1 + cos(p1 + p2)
(1 + e−i(p1+p2))eip·(x−y)

= −4πi
k

1
V

∑
p
ϵij e

−ipjeip·(x−y) = −4πi
k
ϵij δx,y+ĵ .

(2.21)

As a result, the commutator between two ‘point-split’ pairs of links is given by

[ax,i + ax+s,i

2 ,
ay,j + ay+s,j

2 ] = −2πi
k
ϵij
δx+î,y + δx,y+ĵ

2 , (2.22)

5Explicitly, the Hodge dual of a link on the 2d lattice is defined as

⋆(x, 1) = (x + 1̂ − 2̂
2 , 2) , ⋆(x, 2) = −(x + −1̂ + 2̂

2 , 1) ,

so that ⋆2 = −1 when acting on links. On the other hand the Hodge dual acting on sites and plaquettes is

⋆x = (x − 1̂ + 2̂
2 , 12) , ⋆(x, 12) = x + 1̂ + 2̂

2 ,

and ⋆2 = +1 when acting on sites and plaquettes.
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Figure 3. On a torus with odd side lengths L1, L2, any ‘unframed’ Wilson line can be written as a
product of lcm(L1, L2) framed Wilson lines displaced by s = 1̂+2̂. In the above example, L1 = L2 = 5.

Figure 4. Commutation relations (2.21) between a single link field and a pair of links displaced by
s = 1̂ + 2̂.

which is the lattice analogue of the continuum commutation relation

[ai(x), aj(y)] = −2πi
k
ϵij δ(x − y) . (2.23)

This leads to the following crucial formula involving an arbitrary pair of 1-cochains X and Y :[
i
2
∑
Λ
(X ∪ a− a ∪X) , i

2
∑
Λ
(Y ∪ a− a ∪ Y )

]
= 2πi

2k
∑
Λ
(X ∪ Y − Y ∪X) , (2.24)

where the sum is over all plaquettes on the lattice. If we let X = ⋆[C̃1] and Y = ⋆[C̃2],
the above commutation relation implies[

i
2
∑
Λ
(⋆[C̃1] ∪ a− a ∪ ⋆[C̃1]) ,

i
2
∑
Λ
(⋆[C̃2] ∪ a− a ∪ ⋆[C̃2])

]

= 2πi
2k

∑
Λ
(⋆[C̃1] ∪ ⋆[C̃2]− ⋆[C̃2] ∪ ⋆[C̃1]) =

2πi
k

Int(C̃1, C̃2) ,
(2.25)

where Int(C̃1, C̃2) is the intersection number of the two curves. As a result, framed Wilson
loops obey the expected algebra

Ŵq1(C̃1)Ŵq2(C̃2) = Ŵq2(C̃2)Ŵq1(C̃1) e−
2πi
k

q1q2Int(C̃1,C̃2) . (2.26)
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2.1 Symmetries and gauge redundancies

The action (2.2) is invariant under shifts of the gauge field of the form a → a + ω and
a0 → a0 + ω0 with the 1-cochain ω ∈ C1(R) and the 0-cochain ω0 ∈ C0(R) satisfying

dω = 0 , dω0 − ω̇ = 0 . (2.27)

Now let us focus for the moment on the global transformation for which ω0 = 0 and ω is
time-independent. Then we can associate ω ∈ Z1(R) and hence we can think of the Poincaré
dual of ω as a (or some collection of) closed contour(s) C̃ on the dual lattice. Further
we will assume that ω does not have Fourier modes in Pstaggered, because shifting these
modes is automatically a symmetry since all the states must have a vanishing canonical
momentum of these modes.

The generator of this transformation is simply

U [ω] = e
ik
4π

∑
x ωx,i(ax+î,j+ax−ĵ,j)ϵij = e

ik
4π

∑
(ω∪a−a∪ω) , (2.28)

which, since dω = 0, has the form of a framed Wilson loop. Specifically, comparing to eq. (2.20),
Ŵq(C̃) = U

[
2πq
k ⋆ [C̃]

]
. Indeed this operator implements the shift of the gauge field

U [ω]† ax,i U [ω] = ax,i −
ik
4π

∑
y,j,r

ωy,j ϵjr [ay+ĵ,r + ay−r̂,r, ax,i] = ax,i + ωx,i , (2.29)

as is easily checked using eq. (2.21). When ω = dλ is exact, U [dλ] implements a gauge
transformation and must be equivalent to the identity operator on the physical Hilbert
space. Indeed, in this case

U [dλ] = e
ik
4π

∑
(dλ∪a−a∪dλ) ≡ G[λ] = e−

ik
4π

∑
(λ∪da+da∪λ) = 1 (2.30)

thanks to the Gauss law (2.7). A direct consequence is that a closed, contractible framed
Wilson loop is equivalent to a generator of a gauge transformation, and hence is trivial. To
see this, let λ = 2πq

k ⋆ [D̃], so that dλ = 2πq
k ⋆ [∂D̃] where D̃ is a disk, and write

G

[2πq
k

⋆ [D̃]
]
= e−

iq
2
∑

(⋆[D̃]∪da−da∪⋆[D̃]) = e
iq
2
∑

(⋆[∂D̃]∪a−a∪⋆[∂D̃]) = Ŵq(∂D̃) , (2.31)

where we used summation by parts. Therefore, contractible framed Wilson loops are trivial
in the Hilbert space where the Gauss law is satisfied.

The generators of the 1-form symmetry (which again are just framed Wilson loops)
are indeed topological, since

U [ω] = G[λ]U [ω] = e−
2πi
2k

1
2
∑

dλ∪ω−ω∪dλ U [ω + dλ] = U [ω + dλ] , (2.32)

where in the first equality we used the Gauss law (2.30), the second equality follows from
eq. (2.24), and in the last equality we integrated by parts and used dω = 0. In terms of
the Wilson loop, this implies

Ŵq(C̃) = G

[2πq
k

⋆ [D̃]
]
Ŵq(C̃) = Ŵq(C̃ + ∂D̃). (2.33)
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Intuitively, we can deform a framed Wilson loop by ‘tacking on’ an arbitrary framed con-
tractible loop, which is trivial thanks to the Gauss law. So Wilson loops only depend on
their homology class.

Now we consider another class of transformations which leaves the action invariant and
is associated with the staggered modes Pstaggered. For this purpose, we take at least one
of L1, L2 to be even. Consider a generic shift a → a+ ω with ω time-independent but not
necessarily closed. The action changes by

∆S = − k

4π

∫
dt
∑
Λ

(da0 ∪ ω − ω ∪ da0) . (2.34)

We can choose ω to be a staggered in the following sense. Consider a fixed lattice site x0
and take ωx0+ns,i = (−1)n εi and all other ωx,i = 0, where n ∈ Z and ε1, ε2 ∈ R. This shift is
consistent with periodic boundary conditions as long as at least one of L1, L2 is even. It is easy
to see that X ∪ω−ω ∪X = 0 for any 1-cochain X. Explicitly, the transformation is given by

ax,i → ax,i + εi

lcm(L1,L2)−1∑
n=0

(−1)n δx,x0+ns , (2.35)

so that in Fourier components we have

ãp,i → ãp,i + εi
1√
V

lcm(L1,L2)−1∑
n=0

ein(p1+p2−π)eip·x0

= ãp,i + εi e
ip·x0 lcm(L1, L2)√

V

∑
w∈Z

δp1+p2,π+2πw

(2.36)

The sum over n forces the transformation to vanish unless p ∈ Pstaggered. In other words, this
symmetry only affects the zero modes discussed before. This transformation is implemented
by the exponentiated canonical momentum of ãp,i, with p ∈ Pstaggered. But recall that
any such canonical momentum vanishes (2.14), and hence all states in the Hilbert space
are automatically invariant under the above transformation. In other words, the above
transformation is the trivial identity operator on the Hilbert space. So the unusual staggered
symmetry of the action is actually a gauge redundancy, not a global symmetry. In particular
any operator which is not invariant under this symmetry (i.e. a generic unframed Wilson
loop) would take a state out of the Hilbert space and is therefore forbidden. The canonical
formulation makes it clear that symmetry of the lattice action that leads to the projecting
out of unframed Wilson lines is in fact a gauge redundancy, as suggested in [9].

3 Compact Chern-Simons theory

We now want to construct the compact Chern-Simons theory with gauge group U(1). This is
achieved by gauging the 2πZ subgroup of the R 1-form symmetry of the non-compact theory.
Intuitively, this turns the spatial gauge field into an angle-valued variable. For this purpose
we introduce integer plaquette field np, and write a continuous-time action

S = k

4π

∫
dt
∑
Λ

[a ∪ ȧ− a0 ∪ (da− 2πn)− (da− 2πn) ∪ a0] . (3.1)
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Physically, np can be thought of as the local magnetic flux, which can change by an exact
integer under a large gauge transformation — the sum of np over all of space is gauge-invariant.
We demand that a→ a+ 2πm, n→ n+ dm,m ∈ C1(Z) is a gauge symmetry (with m time
independent), as we will check in a moment. But first we check the ordinary (small) gauge
transformation a→ a+ dλ and a0 → a0 + λ̇ are respected. Compared to the non-compact
case (2.6), we encounter additional terms

∆S = k

2

∫
dt
∑
Λ
n ∪ λ̇+ λ̇ ∪ n . (3.2)

Since we take time to be non-compact we can integrate by parts in time and in order for
the action to be invariant we must set ṅ = 0. This is quite natural for an integer-valued
field when time is continuous. Physically, this means that there are no monopole events
which would change the quantized magnetic flux through space. To implement this constraint
we follow the modified Villain procedure and introduce a Lagrange multiplier field φ on
the sites of the lattice, and add the term∫

dt
∑
Λ
φ̇ ∪ n (3.3)

to the action. When we quantize the theory, we impose that φ is a periodic scalar φ ∼ φ+2π
so that its conjugate momentum, n, becomes an integer-spectrum operator. The operator eiφ

is nothing but the monopole operator in our 2+1d U(1) gauge theory.
Now it is also possible to cancel the above gauge variation using a shift of φ. But this shift

would involve a nonlocal shift of φ by λ at nearby sites. Instead we proceed as in ref. [9] and
assign φ charge k under the gauge symmetry φ→ φ−kλ, while introducing an additional term

k

2

∫
dt
∑
Λ
ȧ ∪1 n . (3.4)

With these additional terms the variation of the action under small gauge transformations is

∆S = k

2

∫
dt
∑
Λ
n ∪ λ̇− λ̇ ∪ n+ dλ̇ ∪1 n = 0 (3.5)

using eq. (2.1). Now let us verify that a → a + 2πm and n → n + dm (with m time
independent) is a symmetry:

∆S = k

4π

∫
dt
∑
Λ

2πm ∪ ȧ+
∫
dt
∑
Λ
φ̇ ∪ dm . (3.6)

Both terms are total time derivatives, so the action is invariant. To summarize, the action

S =
∫
dt
∑
Λ

k

4π [a ∪ ȧ− a0 ∪ (da− 2πn)− (da− 2πn) ∪ a0 + 2πȧ ∪1 n] + φ̇ ∪ n (3.7)

is invariant under the following transformations

a→ a+ dλ+ 2πm
n→ n+ dm ,

φ→ φ− kλ ,

(3.8)
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where λ ∈ C0(R) and m ∈ C1(Z) and ṁ = 0. In fact, in the above discussion of the classical
action we never used the fact that m was integer valued, and correspondingly k could still
take any real value. This is due to the fact that we are taking time to be non-compact, so
that gauge transformations cannot wind in time. As we will see below, even with time taken
to be non-compact, level quantization and the discreteness of large gauge transformations
emerge once we quantize the theory.

3.1 Quantization

In conventional lattice notation, the full action in continuum time is given by

S =
∫
dt
∑

x

[
k

4π
(
ax,iȧx+î,jϵij − [(a0)x + (a0)x+s] [(da)x,12 − 2πnx,12]

)

+
(
φ̇x − k

2 (ȧx,2 + ȧx+2̂,1)
)
nx,12

] (3.9)

Again there is no dependence on ȧ0, so the canonical momentum of a0 vanishes, which in
turn implies the Gauss law (the normalization is for later convenience)

Gx = k

4π [(da− 2πn)x−s,12 + (da− 2πn)x,12] = 0 . (3.10)

Switching to momentum space, i.e.

ax,i =
1√
V

∑
p
ãp,i e

ip·x , nx,12 =
1√
V

∑
p
ñp e

ip·x , φx = 1√
V

∑
p
φ̃p e

ip·x , (3.11)

we get that the rest of the action can be written as

S =
∫
dt
∑

p

(1
2K(p)ij ãp,i ˙̃a−p,j + ñp

(
˙̃φ−p − k

2
˙̃a−p,2 −

k

2
˙̃a−p,1 e

−ip2

))
. (3.12)

Defining φ̃p = φ̃p − k
2 ãp,2 − k

2 ãp,1 e
ip2 we write the above as

S =
∫
dt
∑

p

(1
2K(p)ij ãp,i ˙̃a−p,j + ñp

˙̃φ−p

)
. (3.13)

This form of the action makes it clear that when p ̸∈ Pstaggered the operators ãp,i obey the
commutation relations (2.16) as before, and the canonical momenta Πp,i of modes ãp,i with
p ∈ Pstaggered all vanish. On the other hand we have that

[φ̃p, ñq] = iδp,−q . (3.14)

Now since ñp commutes with ãp,i we get

[φ̃p, ñq] = iδp,−q =⇒ [φx, ny,12] = iδx,y . (3.15)

So we can view n as the canonical momentum for φ. But now notice that since

[ãp,i, φ̃q] = 0 = [ãp,i, φ̃q − k

2 ãq,2 −
k

2 ãq,1 e
iq2 ] , (3.16)
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φ̃ will have a non-trivial commutation relation with the gauge field (for p ̸∈ Pstaggered)

[φ̃p, ãq,i] = iπ δp,−q
1 + ei(p1+p2)

1 + cos(p1 + p2)
(δi1 e

−ip1 − δi2) . (3.17)

For instance, in position space this implies that

[φx, ay,i + ay+s,i] = 2πi (δi1δx,y+1̂ − δi2δx,y) , (3.18)

so that

[φx, (da)y,12 + (da)y+s,12] = 2πi (δx,y − δx,y+s) . (3.19)

This leads to [φx,Gy] = −ik δx,y, so indeed the monopole operator Mx = eiφx has electric
charge −k [9, 35, 36]. In the following, we will also make use of the fact that

∑
Λ

(
φ ∪X + k

2a ∪1 X

)
(3.20)

commutes with all a, where here X is an arbitrary 2-cochain.

3.2 Gauge redundancies

Conventional 0-form gauge transformations a → a + dλ, φ → φ − kλ are implemented by
the analogous operator to (2.30), namely

G[λ] = e−
ik
4π

∑
λ∪(da−2πn)+(da−2πn)∪λ , (3.21)

which is equal to the identity operator on Hilbert space thanks to the Gauss law (3.10).
An important consequence of the Gauss law is that the total magnetic flux through the
torus necessarily vanishes.

We also want to impose compactness of φ, in other words we want to gauge discrete shifts
φ→ φ+ 2πu with u an independent integer on each site. This transformation is achieved by

C[u] = e2πi
∑

u∪n , u ∈ C0(Z) . (3.22)

Setting this operator equal to the identity on the physical Hilbert space implies that n is
an operator with an integer spectrum.

Finally, we have the discrete gauge symmetry corresponding to large gauge transfor-
mations, which take a → a + 2πm, n → n + dm with m ∈ C1(Z). This is implemented
by the operator

U [m] = ei
∑
[ k
2 (m∪a−a∪m+a∪1dm)+φ∪dm] , m ∈ C1(Z) . (3.23)

Now we must impose the constraint that U [m] equals the identity operator on Hilbert
space. For this to be consistent we also have to demand that the U [m] operators are
invariant under ordinary gauge transformations, but also commute between themselves, i.e.
are themselves invariant under large gauge transformations. This requirement is what leads
to the quantization of the level k It is easy to verify that U [m] and G[λ] commute. However,
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in general the generators of large gauge transformations do not commute among themselves,
but instead have the following commutation relations:

U [m]U [m′] = U [m′]U [m] eikπ
∑

m∪m′−m′∪m . (3.24)

For generic values of k, this non-commutativity prevents us from imposing the constraint
U [m] = 1 on the Hilbert space, and can be thought of as a ’t Hooft anomaly for the 2πZ
subgroup of the 1-form symmetry in the non-compact Rk Chern-Simons theory. Clearly
if k is an even integer, the anomaly trivializes, and imposing the 1-form gauge constraint
defines the physical Hilbert space of the U(1)k theory.

It is well-known that when k is an odd integer the U(1)k CS theory is a spin-TQFT [25, 37–
39]. In the current context, if k is an odd integer one can introduce fermionic degrees of
freedom on the lattice to cancel the unwanted phase in eq. (3.24) in a procedure known
as fermion condensation [25, 40–42]. For the moment we restrict ourselves to k ∈ 2Z, and
discuss the fermionic CS theory in section 4 below.

In fact, to consistently gauge 2π shifts a → a + 2πm it is necessary but not sufficient
to ensure that the generators U [m] commute. To see the remaining issue, note that the
operators as defined in eq. (3.23) satisfy

U [m]U [m′] = U [m+m′] ei
kπ
2
∑

m∪m′−m′∪m . (3.25)

If dm = dm′ = 0, this phase is indeed trivial. Otherwise this phase can be nontrivial if k is
not a multiple of 4, and hence inconsistent with the constraint U [m] = 1. We can fix this
problem by rephasing the operators by U [m] → ei

kπ
2
∑

m∪m U [m] so that

U [m]U [m′] = U [m+m′] eikπ
∑

m∪m′
, (3.26)

which is innocuous if k ∈ 2Z.

3.3 Zk 1-form symmetry and ’t Hooft anomaly

Recall that in the non-compact CS theory, framed Wilson loops with charge q consisted
of two charge-q/2 Wilson loops displaced by s. In the compact CS theory, when q is odd
the two Wilson loops have fractional charges and have to be connected by a surface built
out of the Villain variable np,

Ŵq(C̃) = e
iq
2
∑

⋆[C̃]∪a−a∪⋆[C̃]+2π⋆[C̃]∪1n . (3.27)

Throughout the following we denote the minimally-charged Wilson line (which is now a
well-defined notion) by Ŵ (C̃) ≡ Ŵ1(C̃). We can repeat the analysis in section 2.1 to show
that these framed spatial Wilson loops only depend on the homology class of C̃. To see this,
let us use the 2d cup product identity from Footnote 2

λ ∪ n− n ∪ λ = dλ ∪1 n, (3.28)

to rewrite the generator of gauge transformations (3.21) as

G[λ] = e
ik
4π

∑
(dλ∪a−a∪dλ)+4πn∪λ+2π dλ∪1n . (3.29)
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Now we set λ = 2πq
k ⋆ [D̃], so that dλ = 2πq

k ⋆ [∂D̃] where D̃ is a disk and q ∈ Z. Then one finds

G

[2πq
k

⋆ [D̃]
]
= e

iq
2
∑

(⋆[∂D̃]∪a−a∪⋆[∂D̃])+4πn∪⋆[D̃]+2π⋆[∂D̃]∪1n = Ŵq(∂D̃) , (3.30)

so that contractible framed Wilson loops are pure gauge transformations and hence trivial,
provided the Gauss law is satisfied. To see very explicitly that framed Wilson loops are
topological, we can start with an arbitrary loop C̃ and add a contractible loop ∂D̃ using
a gauge transformation

Ŵ (C̃) = G

[2π
k
⋆ [D̃]

]
Ŵ (C̃) = Ŵ (C̃ + ∂D̃) , (3.31)

just as in the non-compact case.
While contractible Wilson loops can be trivialized using a gauge transformation, non-

contractible loops are necessarily non-trivial as they obey the familiar commutation relation

Ŵ (C̃1)Ŵ (C̃2) = Ŵ (C̃2)Ŵ (C̃1) e−
2πi
k

Int(C̃1,C̃2) . (3.32)

Moreover, in contrast to the non-compact case, we have that

[Ŵ (C̃)]k = Ŵk(C̃) = e
ik
2
∑

⋆[C̃]∪a−a∪⋆[C̃]+2π⋆[C̃]∪1n = U [⋆[C̃]] = 1 (3.33)

by the large-gauge constraint (we remind the reader that in the current discussion we are
taking k to be even). So while contractible Wilson loops are trivial, the eigenvalues of the
minimal non-contractible Wilson loops are non-trivial kth roots of unity.

In particular, just as in the continuum, these relations imply the k-fold degeneracy of
the Hilbert space on the torus.6 The commutation relation (3.32) implies that the Zk × Zk

symmetry acting on the Wilson loops winding around the two cycles of the torus is realized
projectively on the Hilbert space. This is the hallmark of the ’t Hooft anomaly of the Z(1)

k

1-form symmetry generated by the Wilson loops themselves.
We emphasize that although the ingredients of our lattice model are bosonic, each carrying

an infinite dimensional Hilbert space, the actual Hilbert space of the theory is finite and
k-dimensional on the torus. While the non-trivial algebra obeyed by Wilson loops implies that
all states in the Hilbert space are at least k-fold degenerate, the fact that the only non-trivial
operators in the theory are the topological framed Wilson loops means that the Hilbert space
is finite dimensional. Just as in the continuum, the finiteness of the Hilbert space is spoiled if
we include a conventional lattice Maxwell term, which makes the Hamiltonian non-zero and
reinstates the unframed Wilson lines as physical and non-topological operators. On the other
hand, since the Maxwell term does not break the 1-form symmetry nor its ’t Hooft anomaly,
all states in the resulting infinite-dimensional torus Hilbert space will be k-fold degenerate.

6To see this, we can choose C̃1 to be one of the generating cycles of the torus, and label the states of the Hilbert
space by |m⟩, where m = 0, . . . , k − 1 correspond to the eigenvalues of Ŵ (C̃1), i.e. Ŵ (C̃1)|m⟩ = e

2πi
k

m|m⟩.
Choosing C̃2 to lie along the transverse cycle to C̃, so that Int(C̃1, C̃2) = 1, the state Ŵ (C̃2)†|m⟩ has eigenvalue
e

2πi
k

(m+1) under Ŵ (C̃1) and can be identified with |m + 1⟩. This Hilbert space realizes the algebra (3.32)
and (3.33) and has dimension k.
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3.4 Defect Hilbert spaces and topological spin

Up until this point, we have always been working in the Hilbert space where the local Gauss
law (3.10) and the framing constraint are both satisfied. While this gives rise to a well-defined
Hilbert space, we can also access other superselection sectors where the constraints are violated
in a controlled way. Such modifications of the contraints give rise to ‘defect’ Hilbert spaces.

In the case of the Gauss law, the defect Hilbert space corresponds to inserting temporal
Wilson lines which represent the static worldlines of electric probe particles. If at least one
of L1, L2 is even, the Lagrangian in eq. (3.7) is invariant under staggered shifts (a0)x →
(a0)x+ω

∑lcm(L1,L2)−1
n=0 (−1)nδx,x0+ns, suggesting that we should only consider framed temporal

Wilson lines. Indeed, suppose we insert an ordinary, unframed temporal Wilson line of charge
q at a site at y. This modifies the Gauss law to

(da− 2πn)x−s,12 + (da− 2πn)x,12
?= 4πq

k
δx,y . (3.34)

This constraint would be inconsistent — in momentum space, the left-hand-side does not
involve the Pstaggered modes, while the right-hand-side does. To get a sensible defect, in
general we have to split a charge-q temporal Wilson line into a staggered pair of charge-q/2
lines, which gives rise to the modified Gauss law

(da− 2πn)x−s,12 + (da− 2πn)x,12 =
2πq
k

(δx,x̃0− s
2
+ δx,x̃0+ s

2
) , (3.35)

where x̃0 is a point on the dual lattice corresponding to the midpoint of the two charge-
q/2 probes.

The most general defect Hilbert space, which we denote by H{(qi,x̃i)} is labelled by
the charges q and positions x̃ of the static probe particles. The defects are topological,
corresponding to the fact that the framed temporal Wilson lines are nothing but the defects
associated to the Zk 1-form symmetry. Explicitly, given a state |ψ⟩ ∈ H(q,x̃) we have the
unitary transformation

|ψ⟩ → Ŵq(C̃x̃ỹ)|ψ⟩ , (3.36)

which maps H(q,x̃) → H(q,ỹ). Here C̃x̃,ỹ is any curve on the dual lattice connecting x̃ and
ỹ. The dependence on this curve is also topological, up to phases which can appear if the
curve crosses other defects — this is related to the anomaly. In general, we can connect two
defect Hilbert spaces H{(qi,x̃i)} and H{(q′i,x̃

′
i)} if and only if (

∑
qi) = (

∑
q′i) mod k, so that

they have the same charge under the 1-form symmetry. Indeed, the defect Hilbert space with
a charge-k temporal Wilson line at x̃ can be mapped to the ordinary Hilbert space by acting
with the local monopole operator e−iφ̄x̃− s

2 , reflecting the fact that the 1-form symmetry is Zk.
We can now compute a correlation function which we interpret as giving the topological

spin. We consider the expectation value of a framed Wilson loop on a contractible curve C̃,
but in the defect Hilbert space H(1,x̃) where x̃ and C̃ are depicted in figure 5. We can use the
argument near eq. (3.31) above to deform the Wilson loop to a single (staggered) plaquette,

⟨Ŵ (C̃)⟩(1,x̃) = ⟨e
i
2

(
(da−2πn)x̃− 3s

2
+(da−2πn)x̃− s

2

)
⟩(1,x̃) = e

2πi
2k (3.37)
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Figure 5. Shrinking a contractible Wilson loop in the presence of a temporal Wilson line yields a
Z2k phase which we interpret as the topological spin. The pair of circular blue dots denote the two
charge-1/2 edges of the framed temporal Wilson line.

using the modified Gauss constraint (3.35). Alternatively, we can arrive at the same phase
by applying an open spatial Wilson line to move the defect away from the loop C̃, shrinking
the loop, and moving the defect back to its original location.

We can also consider a defect Hilbert space corresponding to a fixed violation of the
staggered constraint, for instance by setting Πp,i = cp,i where cp,i are some c-numbers and
p ∈ Pstaggered. Note that this does not define a local defect Hilbert space, as the constraint is
modified locally in momentum space. These defect Hilbert spaces correspond to superselection
sectors with fixed eigenvalues under (linear combinations of) the transformations discussed
near eq. (2.35), and are mixed by acting with ordinary, unframed spatial Wilson loops.
Breaking the staggered gauge redundancy explicitly by turning on a Maxwell term, or
coupling to an electrically charged particle with a standard hopping term, will lead to
dynamical mixing of these superselection sectors, and result in an infinite-dimensional Hilbert
space, as discussed in section 3.3.

4 Odd levels: the fermionic Chern-Simons theory

In section 3.2 we observed that when k is odd the (naive) generators of large gauge trans-
formations do not commute, but instead satisfy

U [m]U [m′] = U [m+m′] eikπ
∑

m∪m′ = U [m′]U [m] eikπ
∑

m∪m′+m′∪m . (4.1)

These non-trivial phases constitute an obstruction to setting U [m] = 1 to define the physical
gauge-invariant Hilbert space, i.e. a ’t Hooft anomaly for the 2πZ subgroup of the R 1-form
symmetry of the Rk theory.7

An intuitive explanation for why there is an anomaly is as follows. Via Poincaré duality
we can view the generators of large gauge transformations as operators supported on (not
necessarily closed) lines. In fact the operator U [m] is just a charge-k framed Wilson loop,
but without the surface connecting the two edges of the ribbon (the last term in eq. (3.27)).
When k is odd, the Wilson lines at the edges of the ribbon have fractional charge and are not
invariant under large gauge transformations, leading to the anomaly. One can attempt to fix

7Alternatively, one can start with Rk and gauge the non-anomalous 4πZ subgroup of the 1-form symmetry
to land on the U(1)4k theory. The Z2 subgroup of the Z4k 1-form symmetry of U(1)4k has an ’t Hooft anomaly,
with the generators obeying (4.1).
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this by including Villain fields in the interior of the ribbon, but the resulting operator acts
on φ and is therefore not the correct generator of large gauge transformations.

We can cancel the anomaly by finding a suitable set of operators S[m] which satisfy
the same relations as eq. (4.1), so that we can define an improved generator of large gauge
transformations U [m]S[m] which can be consistently constrained to the identity on Hilbert
space. This is only possible if we first enlarge our Hilbert space and the algebra of operators.
There is not a unique choice for these additional degrees of freedom — we will follow ref. [26]
and build S[m] out of a set of fermionic operators. The values of S[m] on cohomology
classes m ∈ H1(Z) turn out to be related to the spin structure on the spatial torus. This
is how the odd k theory, which is a spin-TQFT, depends on spin structure. The same
operators we discuss below were used in refs. [43–45] to define generalized Jordan-Wigner
bosonization maps on the lattice.

To proceed, we introduce a pair of Majorana fermions γp, γ
′
p on each of the V = L1L2

plaquettes of the lattice, with the usual algebra

{γp, γp′} = {γ′p, γ′p′} = 2δp,p′ , {γp, γ
′
p′} = 0 . (4.2)

The full Hilbert space is now enlarged to include the 2V -dimensional fermionic Hilbert space
— in a moment we will project down to a subspace which has the same dimension of the
bosonic Hilbert space we started with. One can think of these Majoranas as the real and
imaginary parts of the creation and annihilation operators

cp = 1
2(γp + iγ′p), c†p = 1

2(γp − iγ′p) . (4.3)

We define fermion parity on each plaquette to be (−1)Fp = iγ′pγp.
The crucial building blocks for defining the fermionic CS theory are a set of link operators,

schematically defined as Sℓ = iγpγ
′
p′ where p and p′ are the (positively oriented) plaquettes

lying in the coboundary of ℓ. More specifically, these operators are defined for positively-
oriented links,

Sx,1 = iγx,12 γ
′
x−2̂,12 , Sx,2 = iγx−1̂,12 γ

′
x,12 , (4.4)

and extended to negatively oriented links via S−ℓ = −Sℓ, just as for a 1-cochain. These
operators square to 1 and satisfy [26, 43, 45]

SℓSℓ′ = Sℓ′Sℓ e
iπ
∑

[ℓ]∪[ℓ′]+[ℓ′]∪[ℓ] . (4.5)

Now let m ∈ C1(Z) and define [26]

S[m] = eiπ
∑

ℓ<ℓ′∈λ
[ℓ]∪[ℓ′] ∏

ℓ∈λ

Sℓ , (4.6)

where λ is the ordered set of all links ℓ for which mℓ ̸= 0 mod 2, and the product is taken
from left to right in the order dictated by λ. The ordering-dependence of the two factors
compensate so that the operator as a whole is independent of the choice of ordering. If
m = dq is exact, then

S[dq] =
∏
p

(iγ′pγp)dq∪1[p] ≡ eiπ
∑

dq∪1F (4.7)
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where Fp is the fermion number (well-defined mod 2) of a given plaquette. If dm = 0 but is
not exact, then S[m] = −eiπ

∑
m∪1F . Finally, if dm ̸= 0 mod 2, then

S[m] = eiπ
∑

m∪1F
∏
p

γ|(dm)p|
p (4.8)

with some fixed ordering of the product over γ’s. Note that these operators satisfy [26]

S[m]S[m′] = S[m+m′] eiπ
∑

m∪m′ = S[m′]S[m] eiπ
∑

m∪m′+m′∪m , (4.9)

reproducing the algebra eq. (4.1).
To see how the spin structure comes into play, note that we are free to consider a

family of operators

SΓ[m] = eiπ
∑

Γ m S[m] , (4.10)

where the additional phase factor depends on a closed curve Γ on the lattice, ∂Γ = 0. This
phase factor preserves the algebra (4.9), and if dm = 0, the operator above is just a sign
times eiπ

∑
m∪1F . Let m = ⋆[C̃] with ∂C̃ = 0. Specifically, we find

SΓ[⋆[C̃]] = eiπ
∑

⋆[C̃]∪1F

(+1) eiπ Int(Γ, C̃) = +1 if C̃ is contractible,
(−1) eiπ Int(Γ, C̃) if C̃ is non-contractible.

(4.11)

Now we would like to interpret these phases in terms of the spin structure on the torus.
Following e.g. refs. [46, 47], given a spin structure ρ on the torus there is an associated
quadratic form qρ on H1(Z2) which is equal to 0 on cycles with anti-periodic boundary
conditions and 1 on cycles with periodic boundary conditions. This form satisfies qρ(C1 +
C2) = qρ(C1) + qρ(C2) + Int(C1, C2). We can identify eiπ

∑
⋆[C̃]∪1F SΓ[⋆[C̃]] = eiπqρ(C̃), where

the choice of Γ is equivalent to a choice ρ of spin structure. For this discussion only the Z2
homology of Γ is important. Denoting the two cycles of the torus by a, b, we find

ρ AP/AP AP/P P/AP P/P
Γ a+ b b a 0

(4.12)

In short, the choice of Γ is simply telling us which generating cycles of the torus have
anti-periodic boundary conditions. Finally, if dm ̸= 0, the operator SΓ[m] is equal to
eiπ
∑

m∪1F ∏
p γ

|(dm)p|
p , up to a sign.

As described in the beginning of this section, the idea is to replace the constraint
U [m] = 1, which is inconsistent when k is odd, with U [m]SΓ[m] = 1. When dm = 0 mod 2
this sets U [m] equal to a sign times (−1)

∑
m∪1F , but when dm ̸= 0 mod 2 this equates the

open Wilson line (which acts on the bosonic Hilbert space) with a pair of Majorana operators
at the endpoints (which act on the fermionic Hilbert space):

U [m] = ei
kπ
2
∑

m∪m ei
∑

k
2 (m∪a−a∪m+a∪1dm)+φ∪dm = eiπ

∑
Γ m eiπ

∑
m∪1F

∏
p

γ|(dm)p|
p . (4.13)

The right hand side changes the fermion number by one unit on the plaquettes where
(dm)p = 1 mod 2, while the left hand side shifts n→ n+ dm. For this to be consistent, we
must identify the fermion parity on a plaquette with the eigenvalue of the Villain field mod 2:

(−1)np = (−1)Fp . (4.14)
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The physical Hilbert space is defined by this spin-charge relation (4.14) together with the
large-gauge constraint

U [m]SΓ[m] = 1 . (4.15)

We stress that the Hilbert space is defined with reference to some fixed Γ. Recall that in order
to introduce the fermionic operators γ, γ′ to cancel the anomaly, we had to enlarge our Hilbert
space by a factor of 2V , where V is the number of sites on the spatial lattice. Physically,
however, we should have a k-dimensional Hilbert space on the torus. The point is that the
identification (4.14) picks out just a single fermionic state for each bosonic state in the large
Hilbert space unconstrained by (4.15), so that the physical Hilbert space has dimension k.

Now consider the implications of the above discussion for a charge-k framed Wilson loop.
Using the large-gauge constraint, the spin-charge relation, and eq. (4.11), we find

Ŵk(C̃) = eikπ
∑

⋆[C̃]∪1n U [⋆[C̃]] = eikπ
∑

⋆[C̃]∪1F SΓ[⋆[C̃]]

=

+1 if C̃ is contractible,
(−1) eiπ Int(Γ, C̃) if C̃ is non-contractible.

(4.16)

For any choice of Γ, charge-k contractible Wilson loops are always equal to 1 (in the absence
of defects), while winding charge-k Wilson loops are a non-trivial sign depending on the
spin structure:

Ŵk(C̃) = (−1) eiπ Int(Γ, C̃) . (4.17)

In particular, the value of a charge-k framed Wilson loop wrapped on a non-trivial cycle
changes by a sign when we change the spin-structure. This matches the continuum discussions
in refs. [39, 48].

Furthermore, the spin-charge relation tells us that the charge-k temporal Wilson line
represents the worldline of a fermion — in the defect Hilbert space we can sum the modified
Gauss law (3.35) over the entire lattice to find

∑
p np = −1, so that the net fermion parity is

(−1)
∑

p
Fp = −1 . (4.18)

The spin-charge relation also tells us that the monopole operator is a fermion — eiφx anti-
commutes with eiπnx,12 , violating the spin-charge relation. This can be fixed by dressing
the monopole with a fermion, e.g. γ′x,12 e

iφx . Of course, this operator is not gauge-invariant,
and in the pure CS theory monopole operators have to be dressed by an open charge-k
Wilson line. In fact such an open Wilson line is nothing but the (trivial) operator U [m]SΓ[m].
We show an example in figure 6.

If we add electrically charged matter fields, we can define a genuine local monopole
operator which is necessarily a fermion when k is odd. In the continuum, such a fermionic
monopole operator is nothing but the expected image of the Dirac fermion Ψ in the basic
bosonization map relating Ψ to U(1)1 coupled to a unit charge scalar [27, 28, 49].
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Figure 6. An open Wilson line equal to the identity operator by the large-gauge constraint.

5 Conclusions

In this work we have applied the Villain Hamiltonian approach to the canonical quantization
of U(1)k Chern-Simons theory on a spatial lattice. Our discretization preserves defining
properties of the continuum theory — compactness of the gauge group, quantization of the
level, the 1-form symmetry and its ’t Hooft anomaly, the ground state degeneracy, and even
its fermionic nature when the level is odd. More importantly, the lattice construction clarifies
subtle aspects of the continuum theory. For instance, while in the continuum monopole
operators are disorder operators, within the modified Villain approach on the lattice they
have local expressions in terms of fields. The electric charges of these monopole operators
arises naturally in our construction. Similarly, we identified how the framing of Wilson lines,
which in the continuum is quite subtle, is incorporated on the lattice through constraints
on the physical Hilbert space. As a result of this mechanism, the physical operators of the
lattice theory are topological ribbons, whose algebra implies a k-fold degeneracy on the torus.

The Hilbert space of our model is defined by a local gauge constraint (Gauss law),
discrete gauge constraints imposing compactness of the U(1) gauge group and of the (phase
of the) monopole operator φ, and (depending on the details of the spatial torus) non-local
constraints projecting out unframed Wilson loops. These constraints constitute a collection
of ‘commuting projectors’ which can in principle be used to define commuting projector
Hamiltonians [50, 51] where the various constraints are energetically imposed. In particular,
when the number of sites in each direction is odd the non-local constraints disappear (since in
that case ordinary Wilson lines are equivalent to products of framed ones), and the resulting
commuting projector Hamiltonian will be local. The Hilbert space at each site would however
be infinite-dimensional, and the resulting theory may end up being gapless — see refs. [23, 24]
for an in-depth study of similar issues in doubled CS theories. In addition, one may be able
to use our construction to directly compute the topological entanglement entropy [52–54] on
the lattice, although the non-local constraints are likely to make this subtle.

One of the most interesting features of CS theory is its robust chiral edge modes [55, 56].
An obvious next step would be to analyze the edge modes of our lattice theory on spatial
lattice with boundary, and verify that they are indeed chiral and define a sensible quantum
field theory. We hope that this will give rise to new insights on the problem of discretizing
genuinely chiral bosons and fermions on the lattice (see refs. [21, 57–62] for recent works on
the subject). It is also interesting to go up in dimension, as we did in ref. [9], and study
our CS theory as the boundary of a four-dimensional symmetry-protected topological (SPT)
phase protected by the Zk 1-form symmetry. Relatedly, leveraging the results in this paper
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one should be able to canonically quantize 4d U(1) lattice gauge theory with a θ term to
study the Witten effect, electric-magnetic duality, and more.

Finally, one of our main motivations for studying the odd-level fermionic CS theories is
to establish exact boson-fermion dualities on the lattice. While in this paper we focused on
the pure CS theory, it is straightforward to introduce charged matter to obtain, for instance,
U(1)1 coupled to a scalar. Our analysis already correctly captures the fermionic statistics of
the monopole in that theory (via the spin-charge relation (4.14)), and constitutes a significant
step towards proving a lattice-level duality with a Dirac fermion. We leave further exploration
of this duality, and others, for future work.
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A Cup products on the square lattice

The cup product is the lattice analog of the wedge product — it takes a p- and q-cochain
and gives a p + q-cochain. One defining feature of the cup product is that

d(α(p) ∪ β(q)) = dα(p) ∪ β(q) + (−1)p α(p) ∪ dβ(q), (A.1)

where α(p), β(q) are p- and q-cochains respectively, and d is the lattice exterior derivative.
In two dimensions, we only need

(dα(0))x,i = α
(0)
x+î

− α
(0)
x , (dα(1))x,12 = α

(1)
x,1 + α

(1)
x+1̂,2 − α

(1)
x+2̂,1 − α

(1)
x,2 . (A.2)

Another useful identity captures the lack of super-commutativity of cup products:

α(p)∪β(q)−(−1)pq β(q)∪α(p)=(−1)p+q+1
[
d(α(p)∪1β

(q))−dα(p)∪1β
(q)−(−1)pα(p)∪1dβ

(q)
]
.

(A.3)
Here ∪1 is the cup-1 product, which takes a p- and q-cochain and gives a (p+ q − 1)-cochain

— the ∪i products vanish unless i ≤ p, q.
On the 2d square lattice, there are four choices for the ∪ and ∪1 products which satisfy

the above defining relations (see ref. [63] for expressions for and applications of (higher) cup
products on the (hyper) cubic lattice in arbitrary dimensions). We refer to the four choices
as ++,+−,−+,−−. The choice of cup product controls the way Wilson lines are framed in
our lattice Chern-Simons theory — for instance, in the ++ and −− conventions Wilson lines
are framed ‘up and to the right’ while in the +− and −+ conventions they are framed ‘up
and to the left.’ In the main text we work with the ++ convention, but for completeness
we give explicit formulas for all four choices.

The cup product between 0-cochains is the same for all choices:

(α(0) ∪ β(0))x = α
(0)
x β

(0)
x . (A.4)
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The cup products between 0- and 1-cochains are:

(α(0) ∪ β(1))x,1 (α(0) ∪ β(1))x,2 (β(1) ∪ α(0))x,1 (β(1) ∪ α(0))x,2

++ α
(0)
x β

(1)
x,1 α

(0)
x β

(1)
x,2 β

(1)
x,1 α

(0)
x+1̂ β

(1)
x,2 α

(0)
x+2̂

+− α
(0)
x β

(1)
x,1 α

(0)
x+2̂ β

(1)
x,2 β

(1)
x,1 α

(0)
x+1̂ β

(1)
x,2 α

(0)
x

−+ α
(0)
x+1̂ β

(1)
x,1 α

(0)
x β

(1)
x,2 β

(1)
x,1 α

(0)
x β

(1)
x,2 α

(0)
x+2̂

−− α
(0)
x+1̂ β

(1)
x,1 α

(0)
x+2̂ β

(1)
x,2 β

(1)
x,1 α

(0)
x β

(1)
x,2 α

(0)
x

(A.5)

The cup products between two 1-cochains are:

(α(1) ∪ β(1))x,12

++ α
(1)
x,1 β

(1)
x+1̂,2 − α

(1)
x,2 β

(1)
x+2̂,1

+− α
(1)
x+2̂,1 β

(1)
x+1̂,2 − α

(1)
x,2 β

(1)
x,1

−+ α
(1)
x,1 β

(1)
x,2 − α

(1)
x+1̂,2 β

(1)
x+2̂,1

−− α
(1)
x+2̂,1 β

(1)
x,2 − α

(1)
x+1̂,2 β

(1)
x,1

(A.6)

The cup products between 0- and 2-cochains are:

(α(0) ∪ β(2))x,12 (β(2) ∪ α(0))x,12

++ α
(0)
x β

(2)
x,12 β

(2)
x,12 α

(0)
x+1̂+2̂

+− α
(0)
x β

(2)
x−2̂,12 β

(2)
x,12 α

(0)
x+1̂

−+ α
(0)
x β

(2)
x−1̂,12 β

(2)
x,12 α

(0)
x+2̂

−− α
(0)
x β

(2)
x−1̂−2̂,12 β

(2)
x,12 α

(0)
x

(A.7)
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The cup-1 products between two 1-cochains are:

(α(1) ∪1 β
(1))x,1 (α(1) ∪1 β

(1))x,2

++ α
(1)
x,1 β

(1)
x,1 α

(1)
x,2 β

(1)
x,2

+− α
(1)
x,1 β

(1)
x,1 −α(1)

x,2 β
(1)
x,2

−+ −α(1)
x,1 β

(1)
x,1 α

(1)
x,2 β

(1)
x,2

−− −α(1)
x,1 β

(1)
x,1 −α(1)

x,2 β
(1)
x,2

(A.8)

The cup-1 products between 1- and 2-cochains are:

(α(1) ∪1 β
(2))x,12 (β(2) ∪1 α

(1))x,12

++ −(α(1)
x,2 + α

(1)
x+2̂,1)β

(2)
x,12 β

(2)
x,12 (α

(1)
x,1 + α

(1)
x+1̂,2)

+− (α(1)
x,2 − α

(1)
x,1)β

(2)
x,12 β

(2)
x,12 (α

(1)
x+2̂,1 − α

(1)
x+1̂,2)

−+ (α(1)
x+2̂,1 − α

(1)
x+1̂,2)β

(2)
x,12 β

(2)
x,12 (α

(1)
x,2 − α

(1)
x,1)

−− (α(1)
x,1 + α

(1)
x+1̂,2)β

(2)
x,12 −β(2)x,12 (α

(1)
x,2 + α

(1)
x+2̂,1)

(A.9)

B Quantizing a first-order Lagrangian

Consider the Lagrangian

L = q1q̇2 . (B.1)

The canonical momenta are

π1 = 0 , π2 = q1 . (B.2)

The equations above are primary, second class constraints, which can be written in terms
of the two functions

f1(π1) = π1 , (B.3)
f2(π2, q1) = π2 − q1 . (B.4)

The constrains are indeed second class as the Poisson bracket [f1, f2]P B = 1. Quantization
then proceeds with defining the Dirac bracket as

[A,B]DB = [A,B]P B − [A, fi]P B(S−1)ij [fj , B]P B , (B.5)
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with Sij = [fi, fj ] = −(S−1)ij =
(

0 1
−1 0

)
is an invertable matrix. Since we are imposing the

constraint on π1 and π2, the only Dirac bracket we need is

[q2, q1]DB = 1 . (B.6)

We quantize by promoting

[q2, q1]DB → [q2, q1] = i (B.7)

where [A,B] is the commutator of operators A and B. The algebra then just simply becomes
that q2 is the conjugate momentum of q1.

However now notice that up to a total derivative, we can write the Lagrangian as

L = 1
2(q1q̇2 − q2q̇1) . (B.8)

The constraints are then given by

f1 = π1 +
1
2q2 , (B.9)

f2 = π2 −
1
2q1 . (B.10)

The Poisson bracket between the two constraint again does not vanish

[f1, f2]P B = −1
2[π1, q1]P B + 1

2[q2, π2]P B = 1 , (B.11)

and so the constraint is second class. The Dirac bracket is defined again in the same manner
and gives the commutation relation

[q2, q1] = i (B.12)

i.e. the same as before.
Let us explicitly compute the Dirac bracket in the first setup for two functions A,B

of q1, q2, π1, π2. Since

[A, f1]P B = [A, π1]P B = ∂A

∂q1
, [A, f2]P B = ∂A

∂q2
+ ∂A

∂π1
, (B.13)

we easily get, by direct computation, that the Dirac bracket is given by

[A,B]DB = ∂A

∂q2

(
∂B

∂q1
+ ∂B

∂π2

)
− ∂B

∂q2

(
∂A

∂q1
+ ∂A

∂π2

)
. (B.14)

Now, we view A and B as functions of q1,2 and π1,2. The derivative w.r.t. π1 does not
appear at all, so we can safely set π1 = 0 in the dependence of A,B before or after the
Dirac bracket has been evaluated. However, we must be careful with setting π2 = q1, and
only impose this constraint after the Dirac bracket has been evaluated. In other words
the Dirac bracket is given by

[A,B]DB =
[
∂A

∂q2

(
∂B

∂q1
+ ∂B

∂π2

)
− ∂B

∂q2

(
∂A

∂q1
+ ∂A

∂π2

)] ∣∣∣∣∣
π1=0,π2=q1

. (B.15)
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Let F (q1, π2) be a function of q1 and π2. The differential of F is

dF = ∂F

∂q1
dq1 +

∂F

∂π2
dπ2 . (B.16)

Now we want to set q1 = π2 and look for a differential of F (q1, q1). We find that it is given by

dF (q1, q1)
dq1

= ∂F

∂q1

∣∣∣
π2=q1

+ ∂F

∂π2

∣∣∣
π2=q1

. (B.17)

Hence we get that setting the constraint π2 = q1 before differentiation (which we denote by
A
∣∣ and B

∣∣) renders the Dirac bracket between A and B to

[A,B]DB =
∂A
∣∣

∂q2

∂B
∣∣

∂q1
−
∂B
∣∣

∂q2

∂A
∣∣

∂q1
. (B.18)

In other words, we can really just set q1 to be the conjugate momentum of q2.
This discussion can be directly applied to our lattice action (2.2). The momentum space

action (2.10) leads to the constraint on canonical momenta

Φp,i = Πp,i +
1
2K(p)ij ã−p,j . (B.19)

The above constraint will have a non-vanishing Poisson bracket if K(p)ij ̸= 0, and constitutes
a second-class constraint requiring the Dirac bracket. Proceeding with the modes for which
p ̸∈ Pstaggered. The Poisson bracket between the remaining constraints is

Fpp′,ii′ ≡ [Φp,i,Φp′,i′ ]PB = 1
2K(p)ij [ã−p,j ,Πp′,i′ ]PB + 1

2K(p′)i′j′ [Πp,i, ã−p′,j′ ]PB

= 1
2δ−p,p′K(p)ii′ −

1
2δp,−p′K(p′)i′i = δp,−p′K(p)ii′ .

(B.20)

To consistently quantize the system we have to use Dirac brackets. The inverse of the matrix
of constraints (continuing to assume p ̸∈ Pstaggered) is

F−1
pp′,ii′ = −1

2

(4π
k

)2 1
1 + cos(p1 + p2)

δp,−p′K(−p)ii′ , (B.21)

so the Dirac bracket between two momentum modes is

[ãp,i, ãq,j ]DB = [ãp,i, ãq,j ]PB−[ãp,i,Φp′,i′ ]PBF
−1
p′q′,i′j′ [Φq′,j′ , ãq,j ]PB

=0−(δp,p′δii′)
1
2

(4π
k

)2 1
1+cos(p′1+p′2)

δp′,−q′K(−p′)i′j′δq,q′δjj′

=−1
2

(4π
k

)2 1
1+cos(p1+p2)

δp,−qK(−p)ij = δp,−q(K(−p)−1)ij .

(B.22)

Upon quantization this reproduces eq. (2.16). In the above analysis we did not include the
Gauss law constraint, which despite being second-class, with

[G̃p,Φq,i]PB = (1 + ei(p1+p2))δp,q ϵij(1− eipj ) , (B.23)

only involves the coordinates and hence does not contribute to the Dirac bracket.
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