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1 Introduction

Four-dimensional N = 4 supersymmetric Yang-Mills theory (SYM) [1] is famously conjectured
to display a generalisation of electromagnetic duality usually called S-duality [2–5]. S-duality
is non-perturbative in nature, connecting in a non-trivial way the theory at weak coupling
with the strong coupling regime. As a consequence of this non-perturbative aspect, it is
challenging to investigate directly the implications of S-duality on the non-trivial physical
observables of the theory, such as correlation functions of local operators as well as of extended
defect operators. Observables in N = 4 SYM are in general, functions of the space-time
coordinates as well as functions of the complexified Yang-Mills coupling,

τ = τ1 + iτ2 := θ

2π
+ 4πi

g2
YM

, (1.1)

with θ the topological theta angle and gYM the Yang-Mills coupling constant. A striking
consequence of S-duality is that different correlators might be related to one another upon
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transforming the coupling τ via the usual SL(2,Z) action

τ → τ ′ = γ · τ := aτ + b

cτ + d
, with γ =

(
a b

c d

)
∈ SL(2,Z) . (1.2)

It appears manifest that to explicitly verify or exploit the predictions coming from S-duality,
it is necessary to compute non-trivial correlation functions at finite τ , which is of course an
extremely difficult task to achieve even for a highly symmetric theory like N = 4 SYM.

In recent years it has been shown that with the aid of S-duality predictions, it is possible
to provide exact expressions as functions of the coupling constant τ for a class of observables
closely related to correlation functions. These observables, often referred to as integrated
correlators, are correlation functions of certain half-BPS local operators whose spacetime
dependence is integrated out over some specific integration measures [6, 7]. Remarkably,
such integrated correlators can be computed using supersymmetric localisation [8] and are
expressible [6, 7] as (N − 1)-dimensional matrix model integrals, where (N − 1) is the rank of
the gauge group, which for the rest of this paper we will take to be SU(N). For a large class of
cases, the matrix model integral can be evaluated explicitly and the corresponding integrated
correlators are expressed in terms of modular forms with a non-holomorphic dependence
from the coupling constant τ , thus providing manifest realisations of S-duality on physical
observables in N = 4 SYM [9–21], see also [22] for a review and further references therein.
Similar analysis have then been carried out for four-point functions in 4-dimensional theories
with fewer supersymmetries [23–27], as well as for 3-dimensional theories such as the ABJM
model [28–31]. While integrated correlators provide crucial exact results which bring us
one step closer to understanding the non-integrated correlators, we stress that they are also
extremely important from a practical perspective since they furnish additional constraints
which can be effectively included in the numerical bootstrap programme, aimed for example
at obtaining coupling-dependent bounds on the anomalous dimensions and OPE coefficients
of unprotected operators [23, 32–34].

While so far most of these successful studies have focused on the analysis of integrated
correlation functions for local operators, the implications of S-duality extend in a very
non-trivial way to the case of extended objects such as defect operators. A key example
of an extended operator is the Wilson-line defect, which can be thought of as a measure
of the coupling between a heavy electric particle probe and the gauge field of the theory.
Under N = 4 SYM electromagnetic duality we have that upon the inversion τ → −1/τ , a
Wilson-line defect must be related to an ’t Hooft-line defect [35], which instead describes the
insertion in the path-integral of a magnetic monopole. A natural question then arises: what
is the class of SL(2,Z) automorphic forms relevant for discussing correlation functions of local
operators in the presence of line operators such as Wilson and ’t Hooft defects? The aim of
this work is precisely to address this question for a family of integrated correlation functions
of local operators in the presence of particular line defect operators which we now introduce.

While Wilson-line defect operators can be described in the path-integral via a path-
ordered exponential of local fields along the line supporting the defect, an ’t Hooft operator
is an example of a disorder operator and its path-integral definition [36] involves specifying a
certain singular gauge transformation around a path that links non-trivially the line supporting
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the ’t Hooft defect, thus creating a magnetic flux tube along the loop effectively measured by
π1(G). As a consequence of electromagnetic duality in N = 4 SYM, Kapustin [35] has shown
that while Wilson-line defects are labelled by a representation R of the gauge group G, ’t
Hooft defects must be labelled by a representation LR of the Langlands (or GNO [5]) dual
magnetic group LG. A Wilson-line defect can then be thought of as having inserted in the
path-integral the world-line of a point-like electric particle transforming in the representation
R of the group G, and analogously an ’t Hooft-line defect inserts a magnetic monopole
transforming in the representation LR of the dual group LG. Furthermore, given that π1(G)
is isomorphic to the centre Z(LG) of the dual group LG, we have that the magnetic flux
created by an ’t Hooft-line defect operator in the representation LR is given by the charge
q ∈ Z(LG) ⊂ LG of the representation LR of the magnetic group LG.

In this paper we consider half-BPS Wilson-line defect operators in the fundamental
representation of the gauge group which we will take to be SU(N). Thanks to the holographic
principle, N = 4 SYM has a dual description in terms of type IIB superstring theory
on AdS5 × S5 where the Wilson-line defect operators is identified with a fundamental
string [37, 38]. More in general we consider a dyonic half-BPS line defect operator [35]
labelled by electromagnetic charges (p, q), with (p, q) two co-prime integers. The half-BPS
’t Hooft-line defect operator correspond to the case (p, q) = (0, 1), which is holographically
dual to a D1-brane, while generic (p, q) Wilson-’t Hooft-line defects are dual to (p, q)-strings
in the bulk [39].

It is important to emphasise that the fundamental ’t Hooft-line defect should really be
labelled by a weight vector corresponding to the fundamental representation of the Langland
magnetic dual group. To properly understand defect operators in N = 4 SYM, one must keep
track of how the global form of the gauge group as well as the associated discrete theta angles
transform under the electromagnetic SL(2,Z) action [40]. In particular, under S-duality
the SU(N) Wilson loop is mapped to the ’t Hooft loop of the Langland dual gauge group
(PSU(N))0, where the subscript denotes the value of the discrete ZN theta angle for the
PSU(N) gauge theory. In the present work we consider only the case where the 4-dimensional
space-time is either R4 or S4 for which these subtleties are not important. We will then
study the relations imposed by electromagnetic duality on correlation functions of line defects
operators defined in the same SU(N) gauge theory.

The physical observables we here consider are correlation functions of local operators
in the presence of a half-BPS line defect in the fundamental representation of SU(N) with
electromagnetic charges (p, q) with p and q coprime, schematically denoted by L(p,q). To
be precise, the main character of our story is the integrated line defect correlator in N = 4
SYM with SU(N) gauge group first introduced in [41],1

IL,N (p, q; τ) =
∫
⟨O2(x1)O2(x2)L(p,q)⟩ dµ(xi) , (1.3)

1We also consider simpler observables such as ⟨L(p,q) ⟩, i.e. the expectation value of the line defect
without any insertions of local operators, as well as the one and two-point functions ⟨O2(x1)L(p,q)⟩ and
⟨O2(x1)O2(x2)L(p,q)⟩ with special choices for the space-time insertion points and for the R-charge polarisation
vectors of the local operators and the line defect. These simpler line defect correlation functions can all be
computed from ⟨L(p,q) ⟩ by acting with certain covariant derivatives with respect to τ . These observables can
all be expressed in terms of a special simpler subclass of the more general automorphic forms we introduce in
this work.
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where O2 is the dimension-two half-BPS superconformal primary operator in the stress tensor
multiplet. The Wilson-line defect, with charges (1, 0), will be denoted as W = L(1,0) while
T = L(0,1) refers to the ’t Hooft-line defect, with charges (0, 1).

Similar to the integrated correlators of four local operators O2 introduced in [6, 7], here
as well in (1.3) we integrate out the non-trivial spacetime dependence of the insertion points
of the two local half-BPS operators O2. The explicit form of the integration measure dµ(xi)
in (1.3) as well as the precise form for the correlator can be found in [42, 43], importantly
we stress that this measure is dictated entirely by supersymmetry. More precisely, the
half-BPS Wilson-line defect integrated correlator is derived from the well-known matrix
model formulation for the partition function of N = 2∗ SYM, which is a mass deformation of
the superconformal N = 4 SYM theory with mass parameter m. The expectation value of the
half-BPS fundamental Wilson loop in SU(N) N = 2∗ SYM on S4, denoted by ⟨W⟩N=2∗ , was
determined by Pestun using supersymmetric localisation [8]. As shown in [41], the Wilson-line
defect integrated correlator IW,N (τ) introduced in (1.3) is then related to the expectation
value of the Wilson-line defect in N = 2∗ SYM as follows,

IW,N (τ) =
[
∂2

m log⟨W ⟩N=2∗(m, τ)
]

m=0
. (1.4)

It is important to stress that even though we have not made it manifest, the quantity IW,N (τ)
is a non-holomorphic function of the coupling constant τ . The main goal of this paper is
exploiting supersymmetric localisation combined with the electromagnetic duality properties
of N = 4 SYM to understand which class of SL(2,Z) automorphic forms can possibly describe
the line-defect integrated correlators IL,N (p, q; τ).

The transformation properties of IL,N (p, q; τ) under N = 4 SYM S-duality are determined
by the modular properties of the corresponding line defect L(p,q) and of the local operator
O2. While the local operator O2 is invariant under SL(2,Z), the line defect L(p,q) transforms
non-trivially. In particular the integers (p, q), which denote the electromagnetic charges of
the defect, do transform under the action of the SL(2,Z) electromagnetic duality group, as
we have commented. For the theory with coupling constant τ ′ = γ · τ given in (1.2), the line
defect L(p,q) is mapped into a defect with charges (p′, q′) given by

L(p,q) → L(p′,q′) , with (p′, q′) = (p, q)
(

a −c

−b d

)
. (1.5)

This implies that correlation functions in the presence of a line defect operator must obey
the following transformation properties,

IL,N (p, q; τ) = IL,N (p′, q′; τ ′) , (1.6)

valid for all γ ∈ SL(2,Z) where the coupling constant τ ′ = γ · τ and the charges (p′, q′) have
been transformed accordingly to (1.2) and (1.5).

The key result of our analysis is that by exploiting the above relation (1.6) and the
explicit matrix model computation from supersymmetric localisation, we conjecture the lattice
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sum integral representation of IL,N (p, q; τ) valid for any N and any defect-charges (p, q),

IL,N (p, q; τ) = (1.7)
N

L1
N−1(−

π|qτ+p|2
τ2

)

∑
(n,m)∈Z2

∫ ∞

0
e
−t1

τ2
π|qτ+p|2 e

−t2π
|nτ+m|2

τ2 e
−t3π

τ2
|qτ+p|2

(np−mq)2
BN (t1, t2, t3) d3t ,

where BN (t1, t2, t3) is a function of the three real variables t1, t2, t3 and of the number of
colours N . The overall factor in (1.7) given in terms of a Laguerre polynomial, L1

N−1(x),
arises from the normalisation for the integrated correlator (1.3) where we divide by the
vacuum expectation value of the line defect operator.

We will show that the lattice sum integral representation (1.7) for IL,N (p, q; τ) satisfies
precisely the correct automorphic property (1.6) under SL(2,Z) electromagnetic duality. The
function BN (t1, t2, t3), whose general properties will be discussed in section 4, holds all the
dynamic information of the integrated correlators in the presence of the line defect. In support
of the conjectural expression (1.7), we first outline the general construction for BN (t1, t2, t3)
with generic N , and then present a complete analysis for the cases of SU(2) and SU(3) gauge
groups, for which we derive the corresponding functions BN (t1, t2, t3) in (4.32) and (4.37).
Furthermore, we verify the consistency of our proposal with the large-N fixed-τ expansion of
the line defect integrated correlator which was the subject of [41].

Outline.

The rest of the paper is organised as follows. In section 2, we introduce various integrated
and non-integrated correlation functions of local operators in the presence of a line defect and
discuss how these physical quantities can be computed from a matrix model derived from
supersymmetric localisation and their modularity properties under electromagnetic duality.

Section 3 is devoted to the analysis of the large-N fixed-τ expansion of the integrated
Wilson-line defect correlator (1.4). We show that each order in the 1/N expansion receives
contributions from an infinite number of instantons. Combining these non-perturbative
results with the expected transformation properties of line defect correlators under SL(2,Z),
we introduce a novel class of real-analytic automorphic forms and show that the expansion
coefficients of the large-N expansion at fixed τ can be expressed as finite rational linear
combinations of such automorphic functions.

In section 4, we propose an extremely simple lattice sum integral representation for the
integrated line defect correlators (1.3) for generic values of N and arbitrary τ . Interestingly,
we can rewrite this lattice sum integral representation as a formal series over the same class
of automorphic functions appearing in the large-N fixed-τ expansion. We show the validity
of our conjecture by explicitly determining the lattice sum integral representation for the
integrated line defect correlators (1.3) with gauge group SU(2) and SU(3) starting from their
corresponding matrix model formulations.

We conclude in section 5 where we also comment on future research directions. The
paper also includes three appendices. In appendix A we provide details on the perturbative
and non-perturbative contributions to correlators involving a Wilson-line defect from their
matrix model formulations. The novel class of automorphic functions relevant for describing
integrated line defect correlators is introduced in appendix B, where we also discuss their key
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properties such as modular transformations, Fourier modes decomposition and asymptotic
expansions. In appendix C, we provide more technical details for the cases of the integrated
line defect correlators with gauge group SU(2) and SU(3) expressed as formal infinite series
over the new class of automorphic functions.

2 Line defect correlators from matrix model integrals

In this section we briefly review how certain correlation functions of half-BPS local operators
in the presence of line defects can be computed in N = 4 SYM with gauge group SU(N)
starting from an (N − 1)-dimensional matrix model. We will furthermore highlight how such
correlation functions transform under electromagnetic duality.

2.1 Matrix model setup

Our analysis of N = 4 SYM line defect correlators, in particular half-BPS Wilson-line defect
correlators, is based on the well-known matrix model formulation for the partition function of
a different supersymmetric theory known as N = 2∗ SYM, which is a mass deformation of the
superconformal N = 4 SYM theory with mass parameter m. The partition function of SU(N)
N = 2∗ SYM on S4, denoted by ZN (m, τ), was determined by Pestun using supersymmetric
localisation [8], where it was shown to have the form

ZN (m, τ) =
∫

e−2πτ2
∑

i
a2

i ∆(ai) Ẑpert
N (m, aij) |Ẑ inst

N (m, τ, aij)|2 dN−1a . (2.1)

The integration is over N real variables ai, with i = 1, . . . , N parametrising the Cartan
subalgebra of the gauge group. For SU(N) the ai are subject to the constraint

∑
i ai = 0,

whereas in the case of U(N) the ai are free variables without this constraint, furthermore
we define aij := ai − aj .

We denote the square of the Vandermonde determinant as

∆(ai) :=
∏
i<j

|ai − aj |2 , (2.2)

while the perturbative factor in (2.1) is given by

Ẑpert
N (m, aij) := H(m)

∏
i,j

H(aij)
H(aij + m) , (2.3)

where the function H(z) is given by H(z) := e−(1+γ)z2
G(1+iz)G(1−iz) with G(z) is a Barnes

G-function, and γ is the Euler-Mascheroni constant. The factors of |Ẑ inst
N |2 = Ẑ inst

N Ẑ inst
N

are the Nekrasov partition function [44] describing the contributions from instantons and
anti-instantons localised at the poles of S4; we will discuss the explicit form of Nekrasov
partition function later, especially in the small-m expansion which is relevant for the integrated
correlators. We notice for future reference that when m = 0 which is exactly the case in
which the deformed N = 2∗ theory reduces back to N = 4 SYM, we have:

Ẑpert
N (m=0, aij) = Ẑ inst

N (m=0, τ, aij) = 1 . (2.4)
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In what follows, we will denote expectation values in the hermitian matrix model using
the double parenthesis notation ⟪O(ak)⟫ defined as

⟪O(ak)⟫ := 1
ZN (τ2)

∫
e−2πτ2

∑
i

a2
i ∆(ai)O(ak) dN−1a . (2.5)

The normalisation factor ZN (τ2) is simply given by

ZN (τ2) := ZN (m=0, τ) =
∫

e−2πτ2
∑

i
a2

i ∆(ai) dN−1a , (2.6)

and it is chosen so that ⟪1⟫ = 1. The N = 2∗ SYM partition function on S4 presented
in (2.1) can then be written as

ZN (m, τ) = ZN (τ2) ⟪Ẑpert
N (m, aij) |Ẑ inst

N (m, τ, aij)|2⟫ . (2.7)

More details on the one-loop determinant factor Ẑpert
N , the instanton partition function

Ẑ inst
N and computations of such matrix model integrals are presented in appendix A, while

in the next section we focus on what type of defect correlators can be computed starting
from this matrix model formulation.

2.2 Expectation value of line defect operators

In [8] it was shown that it is possible to compute the expectation value of a half-BPS
supersymmetric Wilson-line defect wrapping the equator of the space-time S4 directly from
the hermitian matrix model (2.1). In particular, the expectation value of a fundamental
half-BPS Wilson-line defect in N = 2∗ SYM can be computed via the matrix model (2.5)
and it is given by

⟨W⟩N=2∗(m, τ) =
⟪Ẑpert

N (m, aij) |Ẑ inst
N (m, τ, aij)|2

(
1
N

∑N
i=1 e2πai

)
⟫

⟪Ẑpert
N (m, aij) |Ẑ inst

N (m, τ, aij)|2⟫
. (2.8)

Setting m = 0 and using (2.4) we derive the expectation value of a fundamental half-BPS
Wilson-line defect in N = 4 SYM,

⟨W⟩(τ) = ⟨W⟩N=2∗(m=0, τ) = ⟪ 1
N

( N∑
i=1

e2πai

)
⟫ . (2.9)

From now on we focus our attention solely to the case where the gauge group is SU(N),
although a similar analysis can be carried out for U(N), furthermore since we are setting the
deformation mass parameter m → 0, the matrix model simplifies dramatically due to (2.4).
More concretely, using (2.5), the fundamental Wilson-line defect expectation value can be
written in the following form

⟨W⟩(τ) = 1
ZN (τ2)

∫
∆(a) exp

[
− 2πτ2 Tr(a2)− 2π Tr(B a)

]
δ(Tr a) dN a , (2.10)

where we use the matrix notation a := diag(a1, . . . , aN ) and introduce the matrix B

B := 1
N

diag(1, . . . , 1, 1− N) = 1
N
1− diag(0, . . . , 0,−1) . (2.11)
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Shortly the matrix B will play the role of magnetic field in the case of the fundamental
’t Hooft-line defect. We complete the square at exponent in (2.10) and eventually arrive
at the well-known result [45],

⟨W⟩(τ) = exp
[

π

2τ2

N − 1
N

] 1
ZN (τ2)

∫
∆
(

a − B

2τ2

)
exp

[
− 2πτ2 Tra2] δ(Tr a) dN a , (2.12)

= 1
N

exp
[

π

2τ2

N − 1
N

]
L1

N−1

(
− π

τ2

)
, (2.13)

with L1
N (x) denoting the generalised Laguerre polynomials. We note that given the form (2.11)

of the matrix B, the shifted Vandermonde determinant appearing in (2.12) simply amounts to

∆
(

a − B

2τ2

)
=
∏
i<j

(
ai − aj −

Bi − Bj

2τ2

)2
=

∏
i<j<N

(ai − aj)2
N−1∏
i=1

(
ai − aN − 1

2τ2

)2
. (2.14)

We now turn our attention to the expectation value of a half-BPS fundamental ’t Hooft-
line defect in N = 4 SYM. As a consequence of modularity [35], we know that under the S

duality transformation τ → −1/τ , a half-BPS ’t Hooft-line defect in the representation LR of
LG is mapped into a half-BPS Wilson-line defect in the representation LR of G. Starting
from a path integral definition of an ’t Hooft-line defect operator, [46] computed to leading
order in perturbation theory the expectation value of a circular half-BPS ’t Hooft defect
in N = 4 SYM with arbitrary gauge group G and showed that it agrees with the leading
order of the S-dual Wilson-line defect.

Furthermore using supersymmetric localisation arguments, [47] proposed a matrix model
formulation for computing the expectation value of a half-BPS ’t Hooft-line defect in a general
N = 2 SYM theory. For the particular case of N = 2∗ SYM with gauge group SU(2), [47]
checked numerically that this matrix model agrees for different values of coupling τ , mass
deformation parameter m, and ’t Hooft-line defect charge p, with the respective expectation
value of the S-dual Wilson-line defects.

We now show that using the results of [47] it is possible to prove that the expectation
value of the fundamental ’t Hooft-line defect in N = 4 SYM is indeed equal to the S-dual
of the fundamental Wilson-line defect (2.13). If we consider a half-BPS ’t Hooft-line defect
in N = 2∗ SYM positioned on the equator of S4 carrying a magnetic charge labeled by a
coweight2 B of the gauge group G, then its expectation value is given by the matrix model [47],

⟨T⟩N=2∗(m, τ) =
∑

v

∫
|Znorth

(
τ, m, a − i

2v

)
|2 Zequator(m, a, v, B) dra , (2.15)

where as in (2.1) the integral runs over the Cartan subalgebra a ∈ h of G. Since the magnetic
charge B is a coweight it can be thought of as the highest weight for a representation LR of
the GNO magnetic dual group LG, hence the sum appearing in (2.15) is over coweights v of
G such that their corresponding weights of LG appear in the representation defined by B.

The analysis of [47] showed that the localised path integral receives two types of contribu-
tions. The first is schematically denoted as Znorth(τ, m, a − i

2v) in (2.15), and captures field
2Coweights are elements of the Cartan subalgebra h of the gauge group G such that α · B is an integer for

all roots α ∈ h∗.
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configurations localised only at the north and south pole (from the complex conjugate term)
of S4. These contributions are directly related to the perturbative one-loop determinant and
instanton partition function previously presented in (2.1). In particular we note that when
m = 0 the N = 2∗ SYM theory reduces back to N = 4 for which we have

|Znorth
(

τ, m = 0, a − i

2v

)
|2 = ∆

(
a − i

2v

)
|Zcl

(
τ, a − i

2v

)
|2 , (2.16)

where the Vandermonde determinant is given in (2.2) and the classical action Zcl is defined as

Zcl(τ, a) = exp
[
iπτ Tr(a2)

]
. (2.17)

The second term appearing in (2.15), denoted with Zequator, contains all contributions
to the path-integral which have support precisely on the equator of the S4 where the ’t
Hooft-line defect has been inserted. This equatorial factor can be furthermore split into two
different sources. Firstly, in defining the path-integral with an ’t Hooft-line defect insertion
one must impose particular boundary conditions along the defect which produce further
contributions to the one-loop determinant factor (2.3). Secondly, by inserting along the
equator an ’t Hooft-line defect we source a singular magnetic monopole with charge B. The
sum over “smaller” coweights v in (2.15) is due to monopole bubbling effects where we need
to include in the path-integral contributions arising from smooth monopoles which screen
the magnetic charge B down to v. While [47] computed exactly the equatorial perturbative
contribution to Zequator for a general N = 2 theory with arbitrary gauge group, the monopole
bubbling effects are more difficult to compute (and beyond the scope of this paper) and
in [47] an exact expression for the complete Zequator is provided only in the case of N = 2∗

SYM with gauge group G = SU(2).
Importantly, in this case we find that the equatorial contribution reduces to 1 when

m = 0 and the theory becomes N = 4 SYM, i.e.

Zequator
SU(2) (m = 0, a, q, p) = 1 , (2.18)

where in SU(2) the integers p, q denote the coweights B and v respectively, with p − q an
even integer. We claim that this result is enough to show that an S-duality transformation
of the N = 4 SYM fundamental Wilson-line defect given in equation (2.10) reproduces
identically the ’t Hooft-line defect expectation value for general gauge group G = SU(N)
which can be computed from (2.15).

Since we have considered a Wilson-line defect in the fundamental representation, its
S-dual ’t Hooft-line defect must have minimal magnetic field (modulo Weyl reflections)

B = 1
N
1− diag(0, 0, . . . , 0, 1) = 1

N
diag(1, . . . , 1, 1− N) . (2.19)

Given that this magnetic field is effectively selecting an SU(2) sector within the full gauge
group G = SU(N), similar to (2.18) it is therefore natural to argue that in SU(N) as well
the equatorial contribution for a minimal magnetic field trivialises in N = 4 SYM, i.e.
we conjecture

Zequator
SU(N) (m = 0, a, B, B) = 1 . (2.20)
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Under this assumption, the expectation value for the minimal fundamental half-BPS ’t
Hooft-line defect in N = 4 SYM is obtained from (2.15) by setting the mass deformation
parameter m to zero and making use of (2.16)–(2.20), thus taking the simpler form

⟨T⟩(τ) = ⟨T⟩N=2∗(m=0, τ) = 1
ZN (τ2)

∫
∆
(

a − i

2B

)
|Zcl

(
τ, a − i

2B

)
|2 δ(Tr a) dN a ,

(2.21)
where we introduced back the matrix model normalisation factor ZN (0, τ2) given in (2.6).

To show that (2.21) is the S-dual of (2.13) we start by rewriting the classical action
as a quadratic form

|Zcl
(

τ, a − i

2B

)
|2 = exp

[
4π

τ τ̄

(τ − τ̄)Tr(B/2)2
]
exp

[
πi(τ − τ̄)Tr

(
a + τ + τ̄

i(τ − τ̄)
B

2
)2]

.

(2.22)
We then use (2.11) to compute the overall a-independent term which is given by

4π
τ τ̄

(τ − τ̄)Tr(B/2)2 = π

2τ2|S
N − 1

N
, (2.23)

where τ2|S = Im
(
S · τ

)
= τ2/|τ |2 with S =

( 0 −1
1 0

)
∈ SL(2,Z) is the S transformation of

τ2 = Imτ . This factor is exactly the S transformation of the exponential factor present
in the Wilson-line defect (2.12).

With these observations we simplify (2.21) to

⟨T⟩(τ) = exp
( π

2τ2|S
N − 1

N

) 1
ZN (τ2)

∫
∆
(

a − i
B

2

)
exp

[
−2πτ2Tr

(
a − τ1

2τ2
B
)2]

δ(Tr a) dN a .

(2.24)
Since the overall exponential factor is already expressed as the S-dual of the corresponding
factor in the Wilson-line defect, we simply need to check that the remaining matrix model
integral produces the S-dual transformation of the Laguerre polynomial term (2.13). For
simplicity we perform an S-duality transformation to (2.24) and consider

⟨T⟩
(
−1

τ

)
= exp

( π

2τ2

N − 1
N

) 1
ZN

(
τ2
|τ |2
) ∫ ∆

(
a − i

B

2

)
exp

[
−2πτ2 Tr

( a

|τ |
+ τ1

2τ2|τ |
B
)2]

× δ(Tr a) dN a .

(2.25)

We then perform the change of variables a = ã|τ | − τ1
2τ2

B and notice that after the inversion
τ2 → τ2

|τ |2 the normalisation factor (2.6) becomes ZN ( τ2
|τ |2 ) = |τ |N2−1ZN (τ2) thus cancelling the

overall scale |τ |N2−1 coming from the change of variables at numerator (and the contribution
from the delta function), thus leaving us with

⟨T⟩
(
−1

τ

)
= exp

( π

2τ2

N − 1
N

) 1
ZN (τ2)

∫
∆
(

ã − τ

2τ2|τ |
B

)
exp

[
− 2πτ2 Tr ã2

]
δ(Tr ã) dN ã .

(2.26)
We now focus on rewriting the Vandermonde determinant appearing in (2.26):

∆
(

ã − τ

2τ2|τ |
B

)
=

∏
i<j<N

(ãi − ãj)2
N−1∏
i=1

[(
ãi − ãN − 1

2τ2

)2
+ η (ãi − ãN )

]
,
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where for convenience we introduced the combination

η := |τ | − τ1
τ2|τ |

. (2.27)

We find that the right hand side of (2.26) is independent of η due to the following matrix
model identity,

∫
dN a e−

∑N

i=1 a2
i

 ∏
i<j<N

a2
ij

N−1∏
i=ℓ

a2
iN

k∏
j=1

aiN = 0 , (2.28)

valid for integers ℓ and k such that 1 ≤ k < ℓ. This identity is non-trivial only when k

is even and we have verified its validity for all values of ℓ, k and N ≤ 7, although we do
not have a proof for it.

With this observation we can then rewrite the S-dual ’t Hooft-line defect (2.26) matrix
model integral exactly as the Wilson-line defect (2.12), i.e.

⟨T⟩
(
−1

τ

)
= exp

( π

2τ2

N − 1
N

) 1
ZN (τ2)

∫
∆(ã − 1

2τ2
B) exp

[
− 2πτ2 Tr ã2

]
δ(Tr ã) dN ã

= ⟨W⟩(τ) . (2.29)

We now consider correlation functions of local operators in the presence of line defects,
for which electromagnetic duality plays a more prominent role.

2.3 Non-integrated line defect correlators

An interesting class of correlation functions with a half-BPS Wilson-line defect insertion
can be constructed directly from the expectation value of the Wilson-line defect (2.9). We
define two such defect correlators as follows:

CW(τ) := 2iτ2
∂

∂τ
log⟨W⟩(τ) , (2.30)

EW(τ) := ∆τ log⟨W⟩(τ) , (2.31)

with ∆τ := 4τ2
2 ∂τ ∂τ̄ the SL(2,R)-invariant Laplacian. Note that we suppress the explicit

dependence of these correlation functions from the number of colours, N , since it can be
easily retrieved from (2.13) and it will not play any role for the following discussion. From a
path-integral perspective one would naively think that (2.30)–(2.31) naturally yield defect
correlation functions with the insertion of respectively one and two S4 integrals over the
insertion points of some local operators. However, due to supersymmetry, these particular
combinations of derivatives of the N = 4 half-BPS Wilson-line defect expectation value,
correspond to non-integrated one and two-point line defect correlators, with operators inserted
in a specific way, corresponding to certain well-known topological correlation functions of
twisted local operators and defects [48–52].

We begin with (2.30). It is know that the one-point function of a superconformal
primary operator in the presence of a half-BPS defect determines (modulo a proportionality
constant) all defect one-point functions for the conformal primaries in the same superconformal
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multiplet [53]. In particular, the line defect one-point function of every operator in the stress
tensor multiplet is determined by that of the dimension-two superconformal primary operator
O2(x, Y ) which is constructed as a bilinear in the N = 4 SYM scalar fields ΦI , with
I = 1, . . . , 6, belonging to the adjoint representation of the gauge group,

O2(x, Y ) := Tr
(
ΦI(x)ΦJ(x)

)
Y IY J , (2.32)

with Y I a null-polarisation vector for the SO(6)R R-symmetry indices.
If we canonically normalise the operator O2(x, Y ), it was shown in [41] that (2.30)

corresponds to the non-integrated one-point function:3

⟨O2(x, Y1)W(Y2) ⟩
⟨W⟩

= 2
√
2

c
CW(τ) Y 2

12
|x⊥|2

, (2.33)

with c = (N2 − 1)/4 the central charge of the SU(N) theory, while Yi denotes the two
R-symmetry polarisation vectors and Yij := Yi · Yj . Furthermore, since a general half-BPS
superconformal defect breaks the SO(6)R R-symmetry down to an SO(5)R subgroup, it must
be labelled by an R-symmetry polarisation vector of unit norm and real entries, hence we
denote this particular defect by W(Y ).

Note that while the Wilson-line defect expectation value (2.13) does not depend on the
particular R-symmetry polarisation, the one-point function (2.33) does. However, this depen-
dence is completely fixed by superconformal invariance. Furthermore, the four-dimensional
Euclidean coordinate x can be split as x = (x⊥, x4). The half-BPS Wilson-line defect lies
along the direction x4 while being localised at x⊥ = 0, so that the distance |x⊥|2 appearing
in (2.33) denotes the transverse distance of the operator O2(x, Y1) from the Wilson-line defect.

The second quantity (2.31) yields a particular two-point defect correlator which lies in
a special two-dimensional topological sector of the full N = 4 SYM theory algebra of local
and extended operators [48–52]. As reviewed in great detail in [41], the quantity (2.31) can
be shown to reproduce a second topological and non-integrated two-point defect correlation
function, namely

⟨O2(x̃1, Y )O2(x̃2, Y )W(Y3)⟩c =
8 EW(τ)

c
, (2.34)

where the subscript c indicates that this is the connected part of the correlator, and the
insertion points are fixed at x̃1 = −x̃2 = (1, 0, 0, 0) with the Wilson-line defect being located
at x⊥ = 0 and stretching along the x4 direction. The R-symmetry polarisations are fixed to
be Y = (0, 0, 0, 0,−i, 1) and Y3 = (0, 0, 0, 0, 0, 1). We refer to [41] for details on the derivation.

Thanks to electromagnetic duality, in N = 4 SYM we can relate a defect correlator
with a Wilson-line defect insertion to that of a general defect L with charges (p, q). Rather
than using the vector (p, q) of electromagnetic charges, we find it convenient to label the
defect in terms of an equivalence class

[ρ] =
(
∗ ∗
q p

)
∈ B(Z)\PSL(2,Z) , (2.35)

3We note that line defect one-point functions similar to CW(τ) have also been studied in perturbation theory
for higher scaling-dimension local operators in N = 2 SYM theories [54].
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where PSL(2,Z) := SL(2,Z)/{1,−1} while the Borel stabiliser of the cusp is denoted by B(Z)
and it is simply given by B(Z) := {±T n |n ∈ Z} with T := ( 1 1

0 1 ). The coset B(Z)\PSL(2,Z)
results precisely isomorphic to4

B(Z)\PSL(2,Z) ≃ {(p, q) ∈ Z2 | gcd(p, q) = 1 , q ≥ 0} . (2.36)

In the coset notation, a Wilson-line defect corresponds to the coset element [ρ] = [1], while
an ’t Hooft-line defect correspond to [ρ] = [S] where S =

( 0 −1
1 0

)
.

Under an electromagnetic duality transformation γ ∈ SL(2,Z), the defect L(p,q) is then
mapped into a different defect L(p′,q′) whose charges are given in (1.5) or in coset notation

[ρ] =
(
∗ ∗
q p

)
→ [ρ′] = [ρ γ−1] =

(
∗ ∗
q′ p′

)
. (2.37)

We then rewrite the transformation property (1.6) for an arbitrary correlation functions,
IL([ρ]; τ), of local modular invariant operators in the presence of a line-defect L with charges
parametrised by [ρ] as

IL([ρ]; τ) = IL([ρ γ−1]; γ · τ) ⇔ IL([ρ]; γ · τ) = IL([ρ γ]; τ) . (2.38)

In particular, if we start with a Wilson-line defect insertion and act on it with an SL(2,Z)
transformation ρ ∈ SL(2,Z) such that [ρ] = ( ∗ ∗

q p ) ∈ B(Z)\SL(2,Z), we transform the line
defect W to a different line defect L with charges (p, q), i.e. we derive from (2.38)

IW(ρ · τ) = IL([1]; ρ · τ) = IL([ρ]; τ) . (2.39)

Note that this equation implies that any correlator of modular invariant local operators,
such as O2, in the presence of a Wilson-line defect must be invariant under the action of
T = ( 1 1

0 1 ) ∈ SL(2,Z), i.e. for all n ∈ Z we must have

IW(τ + n) = IL([1];T n · τ) = IL([T n]; τ) = IW(τ) . (2.40)

However, we need to be careful on how this SL(2,Z) action affects the other fields inserted
in the correlation function when these are not modular invariant. For the correlator (2.31)
the consequences of such an SL(2,Z) action are immediate and we find:

EL([ρ]; τ) = ∆τ log⟨L⟩(τ) = EW(ρ · τ) , (2.41)

thanks to the fact that the Laplacian ∆τ is invariant under the SL(2,Z) action, hence exactly
of the form (2.39). In particular we must have the identity between defect correlators

⟨O2(x̃1, Y )O2(x̃2, Y )L(Y3)⟩c =
8 EL([ρ]; τ)

c
. (2.42)

4Note that throughout this paper we will assume the magnetic charge of the defect to be positive, q ≥ 0.
Defects with negative magnetic charges can be obtained by acting with charge conjugations. However, the
integrated correlators here considered are invariant under charge conjugation, i.e. they will be real analytic
functions of the coupling constant τ .
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For the correlator (2.30) the story is a little bit subtler. If we choose ρ ∈ SL(2,Z) and then
apply the corresponding electromagnetic duality transformation directly to (2.33) we deduce:

⟨O2(x, Y1)L(Y2) ⟩
⟨L⟩

= ⟨O2(x, Y1)W(Y2) ⟩
⟨W⟩

∣∣∣
ρ
= 2

√
2

c
CW(ρ · τ) Y 2

12
|x⊥|2

. (2.43)

However, we will promptly argue that as a consequence of modularity for a general [ρ] ̸= [1]
we have

CW(ρ · τ) ̸= 2iτ2∂τ log⟨L⟩(τ) .

To better clarify this point, we firstly note from the definition (2.30) that the action of τ2∂τ

on the vacuum expectation value of the half-BPS Wilson-line defect W should really yield
an insertion of the integrated chiral Lagrangian operator Oτ rather than O2.

The chiral and anti-chiral Lagrangian operators are super-descendent operators of O2 given
by Oτ = δ4O2 and Ōτ̄ = δ̄4O2 [55], where δ (respectively δ̄) is a (anti-)chiral supersymmetry
transformation. Just like O2, these operators belong to the stress tensor supermultiplet but
carry non-zero holomorphic/anti-holomorphic modular weights (1,−1) and (−1, 1) respectively,
so that under SL(2,Z) they transform via a U(1) rotation usually denoted by U(1)Y . Here
U(1)Y was termed as the ‘bonus U(1)Y symmetry’ in [56], which is the holographic image of
the U(1) R-symmetry in type IIB supergravity and breaks to Z4 when stringy corrections
are turned on. The N = 4 SYM Lagrangian can be expressed as the sum of two complex
conjugate parts

L =− i

2τ2

(
τOτ − τ̄Ōτ̄

)
, (2.44)

where the chiral and anti-chiral Lagrangians are defined by

Oτ = τ2
4π

Tr
(
−1
2FαβF αβ + . . .

)
, Ōτ̄ = τ2

4π
Tr
(
−1
2 F̄α̇β̇F̄ α̇β̇ + . . .

)
, (2.45)

with Fαβ, F̄α̇β̇ the self-dual and anti self-dual Yang-Mills field strengths and where “. . . ”
indicates terms involving fermions and scalar fields in the Yang-Mills supermultiplet.

Hence, from a path-integral perspective we expect that (2.33) should be schematically
written as5

CW(τ) =
⟨
( ∫

R4 Oτ (x) dx
)
W⟩

⟨W⟩
. (2.46)

Note that naively such an integrated one-point point function would result in a divergent
quantity since the non-integrated one-point function must take the form

⟨Oτ (x)W⟩ = aOτ

|x⊥|4
, (2.47)

5More precisely, given our definition (2.30) we have to consider
∫

S4 Osphere
τ (x), where the dimension-4

operator Osphere
τ is related to the flat-space operator given in (2.45) by Osphere

τ (x) = Ωsphere(x)4 Oτ (x), with
the sphere conformal factor given by Ωsphere(x) = (1 + x2)/2. However, thanks to conformal invariance we
have ⟨

( ∫
S4 Osphere

τ (x)
)
W⟩S4 = ⟨

( ∫
R4 Oτ (x)

)
W⟩. For related discussions see [43].
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with aOτ a coupling dependent space-time constant. However, supersymmetric localisation
provides for a natural regulator of the divergent right hand side of (2.46) since no divergences
arise by computing CW(τ) starting from the matrix model result (2.13). We conclude that
besides (2.33) we must also have the defect one-point function relation

⟨Oτ (x)W⟩
⟨W⟩

= α CW(τ) 1
|x⊥|4

, (2.48)

with α ∈ R a constant. This is not surprising since as mentioned above the defect one-
point (2.33) of the superconformal primary operator O2 fixes all defect one-point functions
for conformal primaries in the same multiplet, hence in particular of Oτ .

It is well-known [57] that while the stress tensor sits in the N = 2 supercurrent multiplet,
the operator Oτ sits in the N = 2 anomaly multiplet. Although it will not be discussed here,
using an argument based on superconformal Ward identities akin to that of [58–60] for the
defect one-point function of the stress tensor, it is possible to fix the proportionality constant
α in (2.48) for the chiral Lagrangian operator. Here we are more interested in the modularity
properties of the relation (2.48): while it is true that for the case of the Wilson-line defect the
insertion of the chiral Lagrangian in (2.46) can immediately be related to the insertion of O2
as in (2.33), the story is slightly more complicated in the case of a general line defect insertion.

Importantly, as stressed above the superconformal primary operator O2 is modular
invariant but the chiral Lagrangian operator Oτ does transform with a U(1) weight corre-
sponding to having holomorphic/anti-holomorphic modular weights (+1,−1).6 Hence if we
act on (2.30)–(2.46) with the SL(2,Z) action given by ρ we find:

CW(ρ · τ) = qτ + p

qτ̄ + p
CL([ρ]; τ) , (2.49)

CL([ρ]; τ) := 2iτ2
∂

∂τ
log⟨L⟩(τ) ⇒ ⟨Oτ (x)L⟩

⟨L⟩
= α CL([ρ]; τ)

1
|x⊥|4

, (2.50)

i.e. the ρ ∈ SL(2,Z) action changes the charges of the defect, while simultaneously introducing
the (+1,−1) automorphic factor (qτ + p)/(qτ̄ + p) due to the Oτ insertion, which is of course
consistent with how the operator τ2∂τ transforms under the SL(2,Z) action specified by ρ.

By combining (2.43) with (2.50) we then conclude that while for the Wilson-line defect
case the insertion of O2 and Oτ are actually identical, i.e. we can write either (2.33) or (2.46),
the same is not true for a generic line defect where instead we have

⟨O2(x, Y1)L(Y2)⟩(τ)
⟨L⟩

= 2
√
2

c

(
qτ + p

qτ̄ + p

)
CL([ρ]; τ)

Y 2
12

|x⊥|2
. (2.51)

The phase factor (qτ + p)/(qτ̄ + p) reduces to 1 for the Wilson-line defect case (p, q) = (1, 0),
and in general it compensates the non-trivial SL(2,Z) transformation of τ2∂τ in the definition
of CL as given in (2.50). The ’t Hooft-line defect one-point function has been analysed in
the large-N planar limit using integrability methods [62]. However, in this regime τ1 is
effectively set to 0, hence the phase factor in equation (2.51) reduces to −1 and no difference

6See [13, 61] for a detailed discussion of the modular properties of correlation functions involving the
operator Oτ .
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is practically observed between an O2 and an Oτ one-point function in the presence of an
’t Hooft-line defect.

We now move on to discuss a more interesting class of non-topological integrated
correlation functions of line defect operators.

2.4 Integrated line defect correlators

Lastly, we present the defect integrated correlator firstly introduced in [41] and defined
starting from the more general matrix model formulation (2.8) as

IW,N (τ) :=
[
∂2

m log⟨W⟩N=2∗(m, τ)
]

m=0
, (2.52)

which is a much more interesting quantity when compared to (2.30)–(2.31) and it will be
the main character of the present work.

As argued in [41] and then further clarified in [42, 43, 63], the matrix model quantity
defined in (2.52) corresponds to the connected part of a particular integrated correlator of
two superconformal primary operators O2(x, Y ) in the presence of a fundamental half-BPS
Wilson-line defect schematically of the form

IW,N (τ) =
∫
⟨O2(x1, Y1)O2(x2, Y2)W(Y3)⟩c dµ(xi) . (2.53)

We refer to [42, 43] for the precise form of the integration measure dµ(x1, x2) over the two
insertion points, as well as for the precise dependence from the R-symmetry polarisations.
Our focus here is to understand the exact expression for IW,N (τ), and the non-holomorphic
automorphic forms that describe this physical observable. As already argued for in the
previous section, thanks to the electromagnetic duality transformation (2.39) we expect that

IL,N ([ρ]; τ) =
[
∂2

m log⟨L⟩N=2∗(m, τ)
]

m=0
= IW,N (ρ · τ) , (2.54)

and consequently we must have

IL,N ([ρ]; τ) =
∫
⟨O2(x1, Y1)O2(x2, Y2)L(Y3)⟩c dµ(xi) . (2.55)

Since we know that the Wilson-line defect corresponds to the coset element [ρ] = [1], while the
’t Hooft-line defect case corresponds to [ρ] = [S] where S =

( 0 −1
1 0

)
, we denote accordingly:

IW,N (τ) = IL,N ([1]; τ) , IT,N (τ) := IL,N ([S]; τ) . (2.56)

We stress again that as an immediate consequence of electromagnetic duality the Wilson-
line defect integrated correlator must be invariant under a T transformation, that is for
all n ∈ Z we have

IW,N (τ + n) = IL,N ([1];T n · τ) = IL,N ([T n]; τ) = IW,N (τ) . (2.57)

However, under S-duality the Wilson-line defect is mapped into the ’t Hooft-line defect,

IW,N

(
− 1

τ

)
= IL,N ([1];S · τ) = IL,N ([S]; τ) = IT,N (τ) . (2.58)
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Starting from the matrix model definition (2.52) for the Wilson-line defect integrated
correlator, we will derive general expressions for an arbitrary line defect integrated corre-
lator (2.54) for which no matrix model formulation is currently available. For the special
case of the ’t Hooft-line defect with gauge group SU(2), in principle one may compute the
integrated correlator directly from (2.15).

The analysis we will carry out in the next sections will show that the Wilson-line defect
integrated correlator (2.52) has an exact expression in terms of the given novel automorphic
functions satisfying electromagnetic duality (2.38). Hence we expect that a direct matrix
model calculation for the ’t Hooft-line defect integrated correlator will reproduce our lattice
sum results (1.7) simply specialised to the case [ρ] = [S]. In the case of SU(2) gauge group
where the matrix model expression is available (see eq. (7.66) of [47]), this has indeed been
verified numerically.

In section 3 we show that the large-N expansion at fixed-τ of (2.52), already consid-
ered in [41], can be written order by order in 1/N as a finite rational linear combination
of a class of beautiful novel automorphic functions which satisfy the electromagnetic du-
ality condition (2.38). Then in section 4, we show that the same class of automorphic
objects is responsible for the lattice sum integral representation (1.7) of the defect integrated
correlator (2.52) at generic N .

3 An automorphic large-N expansion

In this section we revisit the large-N fixed-τ expansion for the Wilson-line defect integrated
correlator (2.52) first analysed in [41]. We show that order by order in 1/N the line defect
correlator can be written as a finite linear combination with rational coefficients of a novel
class of automorphic functions whose transformation under SL(2,Z) is precisely the one
dictated from N = 4 SYM electromagnetic duality presented in equation (2.38).

3.1 Defect integrated correlators at large N

From the definition of the Wilson-line defect integrated correlator (2.52), it is clear that to
understand its modular properties in the large-N limit, we must consider the large-N fixed-τ
expansion of the underlying hermitian matrix model discussed in section 2.1. This task
has been carried out in [41], where the authors expressed the perturbative and instantonic
sectors of the integrated correlator (2.52) in terms of matrix model n-body resolvents, whose
large-N expansion can be computed systematically using topological recursion [64]. We
will not discuss the details of this analysis here but refer to [41] for further clarifications.
However, in appendix A we present an alternative calculation of the instanton sectors for
the large-N expansion of the integrated correlator (2.52) which present some discrepancies
with the results of [41]. Although these differences do not alter the beautiful story presented
in [41], they will shortly be of importance for us in understanding the systematics of the
large-N fixed-τ expansion in terms of a family of novel automorphic functions.

From the analysis of [41], we know that the large-N expansion of the Wilson-line defect
integrated correlator (2.52) takes the form

IW,N (τ) = IL,N ([1]; τ) =
∞∑

ℓ=−1
N−ℓ/2I(ℓ)

W (τ) . (3.1)
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The first three orders in 1/N are rather simple and are purely perturbative polynomials
in τ2 = Im τ ,

I(−1)
W (τ) = 2

√
πτ

− 1
2

2 , I(0)
W (τ) = 1

2 − π2

3 , I(1)
W (τ) = 3

16
√

π
τ

1
2

2 − π
3
2

4 τ
− 3

2
2 . (3.2)

These purely perturbative terms which will keep on appearing at every order in the 1/N expan-
sion and are somewhat spurious remnants of the Wilson-line defect expectation value (2.13),
which appears as the normalisation factor for the integrated Wilson-line defect correlator,
thus effectively obfuscating the novel automorphic structures arising in the integrated correla-
tor (2.52). From an SL(2,Z) electromagnetic duality point of view, any isolated perturbative
term τ s

2 in a Wilson-line defect correlator, being that the integrated two-point function (2.52)
or the previously discussed expectation value (2.9), one and two-point correlators (2.30)–
(2.31), corresponds to the simplest family of automorphic functions (B.3) relevant for line
defect correlators in N = 4 SYM. We refer to appendix B for more details.

While the Wilson-line defect observables (2.9)–(2.30)–(2.31) are completely contained
in this easier family of automorphic functions (B.3), to fully describe the integrated correla-
tor (2.52) this class of functions is not enough. We will have to disentangle such perturbative
contributions from a genuinely new and different family of automorphic functions. The same
phenomenon will be even more manifest when discussing the finite-N exact results for the line
defect integrated correlator in section 4. However, in that case we will be able to isolate such
polluting terms and neatly highlight the novel automorphic sectors contributing to (2.52).

Already starting with the next 1/N order it becomes obvious that the Wilson-line defect
integrated correlator (2.52) does contain something else besides the perturbative τ s

2 terms.
In particular building on the results of [41] we find

I(2)
W (τ) = 3τ2(4ζ(3) + 1)

32π
+ π3

180τ−3
2 −

∑
k>0

cos(2πkτ1)
6σ−2(k)

πτ2
K2(2kπτ2) , (3.3)

I(3)
W (τ) = I(3)-i

W (τ) + I(3)-ii
W (τ) + 63

1024π
3
2

τ
3
2

2 + 5π
5
2

192 τ
− 5

2
2 , (3.4)

with

I(3)-i
W (τ) = − 9

32π
3
2

ζ(3)τ
3
2

2 − π
5
2

240τ
− 5

2
2 +

∑
k>0

cos(2πkτ1)
9σ−2(k)
2π

√
πτ2

K2(2kπτ2) , (3.5)

I(3)-ii
W (τ) = 15

32π
3
2

ζ(3)τ
3
2

2 − π
9
2

3780τ
− 9

2
2 +

∑
k>0

cos(2πkτ1)
45σ−2(k)
2πk(πτ2)

3
2

K3(2kπτ2) , (3.6)

and Ks(y) is the modified Bessel function of the second kind and σs(k) :=
∑

d|k ds is the
divisor sigma function. From this order onward we have that instanton contributions are
present in the integrated correlator (2.52) and do in fact play a crucial role. In particular, we
notice the similarity between the Fourier series (3.3) with respect to the θ-angle, θ = 2πτ1,
and that of the modular invariant non-holomorphic Eisenstein series E(s; τ) conveniently
presented in (B.31). We have also computed the next coefficient I(4)

W (τ) at order N−2 as
given in (A.71), where a similar structure is found.
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As anticipated, we find some discrepancies between the large-N instanton sectors derived
in [41] and the results here presented in (3.5)–(3.6) (see also (A.71) for the next coefficient
I(4)
W at order N−2), although we want to stress that despite this disagreement the main

results of [41] are still perfectly valid. In [41] it was shown that starting at order N−3/2, i.e.
starting with I(3)

W , the instanton sectors contain terms proportional to sin(2πkτ1) = sin(kθ).
Such terms are odd under the upper-half-plane involution τ → −τ̄ which is indeed consistent
with the fact that in the presence of a Wilson-line defect time-reversal symmetry is broken.7

However, in appendix A.2 we show how to systematically extract the instanton sectors
from the large-N matrix model integral and prove that no term proportional to sin(kθ) is
present. Furthermore, from the discussion we present in appendix C for the calculation of
contributions coming from Nekrasov partition function, it appears clear that for the finite-N
matrix model the instanton sectors do not present any term proportional to sin(kθ) either.
We believe that it would be rather odd if such terms were not to be present at finite N

but did appear in the large-N limit.
At this point given the first few orders of the large-N fixed-τ expansion for the Wilson-

line defect integrated correlator (3.3)–(3.4)–(A.71), we need to understand whether such
terms can be identified as elements (or linear combinations thereof) of some special class
of automorphic functions. As discussed in [9, 11], each order in the large-N expansion
of a particular integrated correlator of four superconformal primary operators O2 can be
written as a finite linear combination with rational coefficients of non-holomorphic Eisenstein
series. However, this cannot possibly be the case for the present discussion for two main
reasons. Firstly, each E(s; τ) is modular invariant with respect to the γ ∈ SL(2,Z) action
τ → γ · τ , while the Wilson-line defect integrated correlator is expected to transform to a
different line defect operator following the automorphic property (2.38). Secondly, from the
Fourier mode expansion for the non-holomorphic Eisenstein series (B.31), it appears clear
that in the instanton sector the index of the Bessel function and that of the divisor sigma
function are related in a way which is not compatible with the matrix model results listed
in (3.3)–(3.4)–(A.71), even though they look similar.

We therefore conclude that a novel class of real-analytic functions satisfying the auto-
morphic property (2.38) is required to express the line defect integrated correlator (2.52).

3.2 Large-N expansion and novel automorphic functions

Guided by this similarity (and differences) between the large-N expansion coefficients I(ℓ)
W (τ),

see e.g. (3.3), and the non-holomorphic Eisenstein series we now introduce a novel class of
automorphic functions inspired by the Eisenstein series lattice-sum representation (B.31). We
conjecture that the integrated correlator IL,N ([ρ]; τ) for a line defect L whose electromagnetic
charges (p, q) we parametrise by [ρ] = ( ∗ ∗

q p ) ∈ B(Z)\SL(2,Z) can be written in terms of the
family of real-analytic functions defined via the lattice sum

Fs1,s2,s3([ρ]; τ) :=
(τ2/π)s1

|qτ + p|2s1

∑
(n,m)∈Z2\{Z(q,p)}

(τ2/π)s2

|nτ + m|2s2
[π(np − mq)]s3 , (3.7)

7We thank Yifan Wang for discussions on this issue.

– 19 –



J
H
E
P
1
1
(
2
0
2
4
)
0
8
4

where for convergence we must require Re(s2 − s3) > 1, although we can analytically continue
this class of functions to general s1, s2, s3 ∈ C.

Appendix B is devoted to presenting a detailed analysis of the class of functions defined
in (3.7), here we simply state some of their key properties. Firstly, the lattice sum (3.7) is
constructed precisely in such a way that under the action of the electromagnetic duality (2.37)
it transforms with the desired automorphic property (2.38), i.e. for all γ ∈ SL(2,Z) we have

Fs1,s2,s3([ρ]; γ · τ) = Fs1,s2,s3([ρ γ]; τ) . (3.8)

For the particular coset element [ρ] = [1] that is the relevant one when discussing a Wilson-
line defect, the function Fs1,s2,s3([1]; τ) admits the Fourier mode decomposition with respect
to τ1 given by

Fs1,s2,s3([1]; τ) =
∑
k∈Z

e2πikτ1F (k)
s1,s2,s3([1]; τ2)

=
2π

1
2 +s3−s1−s2Γ

(
s2 − 1

2

)
ζ(2s2 − s3 − 1)

Γ(s2)
τ s1+1−s2

2 (3.9)

+ 8πs3−s1

Γ(s2)
∑
k>0

cos(2πkτ1)ks2− 1
2 σs3+1−2s2(k)τ

s1+ 1
2

2 Ks2− 1
2
(2kπτ2) .

In contrast with the non-holomorphic Eisenstein series (B.31), we note that in this Fourier
mode expansion the index of the Bessel function and that of the divisor sigma are not
constrained any longer hence lifting any ‘tension’ with respect to (3.3).

Either using the lattice sum representation (3.7) specialised to [ρ] = [1], or the Fourier
mode expansion (3.9), it is easy to show that Fs1,s2,s3([1]; τ) satisfies the homogeneous
Laplace equation

[∆τ − 2s1τ2 ∂2 + (s1 + s2)(1 + s1 − s2)
]
Fs1,s2,s3([1]; τ) = 0 , (3.10)

with ∆τ = τ2
2 (∂2

1 + ∂2
2). Furthermore, we find in (B.30) that it is possible to add to

Fs1,s2,s3([1]; τ) a multiple of the homogeneous solution τ s1+s2
2 to (3.9) such that the resulting

function has a softer behaviour in the small-τ2 limit. As a consequence of electromagnetic
duality (2.38), the small-τ2 (i.e. the strong coupling regime) expansion of the large-N Wilson-
line defect correlator is directly related to the large-τ2 (i.e. the weak-coupling regime) expansion
of the ’t Hooft-line defect correlator. Importantly [41] showed that such softer small-τ2
behaviour for each 1/N coefficient I(ℓ)

W (τ) is directly related to the requirement of having
a consistent genus expansion for the ’t Hooft-line defect correlator. This ‘dual’ large-N
behaviour can be inferred from the fact that an ’t Hooft-line defect operator corresponds
to a D1-brane on the holographic side. Hence, a two-point function of local operators O2
in the presence of an ’t Hooft-line defect can be interpreted as a scattering process of two
gravitons from a D1-brane in string theory. In this case open-string states propagate as
intermediate states, therefore the weak coupling expansion is controlled by the open-string
coupling constant (in contrast with the closed-string expansion for the F -string dual to the
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Wilson-line case).8 More precisely, we expect that the ’t Hooft expansion for the ’t Hooft-line
integrated correlator should behave as

IT,N (τ̃2) =
∞∑

g=0
N1−g I(g)

T (λ̃) , (3.11)

where τ̃2 is related to τ2 via S duality (for simplicity we set τ1 = 0), i.e. τ̃2 = 1/τ2 or
equivalently λ̃ = 4πN/τ̃2 = (4πN)2/λ with λ := g2

YMN ; in the dual ’t Hooft limit we consider
N ≫ 1 with λ̃ fixed.

Therefore, we are quite naturally led to consider the family of ‘improved’ automorphic
functions,

F̂s1,s2,s3([1]; τ) := Fs1,s2,s3([1]; τ)− 4πs3−s1−s2ζ(2s2)ζ(−s3)τ s1+s2
2 (3.12)

=
2π

1
2 +s3−s1−s2Γ

(
s2 − 1

2

)
ζ(2s2 − s3 − 1)

Γ(s2)
τ s1+1−s2

2 − 4πs3−s1−s2ζ(2s2)ζ(−s3)τ s1+s2
2

+ 8πs3−s1

Γ(s2)
∑
k>0

cos(2πkτ1)ks2− 1
2 σs3+1−2s2(k)τ

s1+ 1
2

2 Ks2− 1
2
(2kπτ2) .

As previously commented on, the additional term τ s1+s2
2 is a homogeneous solution to (3.10),

and the coefficient is determined by requiring a softer small-τ2 behaviour when τ1 = 0.
Indeed, in appendix B we show that the factor proportional to τ s1+s2

2 cancels out precisely
the most singular term originating from the infinite sum of instanton contributions in the
small-τ2 expansion (with τ1 = 0).

We now proceed to rewrite the large-N expansion coefficients I(ℓ)
W (τ) as finite linear

combinations of F̂s1,s2,s3([1]; τ) with rational coefficients. It had already been noted in [41],
that the building blocks appearing at each given order in 1/N seem to be solution to
homogeneous Laplace equations of the same form as (3.10). In particular for the orders
given in (3.3) and (3.4), we have

(
∆τ + 3τ2∂2 − 3

)
I(2)
W (τ) = 0 , (3.13)(

∆τ + 2τ2∂2 −
15
4
)
I(3)-i
W (τ) = 0 , (3.14)(

∆τ + 4τ2∂2 −
27
4
)
I(3)-ii
W (τ) = 0 . (3.15)

Each of these Laplace equations can be combined with (3.10) to construct two possible
automorphic functions F̂s1,s2,s3([1]; τ) which solves the same equation. Finally, we use the
Fourier mode decomposition (3.12) to show that all I(ℓ)

W (τ) are indeed captured by this novel
family of automorphic objects, at least up to the order 1/N2 here computed.

8A similar behaviour can be seen for the integrated four-point function ⟨O2O2DD⟩ studied in [65], where
D is the determinant operator with scaling dimension N , holographically dual to a D3-brane. From the
superstring side, this four-point function is interpreted as a scattering process of two gravitons off a D3-brane
propagating along a geodesic [65, 66]. This interpretation leads to the same large-N behaviour as (3.11).
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Omitting the argument of F̂s1,s2,s3([1]; τ) since it is understood here that we are focusing
on the Wilson-line defect correlator, we can rewrite (3.3)–(3.5)–(3.6) in terms of F̂s1,s2,s3 as

I(2)
W (τ) = −F̂− 3

2 ,− 3
2 ,−2 +

3
32π

τ2 , (3.16)

I(3)
W (τ) = I(3)-i

W (τ) + I(3)-ii
W (τ) + 63

1024π
3
2

τ
3
2

2 + 5π
5
2

192 τ
− 5

2
2 , (3.17)

with

I(3)-i
W (τ) = 3

4 F̂−1,− 3
2 ,−2 , I(3)-ii

W (τ) = −3
2 F̂−2,− 5

2 ,−4 . (3.18)

At order 1/N2 the calculation is presented in appendix A.2 and the resulting contribution
I(4)
W (τ), given in (A.71), also admits the decomposition in terms of the automorphic functions

F̂s1,s2,s3 ,

I(4)
W (τ) = − 3

32 F̂− 1
2 ,− 3

2 ,−2 −
1
8 F̂− 5

2 ,− 3
2 ,−2 −

1
4 F̂− 3

2 ,− 5
2 ,−2 + 3 F̂− 3

2 ,− 5
2 ,−4 +

1
4 F̂− 7

2 ,− 5
2 ,−4

+ 1
2 F̂− 5

2 ,− 7
2 ,−4 −

15
4 F̂− 5

2 ,− 7
2 ,−6 +

27τ2
2

512π2 − 1
128 − 13π2

384τ2
2
− π4

864τ4
2

. (3.19)

We stress that although the expressions just displayed do present some spurious purely
perturbative powers of (τ2/π) with rational coefficients at each order in 1/N , our large-N
results are nonetheless very non-trivial.9 We managed to write each coefficient I(ℓ)

W (τ) in
a manifestly SL(2,Z) automorphic way, and the class of functions F̂s1,s2,s3 captures the
complete instanton sectors as well as all perturbative coefficients (τ2/π)s whose coefficients
are non-trivial rational multiples of Riemann odd zeta values.

It is also important to note that in the small-τ2 limit, the term proportional to 1/τ4
2

in (3.19) cancels precisely the contribution arising from the infinite sum of instanton with
τ1 = 0. This is a consistency check of the large-N behaviour of ’t Hooft-line integrated
correlator as shown in (3.11), which can be obtained by an S-transformation of (3.19).

The above large-N results resemble very closely the large-N fixed-τ expansion of the
integrated correlator of four O2 considered in [9, 11, 12], where the functions F̂s1,s2,s3 are
replaced by non-holomorphic Eisenstein series. Inspired by these results, our large-N analysis
strongly suggests that at finite N , the line defect integrated correlator (2.52) should be given
by a formal series over the same automorphic functions (3.7). In the next section we show that
this is indeed the case and present the conjectural lattice sum integral representation (1.7)
for the line defect integrated correlator IL,N ([ρ]; τ) with arbitrary N .

4 Exact integrated line defect correlators at finite N

In this section we provide general arguments leading to the conjectural lattice sum integral
representations (1.7) for the line defect integrated correlator (2.52) in N = 4 SYM with gauge
group G = SU(N) at finite N . In particular, starting from the matrix model definition of
the line defect integrated correlator we show that (1.7) hold when the gauge group is SU(2)
and SU(3), and determine explicitly the function BN (t1, t2, t3) for these cases.

9These pure perturbative terms are described by the simpler automorphic functions (B.3), which can also be
seen as special cases of F̂s,0,0([1]; τ) where an analytic continuation in the parameters s2 and s3 is understood.
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4.1 General lattice sum integral representation

To analyse the line defect integrated correlator IL([ρ]; τ) at finite N we first want to simplify
the object under consideration and remove any “polluting” effects which may appear in
the weak coupling expansion τ2 ≫ 1. From the matrix model definition (2.52) we see that
IW(τ) can be rewritten as

IW(τ) =
[

∂2
m⟨W⟩N=2∗ − ⟨W⟩N=2∗ ∂2

mZN (m, τ)
⟨W⟩N=2∗

]
m=0

, (4.1)

where the N = 2∗ SYM partition function ZN (m, τ) is defined in (2.1) and the N = 2∗

half-BPS fundamental Wilson loop expectation value ⟨W⟩N=2∗(m, τ) is given in terms of
the matrix model integral (2.8).

From the expression (2.13) for the Wilson-line defect expectation value, we see that the
denominator in the above expression besides removing an exponential factor, it introduces in
the weak coupling expansion τ2 ≫ 1 an infinite number of perturbative corrections coming
from the expansion of the Laguerre polynomial, thus polluting the weak coupling expansion
of IW(τ). Furthermore, given that the Wilson-line defect expectation value is only a function
of τ2 = Im(τ), it can be easily made automorphic with respect to electromagnetic duality
using the easier class of functions presented in (B.3), i.e. from (2.13) we deduce

⟨L⟩(τ)= 1
N

exp
[

π

2τ2

N−1
N

]
L1

N−1

(
− π

τ2

)∣∣∣∣∣
ρ

= 1
N

exp
[

π

2Im(ρ·τ)
N−1

N

]
L1

N−1

(
− π

Im(ρ·τ)

)

= 1
N

exp
[

π|qτ+p|2

2τ2

N−1
N

]
L1

N−1

(
−π|qτ+p|2

τ2

)
, (4.2)

which we have checked explicitly in (2.29) for the ’t Hooft-line defect case (p, q) = (0, 1).
Rather than carrying along for the ride this unnecessary automorphic factor, we define a

cleaned-up version of the line defect integrated correlator and introduce a ‘reduced’ version
of the integrated correlator,

ĨL,N ([ρ]; τ) :=
L1

N−1(− π
Im(ρ·τ))

N
IL,N ([ρ]; τ) . (4.3)

We proceed to justify the lattice sum integral representation for the reduced correlator
ĨL,N ([ρ]; τ), and then an expression for IL,N ([ρ]; τ) can of course be obtained inverting the
above relation.

From our large-N analysis of section 3, we have seen that order by order in 1/N we
can write the line defect integrated correlator as a finite linear combination of automorphic
forms (3.7). As commented earlier, in previous works [11, 16, 17] on integrated correlators
of four superconformal primary operators of the stress tensor it has been observed that in
the transition from large-N to finite N the automorphic building blocks do not change in
nature, being that non-holomorphic Eisenstein series as in [11, 16] or generalised Eisenstein
series in [17]. However, while at large-N it is possible to isolate order by order in 1/N finite
rational linear combinations of the relevant automorphic building blocks, at finite N one
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must include a formal infinite series over such building blocks, which has to be resummed,
possibly via a lattice sum integral representation.

Guided from experience, we assume that a similar phenomenon takes place for the present
discussion of the line defect integrated correlator and work under the verifiable hypothesis
that at finite-N the correlator ĨL,N ([ρ]; τ) admits a representation as a (formal) infinite series
involving solely the automorphic functions Fs1,s2,s3([ρ]; τ) presented in (3.7). In appendix B
we discuss various properties for the novel automorphic building blocks, in particular we
highlight here their integral representation,

F−s1−s3,s2,−2s3([ρ]; τ) =∑
(n,m)∈Z2\{Z(q,p)}

∫ ∞

0
e−t1

Im(ρ·τ)
π e

−t2π
|m+nτ |2

τ2 e−t3πIm(ρ·τ)(np−mq)2 ts1−1
1
Γ(s1)

· ts2−1
2
Γ(s2)

· ts3−1
3
Γ(s3)

d3t ,

(4.4)

valid for Re si > 0, with i = 1, 2, 3, where this particular combination of indices has been
chosen for future convenience. Once again inspired by the results of the integrated four-
point correlator [11], given (4.4), it is natural to assume that the finite-N expression for
the integrated correlator ĨL,N ([ρ]; τ) will be a lattice sum expression akin to the equation
above without any constraint on the summation variables, i.e. (n, m) ∈ Z2, and where
the monomial ts1−1

1 ts2−1
2 ts3−1

3 gets replaced by a more general function of t1, t2, t3. More
precisely, we conjecture

ĨL,N ([ρ]; τ) =
∑

(n,m)∈Z2

∫ ∞

0
e−t1

Im(ρ·τ)
π e

−t2π
|m+nτ |2

τ2 e−t3πIm(ρ·τ)(np−mq)2BN (t1, t2, t3) d3t . (4.5)

Note that despite the explicit appearance of the representative ρ ∈ SL(2,Z) of the equivalence
class [ρ], equation (4.5) is actually well-defined on the coset B(Z)\SL(2,Z) parametrising all
possible electromagnetic charges of the line defects here considered since we have

Im(ρ · τ) = τ2
|qτ + p|2

∀ ρ ∈ [ρ] =
(
∗ ∗
q p

)
∈ B(Z)\SL(2,Z) . (4.6)

From the general expression (4.5) combined with (4.3) and (4.6) we obtain the lattice
sum integral representation (1.7) presented in the introduction, which is straightforward to
specialise to the case of the integrated correlator of a half-BPS ’t Hooft line defect,

IT,N (τ) = IL,N ([S]; τ) (4.7)

= N

L1
N−1(−

π|τ |2
τ2

)

∑
(n,m)∈Z2

∫ ∞

0
e
−t1

τ2
π|τ |2 e

−t2π
|nτ+m|2

τ2 e
−t3m2π

τ2
|τ |2 BN (t1, t2, t3) d3t .

Let us analyse more in detail the general lattice sum integral representation (4.5). As
we will see, it is straightforward to integrate out t1, which then leads to an alternative
representation,

ĨL,N ([ρ]; τ) =
∑

(n,m)∈Z2

∫ ∞

0
e
−t2π

|m+nτ |2
τ2 e−t3πIm(ρ·τ)(np−mq)2B̃N (Im(ρ · τ); t2, t3) d2t , (4.8)
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with B̃N (y; t2, t3) related to BN (t1, t2, t3) via

B̃N (y; t2, t3) :=
∫ ∞

0
e−t1yBN (t1, t2, t3) dt1 . (4.9)

An immediate consequence of the conjectural lattice sum integral representations (4.5)–
(4.8) is that by performing a double Poisson summation over n and m and then changing
integration variables to

t2 → (t2 + t3)−1 , t3 → t−1
2 − (t2 + t3)−1 , (4.10)

we see that the functions BN and B̃N must satisfy the inversion relations

BN (t1, t2, t3) =
1

[t2(t2 + t3)]3/2BN

(
t1,

1
t2 + t3

,
1
t2

− 1
t2 + t3

)
, (4.11)

B̃N (y, t2, t3) =
1

[t2(t2 + t3)]3/2 B̃N

(
y,

1
t2 + t3

,
1
t2

− 1
t2 + t3

)
. (4.12)

It is useful to specialise (4.5) to the case [ρ] = [1], equivalently (p, q) = (1, 0), relevant
for the Wilson-line defect case. For this particular case we write ĨW,N (τ) := ĨL,N ([1]; τ)
and divide the lattice sum (4.5) as

ĨW,N (τ) =
∑
n=0
m∈Z

∫ ∞

0
e−t1

τ2
π e

− t2πm2
τ2 BN (t1, t2, t3) d3t

+
∑
n ̸=0
m∈Z

∫ ∞

0
e−t1

τ2
π e

−t2
π[(nτ1+m)2+(nτ2)2]

τ2 e−t3πn2τ2BN (t1, t2, t3) d3t . (4.13)

Furthermore, we can combine the integral representation (4.4) with the Taylor expansion

BN (t1, t2, t3) =
∞∑

s1,s2,s3=1
d(N)

s1,s2,s3

ts1−1
1
Γ(s1)

· ts2−1
2
Γ(s2)

· ts3−1
3
Γ(s3)

, (4.14)

and rewrite the second term in (4.13) to arrive at

ĨW,N (τ) =
∑
n=0
m∈Z

∫ ∞

0
e−t1

τ2
π e

− t2πm2
τ2 BN (t1, t2, t3) d3t +

∞∑
s1,s2,s3=1

d(N)
s1,s2,s3F−s1−s3,s2,−2s3([1]; τ) .

(4.15)

To better understand the first term in the above expression, it is useful to consider the large-τ2
asymptotic expansion of (4.13). This can be done in a standard manner by performing a
Poisson resummation with respect to the summation variable m → m̂, which also yields
the Fourier mode expansion where the Fourier mode is k = m̂n hence only the second term
in (4.13) will contribute to the k ̸= 0 Fourier sectors. The Fourier expansion of (4.13) can
be written neatly as

ĨW,N (τ) =
∑
k∈Z

e2πikτ1 Ĩ(k)
W,N (τ2) , (4.16)
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where the Fourier zero-mode is given by

Ĩ(0)
W,N (τ2) =

∑
n=0
m̂∈Z

√
τ2

∫ ∞

0
e−t1

τ2
π e−t2πm̂2τ2 t

− 3
2

2 BN (t1, t−1
2 , t3) d3t (4.17)

+
∑
n ̸=0
m̂=0

√
τ2

∫ ∞

0
e−t1

τ2
π e−(t2+t3)πn2τ2 t

− 1
2

2 BN (t1, t2, t3) d3t .

Similarly, the Fourier non-zero modes with k = m̂n ̸= 0 are entirely captured by the second
term in (4.13) and are exponentially suppressed at large-τ2 as manifest in

Ĩ(k)
W,N (τ2) =

∑
n,m̂ ̸=0
nm̂=k

√
τ2 e−2π|k|τ2

∫ ∞

0
e−t1τ2/πe

−πτ2
(
|n|

√
t2− |m̂|√

t2

)2

e−t3πn2τ2 t
− 1

2
2 BN (t1, t2, t3) d3t .

(4.18)
Based on the particular finite-N examples we will analyse promptly, it appears that, in

a direct analogy with [11], the (n, m̂) = (0, 0) contribution to the zero mode sector (4.17)
vanishes identically, i.e.∫ ∞

0
t
− 1

2
2 BN (t1, t2, t3) dt2dt3 = 0 , ∀ t1 ∈ R . (4.19)

Furthermore, this observation combined with the inversion relation (4.11) leads to the result
that the two terms in (4.17) are actually identical, that is the Fourier zero-mode must
be given by

Ĩ(0)
W,N (τ2) = 4

∞∑
m̂=1

√
τ2

∫ ∞

0
e−t1

τ2
π e−t2πm̂2τ2 t

− 3
2

2 BN (t1, t−1
2 , t3) d3t (4.20)

= 4
∞∑

n=1

√
τ2

∫ ∞

0
e−t1

τ2
π e−(t2+t3)πn2τ2 t

− 1
2

2 BN (t1, t2, t3) d3t . (4.21)

When combined back with the purely perturbative factor we removed in (4.3), we claim
that the zero Fourier mode sector (4.20) fully captures the perturbative expansion of the
Wilson-line defect integrated correlator, while the non-zero modes (4.18) reproduce the
non-perturbative instanton and anti-instanton contributions.

The strategy to reconstruct the lattice sum integral representation (4.5) starting from
the matrix model formulation discussed in section 2 is as follows:

(i) We start by focusing our attention to the instanton sectors of the Wilson-line defect
integrated correlator and uniquely identify the coefficients d

(N)
s1,s2,s3 for the formal

expansion (4.15) in terms of automorphic functions Fs1,s2,s3([1]; τ);

(ii) Using the integral representation (4.4) we resum such a formal infinite series and
construct the integrand BN (t1, t2, t3) for which we can verify the conjectural identi-
ties (4.11)–(4.12)–(4.19);

(iii) Finally we check that the complete perturbative sector is indeed encoded in the zero
Fourier mode expression (4.20), thus justifying the unconstrained nature of the complete
lattice sum i.e. as a sum over the full lattice (n, m) ∈ Z2.
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To provide evidences that our analysis is indeed correct we now follow the strategy
just outlined and present the detailed analysis for the Wilson-line defect correlator (2.52)
computed from the specific matrix model integrals with N = 2 and N = 3. It should be
stressed that even though only these specific examples of N are here considered explicitly, as
we argue below it appears clear that the general strategy should apply to general N .

4.2 Finite-N exact results

In this subsection, we follow the general strategy outlined in the above subsection and show
that the matrix model integral for the integrated two-point correlator in the presence of
Wilson-line can be expressed in the form of (4.13) for N = 2 and N = 3. We begin by
determining the coefficients d

(N)
s1,s2,s3 in (4.15). This is done by comparing the expression (4.15)

with the explicit results from matrix model integrals, order by order in the large-τ2 (or weak
coupling) expansion. We leave the details of the matrix model computation and their results
in appendix A.

We begin by considering the instanton contribution to the integrated correlator in
the presence of Wilson-line defect, i.e. the Fourier modes Ĩ(k)

W,N (τ2) with k ̸= 0 in (4.16).
From (4.1) and the matrix model integrals (2.7)–(2.8), the k-instanton contribution to (4.3)
can be expressed as

Ĩ(k)
W,N (τ2) =

L1
N−1(− π

τ2
)

N
e−2π|k|τ2

∑
p,q>0
pq=k

⟪W(a)Ip×q(a)⟫− ⟪W(a)⟫⟪Ip×q(a)⟫
⟪W(a)⟫ , (4.22)

where the overall factor comes from our definition (4.3), and as in (2.9) we denote with W(a)
the matrix model integrand for the Wilson loop expectation value in N = 4 SYM, i.e.

W(a) := 1
N

Tr e2πa = 1
N

( N∑
i=1

e2πai

)
. (4.23)

The matrix model integrand Ip×q(a) instead denotes the order m2 term in the small-mass
expansion of the k-instanton contribution to the Nekrasov partition function (A.9), shown
in [9] to be given by

Ip×q(a) :=
N∏

j=1

∮ p∏
a=1

q∏
b=1

[
z − aj + i(a + b − 2)

]2
[
z − aj + i(a + b − 2)

]2
+ 1

×

( 2
p2 + 2

q2

)

+
N∑

j=1

i(p + q)(p − q)2

(p q)[z − aj + i (p + q − 1)][z − aj + i (q − 1)][z − aj + i (p − 1)]

 dz

2π
,

(4.24)
where the integration contour is a counter-clockwise contour surrounding the poles at z = aj+i

with j = 1, . . . , N . For the purpose of determining the coefficients d
(N)
s1,s2,s3 , the expectation

values in (4.22) can be evaluated perturbatively in a large-τ2 expansion. We find that the
k-instanton contribution can be expressed in general as

Ĩ(k)
W,N (τ2) =

∞∑
s=2

σ1−2s(k)PN,s(τ2, k) e−2π|k|τ2 , (4.25)

– 27 –



J
H
E
P
1
1
(
2
0
2
4
)
0
8
4

where PN,s(τ2, k) is a polynomial in τ−1
2 and k. From the analysed cases, i.e. N = 2 and

N = 3, the degree in τ−1
2 of the polynomial PN,s appears to be 2s + N − 2, in particular

it does increase as s increases. More explicitly, for SU(2) and SU(3) the first few orders
of (4.25) are presented in (C.8) and (C.17).

Given the similarity between the above expression and the non-zero Fourier modes (3.9)
of the automorphic functions Fs1,s2,s3([1]; τ), we can try and write (4.25) as an infinite series

Ĩ(k)
W,N (τ2)

?=
∑

s1,s2,s3

d(N)
s1,s2,s3F

(k)
−s1−s3,s2,−2s3([1]; τ2)

=
∑

s1,s2,s3

d(N)
s1,s2,s3

4πs1−s3

Γ(s2)
ks2− 1

2 σ1−2s2−2s3(k)τ
s1+ 1

2
2 Ks2− 1

2
(2kπτ2) . (4.26)

The coefficients d
(N)
s1,s2,s3 are uniquely determined by comparing (4.25) with (4.26). More

concretely, we expand the modified Bessel functions in (4.26) at large τ2 and then impose
that the coefficient of each divisor sigma function σ1−2s in (4.25) must equal that of (4.26)
as a polynomial in k and τ2, i.e. we impose that (4.26) equals (4.25) separately for each term
σ1−2s kaτ b

2 . This process yields a system of linear equations for the coefficients d
(N)
s1,s2,s3 which

turn out to have a unique solution. It is worth noting that since the degree in τ−1
2 of the

polynomials PN,s(τ2, k) increases with s, this leads to having an infinite set of linear equations
so that it is absolutely non-trivial that a solution actually does in fact exist.

Implementing the above general procedure and using the explicit results for Ĩ(k)
W,N (τ) for

N = 2 and N = 3, as presented more in detail in appendix C we find for SU(2)

Ĩ(k)
W,2(τ2) =

∞∑
s1,s2,s3=1

d(2)
s1,s2,s3F

(k)
−s1−s3,s2,−2s3(τ2) , (4.27)

with coefficients given by

d(2)
s1,s2,s3 = (−1)s2+s34−s3 (2s2 + 2s3 − 1) 2

[
s2

3 + (s1 + s2 − 1) s3 + s1 − s1s2 + s2 − 1
]

(4.28)

× Γ (2s3) Γ (s1 + s2 + s3 − 1)
Γ (2s1) Γ (s3 − s1 + 2)Γ (s1 + s3 + 1) .

Similarly for SU(3), we have

Ĩ(k)
W,3(τ2) =

∞∑
s1,s2,s3=1

d(3)
s1,s2,s3F

(k)
−s1−s3,s2,−2s3(τ2) , (4.29)
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with the coefficients given by

d(3)
s1,s2,s3 =

(−1)s2+s34−s3 (2s2+2s3−1)2Γ(2s3)Γ(s1+s2+s3−2)
3Γ(2s1)Γ(s3−s1+3)Γ(s1+s3+1) (4.30)

×
{

s6
3+s5

3
[
3s1+4s2−4

]
+s4

3

[
2s2

1+(7s2−3)s1+6s2
2−9s2+6

]
+s3

3

[
−2s3

1+2(s2+9)s2
1+(s2−2)(3s2+14)s1+s2 (s2 (4s2−3)−2)+13

]
+s2

3

[
−3s4

1+28s3
1−((s2−16)s2+66)s2

1+(s2 ((22−3s2)s2−54)+83)s1
]

+s2
3
[
+s2 (s2 (s2 (s2+5)−20)+46)−48

]
+s3

[
−s5

1+2(s2+5)s4
1+((s2−12)s2−20)s3

1

]
+s3

[
(9−3(s2−10)s2)s2

1+(s2−1)(s2 (s2 (3s2−7)+18)−8)−2s1
(
((s2−4)s2+8)s2

2+3
)]

+(s1−2)(s1−1)(s2−1)
[
s3

1−(s2+9)s2
1+(8−(s2−4)s2)s1+(s2−2)((s2−1)s2+6)

]}
.

Note that from the explicit expressions (4.28)–(4.30), we easily see that for the s1 variable
the series in both (4.27) and (4.29) are actually sums over finitely many terms.

At this point we use the integral representation (4.4) to rewrite infinite series like (4.27)
and (4.29) via the lattice sum integral representation

∞∑
s1,s2,s3=1

d(N)
s1,s2,s3F−s1−s3,s2,−2s3([1]; τ)

=
∑

(n,m)∈Z2

n ̸=0

∫ ∞

0
e−t1

τ2
π e

−t2π
|nτ+m|2

τ2 e−t3πτ2n2BN (t1, t2, t3) d3t ,
(4.31)

where we defined BN (t1, t2, t3) in (4.14) and we furthermore have included in the above series
the Fourier zero-mode of F−s1−s3,s2,−2s3 as well.

With our conjectural expressions for the coefficients d
(2)
s1,s2,s and d

(3)
s1,s2,s given in (4.28)–

(4.30), we simply use the definition (4.14) to obtain the corresponding generating functions,
BN (t1, t2, t3). For SU(2) we find,

B2(t1, t2, t3) = Dx

 1F2
(

3
2 ; 2, 5

2 | −
t1
4x

)
t1 + 6 0F1

(
1| − t1

4x

)
24x3/2

 , (4.32)

where for convenience of presentation we have defined the differential operator

DxF (x) = 4 t
−7/2
3

{
[t2 (t2 + t3)− 1] 2∂2

x + t3 [t2 (t2 + t3) + 1] ∂x

}
F (x) , (4.33)

and have introduced the auxiliary variable x is given by,

x := (1 + t2)(1 + t2 + t3)
t3

. (4.34)

We note that x is actually invariant under the inversion of t2, t3 defined in (4.10). With this
property, it is straightforward to verify that B2(t1, t2, t3) indeed obeys the transformation
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rule (4.11). From (4.32), we can furthermore derive the integral representation (4.8) expressed
in terms of the alternative kernel B̃N defined in (4.9), which for the case N = 2 is given by

B̃2(y; t2, t3)=
∫ ∞

0
e−t1yB2(t1, t2, t3)dy =

exp
[
− t3

4y(t2+1)(t2+t3+1)
]

8y3(t2+1)11/2(t2+t3+1)11/2×{
12y2(t2+1)2(t2+t3+1)2

[
(t2−3)(3t2−1)(t2+1)2+2(3(t2−2)t2−1)(t2+1)t3+t2(3t2−2)t2

3

]
+2y(t2+1)(t2+t3+1)

[
(t2−3)(3t2−1)(t2+1)4+(t2(3t2(3t2−7)−1)−7)(t2+1)2t3

+t2
2(3t2−7)t3

3+3(t2−2)t2(3t2−1)(t2+1)t2
3

]
−t3[t2(t2+t3)−1]2[t2(t2+t3+2)+1]

}
. (4.35)

Although the identity (4.27) shows that the integrated correlator can be written as an
infinite sum over automorphic functions solely at the level of instanton sectors, as previously
argued it is enough to remove the restriction n ̸= 0 in (4.31) to obtain the lattice sum integral
representation (4.8) for the complete integrated correlator. In particular, we stress that the
purely perturbative sector for the N = 2 integrated correlator, derived from the N = 2∗ SYM
matrix model in (A.23), can be retrieved identically from the integral representation (4.20)
expressed in terms of B2(t1, t2, t3). The two different integral representations (A.23) and (4.20)
for the purely perturbative sector are simply related via the integral transform identity (see
e.g. [16])∫ ∞

0

B̃(w)
sinh2(w)

dw =
∞∑

m̂=1

∫ ∞

0
e−m̂2tB(t)dt , where B(t) = 2√

πt3

∫ ∞

0
e−

w2
t w ∂wB̃(w)dw .

(4.36)
As briefly reviewed in section 2, the expectation value of a half-BPS ’t Hooft loop in

N = 2∗ SYM can be written via supersymmetric localisation [47] in terms of a matrix model.
However, monopole bubbling effects are only under full control for the case of SU(2) gauge
group. It would be extremely interesting to compute the integrated correlator of an ’t Hooft
line defect in N = 4 SYM starting from the N = 2∗ SYM supersymmetric localisation results
of [47] as in (2.54) and check against the predicted expression (4.7) at finite coupling τ . For
general N , our expression (4.7) would provide for extremely stringent constraints against
monopole bubbling effects in the N = 2∗ SYM theory with gauge group SU(N).

Similar arguments hold for SU(3). Using the coefficients (4.30), we find

B3(t1, t2, t3) = Dx

{ 1
960x11/2

[
t2
1

[
−24(2r + 1)x + 32x2 + 15

]
1F2

(3
2; 3,

7
2

∣∣∣− t1
4x

)
+ 2t2

1

[
−24(2r + 1)x + 32x2 + 15

]
1F2

(5
2; 3,

7
2

∣∣∣− t1
4x

)
+ 120x2

[
−24(2r + 1)x + 32x2 + 15

]
0F1

(
; 1
∣∣∣− t1

4x

)
+ 20xt1

[
−48(2r + 1)x + 64x2 + 30

]
0F1

(
; 2
∣∣∣− t1

4x

)
+ 20xt1

[
−16(9r + 10)x2 + 3(68r + 49)x + 96x3 − 60

] ]}
, (4.37)

where the auxiliary variable r := t2/t3 is also invariant under the inversion (4.10). It is
then easy to check that B3(t1, t2, t3) obeys the transformation rule (4.11). From (4.37) it is
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possible to derive the alternative integration kernel B̃3 as defined in (4.9). The structure
is very similar to the N = 2 case presented in (4.35), only the expression for B̃3 is more
cumbersome than its N = 2 counterpart, and hence we do not present it here.

We stress again that although to derive the identity (4.29) we only used the instanton
sectors for both integrated correlator and automorphic functions, by simply removing the
restriction n ̸= 0 from the lattice sum the expression (4.29) gets promoted to the lattice sum
integral representation (4.8) for the complete integrated correlator. The purely perturbative
sector for the N = 3 integrated correlator, derived from the N = 2∗ SYM matrix model
in (A.24), is reproduced identically from the integral representation (4.20) in terms of B3,
thanks to the integral transforms identity (4.36).

These particular cases, N = 2 and N = 3, combined with the large-N fixed-τ results
derived in section 3, provide very strong evidences for the general conjectured lattice sum
integral representation (4.8) for the line defect integrated correlator at arbitrary N and τ .

5 Conclusions and outlook

In this paper, we investigated correlation functions of local operators in the presence of a
half-BPS line defect for N = 4 SYM theory with gauge group SU(N). These correlators
can be obtained by taking derivatives with respect to either the coupling constant, τ , or the
deformation mass parameter, m, of the vacuum expectation value for a corresponding line
defect in N = 2∗ SYM. We considered two distinct classes of such physical observables. The
first class is obtained by considering only derivatives with respect to the coupling constant τ .
This procedure yields non-integrated line defect correlators with some specific insertions of
local operators, such as the superconformal primary operator O2 or the chiral Lagrangian
Oτ , and with very particular kinematics.

The second class of line defect correlators, which is the primary focus of this paper, has
been introduced in [41] and it is constructed by taking two derivatives with respect to the
mass deformation parameter of the expectation value of a half-BPS fundamental Wilson line
defect in N = 2∗ SYM and then set the mass to zero. This yields a two point function of the
superconformal primary operators O2 in the presence of a half-BPS Wilson-line defect where
the space-time dependence of the local operators is integrated out using a carefully chosen
integration measure. The integration measure is implicitly determined by supersymmetric
localisation formula and has been worked out explicitly in [42, 43]. In contrast with the
integrated four point correlation functions of local operators introduced in [6, 7], relatively
little is known about these integrated line defect correlators. In particular, since line defect
operators transform non-trivially under N = 4 SYM electromagnetic duality, such integrated
correlators are no longer modular invariant functions of the coupling constant τ and it is
unclear which class of automorphic objects, if any, we have to consider to describe these
physical observables. The main goal of this paper is precisely addressing this question.

We constructed a novel class of automorphic functions whose properties under SL(2,Z)
electromagnetic duality are exactly those of fundamental line defects in N = 4 SYM and
showed that the particular integrated line defect correlators considered can be expressed in
terms of elements belonging to this family of functions. This novel family of automorphic
functions is introduced by considering a non-standard Poincaré series approach, where the
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associated seed functions display an explicit dependence from the electromagnetic charges
(p, q) carried by the line defect. The mathematical details of our constructions can be
found in appendix B.

To support the proposal that integrated line defect correlators can be expressed in
terms of this class of automorphic functions, we present compelling evidences in both the
large-N expansion at fixed τ and the finite-N results for the fundamental Wilson-line defect
integrated correlator:

(i) In the large-N fixed-τ limit, following the analysis of [41] we worked out the large-N
expansion of the integrated line defect correlators up to order 1/N2. We explicitly
verified that each order in the 1/N expansion can be written as a finite linear combination
with rational coefficients of the proposed automorphic functions.

(ii) For finite N , we exploit the instanton corrections to the integrated line defect correlator
to conjecture a lattice sum integral representation which can be written as a formal
series of exactly the same automorphic functions appearing at large-N . To provide
evidences in support of our proposal, we present a detailed analysis for the cases with
gauge group SU(2) and SU(3). Our expressions are very reminiscent of the exact
results derived in [11, 12] for the integrated correlators of four superconformal primary
operators O2.

We stress that both at large N and at finite N , our lattice sum integral representation
for the integrated line-defect correlators in terms of automorphic objects is not a mere
rewriting of matrix model results. The proposed expressions manifest very non-obvious
and extremely intriguing modular structures for non-local physical observables due to the
presence of a line-defect.

One of the key consequences of our analysis is that we can predict the integrated correlators
of two local O2 operators in the presence of a line defect with general electromagnetic charges,
i.e. not necessarily a Wilson-line defect. This is a highly non-trivial result since a putative
localisation formula is not known for general line defect. For the case of an ’t Hooft loop with
gauge group SU(2) a concrete localisation formula does exist [47]. It would be interesting
to compute the SU(2) integrated correlator of an ’t Hooft line defect in N = 4 SYM
starting from the N = 2∗ SYM supersymmetric localisation results of [47] and check against
our predicted expression (4.7) at finite coupling τ . We have verified this agreement by
performing a numerical evaluation of the matrix model integral for the SU(2) ’t Hooft line
defect integrated correlator.

There are many future directions worth of attention. Firstly, the large-N expansion at
fixed τ is almost certainly an asymptotic formally divergent series in 1/N . In the context
of integrated correlators of four superconformal primary operators, it was shown in [14]
that a consistent large-N expansion necessitates the presence of additional exponentially
suppressed yet modular invariant corrections. We believe something similar should happen
for the large-N expansion of integrated line defect correlators where, based on the results
of [14], it is tantalising to conjecture that at large-N we should encounter exponentially
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suppressed, yet automorphic non-perturbative corrections possibly of the form

D̃N (s1, s2, s3; [ρ]; τ) =
τ s1

2
|qτ + p|2s1

∑
(n,m) ̸=Z(q,p)

e
−
√

4N|nτ+m|2
τ2

τ s2
2

|nτ + m|2s2
(np − mq)s3 . (5.1)

When the systematic of the large-N expansion for the integrated line defect correlator is
under control, a suitable modification of the resummation procedure introduced in [67] should
yield such non-perturbative and automorphic large-N corrections.

On the other hand at finite N , the mathematical and physical structures of integrated
line defect correlators remain largely unexplored. In contrast, integrated four-point correlators
of local operators exhibit a plethora of elegant properties that have been well-studied. For
instance, such physical observables have been shown to satisfy intriguing Laplace-difference
equations [11, 16–18]. These equations both link in a non-trivial manner different integrated
correlators and provide for a set of recursive relations allowing us to determine some of
these integrated correlators for all classical and exceptional gauge groups starting from the
SU(2) gauge group case. We believe that the homogeneous Laplace equation (B.17) satisfied
by the elements of the presented class of automorphic functions will almost certainly play
a key role in understanding possible similar Laplace-difference equations satisfied by the
integrated line defect correlators at finite-N . Thanks to the proposed lattice sum integral
representation (1.7), rather than studying directly the integrated line defect correlator for
arbitrary N we can analyse the easier integrand functions BN , here presented explicitly for
N = 2 and N = 3. Any putative Laplace-difference equation for the integrated correlator
will be translated into a much simpler relation satisfied by the BN ’s. For this reason it is
definitely worth extending our analysis to integrated line-defect correlators for gauge groups
with higher ranks by exploiting the general methodology outlined in section 4.

Furthermore, in this paper we have only considered line defects in the fundamental
representation of the gauge group SU(N). It should be possible to generalise our results to
line defects belonging to other representations of the gauge group as well as extending our
analysis to more general classical (or possibly even exceptional) gauge groups. Importantly as
discussed in the introduction, electromagnetic duality for extended operators does in general
need to keep track of the global form of the gauge group as well as of possible discrete theta
angles. However, for our observables to be sensitive to such data we have to consider N = 4
SYM on more complicated space-time manifolds, such as RP4 considered in [68–70]. We do
not know which class of automorphic objects could possibly describe integrated line defect
correlators in either higher representations or in such non-trivial space-time backgrounds.

From a broader perspective, we highlight that the N = 4 SYM bootstrap programme
has been extended to include correlation functions in the presence of defects operators, see
e.g. [53, 71–73]. As discussed in [41], the integrated correlators considered in this paper
impose strong and exact (as functions of the coupling τ) constraints on the two-point
function line defect correlators. Similar to the case of integrated four-point functions of
local operators, integrated line defect correlators furnish extremely valuable inputs for the
defect-CFT conformal bootstrap programme both from an analytic and a numerical point of
view. In this spirit, it would be of interest to consider integrated correlators involving more
general superconformal primary operators with higher scaling dimensions. Unfortunately
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there is no obvious supersymmetric matrix model that would generalise (2.52) to these more
general integrated line defect correlators. However, it may be feasible to try and address this
problem by the approach similar to [74] with inputs coming from high-order perturbative
results for these more general integrated line defect correlators. Obtaining results for line
defect correlators involving higher-dimension local operators would also lead to pathways for
studying potential hidden relations between defect correlators in N = 4 SYM, analogous to
what has been discovered for four-point correlators of local operators [75, 76].
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A Matrix model details

In this appendix we summarise some of the more technical details regarding the matrix model
calculations for the line defect integrated correlator following the setup introduced in section 2.

The main object under consideration is the SU(N) hermitian matrix model whose
partition function is given by

ZN (τ2) :=
∫

e−2πτ2
∑

i
a2

i ∆(ai) dN−1a , (A.1)

where the integral is over N − 1 real variables parametrising the SU(N) Cartan subalgebra
and ∆(ai) denotes the square of the standard Vandermonde determinant

∆(ai) :=
∏
i<j

|ai − aj |2 . (A.2)

– 34 –



J
H
E
P
1
1
(
2
0
2
4
)
0
8
4

Expectation values in the this matrix model are denoted using the double parenthesis
notation ⟪O(ak)⟫ and are defined as

⟪O(ak)⟫ := 1
ZN (τ2)

∫
e−2πτ2

∑
i

a2
i ∆(ai)O(ak) dN−1a , (A.3)

where in our normalisation we have ⟪1⟫ = 1.
From the N = 2∗ SYM partition function (2.7) and the definition (2.8) for the half-BPS

Wilson-line defect expectation value, we see that the N = 4 SYM integrated correlator (2.52)
in the presence of a half-BPS Wilson-line defect can be decomposed as

IW,N (τ) = Ipert
W,N (τ) + I inst

W,N (τ) , (A.4)

where for the perturbative part we have

Ipert
W,N (τ) =

⟪W(ai)Z ′′
pert(0, aij)⟫

⟪W(ai)⟫ − ⟪Z ′′
pert(0, aij)⟫ , (A.5)

while for the instanton part we find

I inst
W,N (τ) = ⟪W(ai)Z ′′

inst(0, aij)⟫
⟪W(ai)⟫ − ⟪Z ′′

inst(0, aij)⟫+ c.c. . (A.6)

In the above formulas Z ′′
pert(0, aij) and Z ′′

inst(0, aij) denote the two mass derivatives of the
one-loop perturbative and non-perturbative instanton contributions of the partition functions
in the supersymmetric localisation formula as given in (2.1), i.e.

Z ′′
pert(0, aij) := ∂2

mẐpert
N (m, aij)|m=0 , Z ′′

inst(0, aij) := ∂2
mẐ inst

N (m, aij)|m=0 . (A.7)

Explicitly, they can be expressed as follows. For the perturbative part defined in (2.3),
we have [77],

Z ′′
pert(0, aij) = K ′(aij) , with K ′(z) :=

∫ ∞

0

2w[1− cos(2wz)]
sinh2(w)

dw . (A.8)

The instanton part has been worked out in [9] and it can be expressed as

Z ′′
inst(0, aij) =

∞∑
k=1

e2πikτ1Z
′′(k)
inst (0, aij) =

∞∑
k=1

e2πikτ
( ∑

p,q>0
pq=k

Ip×q(ai)
)

, (A.9)

where Ip×q(ai) is given as a contour integral in (4.24). With these ingredients, in the next
subsections we will compute Ipert

W,N (τ) and I inst
W,N (τ) separately.

A.1 Perturbative expansion at finite N

We begin with the analysis for the perturbative contribution (A.5) to the integrated Wilson-
line defect correlator. The disconnected term in (A.5), given by ⟨Z ′′

pert(0, aij)⟩, is essentially
the perturbative contribution to the integrated four-point correlator which has been evaluated
in [78], therefore we only focus on the first term in (A.5).
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We start by noting that the ratio ⟪W(ai)Z ′′
pert(0, aij)⟫/⟪W(ai)⟫ is independent on whether

we consider an SU(N) or a U(N) gauge group and, thanks to invariance under permutations
of the ai, we can further simplify its evaluation by using the relation

⟪W(ai)Z ′′
pert(0, aij)⟫ =

∑
i,j,k

1
N
⟪e2πakK ′(aij)⟫ =

∑
i,j

⟪e2πa1K ′(aij)⟫ . (A.10)

Using (A.8) the above expression becomes

⟪W(ai)Z ′′
pert(0, aij)⟫ =

∫ ∞

0

(∑
i,j

⟪e2πa1 [1− cos(2waij)]⟫
) 2w dw

sinh2(w)
, (A.11)

which we now proceed to evaluate term by term.
Expanding out the matrix model expectation value appearing at the integrand in (A.11)

we can use ∑
i,j

⟪e2πa1⟫ = N2⟪e2πa1⟫ , (A.12)

while the contribution coming from cos(2waij) can be expressed in terms of

∑
i,j

⟪e2πa1e2iwaij⟫ = N⟪e2πa1⟫+
 ∑

i>j>1
⟪e2πa1e2iwaij⟫+

∑
j>1
⟪e2πa1e2iwaj1⟫+ (w → −w)


= N⟪e2πa1⟫+ (N − 1)

[(N − 2)
2 ⟪e2πa1e2iwa32⟫+ ⟪e2πa1e2iwa21⟫+ (w → −w)

]
.

(A.13)
Each expectation value can be computed using the method of Hermite orthogonal polyno-
mials [79]. In general, if the insertion On(a) only depends on a subset of the integration
variables ai, we can perform the gaussian integration over the variables that do not appear
in On(a) and subsequently use

⟪On(a)⟫ = 1
N !

∑
σ∈SN

∑
µ∈Sn

(−1)|µ|
∫ ( n∏

i=1
dai

pσ(i)−1(ai)pµ(σ(i))−1(ai)
hσ(i)−1

e−2y
∑

i
a2

i

)
On(a) ,

(A.14)
where

hn :=
√
2πn!(4y)−n−1/2 , pn(a) := (8y)−n/2Hn(

√
2ya) , (A.15)

where Hn(x) is the Hermite polynomial. Importantly, these functions satisfy the integral
identities, ∫

da pm(a)pn(a)e−2ya2 = hnδmn ,∫
da e−a2+xaHm(a)Hn(a) = e

x2
4 2m√

πm!xn−mLn−m
m (−x2/2) ,

(A.16)

where Ln
m(x) is the generalised Laguerre polynomial.

We now consider each term in (A.13) separately. Firstly we have

⟪e2πa1⟫ = 1
N !

∑
σ∈SN

∫
da1

pσ(1)−1(a1)pσ(1)−1(a1)
hσ(1)−1

e−2ya2
1e2πa1

= 1
N !

∑
σ∈SN

∫
da1

(8y)1−σ(1)Hσ(1)−1(
√
2ya1)Hσ(1)−1(

√
2ya1)√

2π(σ(1)− 1)!(4y)−σ(1)+1/2 e−2ya2
1e2πa1 ,

(A.17)
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which after having used (A.16) it reduces to

⟪e2πa1⟫ = e
π

2τ2
1

N !
∑

σ∈SN

Lσ(1)−1

(
− π

τ2

)
= 1

N
e

π
2τ2 L1

N−1

(
− π

τ2

)
, (A.18)

a well-known result [45] for the expectation value of a circular half-BPS fundamental Wilson-
line defect ⟨W⟩ in N = 4 SYM U(N). For the case of SU(N) we simply need replacing the

exponential factor e
π2
2y in (A.18) by e

(N−1)π2
2Ny ; this minor difference between U(N) and SU(N)

cancels out in the final result of the integrated Wilson-line correlator.
Similar computations can be done for the other terms in (A.13), and we find that

the expectation value ⟪e2πa1e2iwa21⟫ can be written as a sum of products of two Laguerre
polynomials, whereas ⟪e2πa1e2iwa32⟫ is given by a similar sum of products of three Laguerre
polynomials. Putting everything together, we obtain the final expression for the perturbative
contribution to the integrated two-point function in the presence of a Wilson-line defect,
valid for general N and arbitrary coupling constant,

Ipert
W,N (τ2) =

∫ ∞

0

2wdw

sinh2(w)

[
P1(w) + P2(w) + (w → −w)

⟨e2πa1⟩
− Z ′′(w)

]
, (A.19)

where P1(w) encodes the contribution from ⟪e2πa1e2iwa32⟫, given by

P1(w)= (A.20)

e
π2−2w2

2y

N∑
i,j,k=1

(−1)j+k

2N

{
Li−1

(
−π2

y

)[
(−1)j+kLj−1

(
w2

y

)
Lk−1

(
w2

y

)
−Lk−j

j−1

(
w2

y

)
Lj−k

k−1

(
w2

y

)]

+
(

iw

π

)i−j

Lj−i
i−1

(
−π2

y

)[
Li−k

k−1

(
w2

y

)
Lk−j

j−1

(
w2

y

)
−(−1)i+kLk−1

(
w2

y

)
Li−j

j−1

(
w2

y

)]
+
(

iw

π

)i−k

(−1)j+kLk−i
i−1

(
−π2

y

)[
(−1)i+jLi−j

j−1

(
w2

y

)
Lj−k

k−1

(
w2

y

)
−Lj−1

(
w2

y

)
Li−k

k−1

(
w2

y

)]}
,

while P2(w) contains the contribution from ⟪e2πa1e2iwa21⟫,

P2(w) = e
π2−2w2−2iπw

2y

N∑
i,j=1

[
Li−1

(
−(π − iw)2

y

)
Lj−1

(
w2

y

)

−
(

π

iw
− 1

)j−i

Lj−i
i−1

(
−(π − iw)2

y

)
Li−j

j−1

(
w2

y

)]
. (A.21)

Finally, Z ′′(w) is related to the disconnected term ⟪Z ′′
pert(0, aij)⟫ which is known to be

Z ′′(w) = e
−w2

y

L1
n−1

(
w2

y

)
2 −

N∑
i,j=1

(−1)i−jLj−i
i−1

(
w2

y

)
Li−j

j−1

(
w2

y

) . (A.22)

For small values of N , the perturbative contribution Ipert
W,N (τ2) simplifies. For example, the

cases N = 2 and N = 3 are used explicitly in the main text and are given by

Ipert
W,2 (τ2) =

1
y (2y + π2)

∫ ∞

0
e
−w2

y

{
y
[
2y + (π − 2iw)2

]
e

−iπw
y +

2
(
2y + π2

) (
2w2 − y

)
+ y

[
2y + (π + 2iw)2

]
e

iπw
y

} 2w dw

sinh2(w)
, (A.23)
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and similarly

Ipert
W,3 (τ2)=

1
y3(6y2+6π2y+π4)

∫ ∞

0
e−

w2
y

{
12πy2w

[
π2(w2−2y

)
−
(
w4−3w2y+3y2)]sin(πw

y

)
+2y2[−4w6+18w4y−36w2y2−π4(w2−2y

)
+π2(13w4−30w2y+12y2)+12y3]cos(πw

y

)
+4y2(2w6−9w4y+18w2y2−6y3)+2π2y

(
6w6−31w4y+48w2y2−12y3)

+π4(2w6−9w4y+14w2y2−4y3)} 2wdw

sinh2(w)
. (A.24)

Large-N expansion.

The perturbative contribution (A.5) admits a large-N ’t Hooft expansion,

Ipert
W,N (λ) =

∞∑
m=0

1
N2m

Ipert,m
W (λ) . (A.25)

In the main text we are interested in the large-N fixed-τ expansion of the Wilson-line
defect integrated correlator. To compute the zero-instanton sector in this regime, i.e. the
perturbative terms in τ2, we need examining the expansion of Ipert,m

W,m (λ) in the limit of strong
coupling λ ≫ 1. This analysis has been discussed in detail in [41], and the results are given
in equation (2.25) of that reference hence we do not repeat the computation here. However,
we highlight that we have found some disagreement with [41] at order 1/N6 , i.e. for Ipert,3

W .
Our calculations for the large-λ expansion of Ipert,3

W yields

Ipert,3
W (λ) = − λ9/2

1935360 − λ4

430080 − 27λ7/2

2293760 + 13λ3

80640 + · · · , (A.26)

and the discrepancy with the aforementioned reference starts at order λ4. In [41] the large-λ
expansion is obtained by rewriting each genus expansion coefficient in (A.25) as an integral
involving products of two Bessel functions, in particular see their equation (B.3) for the
order 1/N6. The product of two Bessel functions is then replaced by its Mellin-Barnes
representation and the large-λ expansion is obtained by closing the contour of integration and
evaluating the residues. We believe the disagreement we have found is due to the fact that
there are additional poles which contribute in this case and that are missed in [41].10 As we
argue in the main text after equation (3.19), the coefficient of the λ4 term in equation (A.26)
is indeed consistent with the expected behaviour of the large-N large-λ expansion of the ’t
Hooft-line defect correlator, which can be obtained from the S transformation τ → −1/τ

of the Wilson-line defect correlator.

A.2 Instanton contributions at large-N and fixed τ

In this section we discuss how to compute the instanton contributions to the integrated
Wilson-line defect correlator, IW,inst(τ), in a large-N expansion at fixed τ .

We start by reminding the reader of some important properties of the large-N expansion
for matrix model integrals which can be derived from the method of topological recursion

10The discrepancy can also be verified by performing a numerical integration of equation (B.3) in [41] for λ

large and comparing it with the asymptotic expansion (A.26).
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introduced in [64], see also [80, 81]. As it will become clear shortly, to analyse the large-
N asymptotic expansion of the k-instanton sector of the Wilson-line defect integrated
correlator (A.6), we need to control all matrix model correlation functions of the form

⟪Tr 1
An1

x
Tr 1

An2
x

. . .Tr 1
Ank

x
⟫c , (A.27)

computed from the hermitian matrix model (2.5) where we defined the diagonal matrix
Ax := a − x · 1 with a = diag(a1, . . . , aN ) and x ∈ C. With the subscript c we denote the
connected contribution to the correlation function. Using the differential identity

1
An

x

= 1
(n − 1)!∂

n−1
x

1
Ax

, (A.28)

we can rewrite the generic matrix model contribution (A.27) as

⟪Tr 1
An1

x
Tr 1

An2
x

. . .Tr 1
Ank

x
⟫c = N2−k(−1)k

[(
k∏

i=1

1
(ni − 1)!∂

ni−1
xi

)
W k(x1, . . . , xk)

]
x1=···=xk=x

,

(A.29)

where we have introduced the k-body matrix model resolvents

W k(x1, . . . , xk) :=Nk−2(−1)k⟪Tr 1
Ax1

. . .Tr 1
Axk

⟫c

=Nk−2⟪
(

N∑
i1=1

1
x1 − ai1

)
· · ·
(

N∑
ik=1

1
xk − aik

)
⟫c . (A.30)

Thanks to topological recursion [64, 80, 81], it is possible to show that each resolvent admits
the large-N genus expansion

W k(x1, . . . , xk) =
∞∑

ℓ=0
N−2ℓW k

ℓ (x1, . . . , xk) . (A.31)

and surprisingly all higher-body, higher-genus resolvents can be constructed from the one-
body genus zero resolvent

W 1
0 (x1) = 2µ(µx1)

(
1−

√
1− (µx1)−2

)
, (A.32)

where we defined

µ := 2π√
λ
=
√

πτ2
N

=
√

y

N
. (A.33)

The functions W k
ℓ (x1, . . . , xk) are homogeneous in the xi and can be expressed as

W k
ℓ (x1, . . . , xk) = µkF k

ℓ (µx1, . . . , µxk) . (A.34)

We then conclude that the generic matrix model term (A.27) at the leading order in the
large-N expansion with fixed τ grows like

⟪Tr 1
An1

x
Tr 1

An2
x

. . .Tr 1
Ank

x
⟫c ∼ µn1+···+nkN2−k ∼ N2−k−(n1+···+nk)/2 , (A.35)

since each contribution F k
ℓ (t1, . . . , tk) in (A.34) is finite in the limit ti → 0.
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We now move to show that the large-N expansion at fixed τ of the k-instanton sector (A.6)
for the integrated Wilson-line defect can be extracted from the expansion at large Ax of
matrix model correlators precisely of the form (A.27). We begin by analysing the large-N
expansion of the k-instanton contribution to (A.6) coming from the small-mass expansion of
Nekrasov partition function (A.9), denoted by Ip×q. Following [41], we introduce a slightly
different integral representation for Ip×q compared to equation (4.24),

Ip×q(a) =
∫ ∞+iϵ

−∞+iϵ

[(
cp,q + B(z)

)
eA(z) − cp,q

]
dz

2π
, (A.36)

where the constant cp,q and the functions A and B are defined as

cp,q := 2
( 1

p2 + 1
q2

)
, A(z) :=

N∑
j=1

log [z − aj + (p − 1)i] [z − aj + (q − 1)i]
(z − aj − i)[z − aj + (p + q − 1)i] ,

B(z) :=
N∑

j=1

i(p + q)(q − p)2

pq [z − aj + (p + q − 1)i] [z − aj + (q − 1)i] [z − aj + (p − 1)i] .

(A.37)

The integration contour is chosen in such a way as to separate the poles located at z = aj + i

from the remaining poles located at z = aj − i(p + q − 1), i.e. we need −(p + q − 1) < ϵ < 1.
Note that when compared to the original contour integral appearing in (4.22), the integration
contour for Ip×q has now been changed to a horizontal line in the complex z-plane. This
change in the integration contour can be performed only after having subtracted the constant
term cp,q in (A.36) as to make the integrand decay sufficiently fast at infinity |z| → ∞. This
subtraction does not modify the contour integral (4.24) and it allows us to ‘open’ up the
integration contour to any horizontal line [9] separating the poles located at z = aj + i from
the remaining ones located at z = aj − i(p + q − 1).

At this point we find it convenient to shift the integral to a more symmetric configuration
by changing integration variables to z = x + (1 − p+q

2 )i, so that the x integration contour
can be chosen to lie on the real x-axis and Ip×q becomes

Ip×q(a) =
∫ ∞

−∞

[(
cp,q +

8sd2

k
Tr −iAx + s1

(A2
x + d2 1)(A2

x + s2 1)

)
Det

(A2
x + d2

1

A2
x + s2 1

)
− cp,q

]
dx

2π
,

(A.38)
where we defined s := (p+ q)/2 and d := (p− q)/2. It is important to note that the imaginary
part of the integrand is proportional to iAx and cannot possibly produce a non-vanishing
contribution after integration over x since the original expression for the Nekrasov partition
function is real. Although we do not have a direct proof for arbitrary N , it is straightforward to
verify this fact by working at finite N and evaluate explicitly the contribution originating from
the factor proportional to iAx which vanishes identically after integrating over x. Therefore,
in what follows we simply discard the term proportional to iAx, and work with the expression

Ip×q(a) =
∫ ∞

−∞

[(
cp,q +

8s2d2

k
Tr 1

(A2
x + d2 1)(A2

x + s2 1)

)
Det

(A2
x + d2

1

A2
x + s2 1

)
− cp,q

]
dx

2π
.

(A.39)
We find this form for the k-instanton contribution coming from Nekrasov partition function
to be the most convenient for deriving the large-N expansion at fixed τ .
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As previously discussed, in the large-N limit we have that the variable x appears in the
matrix model resolvents (A.34) always in the combination µx with µ =

√
y/N . We then

introduce the rescaled variable t = µx and consider the expansion for large Ax = ai − t/µ in
the complex t plane. As a function of the complex variable t, the integrand of (A.39) has
poles located at t = µ(aj ± i s), so the large Ax expansion converges only when

|t − µaj | > µs ∀ aj . (A.40)

This means that in the N → ∞ limit the excluded region shrinks to the segment t ∈ [−1, 1]
on the real axis. One can furthermore show that the contribution to the integral coming from
this interval can be ignored in the N → ∞ limit since it is exponentially suppressed in N .

From our expression (A.39), we immediately see that the functions A and B (with a
slight abuse of notation we use the same symbol B even if we have discarded the term −iAx

which vanishes upon integration) defined in (A.37) can be rewritten conveniently as

A(x) = Tr log A2
x + d2

1

A2
x + s21

, B(x) = 8s2d2

k2 Tr 1
(A2

x + s21)(A2
x + d21) , (A.41)

so that it becomes a straightforward task to expand either of them as an infinite sums of
powers of traces TrA−2n

x .
We can now consider the full k-instanton sector of the Wilson-line defect integrated

correlator (4.22) where we replace Ip×q with (A.39). To compute the large-N expansion
of (4.22) we furthermore need the identities

⟪WeA⟫− ⟪W⟫⟪eA⟫ =
[
⟪WeA⟫c − ⟪W⟫

]
e⟨⟨e

A⟩⟩c−1 , (A.42)

⟪WeAB⟫− ⟪W⟫⟪eAB⟫ =
[
⟪WeAB⟫c +

(
⟪WeA⟫c − ⟪W⟫

)
⟪eAB⟫c

]
e⟨⟨e

A⟩⟩c−1 . (A.43)

We then conclude that equation (4.22) can be rewritten as

⟪WIp×q⟫− ⟪W⟫⟪Ip×q⟫
⟪W⟫ (A.44)

= 1
µ⟪W⟫

∫
R\(−1,1)

[ (
⟪WeA⟫c − ⟪W⟫

) (
cp,q + ⟪eAB⟫c

)
+ ⟪WeAB⟫c

]
e⟨⟨e

A⟩⟩c−1 dt

2π
.

To extract the large-N fixed-τ expansion of (A.44) we need to analyse each term separately.
Firstly, as already noted in [9], at large N and fixed τ we find

e⟨⟨e
A⟩⟩c−1 = exp

[
2ky

(
1− |t|√

t2 − 1

)]
+ O

( 1
N

)
, (A.45)

using the notation y = πτ2 = 4π2/g2
YM . The presence of |t| is due to the requirement that

all the resolvents, at all orders in the genus expansion, must be analytic functions on the
complex plane except for a cut on the segment [−1, 1].

Secondly, in (A.44) we immediately see the presence of Wilson-line defect insertions which
do not immediately seem to fall in the same category as the correlators (A.27) previously
discussed. We now show that these terms can be reconstructed as well from the resolvents
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and at a given order in 1/N only a finite number of terms need to be kept in the expansion.
We keep the present discussion rather schematic in nature without worrying about the precise
details, while in the next subsections we will show concretely how to extract the large-N
expansion of (A.44) up to order 1/N2

Since we have already argued that both A and B can be expanded in terms of mult-
trace correlators (A.27), the typical contribution to (A.44) that we still need to analyse
takes the form,

C := ⟪WTr 1
An1

x
. . .Tr 1

Ank
x
⟫c

=(−1)k

[(
k∏

i=1

1
(ni − 1)!∂

ni
xi

)
⟪W(a) Tr 1

Ax1
. . .Tr 1

Axk

⟫c

]
x1=···=xk=x

. (A.46)

We now proceed to outline a procedure for evaluating the large-N expansion of the above
expression. Since the expressions will become rather cumbersome whenever we use the
symbol ∼ rather than an equal sign it means that we have dropped numerical factors which
do not affect the large-N scaling. Firstly, from the definition of the resolvents (A.30) we
immediately see that the matrix model expectation value with an additional insertion of
W(a) = N−1Tr e2πa can be rewritten as an inverse Laplace transform of an augmented
resolvent, i.e. we can write

⟪WTr 1
Ax1

. . .Tr 1
Axk

⟫c = (−N)−k
∫

Re w>1
W k+1(w, x1, . . . , xk)e2πw dw

2πi
. (A.47)

Hence the generic contribution (A.46) can be written as

C ∼ N−k
[
∂n1−1

x1 . . . ∂nk−1
xk

∫
Re w>1

W k+1(w, x1, . . . , xk)e2πw dw

2πi

]
x1=...=xk=x

, (A.48)

where the integral is performed along any vertical line such that Rew > 1 . Using (A.34)
and making a change of integration variable w → w/µ combined with ti = µxi, we obtain

C ∼
∞∑

ℓ=0
N−k−2ℓµn1+···+nk

[
∂n1−1

t1 . . . ∂nk−1
tk

∫
Re w>1

F k+1
ℓ (w, t1, . . . , tk) e

2πw
µ dw

]
t1=...=tk=t

.

(A.49)
In the complex w-plane, F k+1

ℓ (w, t1, . . . , tk) has a branch cut along the interval [−1, 1] with
a leading singularity of the form

[
∂n1−1

t1 . . . ∂nk−1
tk

F k+1
ℓ (w, t1, . . . , tk)

]
t1=...=tk=t

= F̂ k+1
ℓ (w, t)

(w2 − 1)k+3ℓ− 1
2

, (A.50)

with F̂ k+1
ℓ (w, t) a polynomial in w such that F̂ k+1

ℓ (1, t) ̸= 0. We then arrive at

C ∼
∞∑

ℓ=0
N−k−2ℓµn1+···+nk

∫
Re w>1

F̂ k+1
ℓ (w, t)

(w2 − 1)k+3ℓ− 1
2

e
2πw

µ

∼
∞∑

ℓ=0
N−k−2ℓµn1+···+nk

∫
Re w>1

F̂ k+1
ℓ (w, t)∂(k+3ℓ−1)

w

[
pk+3ℓ(w)
(w2 − 1)

1
2

]
e

2πw
µ dy ,

(A.51)
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where we have rewritten the singular term (w2 − 1)−k−3ℓ+ 1
2 in terms of a differential operator

acting on pk+3ℓ(w) (w2 − 1)−
1
2 , with pk(w) a polynomial of degree k − 1 given by

pk(w) =
√

π

2kΓ
(
k − 1

2

) k∑
ℓ=0

(
k

ℓ

)
(−w)k−ℓ

{
[(−1)ℓ − 1](w2 − 1)

ℓ+1
2 − [(−1)ℓ + 1]w(w2 − 1)

ℓ
2
}

.

(A.52)
We integrate by parts k + 3ℓ − 1 times and then close the contour of integration to the
left half-plane arriving at

C ∼
∞∑

ℓ=0
N−k−2ℓµn1+···+nk

∫
γ

∂(k+3ℓ−1)
w

[
F̂ k+1

ℓ (w, t)e
2πw

µ
] pk+3ℓ(w)
(w2 − 1)

1
2
dw , (A.53)

where the contour of integration γ is a path circling counterclockwise the segment [−1, 1]
in the complex-w plane. The integral has thus been reduced to the evaluation of a simple
discontinuity across the branch cut of the function (w2 − 1)−

1
2 . The derivatives acting on

F̂ k+1
l e2πw/µ produce in general many terms which can be organised in powers of 1/N , i.e.

C ∼
∞∑

ℓ=0
N−k−2ℓµn1+···+nk

∫
γ

µ1−3ℓ−k

(
k+3ℓ−1∑

r=0
µr∂r

wF̂ k+1
ℓ (w, t)

)
e

2πw
µ pk+3ℓ(w)
(w2 − 1)

1
2

dw . (A.54)

Remembering that µ =
√

y/N we see that higher powers of µ correspond to more
suppressed terms at large-N . Keeping here for simplicity only the leading contribution,
i.e. only the r = 0 term, we are left with computing the final w-integral. To evaluate the
w-integral we first change variable to w → 1 − w and, since we are interested only in an
asymptotic expansion of the integral11 as a function of µ, we can extend the integration
domain to w ∈ [0,∞] given that the difference is exponentially suppressed at large-N . Lastly,
we simply expand the integrand ∂r

wF̂ k+1(w, t) as a power series in w near w = 0 and integrate
term by term to arrive at

C ∼
∞∑

ℓ=0
N−k−2ℓµn1+···+nkµ1−3ℓ−k

[∫ ∞

0

( ∞∑
m=0

cm(t)wm− 1
2
)
e
− 2πw

µ e
2π
µ dw +

∞∑
r=1

µr( . . .
)]

∼
∞∑

ℓ=0
N− k+ℓ+n1+...+nk

2 µ
3
2
(
c0(t) +

c1(t)µ
4π

+ . . .
)
e

2π
µ + . . . .

(A.55)
Finally, the t-integral has to be performed as in (A.44) and will produce finite expressions
thanks to the asymptotic behaviour (A.45). From this schematic argument, it becomes
clear that to obtain any given 1/N ℓ order in the large-N fixed-τ expansion of the instanton
sector (A.44) for the Wilson-line defect integrated correlator we only need to keep finitely
many terms.

In the next section we will work out the numerical details omitted in the present rough
arguments, and use this procedure to compute exactly the first few orders in the large-N
expansion of (A.44).

11We have already omitted exponentially suppressed terms when we discarded the integration domain
−µ−1 < x < µ−1
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Order 1/N .

We now follow the procedure outlined in the previous section and derive the exact coefficients
for the first few 1/N orders in the large-N expansion of the instanton sector for the Wilson-line
defect integrated correlator as defined in (A.44). The leading large-N asymptotics of each
term appearing in (A.44) are given by

⟪WeA⟫c − ⟪W⟫ ∼ e
2π
µ µ

3
2 N−5

2 , ⟪eAB⟫c ∼ N−1 , ⟪WeAB⟫c ∼ e
2π
µ µ

3
2 N−7

2 , (A.56)

so at leading order we have

⟪WIp×q⟫− ⟪W⟫⟪Ip×q⟫
⟪W⟫

∣∣∣
N−1

= cp,q

µ⟪W⟫
∫

R\(−1,1)

⟪WA⟫c e⟪A⟫
dt

2π
, (A.57)

where |N−1 denotes the fact that we only keep terms contributing at most to order N−1. The
integrand can furthermore be expanded at leading order to produce

⟪WA⟫c = (d2 − s2)⟪WTr 1
A2

x

⟫c = − k

N
∂x⟪Tr e2πa Tr 1

Ax
⟫ , (A.58)

which, as anticipated in (A.47), we rewrite as an inverse Laplace transform of the resolvent,

⟪WA⟫c =
kµ

N
∂t

∫
Rew>1

W 2
0 (w, t/µ) e2πw dw

2πi
. (A.59)

Using topological recursion [64, 81], we compute the two-body genus zero resolvent W 2
0 (x1, x2)

from (A.32) eventually arriving at∫
Rew>1

W 2
0 (w, t/µ)e2πw dw

2πi
= e

2π
µ µ

3
2
sign(t)√

t2 − 1

[ 1
4π(t − 1)

]
+ . . . . (A.60)

We substitute this expression back in (A.57) and write the leading order instanton correction as

⟪WIp×q⟫− ⟪W⟫⟪Ip×q⟫
⟪W⟫

∣∣∣
N−1

= −6e2kycp,q
k

N2
e

2π
µ µ

3
2

8π2

∫ ∞

1

t

(t2 − 1)
5
2
exp

[
−2ky

|t|√
t2 − 1

]
dt ,

(A.61)
where first we split the t-integral into the two domains t ∈ (−∞,−1) and t ∈ (1,∞), and
then combined both of them into a single integral. The integral can be performed explicitly
to obtain,

⟪WIp×q⟫− ⟪W⟫⟪Ip×q⟫
⟪W⟫

∣∣∣
N−1

= −3(p2 + q2)
2yk2 e2kyK2(2ky) 1

N
, (A.62)

where K2(y) denotes the modified Bessel function of the second kind. Remembering that
the sum over p and q is constrained by the fact that pq = k, we finally find the instanton
contributions at the leading order in the large-N expansion (3.1),

I(2)-inst
W (τ) = −

∑
k>0

cos(2πkτ1)
6σ−2(k)

πτ2
K2(2kπτ2) , (A.63)

where σn(k) =
∑

d|k dn is a sum over the divisors of k and we have expressed the result
in terms of τ = τ1 + iτ2.
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Higher-order terms.

Instanton corrections at higher-order in the large-N expansion can be obtained in a similar
fashion. We now present all the terms which contribute to the instanton sectors up to order
1/N2. Firstly, working up to order 1/N2 we can simplify the integrand of (A.44) using

⟪WeA⟫c − ⟪W⟫ = ⟪WA⟫c = −(s2 − d2)⟪WTr 1
A2

x

⟫c +
(s4 − d2)

2 ⟪WTr 1
A4

x

⟫c ,

⟪eAB⟫c = ⟪B⟫ = 8s2d2

k2 (s2 − d2)⟪Tr 1
A4

x

⟫ ,

⟪WeAB⟫c = ⟪WB⟫c =
8s2d2

k2 (s2 − d2)⟪WTr 1
A4

x

⟫c ,

(A.64)

where all of these identities hold to the order 1/N2 we are working at. We then use the
inverse Laplace transform (A.47) combined with the resolvents genus expansion up to order
1/N2 to write

⟪WTr 1
A2

x

⟫c = − µ

N
∂t

∫
Rew>1

[
W 2

0 (w, t/µ) + 1
N2 W 2

1 (w, t/µ) + 1
N4 W 2

2 (w, t/µ)
]

e2πw dw

2πi
,

⟪WTr 1
A4

x

⟫c = − µ3

6N
∂3

t

∫
Rew>1

W 2
0 (w, t/µ)e2πw dy

2πi
,

(A.65)

⟪Tr 1
A4

x

⟫ = −Nµ3

6 ∂3
t W 1

0 (t/µ) = Nµ4|t|
(t2 − 1)5/2 .

Once again, the resolvents can be computed using topological recursion yielding

∫
Rew>1

W 2
0 (w,t/µ)e2πw dw

2πi
= e

2π
µ µ

3
2
sign(t)√

t2−1

[
1

4π(t−1)−
3µ(t+3)

64π2(t−1)2 −
15µ2[(t−10)t−23]
2048π3(t−1)3

]
,

∫
Rew>1

W 2
1 (w,t/µ)e2πw dw

2πi
= e

2π
µ µ−3

2
sign(t)√

t2−1

[
π2

48(t−1)−
πµ(5t−9)
256(t−1)2

]
, (A.66)

∫
Rew>1

W 2
2 (w,t/µ)e2πy dw

2πi
= e

2π
µ µ−9

2
sign(t)√

t2−1

[
π5

1152(t−1)

]
.

We then substitute this expression back in (A.44) expanded up to order 1/N2 and perform
the t-integral as previously discussed. In this way we finally find the instanton contributions
up to order 1/N2 in the large-N expansion (3.1), i.e.

I inst
W,N (τ) = N−1 I(2)-inst

W (τ) + N− 3
2 I(3)-inst

W (τ) + N−2 I(4)-inst
W (τ) + O(N−5

2 ) , (A.67)
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where we defined

I(2)-inst
W (τ)=−

∑
k>0

cos(2πkτ1)
6σ−2(k)

πτ2
K2(2kπτ2), (A.68)

I(3)-inst
W (τ)=

∑
k>0

cos(2πkτ1)
[
9σ−2(k)
2π

√
πτ2

K2(2kπτ2)+
45σ−2(k)
2πk(πτ2)

3
2

K3(2kπτ2)
]

, , (A.69)

I(4)-inst
W (τ)= (A.70)
∞∑

k=1
cos(2πkτ1)

[
−
(
3τ2

2 +4π2)σ2(k)
16π2k2τ2

2
K2(2πkτ2)+

5
(
π2τ2

2 σ4(k)−
(
12τ2

2 +π2)σ2(k)
)

4π3k3τ3
2

K3(2πkτ2)

+ 35
(
2π2σ4(k)−15σ2(k)

)
8π4k4τ2

2
K4(2πkτ2)

]
,

As stressed in the main text, the result of our large-N expansion for the instanton sectors differs
from that of [41] in that we do not find contributions proportional to sin(kθ). The instanton
contributions at order 1/N2 were not computed in [41] and are here presented as a further
check of our proposed large-N expansion in terms of a novel class of automorphic functions.

To obtain the complete 1/N2-order term we must combine the instanton sectors just
computed with the perturbative part contained in (A.26) and equation (2.25) of [41] for
the lower order terms, this yield

I(4)
W (τ)= π6

56700τ6
2
− π4

1680τ4
2
− π2

30τ2
2
− (4ζ(3)+1)

128 +9τ2
2 (7ζ(3)+10ζ(5)+3)

512π2 (A.71)

−3
∞∑

k=1
cos(2πkτ1)

[(
3τ2

2 +4π2)σ2(k)
16π2k2τ2

2
K2(2πkτ2)−

5
(
π2τ2

2 σ4(k)−
(
12τ2

2 +π2)σ2(k)
)

4π3k3τ3
2

K3(2πkτ2)

− 35
(
2π2σ4(k)−15σ2(k)

)
8π4k4τ2

2
K4(2πkτ2)

]
.

We remark that in the above expression only the first term, proportional to 1/τ6
2 , has not

been computed directly from the matrix model. This term has been determined by requiring a
softer behaviour in the small-τ2 limit (with τ1 = 0) dictated by the ’t Hooft expansion of the ’t
Hooft-line defect integrated correlator (see the discussion around (3.11)). Following an analysis
similar to [41], or alternatively using the asymptotic expansion (B.29), it is straightforward
to verify that in the limit τ2 → 0 the 1/τ6

2 term and the 1/τ4
2 term cancel against equal and

opposite terms originating from the infinite sum of instantons contributions, which stop being
exponentially suppressed when τ2 → 0. It would be interesting, although rather laborious,
to compute the term 1/τ6

2 directly from the matrix model by a large-N large-λ expansion,
which would correspond to the term λ6/N8 in the ’t Hooft genus expansion at large-λ.

B A class of automorphic functions for line defects

In this appendix we present more details on the novel class of automorphic functions, Fs1,s2,s3 ,
which appear in the analysis of the integrated two-point defect correlator (2.52).

More in general, we want to define a family of real-analytic functions, F , defined on the
upper-half plane parametrised by τ ∈ H and carrying as input an additional label associated
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with a coset element [ρ] = ( ∗ ∗
q p ) ∈ B(Z)\PSL(2,Z), corresponding to the electromagnetic

charges (p, q) of the defect. Crucially, we require that under an action of SL(2,Z) on the
modular parameter τ these class of functions F transforms with the automorphic prop-
erty (2.38) which can be interpreted as electromagnetic duality, i.e. we want to construct
real-analytic functions F such that

F : B(Z)\PSL(2,Z)×H → R , (B.1)
F ([ρ]; γ · τ) = F ([ρ γ]; τ) , ∀γ ∈ SL(2,Z) . (B.2)

Firstly, we can immediately construct an easy class of functions satisfying the automorphic
property (B.2), namely

F easy
s ([ρ]; τ) := (τ2/π)s

∣∣
ρ
= π−s

(
Im ρ · τ

)s
= (τ2/π)s

|qτ + p|2s
, (B.3)

were s ∈ C and we used the standard |ρ action to denote f(τ)|ρ := f(ρ · τ). Note that (B.3) is
really defined on the equivalence class [ρ] rather than a particular representative thereof and
one can easily check that under an SL(2,Z) action on τ the function F easy

s transforms as (B.2).
If we specialise F easy

s to the case [ρ] = [1] corresponding to the Wilson-line defect, we
understand the reason why we denoted this class of functions with the superscript ‘easy’
since F easy

s ([1]; τ) = (τ2/π)s is simply a term in the perturbative expansion. Although not
particularly exciting, we see that the Wilson-line defect expectation value (2.13), the one-
and two-point defect correlators (2.30)–(2.31) can all be expressed solely in terms of (B.3).

We now define now a more interesting class of automorphic functions relevant for the
integrated defect correlator (2.52) satisfying (B.2) and based on a Poincaré series approach.
Poincaré series are a fundamental tool in constructing modular invariant functions and in
their simplest instance they take the form

F (τ) =
∑

γ′∈B(Z)\PSL(2,Z)
φ(γ′ · τ) . (B.4)

However, for the Poincaré series to be well-defined over the coset B(Z)\PSL(2,Z) we must
require that the function φ(τ), usually called Poincaré seed, to be invariant under the Borel
stabiliser B(Z), i.e. it must be periodic with respect to τ1 = Re τ so that φ(τ + n) = φ(τ). A
simple Poincaré seed one can consider is φ(τ) = τ s

2 and the associated Poincaré series (B.4)
is referred to as the non-holomorphic (or real-analytic) Eisenstein series.

Since we are interested in automorphic forms satisfying (B.2), we have to modify the
Poincaré series definition (B.4) which would otherwise produce modular invariant functions.
For the electromagnetic charges coset element [ρ] to ‘talk’ with the Poincaré series, we have
to somehow intertwine the two coset elements [ρ] and [γ′]. Crucially, we notice that given
two elements [ρ] = ( ∗ ∗

q p ) ∈ B(Z)\PSL(2,Z) and [γ′] = ( ∗ ∗
c d ) ∈ B(Z)\PSL(2,Z), we can

construct the combination

⟨[γ′], [ρ]⟩ := (ρ γ′−1)21 = qd − pc , (B.5)

which is manifestly invariant under a right SL(2,Z) action, i.e.

⟨[γ′], [ρ]⟩ = ⟨[γ′γ], [ρ γ]⟩ ∀ γ ∈ SL(2,Z) . (B.6)
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In (B.5) we denote with (ρ γ′−1)21 the bottom left entry of the 2 × 2 matrix ρ γ′−1, and
note that this is the only element in that product of matrices which is well-defined on the
coset. As will be important later on, we note that

⟨[γ′], [ρ]⟩ = 0 ⇐⇒ [γ′] = [ρ] , (B.7)

i.e. q = c and p = d.
We can now define a family of real-analytic functions via the Poincaré series representation:

F ([ρ]; τ) = (τ2/π)s1
∣∣
ρ

∑
γ′∈B(Z)\PSL(2,Z)

(τ2/π)s2
∣∣
γ′ f(⟨[γ′], [ρ]⟩) , (B.8)

where s1, s2 are complex numbers and f : Z → R is for the moment an arbitrary real-valued
function over the set of all integers. Presently we do not worry about convergence properties
of such a Poincaré series but shortly we will consider special cases for which (B.8) is indeed
convergent. It is an easy exercise to show that (B.8) obeys the requested automorphic
property (B.2). To this end we consider

F ([ρ]; γ · τ) = F ([ρ]; τ)
∣∣
γ
= (τ2/π)s1

∣∣
ρ γ

∑
γ′∈B(Z)\PSL(2,Z)

(τ2/π)s2
∣∣
γ′γ

f(⟨[γ′], [ρ]⟩)

= (τ2/π)s1
∣∣
ρ γ

∑
γ′′∈B(Z)\PSL(2,Z)

(τ2/π)s2
∣∣
γ′′ f(⟨[γ′′γ−1], [ρ]⟩)

= (τ2/π)s1
∣∣
ρ γ

∑
γ′′∈B(Z)\PSL(2,Z)

(τ2/π)s2
∣∣
γ′′ f(⟨[γ′′], [ρ γ]⟩) = F ([ρ γ]; τ) , (B.9)

where in the first line we used the fact that

(τ2/π)s
∣∣
ρ

∣∣
γ
=
( (τ2/π)s

|qτ + p|2s

)∣∣∣
γ
= (τ2/π)s

|(qa + pc)τ + (qb + pd)|2s
= (τ2/π)s

∣∣
ρ γ

, (B.10)

with γ =
(

a b
c d

)
, then we changed summation variables γ′ → γ′′ := γ′γ and finally in the last

line we made use of the property (B.6). We see that the transformation property (B.9) of
the Poincaré series (B.8) coincides precisely with the requested (B.2).

Note furthermore that if we isolate in the Poincaré sum (B.8) the single term [γ′] = [ρ],
which is the unique point for which the argument of f vanishes, this reduces to a multiple
of the easier functions previously constructed in (B.3), i.e.

(τ2/π)s1
∣∣
ρ

∑
γ′∈B(Z)\SL(2,Z)

δ([γ′]− [ρ]) (τ2/π)s2
∣∣
γ′ f(⟨[γ′], [ρ]⟩) = f(0) (τ2/π)s1+s2

∣∣
ρ

= f(0)F easy
s1+s2([ρ]; τ) .

(B.11)

This observation leads us to consider a more refined version of the Poincaré sum (B.8) for
which we remove from the sum the single element [γ′] = [ρ] . Furthermore, we specialise the
arbitrary function f : Z → R to the particular case f(n) = (πn)s3 (the factors of π are chosen
as to have a nicer normalisation) to arrive at our novel automorphic building blocks

F̃s1,s2,s3([ρ]; τ) := (τ2/π)s1
∣∣
ρ

∑
γ′∈B(Z)\PSL(2,Z)

γ′ ̸=ρ

(τ2/π)s2
∣∣
γ′

(
π⟨[γ′], [ρ]⟩

)s3 (B.12)

= (τ2/π)s1

|qτ + p|2s1

∑
(c,d)=1,c≥0
(c,d) ̸=(q,p)

(τ2/π)s2

|cτ + d|2s2
[π(qd − pc)]s3 . (B.13)
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Convergence of the Poincaré series requires Re(s2 − s3) > 1. However we will shortly
analytically continue this class of functions to arbitrary s1, s2, s3 ∈ C.

Rather than working with the above Poincaré series we find it more convenient to obtain
a lattice sum representation. To transform the Poincaré series (B.13) into a lattice sum we
multiply it by 2ζ(2s2 − s3) which we then rewrite in terms of its Dirichlet series 2ζ(2s2 −
s3) = 2

∑
N>0 N−2s2+s3 . We then change summation variables (c, d) → (n, m) = (Nc, Nd) so

that, under the assumption12 s3 ∈ 2Z, we can rearrange the multiple sums as

2
∑
N>0

∑
(c,d)=1,c≥0
(c,d) ̸=(q,p)

=
∑

(n,m)∈Z2

(n,m) ̸=ℓ(q,p) ,∀ℓ∈Z

. (B.14)

We finally arrive at the automorphic building blocks considered in the main body of this
work and given by the lattice sum representation

Fs1,s2,s3([ρ]; τ) := 2ζ(2s2 − s3)F̃s1,s2,s3([ρ]; τ) (B.15)

= (τ2/π)s1

|qτ + p|2s1

∑
(n,m)∈Z2\{Z(q,p)}

(τ2/π)s2

|nτ + m|2s2
[π(np − mq)]s3 .

After having introduced this infinite class (B.15) of automorphic functions satisfying (B.2),
we now discuss some of their key properties.

Firstly, we notice that under the involution τ → −τ̄ the automorphic functions
Fs1,s2,s3([ρ]; τ) are even, i.e.

Fs1,s2,s3([ρ];−τ̄) = +Fs1,s2,s3([ρ]; τ) , (B.16)

It is possible to modify the starting Poincaré series (B.8) as to produce a different class of
automorphic functions odd under the involution τ → −τ̄ , thus leading to cuspidal objects
in the sense that their asymptotic expansion at the cusp τ2 ≫ 1 must necessarily be O(q)
with q = exp(2πiτ).

Secondly, we can check by direct calculation that for general [ρ] ∈ B(Z)\SL(2,Z) the
functions Fs1,s2,s3([ρ]; τ) defined in (B.15), satisfy the differential equation:[

∆τ −2is1

(
qτ+p

qτ̄+p
τ2 ∂τ −

qτ̄+p

qτ+p
τ2 ∂τ̄

)
+(s1+s2)(1+s1−s2)

]
Fs1,s2,s3([ρ];τ)= 0 . (B.17)

In particular, when [ρ] = [1] (the case relevant when discussing Wilson-line defect correlators)
the above equation reduces to the simpler differential equation

[∆τ − 2s1τ2 ∂2 + (s1 + s2)(1 + s1 − s2)
]
Fs1,s2,s3([1]; τ) = 0 , (B.18)

where ∂2 = ∂/∂τ2. Note that equation (B.17) can in fact be derived by acting with |ρ
on (B.18) and noting that 2τ2 ∂2 = −iτ2(∂τ − ∂τ̄ ) where the Maaß operators τ2∂τ and τ2∂τ̄

change the modular weights respectively by (+1,−1) and (−1,+1), i.e.[
τ2∂τ F (τ)

]
|ρ = qτ + p

qτ̄ + p
τ2∂τ F (ρ · τ) ,

[
τ2∂τ̄ F (τ)

]
|ρ = qτ̄ + p

qτ + p
τ2∂τ̄ F (ρ · τ) , (B.19)

thus justifying the automorphy factors appearing in (B.17).
12The condition s3 ∈ 2Z appears to be the physically relevant choice for the present paper. However, it is

possible to write similar lattice sums for the more general case when s3 is not an even integer.

– 49 –



J
H
E
P
1
1
(
2
0
2
4
)
0
8
4

Finally we want to derive the Fourier mode expansion of (B.15) in the special case when
[ρ] = [1]. We first note that only for the case [ρ] = [1], relevant for the Wilson-line defect
correlators, we can perform a sensible Fourier series decomposition of (B.15) with respect to
Re(τ) = τ1. The reason is simple, if we consider a translation T n · τ = τ + n of a generic
function Fs1,s2,s3([ρ]; τ) this will in general change the coset element, i.e.

Fs1,s2,s3([ρ]; τ + n) = Fs1,s2,s3([ρ];T n · τ) = Fs1,s2,s3([ρ T n]; τ) , (B.20)

and [ρ T n] ̸= [ρ] unless [ρ] = [1]. This can be understood in physics terms as a consequence
of the Witten effect where for a dyon with electromagnetic charges (p, q) with q ̸= 0, a
translation of the θ angle will induce a modification of the electric charge.

Let us then consider the Fourier mode expansion for (B.15) when [ρ] = [1] and use
the integral representation

Fs1,s2,s3([ρ]; τ) = (τ2/π)s1
∣∣
ρ

∑
(n,m)∈Z2\{Z(q,p)}

∫ ∞

0
e
−t2π

|nτ+m|2
τ2

−t3π(np−mq) ts2−1
2
Γ(s2)

t−s3−1
3

Γ(−s3)
d2t ,

(B.21)
which we then specialise to (p, q) = (1, 0)

Fs1,s2,s3([1]; τ) = (τ2/π)s1
∑

(n,m)∈Z2

n ̸=0

∫ ∞

0
e
−t2π

|nτ+m|2
τ2

−t3πn ts2−1
2
Γ(s2)

t−s3−1
3

Γ(−s3)
d2t . (B.22)

We perform a Poisson resummation for the variable m → m̂ thus arriving at

Fs1,s2,s3([1]; τ) = (τ2/π)s1
∑

(n,m̂)∈Z2

n ̸=0

e2πiτ1nm̂√
τ2

∫ ∞

0
e
−t2πn2τ2−t2

πm̂2
τ2

−t3πn t
s2− 3

2
2
Γ(s2)

t−s3−1
3

Γ(−s3)
d2t .

(B.23)
The term m̂ = 0 produces the single perturbative term in the Fourier zero-mode sector, while
for m̂ ̸= 0 we obtain the non-zero Fourier modes, both of which can be readily evaluated
from the integral representation above and take the form

Fs1,s2,s3([1]; τ) =
∑
k∈Z

e2πikτ1F (k)
s1,s2,s3([1]; τ2)

=
2π

1
2 +s3−s1−s2Γ

(
s2 − 1

2

)
ζ(2s2 − s3 − 1)

Γ(s2)
τ s1+1−s2

2 (B.24)

+ 8πs3−s1

Γ(s2)
∑
k>0

cos(2πkτ1)ks2− 1
2 σs3+1−2s2(k)τ

s1+ 1
2

2 Ks2− 1
2
(2kπτ2) .

Here Ks(y) is a modified Bessel function of the second kind, while σs(k) :=
∑

d|k ds denotes
the divisor sigma function.

From the Fourier mode decomposition (B.24), we can furthermore extract the asymp-
totic expansion near the origin τ2 → 0 which, thanks to the identity Fs1,s2,s3([1];−1/τ) =
Fs1,s2,s3([S]; τ), we can relate to the large τ2 ≫ 1 expansion for the ’t Hooft-line defect,
[ρ] = [S], in the particular case τ1 = 0. To proceed we run an argument similar to the
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analysis provided in [41]. Firstly, we use the Mellin-Barnes integral representation for the
Bessel function

Kt(2z) =
∫

Re s=γ
Γ
(s + t

2
)
Γ
(s − t

2
)
z−s ds

8πi
, (B.25)

with γ > Re t. Substituting this expression in (B.24), we exchange the integral over s with
the sum over Fourier modes, k > 0, arriving at the Dirichlet series∑

k>0
cos(2πkτ1)

σs3+1−2s2(k)
ks+ 1

2−s2
. (B.26)

Although no closed-form expression is known for generic −1/2 < τ1 < 1/2, it should
be possible to adapt the analysis of [82] to obtain an analytic continuation of (B.26) for
τ1 ∈ [−1/2, 1/2] ∩ Q. Here we simply consider the case τ1 = 0 for which (B.26) reduces
to the well-known Dirichlet series∑

k>0

σs3+1−2s2(k)
ks+ 1

2−s2
= ζ

(
s − s2 +

1
2

)
ζ

(
s + s2 − s3 −

1
2

)
. (B.27)

However, note that by having exchanged integration over s with the sum over k, we have
now introduced additional singularities in the right half-plane Re s ≥ γ, thus we have to
push the s-contour of integration past all poles as to obtain an integral representation which
is indeed exponentially suppressed as τ2 ≫ 1.

Proceeding as just discussed and performing the change of integration variables s → 2s +
s2 + 1/2 we arrive at the alternative rewriting of (B.24) specialised to τ1 = 0,

Fs1,s2,s3([1]; iτ2) =
2π

1
2 +s3−s1−s2Γ

(
s2 − 1

2

)
ζ(2s2 − s3 − 1)

Γ(s2)
τ s1+1−s2

2 (B.28)

+ 4π
1
2 (s3−2s1)τ s1−s2

2
Γ(s2)

∫
Re s=γ

Γ(s + s2)
Γ
(
s + s2 − s3

2
)ξ(2s) ξ(2s + 2s2 − s3)τ−2s

2
ds

2πi
,

where ξ(s) := π−s/2Γ(s/2)ζ(s) = ξ(1 − s) denotes the completed Riemann zeta function
and γ must be chosen such that the integrand is analytic for Re s ≥ γ. The small-τ2
asymptotic expansion can now be computed by closing the contour of integration to the
left half-plane and collecting residues. Interestingly, for the case of physical interest we
have s3 ∈ 2Z and the integrand displays only a finite number of poles which are located
at s = 0, 1

2 ,−s2 + s3/2,−s2 + s3/2 + 1/2, coming from the argument of ξ(s) being either
0 or 1, as well as at s = −s2 − m with m ∈ {0, . . . , 1 − s3/2} coming from the gamma
function at numerator. When τ1 = 0, we then find the terminating asymptotic expansion
near τ2 → 0 of (B.15),

Fs1,s2,s3([1]; iτ2) = Fs1,s2,s3

(
[S]; i

τ2

)
(B.29)

=
2πs2−s1− 3

2Γ
( s3+2−2s2

2
)
Γ
( s3+1

2
)

Γ(s2)
ζ(s3 + 2− 2s2)τ s1+s2−s3−1

2 + 2πs3−s1−s2ζ(2s2 − s3)τ s1−s2
2

+
max(0,− s3

2 )∑
m=0

4(−1)mπs3−s1−s2Γ(s2 + m)
Γ(s2)Γ(m + 1) ζ(2s2 + 2m)ζ(−s3 − 2m)τ s1+s2+2m

2 + O(e−
2π
τ2 ) .
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We note that the single Fourier zero-mode term in (B.24) proportional to τ s1+1−s2
2 cancels

out in the small-τ2 expansion. Furthermore, in the small-τ2 expansion the m = 0 term, which
reduces to 4πs3−s1−s2ζ(2s2)ζ(−s3)τ s1+s2

2 corresponds to the second homogeneous solution
to the differential equation (B.18). From the analysis of section 3, it appears clear that
for the range of parameters s1, s2 and s3 relevant for the large-N expansion of the defect
integrated correlator, the power τ s1+s2

2 is the most singular term as τ2 → 0. It is tempting
to consider as ‘fundamental’ the shifted building block

F̂s1,s2,s3([1]; τ) := Fs1,s2,s3([1]; τ)− 4πs3−s1−s2ζ(2s2)ζ(−s3)τ s1+s2
2 (B.30)

= −4πs3−s1−s2ζ(2s2)ζ(−s3)τ s1+s2
2 +

2π
1
2 +s3−s1−s2Γ

(
s2 − 1

2

)
ζ(2s2 − s3 − 1)

Γ(s2)
τ s1+1−s2

2

+ 8πs3−s1

Γ(s2)
∑
k>0

cos(2πkτ1)ks2− 1
2 σs3+1−2s2(k)τ

s1+ 1
2

2 Ks2− 1
2
(2kπτ2) ,

which still solves the differential equation (B.18) and now has a milder behaviour as τ2 → 0.
Although there seems to be a connection [41] between such singular terms and the requirement
of having a consistent genus expansion of the ’t Hooft-line defect correlator (see the discussion
around (3.11)), we do not fully understand the mathematical reasons behind it.

To conclude this appendix, given the similarity with the present discussion it is worth
reminding the reader about the Fourier mode decomposition for the modular invariant
non-holomorphic Eisenstein series E(s; τ),

E(s; τ) := 2ζ(2s)
∑

γ′∈B(Z)\PSL(2,Z)
(τ2/π)s

∣∣
γ′ =

∑
(m,n) ̸= (0,0)

(τ2/π)s

|nτ + m|2s
(B.31)

= 2ζ(2s)
(

τ2
π

)s

+
2
√

π Γ(s − 1
2)ζ(2s − 1)

πs Γ(s) τ1−s
2

+ 8
Γ(s)

∑
k>0

cos(2πkτ1)ks− 1
2 σ1−2s(k)τ

1
2

2 Ks− 1
2
(2πkτ2) ,

which is the solution to the homogeneous Laplace eigenvalue equation,[
∆τ − s(s − 1)

]
E(s; τ) = 0 . (B.32)

These modular invariant functions play a key role [11] in the study of integrated four-point
correlators of local operators in N = 4 SYM, they do however differ quite significantly
from (B.15) not just from their automorphic properties. In particular, when comparing the
Fourier modes decomposition for the modular invariant Eisenstein series (B.31) with that
of the automorphic functions (B.24) we notice two key differences:

(i) the Fourier zero-mode of Fs1,s2,s3([1]; τ) does not include the analogue of the first term
in (B.31), i.e. the monomial τ s1+s2

2 is absent from (B.24); however such term is present
in (B.30) for the ‘improved’ class of functions F̂s1,s2,s3([1]; τ);

(ii) while for the non-holomorphic Eisenstein series the index of the divisor sigma function
is (minus) twice the index of the Bessel function, the same is in general not true for
Fs1,s2,s3([1]; τ).
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C Finite-N decomposition in automorphic functions

In this appendix we provide more technical details to show how to decompose the line defect
integrated correlator as an infinite series of automorphic functions, elements of the novel class
proposed in appendix B. As outlined in section 4, our method relies first in computing the k-
instanton contribution to the Wilson-line defect integrated correlator, I(k)

W,N (τ). Secondly, we
impose for arbitrary instanton number k that I(k)

W,N (τ) can be written as a linear combination
of the non-zero Fourier modes of automorphic functions Fs1,s2,s3([1]; τ), given in (B.24). A
careful analysis of the instanton sector produces a finite system of linear equations for the
coefficients of this linear combination which yields a unique solution for the cases SU(2)
and SU(3) considered.

As discussed in the main text, we consider the ’reduced’ version of the integrated
correlator, as defined in (4.3), i.e. we want to study

Ĩ(k)
W,N (τ2) =

L1
N−1(− π

τ2
)

N
I(k)
W,N (τ2) . (C.1)

The goal is to express Ĩ(k)
W,N (τ2) as an infinite sum over the Fourier coefficients F

(k)
s1,s2,s3([1]; τ2)

given in (B.24). In what follows we determine the precise form of this series for the explicit
examples N = 2 and N = 3, we stress however that our method can be utilised for higher
values of N , although at the present time we have yet to understand systematically the
N dependence.

Let us start with discussing the line defect integrated correlator with SU(2) gauge
group. In this case, the matrix model originating from supersymmetric localisation is a
one-dimensional integral. The kth Fourier mode I(k)

W,2(τ2) for k > 0 is given by (using the
variable y = πτ2)

I(k)
W,2(τ2) =

∞∑
n=0
⟪Z ′′(k)

inst (0, aij)⟫n

2y 1F1(−n − 1; 1
2 | −

π2

4y )
π2 + 2y

− 1

 y−n , (C.2)

where ⟪Z ′′(k)
inst (0, aij)⟫n denotes the coefficient of 1/yn in the large y expansion of ⟪Z ′′(k)

inst (0, aij)⟫.
We derive (C.2) by expressing Z

′′(k)
inst (0, aij) as a power series in a1 (using the fact a2 = −a1

for SU(2))

Z
′′(k)
inst (0, aij) =

∑
n

Cn a2n
1 . (C.3)

The explicit form of the coefficient Cn is not important for the following discussion. Then
I(k)
W,2(τ2) can be computed from (A.6) and takes the form

I(k)
W,2(τ2) = e−2π|k|τ2

∞∑
n=0

Cn

(
⟪e2πa1a2n

1 ⟫
⟪e2πa1⟫ − ⟪a2n

1 ⟫
)

. (C.4)

The above expression then leads to (C.2) by using the matrix model expectation values

⟪e2πa1a2n
1 ⟫

⟪e2πa1⟫ =
Γ
(
n + 3

2

)
1F1

(
−n − 1; 1

2 | −
1

4y

)
4n−1 yn−1π2n+ 1

2 (2y + 1)
, ⟪a2n

1 ⟫ = 21−2nπ−2n− 1
2 y−nΓ

(
n + 3

2

)
.

(C.5)
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The relation (C.2) is extremely useful since ⟪Z ′′(k)
inst (0, aij)⟫ has been evaluated for any

instanton number k in [11],

⟪Z ′′(k)
inst (0, aij)⟫ =2e−2π|k|τ2

∑
p,q>0
pq=|k|

[
− p + q

p q
+ 2(p + q)y(1 + 2(p − q)2y)

− 4y3/2√πe(p+q)2y((p2 + q2) + (p2 − q2)2y
)
erfc((p + q)√y)

]
, (C.6)

where erfc(z) := 2√
π

∫∞
z e−t2

dt is the complementary error function. With (C.6) at hand, it is

then straightforward to obtain the k-instanton contribution I(k)
W,2(τ2), or equivalently Ĩ(k)

W,2(τ2),
in the large-y expansion. We give the first few terms in the large y expansion

Ĩ(k)
W,2(τ2)=∑

p,q>0
pq=k

[
3π2(3p2−10pq+3q2)

2y2(p+q)5 +π2(−150p2+420pq−150q2)+π4(3p4−4p3q−14p2q2−4pq3+3q4)
4y3(p+q)7

− 15π2(−147p2+378pq−147q2)+15π4(5p4−4p3q−18p2q2−4pq3+5q4)
8y4(p+q)9 +...

]
.

(C.7)
Next, we replace q by k/p such that we have a single sum over all positive divisors p of

k. We then consider a large k expansion and perform the sum over p yielding divisor sigma
functions σs(k) with different indices. We conclude by grouping all terms according to the
index of the divisor sigma function which accompanies them, i.e. we arrive at

Ĩ(k)
W,2 =σ−3(k)

(3π4

4y3 + 9π2

2y2

)
− σ−5(k)

[ 5π6

16y5 + 75π4

8y4 + 25π2 (π2k + 6
)

4y3 + 75π2k

2y2

]
+ σ−7(k)

[ 7π8

64y7 + 49π6

8y6 + 7
(
28π6k + 840π4)

64y5 + 7
(
840π4k + 2520π2)

64y4 (C.8)

+ 7
(
224π4k2 + 3360π2k

)
64y3 + 147π2k2

y2

]
+ . . . .

We observe that only odd negative indices of the divisor sigma functions appear and their
coefficients are given by polynomials in 1/y and k. At this point we compare the above
expression with the Fourier expansion of Fs1,s2,s3(τ) given in (B.24) and are led to the
following ansatz,

Ĩ(k)
W,2 =

∞∑
s=2

∑
s1,s2

d̃(2)
s1,s2,sF

(k)
−s1,s2,2s2−2s (C.9)

=
∞∑

s=2

∑
s1,s2

d̃(2)
s1,s2,s

4π−2s+2s1+2s2− 1
2

Γ(s2)
ks2− 1

2 σ1−2s(k)y
1
2−s1Ks2− 1

2
(2ky) ,

with s1 and s2 taking values in a finite set for a given s. In order to solve for the unknown
coefficients d̃

(2)
s1,s2,s we match the index of the divisor sums on both sides, as well as the powers

of y and k. Working at fixed index s for the divisor sigma function, this yields a finite system
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of linear equations in the coefficients d̃
(2)
s1,s2,s which has surprisingly a unique solution for

which we list all the non-trivial coefficients for 2 ≤ s ≤ 4,

d̃
(2)
2,1,2 = 9

4 , d̃
(2)
3,1,2 = 3

8 ,

d̃
(2)
2,2,3 = −75

4 , d̃
(2)
3,1,3 = −75

8 , d̃
(2)
3,2,3 = −25

8 , d̃
(2)
4,1,3 = −25

8 , d̃
(2)
5,1,3 = − 5

32 ,

d̃
(2)
2,3,4 = 147, d̃

(2)
3,2,4 = 147

2 , d̃
(2)
3,3,4 = 49

2 , d̃
(2)
4,1,4 = 735

16 ,

d̃
(2)
4,2,4 = 441

16 , d̃
(2)
5,1,4 = 735

32 , d̃
(2)
5,2,4 = 49

32 , d̃
(2)
6,1,4 = 147

64 , d̃
(2)
7,1,4 = 7

128 .

(C.10)

We note that the summation indices s1, s2 in (C.9) only appear in certain ranges, namely

1 ≤ s2 ≤ s − 1 , 2 ≤ s1 ≤ 2s − 2s2 + 1 , s1 + s2 ≥ s + 1 . (C.11)

By studying the coefficients d̃
(2)
s1,s2,s for all values of 2 ≤ s ≤ 25 and s1, s2 as above, we were

able to find the conjectural expression

d̃(2)
s1,s2,s = (−1)−s(2s−1)2 [s(s1+2s2−2)−(2s2−1)(s1+s2−1)] Γ(2s−2s2)Γ(s1+s2−1)

22s−2s2Γ(s1+1)Γ(2s−s1−2s2+2)Γ(2(s1+s2−s)) ,

(C.12)
and the ansatz (C.9) combined with the summation ranges (C.11) becomes

Ĩ(k)
W,2(τ2) =

∞∑
s=2

∑
1≤s2≤s−1

2≤s1≤2s−2s2+1
s1+s2≥s+1

d̃(2)
s1,s2,sF

(k)
−s1,s2,2s2−2s(τ2) . (C.13)

We find it more convenient to change summation variables (s1, s2, s) → (s1 + s3, s2, s2 + s3)
so that (C.13) becomes

Ĩ(k)
W,2(τ2) =

∞∑
s1,s2,s3=1

d(2)
s1,s2,s3F

(k)
−s1−s3,s2,−2s3(τ2) , (C.14)

where the new coefficients are simply given by d
(2)
s1,s2,s3 = d̃

(2)
s1+s3,s2,s2+s3 ,

d(2)
s1,s2,s3 =(−1)s2+s34−s3 (2s2 + 2s3 − 1) 2

[
s2

3 + (s1 + s2 − 1) s3 + s1 − s1s2 + s2 − 1
]

(C.15)

× Γ (2s3) Γ (s1 + s2 + s3 − 1)
Γ (2s1) Γ (s3 − s1 + 2)Γ (s1 + s3 + 1) .

Note that due to the factor Γ (s3 − s1 + 2) at denominator in (C.14), the sum over s1 ranges
only between 1 ≤ s1 ≤ s3 + 1. We present the expression (C.14) in the main text, see (4.27),
since we find it the most convenient to construct a lattice sum integral representation for
the full integrated line defect correlator.

The same method works for the case N = 3 as well, so we will be brief. The main
difference between N = 3 and N = 2 is that we no longer have a compact formula like (C.2)
for the kth Fourier mode sector, hence we must go back to the matrix integral and consider

I(k)
W,3(τ2) =

⟪(∑3
i=1 e2πai)Z

′′(k)
inst (0, aij)⟫

⟪∑3
i=1 e2πai⟫ − ⟪Z ′′(k)

inst (0, aij)⟫ , (C.16)
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and we evaluate this expression as a perturbative series for y ≫ 1. We then run the same
procedure and group every term according to the index of the divisor sigma function it is
accompanied by, thus obtaining the following expression for Ĩ(k)

W,3:

Ĩ(k)
W,3 =σ−3(k)

( π6

2y4 +
6π4

y3 +12π2

y2

)
(C.17)

−σ−5(k)
( 5π8

24y6 +
10π6

y5 +5
(
30π6k+420π4)

24y4 +5
(
360π4k+720π2)

24y3 +150π2k

y2

)
+. . . .

Again we observe that only odd negative indices appear for the divisor sigma functions and
their coefficients are polynomials in 1/y and k. We make an ansatz similar to (C.9),

Ĩ(k)
W,3 =

∞∑
s=2

∑
s1,s2

d̃(3)
s1,s2,sF

(k)
−s1,s2,2s2−2s . (C.18)

We impose that the polynomial in 1/y and k multiplying a particular divisor sigma function
with a given fixed index s in (C.17) equals that of (C.18). This yields a finite linear system of
equations for the coefficients of the corresponding polynomials in 1/y and k which produces
a unique solution for the coefficients d̃

(3)
s1,s2,s. We list here all the non-trivial coefficients

for 2 ≤ s ≤ 4,

d̃
(3)
2,1,2 = 6, d̃

(3)
3,1,2 = 3, d̃

(3)
4,1,2 = 1

4 ,

d̃
(3)
2,2,3 = −75, d̃

(3)
3,1,3 = −75

2 , d̃
(3)
3,2,3 = −75

2 , d̃
(3)
4,1,3 = −25, d̃

(3)
5,1,3 = −55

16 ,

d̃
(3)
2,3,4 = 882, d̃

(3)
3,2,4 = 441, d̃

(3)
3,3,4 = 441, d̃

(3)
4,1,4 = 2205

8 ,

d̃
(3)
4,2,4 = 2499

8 , d̃
(3)
5,1,4 = 3675

16 , d̃
(3)
5,2,4 = 735

16 , d̃
(3)
6,1,4 = 343

8 , d̃
(3)
7,1,4 = 77

32 .

(C.19)

Compared to (C.11), for the case of SU(3) the ranges for the summation variables
s1, s2 are given by

1 ≤ s2 ≤ s − 1 , 2 ≤ s1 ≤ 2s − 2s2 + 2 , s1 + s2 ≥ s + 1 . (C.20)

Again, after having analysed all coefficients d
(3)
s1,s2,s for 2 ≤ s ≤ 22 and s1, s2 in the above

ranges, we conjecture the general expression

d̃(3)
s1,s2,s =

(−1)s(2s−1)222s2−2sΓ(2s−2s2)Γ(s1+s2−2)
3Γ(s1+1)Γ(2s−s1−2s2+3)Γ(2(s1+s2−s)) (C.21)

×
[
4s3(s1+2s2−3)(s2

2+(s1−3)s2+s1+2)+2s2
(
s4

1+s3
1(s2−11)

+s2
1(−11s2

2−13s2+33)−s1(21s3
2−50s2

2+6s2+23)−10s4
2+52s3

2−83s2
2+35s2+6 )

+s
(
−s5

1+s4
1(15−7s2)+s3

1(s2
2+76s2−68)+s2

1(35s3
2+13s2

2−192s2+120)

+2s1(22s4
2−71s3

2+16s2
2+94s2−57)+2(8s5

2−47s4
2+78s3

2−10s2
2−59s2+30)

)
+(2s2−1)(s1+s2−2)(s1+s2−1)(s3

1−9s2
1+s1(−3s2

2−3s2+8)−2(s3
2−3s2

2−4s2+6))
]
.
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Just as we did for SU(2), we change summation variables (s1, s2, s) → (s1 +s3, s2, s2 +s3)
so that (C.18) can be written as

Ĩ(k)
W,3(τ2) =

∞∑
s1,s2,s3=1

d(3)
s1,s2,s3F

(k)
−s1−s3,s2,−2s3(τ2) , (C.22)

where the new coefficients are simply given by d
(3)
s1,s2,s3 = d̃

(3)
s1+s3,s2,s2+s3 ,

d(3)
s1,s2,s3 =

(−1)s2+s34−s3 (2s2+2s3−1)2Γ(2s3)Γ(s1+s2+s3−2)
3Γ(2s1)Γ(s3−s1+3)Γ(s1+s3+1) (C.23)

×
{

s6
3+s5

3
[
3s1+4s2−4

]
+s4

3
[
2s2

1+(7s2−3)s1+6s2
2−9s2+6

]
+s3

3
[
−2s3

1+2(s2+9)s2
1+(s2−2)(3s2+14)s1+s2 (s2 (4s2−3)−2)+13

]
+s2

3
[
−3s4

1+28s3
1−((s2−16)s2+66)s2

1+(s2 ((22−3s2)s2−54)+83)s1
]

+s2
3
[
+s2 (s2 (s2 (s2+5)−20)+46)−48

]
+s3

[
−s5

1+2(s2+5)s4
1+((s2−12)s2−20)s3

1
]

+s3
[
(9−3(s2−10)s2)s2

1+(s2−1)(s2 (s2 (3s2−7)+18)−8)−2s1
(
((s2−4)s2+8)s2

2+3
)]

+(s1−2)(s1−1)(s2−1)
[
s3

1−(s2+9)s2
1+(8−(s2−4)s2)s1+(s2−2)((s2−1)s2+6)

]}
.

Note that due to the factor Γ (s3 − s1 + 3) at denominator in the coefficients d
(3)
s1,s2,s3 , in (C.22)

the sum over s1 ranges only between 1 ≤ s1 ≤ s3 + 2.
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