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Abstract

This paper investigates stochastic scheduling and routing problems in the online meal delivery (OMD) service. The

huge increase in meal delivery demand requires the service providers to construct a highly efficient logistics network

to deal with a large-volume of time-sensitive and fluctuating fulfillment, often using inhouse and crowdsourced

drivers to secure the ambitious service quality. We aim to address the problem of developping an effective scheduling

and routing policy that can handle real-life situations. To this end, we first model the dynamic problem as a Markov

Decision Process (MDP) and analyze the structural properties of the optimal policy. Then we propose four integrated

approaches to solve the operational level scheduling and routing problem. In addition, we provide a continuous

approximation formula to estimate the bounds of required fleet size for the inhouse drivers. Numerical experiments

based on a real dataset show the effectiveness of the proposed solution approaches. We also obtain several managerial

insights that can help decision makers in solving similar resource allocation problems in real-time.

Key words: Routing; Online meal delivery; Scheduling and routing decisions; Mixed delivery force; Markov

decision process

1. Introduction

The business of delivering restaurant meals to individual homes is undergoing rapid growth as the emerging

online platforms (e.g., UberEats, Deliveroo, and Meituan) race to capture worldwide markets in the past few years.

The COVID-19 pandemic strengthened this trend as we saw a significant demand increase for this service in 2022.

For example, the business surge renders the London-based online meal delivery (OMD) unicorn Deliveroo launching

its debut in March 2021, then raising additional funds to continue the rival with competitors across Atlantic. The

underlying reason is that the operational cost in the delivery force is expensively high (Korosec and Wilhelm, 2020),

thus the OMD practitioners are making every endeavor to reduce costs through effective strategies. Nonetheless,
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the practical features of OMD services, such as fluctuating seasonal demand and stringent delivery requirements,

renders this business rather complicated to attain operational excellence (Hirschberg et al., 2016).

Seasonal demand. Our study is motivated by analyzing the OMD operations of the Chinese platform Meituan.

The regional data analysis (shown in Figure 1, left panel) reveals a significant variation in platform demand through-

out the day. That is, approximately 40% of the orders occur during lunchtime (10:00-14:00), while 30% happen

during dinner time (18:00-20:00). We refer to this heterogeneous demand arrival pattern in OMD operations as

seasonal demand due to its periodic nature with peaks and valleys occurring in each day. To further characterize

this pattern, we identify the peak periods as rush hours and the low-demand periods as no-rush hours. The hetero-

geneous nature of demand creates fluctuating needs for delivery personnel, making OMD operations more complex.

As depicted in the right panel of Figure 1, there is also a seasonal distribution of drivers availability throughout the

day, with 30 drivers available during no-rush periods and 130 drivers during rush periods on average. Managing

such variability in both demand and driver availability poses significant challenges that must be tackled to ensure a

high service level.
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Figure 1: The average arrival pattern of OMD platform agents (orders and drivers) per day.

The seasonal demand is not specific to OMD platforms. With the wide usage of mobile devices, more and more

consumers find it convenient to access online platforms and make immediate requests for products and services,

triggering the demand surge in a specific timing or region. For example, Afèche et al. (2023) studied the ride-

hailing platform operation and intended to reduce the spatial supply and demand mismatch during rush hours through

demand-side admission control and supply-side capacity repositioning policies: the former allows the platform to

accept or reject rider requests while the latter allows the platform to direct drivers to the highest demand places.

However, these control policies seem not suitable for the OMD operations. What is specific to the OMD is the high

variance in the temporal distribution of demand, real-time response to the customer requests and high penalties for

rejected and delayed service. As a result, the admission control through requests rejection would cause significant

loss of goodwill and the repositioning control is deemed as less effective to alleviate the temporal capacity shortage.
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Instead, the OMD platform is recommended to construct a highly flexible logistics network to deal with the large

volume of time-sensitive and fluctuating demand.

Practice dilemma. Fundamentally, the platform needs to strategically determine an appropriate capacity of

required drivers to satisfy the seasonal demand per day. To ensure a high quality of service, the platform typically

establishes its own dedicated delivery team, which is a tactical decision that remains fixed for a specific period, such

as six months (Dai and Liu, 2020; Tao et al., 2023; Zhao et al., 2024). The most straightforward way is to employ

as many drivers as needed to satisfy the demand in rush hours. Accordingly, customers’ service quality would be

highly rated as they can always receive the ordered meals timely. However, this strategy is clearly not cost-effective

because it incurs an expensive fixed cost (e.g., training fees, insurances, and paid holidays) to maintain a large fleet

size which is redundant for the no-rush hours. By contrast, if the platform seeks to reduce the operational cost, it

might recruit a number of drivers sufficient to cover the demand during no-rush period. However, this might incur

service delays within rush hours due to the inadequate supply of delivery force. As a result, the OMD practitioners

are de facto facing a dilemma. By retrospecting the Figure 1, we also observe that the number of busy drivers during

rush hours in Meituan are approximately 4 times higher than that of no-rush hours, i.e., 150 vs. 40, and the busy rate

(number of loading orders per driver) also increases by up to 8 times in rush hours. Therefore, it is rather challenging

for managers to tackle this flexible capacity design issue while balancing the service quality and cost-effectiveness

targets.

Inhouse vs. crowdsourced drivers. In recent years, the self-scheduling delivery service provided by crowd-

sourced drivers (e.g., Amazon Flex, UberEats) has been gradually introduced into the online marketplace (Taylor,

2018; Archetti and Bertazzi, 2021). The self-scheduling flexibility allows the drivers to decide when and how often

to offer their delivery service with certain degree of freedom (Hall and Krueger, 2018), and the OMD platform can

take such an advantage to satisfy the variable demands rather than maintain a large fleet all the time. Thus, the plat-

form either disposes of its own delivery force or crowdsources individual drivers. Hereafter, the self-own delivery

force is denoted as inhouse drivers and work as full-time employees. On the contrary, the self-scheduling individual

drivers (crowdsourced drivers) work part-time and are allowed to join or leave with personal freedom, depending

on whether deliveries are beneficial to them. Crowdsourced drivers add high flexibility on capacity management, on

one side. However, on the other side, they insert a new degree of uncertainty related to their availability to provide

service. Additionally, the inhouse drivers incur higher fixed costs while crowdsourced drivers incur higher variable

costs (see Table 1 for detailed characteristics comparison of Meituan drivers).

Table 1: Characteristics of inhouse and crowdsourced drivers in Meituan.

Inhouse driver Crowdsourced driver
Employment Platform Self-scheduling

Contract Contract-based, full-time No contract, part-time
Fixed wage 3000 yuan per month No fixed wage

Compensation 6 yuan per order 6∼9 yuan per order
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Key challenge. Consequently, determining a fleet of delivery force, effective scheduling and dispatching of

drivers from both delivery modes (inhouse and crowdsourced) is a critical activity to secure the operational cost

performance (Yildiz and Savelsbergh, 2019a,b). This is particularly difficult due to the uncertain arrival of incoming

orders and the unpredictable availability of crowdsourced drivers. The platform must, therefore, devise effective

dispatching routes on-the-fly and allocate new orders to the drivers based on their availability and geographical

locations. The dynamic nature of dispatching routes, which may need to be altered as new orders arrive even while a

driver is already en route of other delivery tasks, adds a significant level of complexity to the problem. In this regard,

existing studies on routing and scheduling optimization problems for meal delivery are still developing. Reyes et

al. (2018) designed a rolling-horizon repeated-matching algorithm to solve the dynamic meal delivery problem in

nearly real-time, and Ulmer et al. (2021) studied the postponement strategies to schedule drivers in the dynamic

pickup and delivery meal problem. Nonetheless, in both studies, the size of the delivery fleet is exogenously known,

and the effects of uncertain driver availability on dynamic dispatching decisions have not been thoroughly explored.

The complex interplay between fleet management and the optimization of dynamic dispatching necessitates further

detailed study, which is exactly our focus here.

Our contributions. In this article, we take the perspective of the OMD service provider which connects meal

providers (e.g., restaurants) and customers through a team of mixed delivery force. We analyze the one-period (i.e.,

a day) scheduling and dispatching problem in which the providers sell products (meals) to customers from different

locations (restaurants). The objective of the service provider is to minimize the total delivery cost with a timely

service level target. We are seeking to answer the following research questions: (i) Given an inhouse driver fleet of

size, how to develop an effective yet computationally feasible scheduling and routing policy that can handle real-life

situations? (ii) What is the impact of the inhouse driver fleet on the cost of the operational plan? The first question

is at an operational level for a given number of inhouse drivers, while the second is about determining the best fleet

size and, thus, is at the tactical level, but requires first to be able to compute the best policy for any given size. The

contributions of this paper are as follows:

• Dynamic models and optimal policy analysis for a given fleet size: We formulate the operational level dynamic

scheduling and dispatching problem as a Markov Decision Process (MDP) and derive structural properties of

the optimal policy where possible, i.e., we analytically provide the recursive formulation of the optimal policy.

• Solution approaches leveraging future information and fast-effective routes generation: Given the huge size

of state space that renders the problem too complex to be solved optimally, we propose two customized algo-

rithms to take future information into account (see Thomas et al 2004, Soeffker et al. 2021, for the importance

of exploiting information when solving dynamic vehicle routing problems), and exploit two fast-effective

strategies to adapt route construction. Accordingly, this leads to four solution approaches. We first compare

the performance of the designed algorithms versus optimal policies through a set of simple instances to high-

light their advantages. Then we conduct extensive numerical experiments with the dataset from Meituan to
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investigate the performance of the developed approaches in real-life business environments.

• Managerial insights for real-world OMD applications: We present an adaptation of the approximation formula

by Daganzo (1987) to determine the range of inhouse driver fleet size, and perform a binary search to determine

the capacity that minimizes total cost. Then, we show the importance of incorporating future information

and refining routes generation to improve the operational performances, by reducing the total cost up to 6%

compared to the policy without these features. We also present the impact of key factors, such as the fixed

wage and variable compensation cost of different drivers, on the optimal inhouse drivers fleet size. Note that

our proposed solution approach can be easily implemented in the OMD and other similar platforms to address

real-time resource allocation problems with mixed delivery force.

2. Literature Review

Our research lies at the intersection of several related streams of literature: online meal delivery, real-time

vehicle routing and scheduling and crowdshipping. In this section, we review the key contributions of each stream

of literature and discuss how we extend them.

Research on online meal delivery. Our work is related to the literature about online meal delivery, which has

received ample attention by researchers in the last few years (Reyes et al. 2018, Yildiz and Savelsbergh 2019a, Liu

et al. 2021, Zhao et al. 2024). The online meal delivery problem is one of the most challenging in last mile delivery,

due to the strict service level requested by the customers (Yildiz and Savelsbergh, 2019a). It is also similar to the

same day delivery problem described in Voccia et al. (2019), but requires quick-response decisions to respect the

short delivery time, rendering the required solution approach fundamentally different from the solution approaches

proposed in this research stream.

We only review previous studies investigating the stochastic online meal delivery problem in this article. Liu et

al. (2021) propose a data-driven framework to model the online meal delivery problem and optimize the assignment

decisions based on orders delivery prediction with uncertain service time, while they regard the routing decision as

a black-box and do not provide an explicit route for each delivery person. Ulmer et al. (2021) consider a stochastic

dynamic pickup and delivery problem in which a fleet of drivers delivers meals from a set of restaurants to ordering

customers. The authors present an anticipatory customer assignment (ACA) policy to address the stochasticity,

postpone the assignment decisions for selected customers, and introduce time buffers to account for the uncertainty

in the meal ready times. Tao et al. (2023) developed two machine learning models to design personalized dispatching

schemes for drivers, integrating information such as the order and driver’s characteristics in the order assignment

and routing decisions. In our paper, to tackle the dynamic scheduling and routing problem in online meal delivery

service, we develop an anticipatory solution approach that incorporates information about future requests into routing

decisions.
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Research on real-time vehicle routing and scheduling. Our problem is also related to the dynamic vehicle

routing problem (DVRP) (Powell et al. 1995). A vehicle routing problem is dynamic (i.e., real-time or online)

if information about the problem is unknown in advance to the decision maker and arrives in real time during the

routing horizon. Dynamic information may include customer demand, travel times, service time or customer requests

(Ehmke et al. 2015).

In the literature, two major classes of solution approaches have been reported to solve such kind of problems,

which differ mainly in the way they process the dynamic information. The first class of methods is called the myopic

approach (Powell et al. 2000) or the local approach (Chen and Xu, 2006), which optimizes and reoptimizes the

dispatching routes solely based on known information without considering future information. At each period, a

static model consisting of known orders up to the current time point is solved. These methods do not need any

advance information about future events and can be used for situations where future orders are difficult to predict.

Recent studies on myopic approaches for DVRP include insertion algorithms (Ichoua et al. 2000), nearest neighbor

(Naccache et al. 2018), recursive approaches (Arslan et al. 2019), column generation (Chen and Xu, 2006), and

others. The second class of methods is called the anticipatory approach (Berbeglia et al. 2010) or the look-ahead

approach (Chen and Xu, 2006). This approach tries to incorporate the probabilistic or forecasted information about

the future into the static problem. These methods require anticipated information about future events and can be used

for situations where at least some probabilistic information about future events is known in advance. With the recent

developments in information and communication technologies, it becomes easier and more affordable to explore

historical data and to extend anticipatory approaches. We refer the reader to the extensive review on the stochastic

DVRP by Soeffker et al. (2021).

All of the above research, however, concern the dynamic scheduling and routing problem with only a professional

delivery fleet, i.e., inhouse drivers. With the adoption of on-demand crowdsourced drivers, the DVRP needs to be

able to integrate more stochastic factors, under which the choice of drivers is a crucial element to determine the

ultimate operational costs.

Research on crowdshipping. The significant increase in the online meal delivery service requires the platform

to construct a highly efficient logistics network tackling a large-volume of time-sensitive and fluctuating requests.

Therefore, relying only on inhouse drivers is no longer a viable strategy. In recent years, the adoption of crowd-

sourced drivers gives the service providers more flexibility in facing the demand fluctuations (Cachon et al. 2017).

As a result, the online platforms are able to reduce costs and fixed assets through crowdshipping.

We can notice a growing interest in routing with crowdshipping in the literature, and we refer to Archetti and

Bertazzi (2021) for a detailed review. Archetti et al. (2016) first introduced the crowdshipping in routing problems

under the name vehicle routing problem with occasional drivers (VRPOD). The authors studied the basic setting

in which each occasional driver (OD) could serve one customer request at most and they provided insights on the

impact of different compensation schemes on the solution quality. Later, Arslan et al. (2019) studied a problem in
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which dedicated vehicles are considered as an option for the crowdsourced drivers and studied the case in which

both the customers’ orders and the ODs’ availability are uncertain and dynamic. Dayarian and Savelsbergh (2020)

designed two rolling horizon dispatching approaches to address a stochastic same-day delivery problem and quanti-

fied the potential benefits of crowdshipping for same-day delivery. Fatehi and Wagner (2021) investigated the labor

planning and pricing for crowdsourced last-mile delivery systems to satisfy on-demand orders. They developed a

model to combine crowdsourcing, robust queueing, and robust routing theories to derive the optimal delivery as-

signments to available independent crowdsourced drivers given their optimal hourly wage. Zehtabian et al. (2022)

provided a reliable estimation of arrival times in a crowd-shipping context with both uncertain requests and (future)

occasional drivers participation, among which, they modeled the dynamic pickup and delivery problem as an MDP

and developed two look-ahead heuristic methods to address it.

Most of the above studies assume that the fleet sizes are exogenously given or only focus on the crowdshipping

force. Therefore, we conclude that the crowdshipping delivery mode still needs further exploration, especially in the

routing optimization if the delivery force are mixed and heterogeneous.

Detailed comparison with close literature. Finally, we would like to compare our work with studies closely

related to ours to better position our contribution in the literature. On the one hand, this article shares a similar

assumption about the arrival of crowdsourced drivers in Ulmer and Savelsbergh (2020). Starting from this, we

address a different real-time scheduling and routing problem in the OMD service with a cost-minimal objective and

develop online solution approaches to effectively solve this challenging problem. On the other hand, our findings also

correspond to an analysis of the effect of crowdsourcing versus hiring in-house on the total cost, thereby determining

an optimal fleet size. To achieve this, we adopt continuous approximation to estimate the required size. In this regard,

Yildiz and Savelsbergh (2019b) estimate the service region (radius of a circle) and capacity level for crowdsourced

delivery from the viewpoint of a single restaurant, which diverges significantly from our purpose. Our main emphasis

lies in adopting an overall perspective that not only investigates fleet size decisions at the tactical level but also

prioritizes operational aspects such as uncertain driver supply, order assignment, and route optimization (with pickup

and delivery constraints). Consequently, our study contributes extensively to the OMD field by offering a systematic

plan to address these crucial business problems, including planning, scheduling, and routing decisions.

3. Scheduling and dispatching operational problem in OMD

In this section and the next section, we focus on the operational problem of finding the best request assignment

and routing policy for a given number of M inhouse drivers and uncertain occurrence of crowdsourced drivers.

3.1. OMD operational process

The OMD operations of the company that motivated our research consist of order scheduling and meal dispatch-

ing activities. The whole OMD process depicted in Figure 2 involves customers, drivers, meal providers, and the
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company managing the platform (i.e., the decision maker). As a customer visits an online meal platform webpage

to order a meal, the webpage first displays a few shops (or restaurants) close to her location. Given the displayed

information, the customer then chooses her favorite dish from a particular shop and places an order for it. After

confirmation with the customer, the platform notifies the provider (e.g., restaurant, shop, etc) to process the required

meal accordingly. Meanwhile, the platform assigns a driver to collect the meal at the shop and deliver it to the

customer location. The meal will be picked up when it is ready at the restaurant, and dispatched to the customers.

Once a driver finishes a delivery task, she can get the corresponding reward for that order. The service time of a

platform is defined as the total duration from an order arrival until the customer receives her meal, which is subject

to a service time target defined by the platform. Usually, the target is limited by a range of 30 ∼ 60 minutes. The

platform assigns orders in real-time to the drivers and proposes a dispatching route for each driver given her holding

tasks.

Figure 2: Order scheduling and meal dispatching process in an OMD platform (Vasi, 2019).

In the perspective of the decision maker, she seeks to fulfill all the delivery tasks at a minimum total cost,

i.e., the fixed cost associated with inhouse drivers and the variable cost (compensation) paid to both inhouse and

crowdsourced drivers, which is associated with the number of served orders considering travel time and drivers

types, plus the penalty cost due to the lost-sales of unserved orders.

In the following section we formally define the problem as a Markov Decision Process (MDP). For ease of

exposition, all notations are summarized in Table 2.

3.2. MDP assumptions and notations

Let L = {0, 1, ..., L} be the set of all potential locations in the problem, where the depot for inhouse drivers is 0

and the locations of customers, en route drivers and restaurants are denoted by {1, ..., L}. We define, within set L, the

restaurants set P and the customers set C, such that P∩C = ∅,P∪C ∪ {0} ⊆ L. The drivers could be located at any

place in L. Let di j denote the deterministic travel time between any two locations i, j ∈ L. The estimation of these

parameters are further discussed in Section 5.1.

The exogenous stimulus of the platform is fed by a sequence of order requests. Formally, it is represented by a

8
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Notation Meaning
Parameters:

T the planning horizon
L all potential locations in the service area
P the restaurant locations
C the customer locations
di j traveling time between locations i and j
θi j the probability that a customer i demands food from a restaurant j
Ω all potential realizations of crowdsourced drivers arrival events
ω a possible realization of the crowdsourced driver arrival events
r0 The fixed amount of wage paid to an inhouse driver

r1, r2 the unit cost to accept and serve an order by an inhouse or crowdsourced driver
r3 the unit cost to reject an order (resembling to assign it to a specialized costly driver)
n index of an interim stage, n ∈ {1, 2, .., }

(T, ∅, ∅) the final stage
M the set of inhouse drivers
Jn the set of active crowdsourced drivers at stage n
Q the set of potential O-D pairs (i.e., customer-restaurant paired locations)
In a tuple of an order arrival indicating the arrival time, customer and restaurant locations

Functions:
fi j, Fi j the PDF and CDF of an order’s arrival time for customer i demanding food from restaurant j within T

Fi j the CDF of an order’s arrival time for customer i demanding food from restaurant j
Vπ

n the cost-to-go function from stage n for a policy π given a crowdsourced drivers realization ω
V the expected total cost given all possible crowdsourced driver realizations

Random variables:
Ti j a random variable indicating an order’s arrival time for customer i demanding food from restaurant
δ j the service duration of a crowdsourced driver
Sn the state vector at stage n
Un the state vector of active drivers at stage n
Rn the set of rejected orders until stage n
Yu

n the open (unfinished) orders of a driver u at stage n
pu

n the scheduled path of a driver u to deliver the open orders
lun the real time locations of driver along pu

n at stage n
Decision variables:

an the action taken at stage n
zn the accept or reject action indicator
kn the driver index assigned to the order

9
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sequence of increasing real numbers t, which denotes the arrival time of a request. Upon the request at time t, its

characteristics are revealed as a tuple I(t) ≡ (t, i, j), where i ∈ C and j ∈ P are the customer and restaurant locations,

respectively. We call (i, j) an O-D pair hereafter. For ease of modelling, we assume the meals’ processing time for

each request is equal to the same value ν, and we relax this hypothesis in the numerical experiments. The production

capacity is assumed to be infinite in all restaurants. Therefore, the earliest time for a driver to pick up a meal is ν

minutes after the request arrival. As a consequence, (t, i, j) completely characterizes a realized order information.

Now, we further clarify the definition of arrival time t for a request. We assume that requests are placed by the

customers during the time horizon [0,T ]. A random variable Ti j, representing the time at which the order request is

placed, is associated with every customer i ∈ C and restaurant j ∈ P. For all O-D pairs (i, j), we have

Ti j =



T i j with probability θi j,

T + 1 with probability 1 − θi j.

(1)

where T i j is a continuous random variable with known Cumulative Distribution Function (CDF) Fi j and Probability

Density Function (PDF) f i j. Thus, we have

Fi j(t) =



0 if t ≤ 0,
∫ t

0 f i j(x)dx if 0 < t ≤ T ,

1 if t > T .

(2)

For a potential request of O-D pair (i, j), θi j is the probability that a request arises from a customer i demanding

meal provided by a restaurant j within T ; we formally define T + 1 as a conventional time point when “no-show”

requests are placed. The CDF of Ti j can thus be written as

Fi j(t) = θi jFi j + (1 − θi j)1(t ≥ T + 1) (3)

where 1(t) is an indicator function. We assume that requests arise independently from different paired locations.

The delivery force is composed of a set M = {1, 2, ...,M} of inhouse drivers, and unaffiliated crowdsourced

drivers. Suppose active busy drivers move as the designed routes such that it is possible to keep track of their

locations at anytime. We also assume each idle driver acts as a random walker in the region when she does not

provide service, and the probability of moving towards four directions is evenly distributed. One may argue that

the idle driver keep staying in a restaurant location, which is just a special case of the current assumption. Inhouse

drivers traverse routes starting and ending at the depot, and keep active within the planning horizon.

As a supplement to the inhouse drivers, the platform also hires a certain amount of crowdsourced drivers,

whose availability is revealed as an exogenous stimulus. The set of all possible crowdsourced driver arrivals is

10
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denoted by Ω, i.e., each element ω ∈ Ω is a realization of crowdsourced driver arrivals and each realization ω is

assumed to be equally likely to occur. The realization ω consists of a sequence of crowdsoured driver arrivals,

ω = {(uωj , tωj , lωj , δωj ), j = 1, . . . , |ω|}), where the number of drivers |ω| varies for different realizations (| · | denotes

the cardinality of a set). More precisely, each crowdsourced driver uωj is characterized by a start-time t jω ∈ [0,T ], a

start-to-work location l jω ∈ L and a working duration δ jω ∈ [0,T − t jω]. We only become aware of a crowdsourced

driver at her starting time t jω . Furthermore, δ jω represents the duration that a crowdsourced driver will work, indicat-

ing that she leaves the system at time t jω + δ jω . After this, she will not accept any future requests. A crowdsourced

driver can leave only when she is idle. Hereafter, we denote the active crowdsourced drivers at time t as a set Jt.

This setting for crowdsourced drivers resembles the configuration studied in Ulmer and Savelsbergh (2020). For the

sake of readability, in the following we describe the MDP associated with each realization ω of crowdsourced driver

arrivals, avoiding the use of index ω in the notation.

The rewards of inhouse drivers consist of two parts: on the one hand, they receive a fixed amount of wage r0,

independent of their daily delivery performance; on the other hand, they also acquire a bonus of r1 per delivery

task completed. For the crowdsourced drivers, they are paid a reward r2 by completing a delivery task. Since

dynamic pricing is out of scope for current study, we assume that r1 and r2 are constant values, representing the

average rewards for inhouse and crowdsourced drivers, respectively. We further assume r2 ≥ r1, consistently with

the realistic situation reported in the Table 1. Note that, we rule out the uncertainties in traveling and service times,

therefore each order is supposed to be delivered on time if the driver follows the designed route.

We keep track of the status of open orders, that is, the order arrival, pick-up at a restaurant and delivery to a

customer. Once the meal is received by the customer, its delivery task is completed, the service is finished and the

order is closed. If we define the service time target as κ, it means that each request should be served within κ units

of time, say minutes. In case an order cannot be served within κ minutes by any active driver, we assume that the

platform assigns the request to an external operator, asking for an extremely high reward r3. This is equivalent to

decline the request at a high lost-sales value r3 and we refer to this action as rejecting the request in the following.

Given the above assumptions, the scheduling and routing problem can be modeled as an MDP in continuous-time

scale. We sketch the key elements of the MDP in the following.

3.3. MDP description

At each stage a decision is taken based on the orders information available on the platform. Then two types of

stages should be considered in the MDP: interim stage and final stage. An interim stage is the arrival of a request at

time t ∈ [0,T ], and the final stage is the achievement of the time horizon T . In each interim stage, the decision is

about rejection or acceptance-scheduling of a request. An interim stage is described as a request tuple (t, i, j), where

t is the time of occurrence, i is the customer location asking for meals and j is the restaurant. The final stage is

defined as (T, ∅, ∅). Since every customer may request meal from any potential restaurant at most once, the system

has at most |C||P| requests, and the set of potential O-D pairs is Q = {(i, j) : i ∈ C, j ∈ P}. We denote n ∈ {1, 2, ..., h}
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(h ≤ |C||P| + 1) as the stage counter and tn as the time at which stage n takes place.

The state of the system has to include all the information about the current status of drivers and their allocated

orders. Given the inhouse drivers and a crowdsourced driver realization ω ∈ Ω, we know that upon the arrival

of request In = (tn, in, jn), the set of active drivers circulating in the service area at stage n can be denoted as

Un = M ∪ Jn. For each active driver u ∈ Un, we define a tuple (Yu
n,pu

n, l
u
n), where set Yu

n includes u’s open

(unfinished) orders, vector pu
n represents u’s scheduled path at tn to deliver these open orders of Yu

n, and scalar lun

tracks u’s location along pu
n at time tn. Notably, if Yu

n = ∅, then the driver u is idle at time tn; otherwise, Yu
n records

the holding orders’ relevant information and indicates whether these orders are picked-up or not. Thus, we describe

the state of the system at the nth stage as Sn =
⋃

u∈Un

(Yu
n,pu

n, l
u
n). In the initial stage, only the inhouse drivers are active

and the initial state is S0 =
⋃

u∈M
(∅, ∅, 0). At the end of the nth stage, we define a set Qn to represent appeared O-D

pairs, i.e., the customer and restaurant paired locations appeared until the nth stage, and Q0 = ∅.
Decision epochs are associated with any new order request arrival. An action is made upon the decision epoch,

which comprises two components: reject/accept the request and select a driver if accept. Hence, we can represent

the action for each decision epoch as a tuple an = (zn, kn), where zn is a binary rejection/acceptance indicator and kn

indicates the unique index for the selected driver. If zn = 1, a driver of index kn will be selected from the drivers set

and assigned to the request. Moreover, since the active drivers set at stage n isM∪Jn, we know that when kn ≤ M,

an inhouse driver is selected to serve the request; otherwise, kn represents a crowdsourced driver. A driver can be

assigned to a request if there exists a route for the driver to dispatch all on-hand orders including the new one. Note

that, due to computational efficiency requirements, it is too cumbersome to search for optimal routes in practical

environments. Thus, routes are generated in a fast-effective heuristic way in this paper and are illustrated in Section

4.2.

Once an action is chosen in an interim stage, we have a state transition. The transition associated with the nth

interim stage, identified by the request tuple (tn, in, jn), is Sn =
⋃

u∈M∪Jn

(Yu
n,pu

n, l
u
n) where the values are updated as

follows. First of all, whatever zn = 0 or zn = 1, the state components are updated as follows, for all u ∈ M ∪Jn,

pu
n = pu

n−1 \ ζu
n−1,n, lun = ηu

n, Yu
n = Yu

n−1 \ ξu
n−1,n. (4)

Here, we need to clarify several details regarding the state update: assume a driver u moves as the designed route

pu
n−1 between stage n − 1 and n. At the beginning of nth stage, ηu

n is its real-time location, ζu
n−1,n are the visited

restaurants and customers locations within the interval, and ξu
n−1,n denotes the set of finished orders by the driver.

The route pu
n−1 is derived by a route generation approach given the unvisited locations related to the driver u’s open

orders at the beginning of stage n − 1, as shown in Section 4.2.
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Furthermore, if zn = 1, given the determined route, the attributes Yu
n and pu

n are updated as follows:

Yu
n,p

u
n =


Yu

n ∪ {(tn, in, jn)},pu
n ⊕ {(tn, in, jn)} u = kn (5a)

Yu
n,p

u
n u , kn (5b)

In (5a), pk
n ⊕ {(tn, in, jn)} represents the new route obtained by the aforementioned generation method when incorpo-

rating the newly accepted order.

For ease of exposition, we also define an operator Γ to describe the above state transition process, that is, Sn =

Γ(Sn−1, tn, in, jn, an), meaning that the state Sn is determined by state Sn−1, a request arrival tuple (tn, in, jn) and the

corresponding action an.

Lastly, minimizing the total cost is the objective of the delivery platform. It is measured by the fixed wages for

inhouse drivers plus compensation cost for delivered orders. Given the strategic decision associated with the inhouse

fleet size M, the fixed wages are exogenous to the operational level. Therefore, focusing on the operational decisions,

we define Vπ
n (Sn−1, tn, in, jn) to represent the expected compensation cost-to-go function produced by a given policy

π when the interim stage (tn, in, jn) occurs in the system state Sn−1. We write π∗ for the optimal policy that achieves

V∗n = minπ{Vπ
n } where:

V∗n (Sn−1, tn, in, jn) = min
an

{
r1 · 1(zn = 1, kn ≤ M) + r2 · 1(zn = 1, kn > M)

+r3 · 1(zn = 0) + E
[
Vn+1(Γ(Sn−1, tn, in, jn, an), tn+1, in+1, jn+1)

] }
. (6)

V∗h (Sh−1,T, ∅, ∅) = 0 (7)

Equation (7) indicates the state cost associated with the final stage Sh = (T, ∅, ∅) under the optimal policy, which

is zero. Backwardly, Equation (6) is derived through the induction from the final stage, where Γ(Sn−1, tn, in, jn, an)

represents the transition function to the new state Sn with the aforementioned action an = (zn, kn).

The above recursively cost-to-go function V∗ is derived given a specific crowdsourced drivers realization ω ∈ Ω,

as illustrated in Ulmer and Savelsbergh (2020). For notation convenience, let us denote such an optimal compensa-

tion cost to serve all orders (from the initial stage to the end of planning horizon) as V∗0 (S0|ω,M) for a given fleet

size M. As a realization ω ∈ Ω occurs with even probability, we thus have an expected compensation cost given

uncertain crowdsourced drivers scenarios as

V∗(S0,Ω,M) =

∑
ω∈Ω

V∗0 (S0|ω,M)

|Ω| (8)

3.4. MDP optimal policy analysis

In this section, we discuss the structural properties of optimal policies for the problem described above. Obvi-

ously, since ω is an exogenous factor to the cost-to-go function and each realization ω is equally likely to occur, we
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only need to characterize the properties for the recursive function (6) for one realization. For the sake of conciseness,

all proofs are moved to Appendix 7.1.

We start by deriving the optimal policy that minimizes the cost-to-go equation (6), on the basis of the transition

functions between stages. At the final stage (T, ∅, ∅), the cost-to-go function associated with any policy π is deter-

ministic because of no further request and incurring cost, we thus have Vπ
h (Sh−1,T, ∅, ∅) = 0. For an interim stage

(t, i, j), that is, at stage n ∈ [0, h), we need to compute the transition probabilities to the next stage in order to derive

the expected cost-to-go value. We first analyse the cost-to-go function for the interim stage (tn+1, in+1, jn+1) when

the state is Sn. This means that, at time tn+1, a request of O-D pair (in+1, jn+1) is placed and we aim to estimate the

expected compensation cost-to-go function for the current stage.

Lemma 3.1. Assume that the interim stage (tn+1, in+1, jn+1) occurs with system at state Sn. Then, the probability that

stage n + 2 is an interim stage occurring at time t > tn+1, and involves an O-D pair (i, j) ∈ Q \ Qn+1 , is described as

pmin((i, j)|tn+1,Qn+1) =

∫ T

tn+1

ψt
i j|tn+1,Qn+1

(t)dt (9)

where Qn represent the already requested O-D pairs in Sn, Qn+1 = Qn ∪ {(in+1, jn+1)} and

ψt
i j|tn+1,Qn+1

(t) =


∏

(î, ĵ)∈Q\Qn+1∪{(i, j)}


1 − θî ĵF î ĵ(t)

1 − θî ĵF î ĵ(tn+1)




θi j f i j(t)

1 − θi jFi j(tn+1)
. (10)

Moreover, the probability that stage n + 2 is the final stage is

ψT
∅|tn+1,Qn+1

= pmin(∅|tn+1,Qn+1) =
∏

(i, j)∈Q\Qn+1


1 − θi j

1 − θi jFi j(tn+1)

 . (11)

From Lemma 3.1, we know the transition probabilities from n + 1 to n + 2. With the transition probabilities to

next stages, we derive the corresponding optimal expected compensation cost-to-go function.

Proposition 3.2. The expected compensation cost-to-go function Vπ
n+1(Sn, tn+1, in+1, jn+1) under the optimal policy

π∗ can be expressed recursively as:

V∗n+1(Sn, tn+1, in+1, jn+1) = min
an+1

{
r1 · 1(zn = 1, kn ≤ M) + r2 · 1(zn = 1, kn > M)

+r3 · 1(zn = 0) +
∑

(i, j)∈Q\Qn+1

∫ T

tn+1

V∗n+2(Sn+1, t, i, j)ψt
i j|tn+1,Qn+1

(t)dt

+V∗n+2(Sn+1,T, ∅, ∅)ψT
∅|tn+1,Qn+1

}
(12)

where Sn+1 = Γ(Sn, tn+1, in+1, jn+1, an+1) represents the state transition outcome given the current state Sn, request

(tn+1, in+1, jn+1) and action an+1 = (zn, kn), following equations (4), (5a), or (5b).
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Proposition 3.2 states the optimal policy for the expected compensation cost-to-go function. Theoretically, fol-

lowing equation (12), we are able to identify the optimal action for each state through backward induction. However,

it is obvious that, except for trivial cases, an exact evaluation of the formula in Proposition 3.2 is intractable. Even

though it is computationally prohibitive to derive the optimal policy backwardly from the final stage, it still provides

some hints: mimicking the transition behavior within limited stages enables to include future information into a

fast-effective algorithm development, as explained in Section 4.

Proposition 3.3. The optimal expected compensation cost V∗(S0,Ω,M) of (8) is non-increasing in the inhouse

driver size M.

Proposition 3.3 is straightforward. Once an additional inhouse driver is available, it is always possible to mimic

the optimal policy in the case without this driver. Furthermore, given that the variable compensation for an inhouse

driver is less than that of a crowdsourced driver (i.e., r1 < r2), the overall compensation cost V∗0 (S0|ω,M) will

not increase. As V∗(S0,Ω,M) is a convex combination of V∗0 (S0|ω,M) in (8), it also implies that V∗(S0,Ω,M) is

non-increasing in M.

Since the aforementioned MDP suffers from the curses of dimensionality in the states, we now develop four fast-

effective solution approaches to solve the problem in practical environments. Furthermore, to assess the effectiveness

of any developed policy π, we define a metric Gaps(%) measuring the average performance deviation of the policy

π from the optimal policy π∗, i.e., Gaps(%) =
(Vπ−V∗
V∗

)
× 100. Such metric is particularly useful when dealing

with small-scale state spaces due to its computationally viability (as shown in Section 4.4). For large-scale state

spaces situations, obtaining V∗ can be intractable and it is often necessary to resort to approximations or heuristic

approaches.

4. MDP solution approaches

In this section we present fast-effective policies for the scheduling and routing decisions of the MDP operational

problem of Section 3, for a given fleet size M. We introduce dynamic procedures to tackle the information involve-

ment and routes generation decisions, and later integrate these approaches together leading to four algorithms for the

operational level problem.

The idea behind each approach is to take one decision at each stage, which is to determine the rejection/acceptance

of a new request and the assignment of the new order to a specific driver, more precisely, to an inhouse driver or

a crowdsourced driver. These approaches incorporate two sequential components: information involvement (Info)

and routes generation (Route). For each component we provide two alternatives and integrate them together pair-

wisely, thus obtaining four algorithms to solve the scheduling and routing problem. We now explain the details of

Info and Route strategies in Subsections 4.1 and 4.2, respectively. Note that all approaches are applied to a given

realization ω of crowdsourced driver arrivals.
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4.1. Information strategies.

We propose two strategies to tackle the information involvement issue, which are mainly different in whether the

future requests information gets involved into the decision process. These two strategies are named as Myopic- and

Monte-Carlo-strategy.

Myopic-strategy (MY). This approach, summarized in Algorithm 1 in Appendix 7.3, makes a decision by using

the information available at the time a decision is made, without considering future information. That is, upon

each request arrival, the decision maker searches for the most suitable driver to serve the request on the basis of

the realized information only. The driver selection is guided by a hierarchically greedy rule. When the nth request

arrives, the active drivers set isM∪Jn. On the top-level (line 5 of the Algorithm 1 in Appendix 7.3), the decision

maker chooses a (or a set of) driver Ũ ⊆ M ∪ Jn with the minimum cost to dispatch this request. Note that, as we

assume that r1 ≤ r2 and the compensation is the same for all drivers of the same type, then either Ũ is composed

by inhouse drivers only, or it is composed by crowdsourced drivers only (in case there is no inhouse driver who can

feasibly serve the request). The decision is dependent on the selected drivers’ type and the corresponding rewards

paid to serve the order. Given the chosen driver(s), on the low-level, the Route strategies (see Subsection 4.2) are

adopted to generate a route pu
n for each driver candidate u ∈ Ũ and the additional travel time ∆TT u

n is determined.

At last, the driver with the minimum additional travel time is chosen. This strategy is simple and intuitive, since it

assigns an order to the ‘cheapest’ and ‘near-by’ driver.

Monte-Carlo-strategy (MC). This approach uses Monte-Carlo simulation to predict the expected performance

over the scheduling and routing decision. In particular, upon a new request arrival, a number of scenarios about

future possible order arrivals are generated according to the request arrival probability distribution function. Given

each scenario, the value obtained by a policy is evaluated.

Specifically, the probabilities of the future possible requests are computed as follows. Recall that, when the nth

request In ≡ (tn, in, jn) arises at time tn associated with a customer in and a restaurant jn, the state Sn−1 records the

requests already received (both accepted and rejected). We also know the already appeared O-D pairs set Qn−1 and

thus have Qn = Qn−1 ∪ {(in, jn)}. The probability θn
i j that a request will arise from an O-D pair (i, j) ∈ Q \ Qn can be

computed using the CDF Fi j|tn on the random variable Ti j, given that no request has occurred for the O-D pair (i, j)

within [0, tn]. For all t ∈ (tn,T ), according to the probability function equation (3), we get

Fi j|tn(t) =
P(tn < Ti j ≤ t)
P(Ti j > tn)

=
Fi j(t) − Fi j(tn)

1 − Fi j(tn)
=
θi j(Fi j(t) − Fi j(tn))

1 − θi jFi j(tn)
(13)

Thus, we have

θn
i j = Fi j|tn(T ) =

θi j(1 − Fi j(tn))

1 − θi jFi j(tn)
,∀(i, j) ∈ Q \ Qn (14)

which represents the probability to have a request for the pair (i, j) after tn.
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Given the request arrival probability distributions, the MC strategies sample the future requests arrival events

thereby providing the prospected information. At each stage, the decision procedure consists of three key steps,

Monte-Carlo time sampling, Evaluation and Decision. These components are organized as in Algorithm 2 in Ap-

pendix 7.3 and their details are described as follows:

1. Monte-Carlo time sampling. Given the nth stage request In, we randomly generate a setS of scenarios, where for

each potential order request, the arrival time is determined. More precisely, each scenario s ∈ S is a sequence

of stages (ti j,s, i, j) with the O-D pair (i, j) ∈ Q \ Qn, and tn < ti j,s < T . Note that an arrival time is generated

for every O-D pair (i, j) ∈ Q \ Qn according to the CDF equation (3) with new θn
i j of equation (14), but only

requests with arrival time less than T are kept in scenario s.

2. Evaluation. Given the active drivers setM∪Jn at stage n, for each scenario s, MC evaluates 1+M+|Jn| different

possible actions. In particular, (i) it rejects the request In, (ii) it assigns the request In to an inhouse driver in

M, (iii) it assigns the request In to a crowdsourced driver in Jn, and then schedules all future requests of s

through the MY-based algorithm (see Subsection 4.3). Notably, in practical implementation, we can shorten the

evaluation process by only processing a restricted number of future requests, rather than scheduling all requests

in s, thus leading to a rollout algorithm (RA). In particular, we restrict the evaluation to the first χ requests

(temporarily-wise) appearing in each scenario s, where χ represents the roll out period (Goodson et al., 2017).

Theoretically, according to the recursive equation in Proposition 3.2, this procedure can evaluate all possible

future events occurrence by letting χ → ∞ and choose the decision that minimize the expected total cost, and

this would correspond to the optimal policy.

3. Decision. After evaluating the potential decision regarding the request In on all scenarios in S, the MC-based

approach computes
∑

s∈S σu(s)/|S| for all u ∈ M ∪ Jn ∪ {0} and selects the driver with minimum total cost

as the final decision (or rejects the request). Note that, we can also prioritize either inhouse or crowdsourced

drivers during this decision step. However, the performance of this approach has been found to be less effective

than the general selection process without prioritization (The detailed analysis is available in Appendix 7.4).

Obviously, the MC-based algorithm should achieve a better performance than MY but at the expense of intensive

computational efforts.

In addition to the Info incorporation decision, another important issue regarding the decision procedure is the

route generation for each candidate driver given the collected orders information. Specifically, we need to provide

fast-effective routing guidelines for the chosen driver to deliver the unfinished orders. This is discussed in the

following subsection.

4.2. Routing strategies.

In this section, we introduce two routes generation strategies to build routes efficiently, namely, Non-adaptive

and Adaptive routes generation approaches. The difference between the two is that the former inserts new locations
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into the original route without modifying the sequence of visits of other locations, while the latter reshuffles the

current route and designs a completely new route given all provided locations.

Non-adaptive routes generation (NR). This method inserts the new request’s locations into the original route

without modifying the previous visiting sequence. The scheme of the approach is presented in Algorithm 3 in

Appendix 7.3. The idea is to insert the locations associated with the new request in the current route, without

modifying the visiting sequence of the vertices already included in the route. Given the request In = {tn, in, jn} to be

inserted, vertices in and jn are inserted in the current route in the position leading to the least additional traveling

time associated with the detour. Note that index n is discarded in the Algorithm 3 for the ease of reading. The

insertion position needs to satisfy the following feasibility conditions:

1. Time windows condition (TW): Each visited node in the route should satisfy the corresponding time windows,

i.e., (earliest time) the meal can be fetched only if it is ready at the restaurant, and (latest time) each customer

should receive the meal before the service time target. These requirements will be checked for all the nodes in

the route. Note that the earliest time condition is checked only for nodes i and j associated with the new request

as they are satisfied by construction for the other nodes. Operator TW(r, i, j) in the Algorithm 3 checks whether

vertex i can be feasibly inserted in route r after vertex j, i.e., it checks whether time windows constraints are

satisfied for i and for all vertices following j once i is inserted in r.

2. Pickup-delivery condition (PD): Node j (the customer location associated with the new request) has to be

visited after node i (the restaurant location associated with the new request). This condition is checked through

operator PD(r, i, j) where vertex i is inserted in route r after vertex j.

As described in the algorithm, the routes generated by NR does not modify the visiting sequence of vertices

already present in the route. Such a procedure is efficient (i.e., fast), however, the solution quality might be penalized

as it lacks flexibility and does not explore for better sequences to connect the unvisited locations. Motivated by this

drawback, we design a more effective routes generation scheme as follows.

Adaptive routes generation (AR). Compared to the NR approach, the AR method reshuffles all nodes inside the

original route. Therefore, it shows more adaptive characteristics when including the new information. In detail, this

method first constructs a graph Gn = (Vo ∪ VI , An) where Vo are the unvisited nodes, VI are the pickup and delivery

vertices of the new request, and An are the directed arcs between the nodes. The immediate destination of the original

route is taken as the starting (depot) position. Then a completely new route is generated from scratch according to

the cheapest insertion (Rosenkrantz et al., 1974) procedure considering the TW and PD conditions. We present the

AR details in Appendix 7.3 Algorithm 4. In principle, the AR method should produce better solutions than NR with

a sacrifice of computational efficiency. Compared with Ulmer and Savelsbergh (2020) and Zehtabian et al. (2022),

where the cheapest insertion method is used, our AR method incorporates additional constraints and introduces more

adaptability through reshuffling, thereby resulting in the generation of higher-quality solutions.
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4.3. Integrated algorithms.

Given the aforementioned Info and Route strategies, we integrate them together pair-wisely and derive four

algorithms to solve the operational level scheduling and routing problems, which are the MY-NR, MY-AR, MC-NR and

MC-AR algorithms.
Table 3: Integrated algorithms for operational scheduling and routing decisions

Route

Info
Myopic (MY) Monte-Carlo (MC)

Non-adaptive (NR) Myopic Non-adaptive (MY-NR) Monte-Carlo Non-adaptive (MC-NR)
Adaptive (AR) Myopic Adaptive (MY-AR) Monte-Carlo Adaptive (MC-AR)

4.4. Comparison of algorithms on simple instances.

To give an illustration of the algorithms advantage, we compare them on simple instances and shed light on

the optimal policy. The setting of these instances are summarized as follows: time horizon T = 7 units, food

processing time ν = 1 unit, service time target κ = 4 units, and food quantity q = 1 unit. There is only one

restaurant corresponding to the depot (where all routes, for both inhouse and crowdsourced drivers, start from) and

4 customers, which are distributed as one-dimensional (1-D) and two-dimensional (2-D) space as in Figure 3. If we

set the requests arising probabilities for all O-D pairs as 1, then there are 840 (i.e., A4
7) order events scenarios.

Figure 3: The 1-D (left) and 2-D (right) geographical locations for shop (inside box) and customers.

We consider two cases of driver arrivals: a case with only one inhouse driver circulating in the system, and a case

with mixed drivers (i.e., an inhouse driver and a crowdourced driver). We set unit costs as (r1, r2, r3) = (6, 8, 18).

The performance comparison of the proposed algorithms and the optimal policy π∗ are summarized in Table 4. The

performance of policy π∗ is determined by enumerative analysis for each order events scenario. The column Gaps(%)

has been defined in Section 3.4. In addition, given the optimal result known for each order arrival scenario, we also

measure in column Opt(%) the percentage of scenarios where the heuristic algorithm π achieves the same value as

the optimal policy π∗.

Table 4: Gaps and Opt between heuristic and optimal policies for simple instances

Policies
1-D 2-D

Inhouse driver Mixed drivers Inhouse driver Mixed drivers
Gaps(%) Opt(%) Gaps(%) Opt(%) Gaps(%) Opt(%) Gaps(%) Opt(%)

MY-NR 7.4 72.3 3.6 71.7 8.7 70.2 2.6 68.8
MY-AR 2.2 91.7 0.5 91.6 0.5 98.3 0.6 96.9
MC-NR 6.1 76.8 3.3 76.2 8.7 70.2 2.4 67.9
MC-AR 0.1 99.5 0.1 99.4 0.3 99.1 0.6 97.6
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The results show that the strategies of incorporating both future information and adaptive route design are indeed

advantageous. In particular, comparing the MC-AR with MY-NR among all scenarios composed by 1-D/2-D and dif-

ferent number of drivers, the overall average gaps to optimality are reduced by 5.3% and the proportion of instances

reaching the value of the optimal policy π∗ is increased by 28.2%. Moreover, the MC-AR policy outperforms the

remaining ones, indicating the benefits of considering future information and invest efforts to produce better routes.

5. Numerical Experiments

In this section, we present computational tests with a real dataset to verify the efficiency of the algorithms

presented in Sections 4, and also to identify whether the performance of different solution approaches depends on

problem characteristics. We first describe the instances on which the tests have been performed in Section 5.1, and

then show the computational results in the following sections.

5.1. Data preprocessing

We use the dataset from the OMD platform Meituan for our numerical experiments. We had access to a monthly

dataset, from 3rd to 30th July 2017, including detailed orders and drivers information. The order information con-

tains: Order ID, order arrival time, restaurant ID, locations of the restaurant and the customer, food processing time

and delivery starting and ending time. Driver information contain minute-wise number of idle and busy drivers in

the network.

We now clarify the process of deriving key system parameters from the real dataset. Specifically, each location

within the dataset is identified through a coordinate pair of latitude and longitude. By eliminating duplicate coordi-

nate pairs, we construct the set of locations L, which includes coordinates for all customers and restaurants over the

month. The two subsets are denoted as C ( L for customers and P ( L for restaurants, respectively. Furthermore,

our computational experiments are primarily focused on two scenarios: no-rush (To) and rush (Tr). To includes

all orders placed between 7:00-10:00 during the month, whereas Tr encompasses orders from 10:00-14:00. Con-

sequently, we can approximate the order request probability θi j for each scenario, which represents the probability

in the Bernoulli distribution. Specifically, by analyzing orders in Tr, we define sets of customer locations Cr and

restaurant locations Pr. The request probability θr
i j is estimated based on the frequency of orders from customer

i ∈ Cr to restaurant j ∈ Pr, calculated as the total number of orders for the pair (i, j) during the month divided the

number of days observed (28 days from 3rd to 30th of July), where the probability 0 ≤ θr
i j ≤ 1 is guaranteed since

a customer typically places at most one order per mealtime. Additionally, we assume that the inter-arrival time of

requests within rush hours adheres to a uniform distribution. The parameters for this distribution are determined

from the average total number of orders placed during rush hours per day, based on historical data. This approach

to approximating θr
i j and assuming a uniform distribution for inter-arrival times facilitates the simulation of daily

order arrivals in a stationary manner, excluding fluctuations by focusing on shorter periods such as rush hours, as
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demonstrated in the Figure 1. In a similar vein, for the no-rush scenario, To, we determine the customer locations

(Co), restaurant locations (Po), request probabilities (θo
i j), and the distribution of inter-arrival times.

Without loss of generality, we simplify our approach by selecting order data from three specific days (July 3rd,

6th, and 9th) and using this information to simulate order streams. This simulation replicates the actual historical data

regarding order arrival times, customer and restaurant locations, and food processing time. For clarity, let us denote

the orders during the rush hour on July 3rd as T 3
r , with analogous labels for the other days and for no-rush periods.

For these chosen days, the volume of orders in rush and no-rush periods are |T 3
r | = 1758, |T 6

r | = 1452, |T 9
r | = 2079

and |T 3
o | = 160, |T 6

o | = 195, |T 9
o | = 231, respectively. We use these detailed scenarios, To and Tr, as initial data points

to estimate the lower- and upper bounds for the required inhouse driver fleet size M, as described in Section 5.2.

5.2. Determining the range of fleet size M by continuous approximation

In this section, we aim to provide a range of the optimal number of inhouse drivers engaged for the delivery service,

given the estimated set of orders to serve. With the notations of Section 3.2, the total cost function (to minimize)

associated with a fleet size M is C(M) = V∗(S0,Ω,M) + r0M, where r0 is the wage of an inhouse driver. Note

that C(M) can be decomposed into a strictly increasing term r0M and a non-increasing term V∗(S0,Ω,M) (see

Proposition 3.3), hence motivating a binary search on optimal M∗. Even though we cannot mathematically prove

that the marginal compensation cost decreases when M increases, we indeed observed such a trend in our tests.

Thus, we now aim at finding good lower and upper bounds of the value of M to start the binary search. The

upper bound M is estimated through a continuous approximation method inspired by Daganzo (1987) as shown in

Appendix 7.2 with the orders information in rush hours Tr. Similarly, the lower bound M is obtained with the orders

information in no-rush hour To. Given the values of M and M, we then estimate the number of required inhouse

drivers M∗ ∈ [M,M] which minimizes the total cost by a dichotomic search, using the methods described in Section

4 to solve the operational problem for each value of M examined during that search.

As a followup, we conducted numerical tests to verify the accuracy of the approximation method. Specifically,

we applied the method on benchmark instances for the vehicle routing problem with pickup and delivery and on

instances derived from our dataset. Then, we compare the average travel time per point computed by the state-of-art

vehicle routing problem solvers and the approximation method. The LKH-3 (Lin and Kernighan, 1973; Helsgaun,

2017) heuristic is adopted here as the state-of-art solver for benchmark cost computation.

The parameters required in the approximation formula and results are summarized in Table 5. The testbed

consists of several standard CMT-instances from Salhi and Nagy (1999) and SR-instances generated from our real

dataset. The CMT-instances cover 50 ∼ 200 nodes with time windows and pickup-delivery information. The SR-

instances own the same information but cover 200 ∼ 1000 nodes. We do not report the accuracy comparison with

over 1000 nodes because the LKH-3 has difficulties in tackling instances over this scale. In Table 5, we first use

the approximation model to derive the number of vehicles M required to cover the whole area. Such M is taken

as an input parameter to the LKH-3 heuristic to compute the benchmark average travel time. Column Gaps (%)

21



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

measures the difference of average travel time per point computed between the approximation formula and the

LKH-3 solution, i.e., |d1−LKH|/LKH×100 or |d2−LKH|/LKH×100, depending on which approximation formula

d1 or d2 in Appendix 7.2 is tight. The results show that such gaps are fairly acceptable (on average 16%). Therefore,

we conclude that the approximation model performs well in estimating the number of required vehicles for delivery

service. Finally, we determine that the upper bound M = 139 and the lower bound M = 10, where the upper bound

represents the highest value of M calculated from the scenarios of Tr over three selected days, while the lower bound

is derived from the lowest value of M in scenarios of T0. Consequently, our subsequent analyses will explore the

fleet size of in-house drivers M within the range between 10 and 139.

Table 5: Accuracy test of the approximation model: Comparison with LKH-3

instance nodes area(km2) δ(/km2) ρ(km) C m T (h) w1 S 1 l1 d1 w2 S 2 l2 d2 LKH M Gaps(%)
CMT01H 50 36.5 1.4 4 30 8 4 8.4 30 2.6 3.0 8.4 25.8 2.3 3.0 2.5 2 20.73
CMT03T 100 48.1 2.1 5 30 8 4 6.8 30 2.1 2.5 6.8 31.8 2.3 2.5 2.2 4 12.79
CMT04Q 150 48.1 3.1 5 30 8 4 5.5 30 1.7 2.1 5.5 38.9 2.3 2.0 2.6 5 19.14
CMT05H 200 48.1 4.2 5 30 8 4 4.8 30 1.5 1.9 4.8 45.0 2.3 1.8 1.7 7 12.15

SR200 200 76 2.6 6 30 2 1.3 3.0 30 3.8 1.3 3.0 23.4 2.9 1.4 1.1 9 24.17
SR400 400 76 5.3 6 30 2 1.7 2.1 30 2.7 1.0 2.1 42.1 3.8 0.9 0.9 14 13.57
SR600 600 76 7.9 6 30 3 2.0 2.1 30 1.8 1.0 2.1 49.4 2.9 0.9 1.0 20 10.12
SR800 800 76 10.5 6 30 4 2.1 2.1 30 1.3 1.1 2.1 52.3 2.3 0.9 0.9 27 16.64
SR1000 1000 76 13.2 6 30 4 2.4 1.9 30 1.2 1.0 1.9 67.3 2.7 0.8 0.9 34 14.69

SRT 3
o

320 76 4.2 6 30 6 3 3.7 30 1.5 1.6 3.7 43.8 2.3 1.5 - 10 -
SRT 3

r
3516 76 46.3 6 30 8 4 1.6 30 0.5 0.9 1.6 139.2 2.3 0.6 - 118 -

SRT 6
o

390 76 5.1 6 30 6 3 3.7 30 1.5 1.6 3.7 43.8 2.3 1.5 - 13 -
SRT 6

r
2904 76 38.2 6 30 8 4 1.6 30 0.5 0.9 1.6 139.2 2.3 0.6 - 97 -

SRT 9
o

462 76 6.1 6 30 6 3 3.7 30 1.5 1.6 3.7 43.8 2.3 1.5 - 15 -
SRT 9

r
4158 76 54.7 6 30 8 4 1.6 30 0.5 0.9 1.6 139.2 2.3 0.6 - 139 -

∗v = 18km/h, τ = 0, δp = δc = δ/2, S 1 = C, S 2 = vT
vτ+(4m/3(δp+δc))1/2 , see Appendix 7.2 for more details about the notations.

5.3. Policies performance

Given the estimated range of inhouse drivers fleet size M, we now test the routing and scheduling algorithms

presented in Section 4 with extensive computational tests. All performances are calculated as the average values

under the selected three days’ order streams.

Default parameters. We set the default configuration of parameters as follows. First of all, we assume that the

arrival of crowdsourced drivers follows a Poisson process with rate µ, dependent on the time of a day. More precisely,

the hourly arrival rates are µr in the rush scenario and µo in the no-rush scenario. According to our observation from

Figure 1, we set µ1
r = 25 for 10:00-12:00, µ2

r = 10 for 12:00-14:00, and µo = 5 for 7:00-10:00. Each crowdsourced

driver appears randomly in the region and will leave after 3 ∼ 4 hours working duration, following an uniform

distribution U(3, 4). With these assumptions, we generated 10 different realizations of the crowdsourced drivers

arrivals as the set Ω (i.e., |Ω| = 10). Each driver is restricted to hold at most 9 unfinished orders in parallel during

the delivery. Moreover, the service time target is set as κ = 60 minutes, indicating that each received order should

be completed within an hour. Finally, the algorithms are tested with order arrivals during both no-rush and rush

hours, i.e., 7:00-14:00. We assume the fixed wage r0 = 60 yuan (i.e., ∼ 10 USD), and variable compensation

(r1, r2, r3) = (6, 8, 18) yuan per order, i.e., 0.9, 1.2, 2.8 USD. Note that, even though the rewards parameters are
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constant values here, the proposed approaches are quite adaptive to the dynamic pricing environments if the r1 and

r2 are dynamically determined as functions of distances, busy rate and other factors. In the following simulation,

without specific clarification, we only vary the investigated parameter for sensitivity analysis and keep the rest as the

default.

Performances comparison across policies. To maintain our focus, we concentrate on the MC-AR policy and utilize

the other algorithms as benchmarks to evaluate its effectiveness. Figure 4 shows that the MC-AR policy dominates

the other policies, demonstrating the benefits of incorporating future information and generating adaptive routes

in each decision epoch. On average, the total cost is reduced by 6% when comparing MC-AR with MY-NR, which

values around USD 200 million for the company if it used the latter policy, because the delivery related cost is

around USD 35 billion in 2022 (Meituan, 2023). Notably, the effectiveness of the adaptive route generation algo-

rithm appears to outperform the impact of information involvement. Specifically, while the MY-AR policy achieves a

total cost reduction of 4.8%, the MC-NR policy achieves a marginal reduction of 1.5%. This indicates that the adap-

tive route generation plays a more significant role in enhancing performance compared to information involvement

alone. However, incorporating future information can yield even greater benefits if the number of rollout horizons

is expanded, although this enhancement comes at the cost of exponentially increasing computational efforts. The

3-periods rollout strategy is embedded inside the MC-AR and MC-NR algorithms in our computational tests. Ad-

ditionally, our findings suggest that when the capacity is sufficiently large (for example, M ≥ 80), the benefit of

incorporating future information tends to diminish rapidly. This outcome is intuitive since a lack of delivery force

ceases to be a bottleneck, and the platform primarily needs to focus on optimizing route decisions, resulting in the

AR policies maintaining their superiority over the NR policies.
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Figure 4: Performance comparison for different policies.

An inhouse driver size M∗ that minimizes total cost. Given the range of M provided by continuous approximation
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in Section 5.2, we first determine the fleet size of inhouse drivers. Figure 4 also presents the impact of inhouse

driver size M on the total cost when applying the four algorithms for the operational decision presented in Section

4.3. Clearly, the total cost decreases first and increases second in M. Even though we cannot demonstrate this

observation by a rigorous mathematical analysis, we still think that it provides key insights for practitioners. The

numerical results indicate that the platform has to balance the trade-off related to seasonal demand: If the platform

recruits more inhouse drivers, it certainly helps to reduce the compensation cost but also incurs higher fixed wages,

which is a kind of redundant capacity waste for the no-rush hours. By contrast, if the delivery capacity of inhouse

drivers is limited, this causes huge delay penalties due to the lack of enough delivery force during the rush hours.

Consequently, an optimal intermediate size of inhouse drivers is required, thereby minimizing the total cost of fixed

wages and variable compensations. In the end, one may argue that the continuous approximation to estimate the

capacity size is unnecessary as we can still find the optimal M∗ by enumeration. However, adopting an approximation

scheme restricts the searching space into a known range and thus reduces the computational efforts. Otherwise, the

decision-maker needs to enumerate from zero to an arbitrary upper bound. Given that the continuous approximation

requires a negligible computing time and provides a good estimation of the required number of drivers, it definitely

pays-off using it to obtain lower and upper bounds.
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Figure 5: Cost decomposition of the MC-AR policy.

The optimal fleet size of inhouse drivers is M∗ = 30 under the MC-AR policy. By decomposing the total costs

into different components (Figure 5), we see that the variable compensation cost is decreasing in M (as shown in

Proposition 3.3), while the fixed wages are constantly increasing in M. Note that, the marginal compensation cost

decreases in a diminishing way, verifying the viability to determine an optimal M∗ by dichotomic search. The best

value M∗ achieves a good balance between the fixed wages and the variable compensation cost. Let us take a further

look at the optimal decision details for simulation results on July 3rd: The platform assigns 1290 orders to 30 inhouse

drivers, 627 orders to 52 crowdsourced drivers and rejects no request. On average, an inhouse driver delivered 43

orders and a crowdsourced driver 12 orders. However, if the company decreases the value of M, several requests are
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rejected due to the shortage of drivers, while if the platform increases M, a higher percentage of orders are allocated

to inhouse drivers, but the increment of fixed wages is not compensated by the reduction of variable cost. In the

following, we focus on the MC-AR policy with M∗ = 30 and explore additional sensitivity results.

Table 6: Impact of the crowdsourced driver arrival rate µ1
r on operational level performances.

M µ1
r |J| |Jmax| VMC−AR TT (s) % in % out % rej

20 10 274 67 15614 283.16 51.12 37.29 11.59
20 20 316 85 14108 273.86 50.23 46.22 3.55
20 30 352 104 13398 263.61 51.02 48.98 0.00

30 10 284 77 13886 267.91 67.50 26.66 5.84
30 20 326 95 12850 265.05 66.86 32.81 0.33
30 30 362 114 12778 259.22 67.19 32.81 0.00

40 10 294 87 12856 259.30 75.50 16.92 7.47
40 20 336 105 12352 248.10 78.30 21.80 0.00
40 30 372 124 12350 230.04 78.35 21.65 0.00

a |J| is the total number of drivers appeared in system through whole planning horizon,
b |Jmax | is the maximal number of drivers appeared in system for the peak time.

Impact of the crowdsourced drivers availability µ1
r . Given a fixed size of inhouse drivers, we would like to know

the impact of crowdsourced drivers participation on the total cost. Therefore, we vary the parameter µ1
r to investigate

the cost changes. The results are summarized in Table 6. First of all, crowdsourced drivers are indeed helpful to

reduce the requests rejection rate (column ‘% rej’) especially when the inhouse drivers resources are limited (e.g.,

M = 20). In this case, the percentage of orders allocated to the crowdsourced drivers (column ‘% out’) also increases

in µ1
r since more crowdsourced drivers are available in the platform to provide service. Sometimes, it even slightly

reduces the percentage ‘% in’ of requests served by inhouse drivers, in order to exploit the comparatively beneficial

(e.g., nearby) crowdsourced resources. On the other hand, if the platform already recruited a large amount of inhouse

drivers, the benefits of using crowdsourced drivers diminish as more orders are assigned to inhouse drivers. Besides,

we find that the average travel time (column ‘TT (s)’) is decreasing in µ1
r due to more available drivers. In summary,

through our experiments, we conclude that the adoption of crowdsourced drivers is beneficial to address the seasonal

demand in OMD platforms, while such benefits are diminishing as the inhouse driver fleet capacity is expanded.

Impact of the inhouse driver fixed wage r0. From the total cost definition, the optimal value of M is also affected

by the fixed wage r0. Note that if r0 is very large, the total cost increases in M, given that the increasing wage cost

r0 ·M is not compensated by the decreasing compensation costV∗. However, for the range [0,100] of r0 considered

in our tests, we observe that the total cost is decreasing first and increasing second in the inhouse drivers fleet size.

As indicated in Figure 6, the optimal value of M (non-strictly) decreases in r0. In detail, if r0 is small, the platform

prefers to recruit as many inhouse drivers as possible, since it is more expensive to compensate a crowdsourced

driver than an inhouse driver. By contrast, if r0 is large, the company prefers to adopt more crowdsourced drivers

because the fixed wages paid to the inhouse drivers accounts for a high percentage of total cost. This is shown in
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Figure 6: Trace (dash arrow line) of optimal inhouse driver size M∗ with respect to the fixed wage r0.

Figure 6 (top curve), where the incremental of total cost is dominantly caused by the fixed wages which are almost

linearly increasing in the number of employed inhouse drivers.

Figure 7: Impact of the compensation ratio r̃ and the inhouse driver size M on total cost.

Impact of the compensation ratio r̃. From the expected compensation cost-to-go function, we know that a key

factor for the resource allocation (scheduling) decision is the compensation ratio r̃ = [(r2/r1) − 1] · 100. Thus, we

also investigate how this ratio affects the optimal capacity planning for inhouse fleet size and the order scheduling

solutions. Intuitively, the percentage of orders allocated to crowdsourced drivers should be non-increasing in r̃.

Given this trend, the optimal value of M is non-decreasing in r̃ (see the dash red line of Figure 7) as the additional

fixed cost is covered by the reduction of the crowdsourced drivers compensation. Therefore, the inhouse drivers

and crowdsourced drivers are complementary in offering the meal delivery service. This is a useful insight for the
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platform managers, as they can build a team of inhouse drivers by determining the optimal size at the beginning and

manipulate the compensation cost parameter to balance the orders allocation for total cost minimization. After all,

the fleet size is a long-term decision and it is not altered easily in daily decisions, while the compensation cost can be

adapted dynamically, as dynamic (surge) pricing studies indicated in this field (see for example Cachon et al. 2017).
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Figure 8: Comparing the average travel time (in seconds) and the allocation of orders (in percentage) across different algorithms.

Impact of the anticipatory assignment strategy. We conclude this section by analyzing the impact of the antici-

patory assignment strategy (e.g., MC-AR) on scheduling outcomes, particularly in comparison to the myopic insertion

policy (e.g., MY-NR). First, we found that the anticipatory assignment strategy results in shorter average travel times

(y-axis ‘TT (s)’ in the left panel of Figure 8). This occurs because the planner can group nearby delivery tasks

when future order arrivals are anticipated, reducing overall travel time. However, the adaptive routing strategy can

sometimes increase travel time, as it balances additional travel with the potential to serve more orders, in contrast

to the non-adaptive routing approach which focuses on least travel time. Moreover, as shown in Figure 8 (right

panel), the anticipatory assignment strategy helps assign more orders to inhouse drivers (‘% in’ of MC-AR) and re-

duces the number of rejected orders (‘% rej’ of MC-AR). This preference for inhouse drivers is primarily driven by

their lower unit costs, encouraging planners to use them whenever available. Additionally, factors like order con-

solidation and non-urgent service levels also favor the use of inhouse drivers. For instance, our analysis shows that

orders assigned to crowdsourced drivers have an average food processing time (FPT) of 10 minutes, while those

assigned to inhouse drivers have an FPT of 20 minutes. This insight provides valuable guidance for planners in

designing assignment strategies for OMD practitioners. When FPT is short and the associated time windows are

tight, crowdsourced drivers can be a cost-efficient resource, allowing planners to reserve inhouse drivers for nearby

or consolidated orders, which are more cost-effective.

In summary, we evaluate the performance of several developed policies for scheduling and routing orders in

the OMD platform. By examining key design parameters, such as fleet size and the unit costs of using inhouse or

crowdsourced drivers, we further gain valuable insights for practitioners that are helpful when making decisions.
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6. Conclusions

In this paper, we studied the operational scheduling and dispatching problem in OMD platforms. The seasonal

demand phenomena including rush and no-rush hours render the operational costs control rather challenging in

practice: a large force secures the high service quality but also incurs higher cost, while a small team reduces the

cost and harms the service level, thus an appropriate capacity decision significantly impacts the operational cost. We

are motivated by the practical operations of the Meituan platform in China. Meituan addresses the service quality

and operational cost trade-off problem under seasonal demand by adopting the mixed delivery force (inhouse and

crowdsourced drivers), which is a widely accepted strategy in most OMD platforms. We contribute to existing OMD

studies by hierarchically addressing the planning, scheduling and routing problems. More precisely, given a known

inhouse driver capacity, we described the operational level dynamic scheduling and dispatching problem as a Markov

Decision Process and we presented the recursive formulation of the optimal compensation cost. We then developed

simple-yet-efficient solution approaches to solve the scheduling and routing problem, through exploitation of the

future information and adaptive routes generation procedures. Moreover, determining the inhouse driver fleet size

that can minimize total cost under the uncertain crowdsourced drivers participation is yet another open question to

consider. Thus, we tackled this issue by estimating the required capacity range through a continuous approximation

model under the rush and no-rush scenarios, and further performing a dichotomic search for an appropriate capacity

level. Through extensive numerical experiments based on a real dataset from Meituan, we observed that the designed

policy is effective to solve the operational problems, confirming the benefits of incorporating future information,

designing adaptive routes and determining appropriate capacity, thereby leading to the total cost reduction by 6% (at

best) compared to the policy without these procedures.

By leveraging the system parameters for sensitivity analysis, our research leads to several important managerial

insights. First of all, we find that it is possible to estimate the upper- and lower-bound of the required fleet size for

online platforms endowed with the seasonal demand phenomenon, which provides a range for the managers to build

(mixed) delivery force for service requirements. Moreover, through computational tests on the real-time scheduling

and routing policies, we conclude that incorporating both future information and smart routes design is indeed

beneficial to improve the operational performances. More importantly, a skillful routes generation scheme seems

to be more effective in improving the performance compared to the information incorporation strategy, enlightening

that if the practical computational resources are sufficient, the MC-AR policy is certainly the first choice, otherwise,

deploying these limited resources into the route design optimization would be more advantageous to acquire an

acceptable performance improvement even under the myopic strategy. Finally, the proposed hierarchical decision

scheme to solve the strategic and operational problems supports the managers to determine the optimal size of

inhouse force given the uncertain participation of the crowdsourced counterparts. Interestingly, we find that an

intermediate size of inhouse fleet is optimal to minimize the total cost, which is also robust in the compensation ratio

between inhouse and crowdsourced drivers, enabling the decision maker to set a dynamic compensation fee.
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Our proposed policies and insights can be implemented in other platforms facing similar resource allocation

challenges with mixed delivery force. For instance, Amazon builds its Prime team, together with Flex drivers

to fulfill the growing e-commerce delivery tasks (Archetti and Bertazzi, 2021). These drivers allow the company

to tackle the peak demand during Black Friday and Christmas holidays, without maintaining a large self-owned

delivery team. Another example is related to retailers such as Walmart grocery, who also need to address similar

strategic and operational problems with mixed delivery force.

We see several venues for future research. Our model could be extended to include the uncertain service and

travel times of delivery force (Liu et al. 2021). Another venue would be studying the benefits of delaying the schedul-

ing timing with an intentional postponement so as to create a thicker marketplace and provide more advantageous

scheduling opportunities (Zhao et al., 2024). Lastly, a theoretically significant but challenging extension would be to

develop performance guarantees for the proposed policies, as suggested in prior works (see, e.g., Simchi-Levi et al.,

2005; Ledvina et al., 2022).
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 We study a meal delivery problem with crowdshipping
 Both requests and drivers’ availability arrive online
 We propose an MDP formulation
 We propose different heuristic algorithms
 We perform extensive computational tests


