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Abstract
Akey challenge in studying probability distributions is quantifying the inherent inequality within
them.Certain parts of the distribution have higher probabilities than others, and our goal is to
measure this inequality using the concept ofmathematical diversity, a novel approach to examining
inequality.We introduce a newmeasuremD(P), called the degree of uniformitymeasure on a given
probability space that generalizes the idea of the slope of secant of the slope of diversity curve. This
measure generalizes the idea of degree of uniformity of a contiguous part (P= {k1, k2} in the discrete
case orP= (a, b) in the continuous case) in a probability space related to a random variableX, to an
arbitrarymeasurable partP.We also demonstrate the truly scale free and self-contained nature of the
concept of degree of uniformity by relating themeasure of two partsP1 andP2 from completely
unrelated distributionswith randomvariablesX1 andX2 that have completely different scales of
variation.

1. Introduction

A fundamental characteristic of probability distributions is the inequality that is inherent in the distribution.
Some parts of the distribution aremore likely than others. This inequality is visually apparent in the shape of the
distribution as the probabilities increase or decrease from left to right.While there are several ways to quantify
this inherent inequality in a distribution through its shape, such as statisticalmeasures of center and spread etc.,
there is a need to quantify this inequality for the parts (measurable subsets) or thewhole of the distribution,
which stems from the inherent uncertainty (information) that is present in the part or whole. Such a
quantification can lead to (a) comparing the degree of uniformity (inequality) of the parts or thewhole, not just
within the same distribution but across different distributions; and (b) a truly scale-free and self-containedway
of describing the inequality of a part or whole based solely on its inherent uncertainty.

Distributions that are uniform to beginwith have amathematical diversity that is equal to the support of the
distribution itself. For discrete uniformdistributions that have a support of {1,KK}, the diversity 1D evaluates
toK and for continuous uniformdistributions on the interval (a,b) the diversity 1D evaluates to (b− a).
Distributions that deviate fromuniformity will have a diversity that is necessarily less than a uniform
distribution on the same support. Furthermore, the diversity 1D in these cases have the intuition that we can
redraw the original non-uniformdistribution into a Shannon Equivalent Equi-probable (SEE) uniform
distributionwhose support has a size equal to 1D.We note that this equivalence is abstract yet useful in terms of
visualization of the idea of diversity. The idea of diversity can also be visualized for parts of a distribution, as seen
in Rajaram et al (2023, 2024). In short, a part P that has a cumulative probability of cP and a diversity ofDP, can be
visualized as a SEE part that is uniform, has a support length ofDP and an equal probability of

c

D
P

P
.

We use the term Shannon Equivalent to emphasize the fact that the original part or whole of the distribution
has the same conditional Shannon Entropy as the equivalent abstract uniformpart of thewhole that is being
visualized.We have chosen to use the exponential of Shannon Entropy (also calledmathematical diversity) as a
way to quantify the inequality in distributions. Themain reason is because amongst all theHill numbers qDwith
q being a parameter, which aremeasures of diversity, the one corresponding to q= 1weights both the richness
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and evenness equally. Also, it is well known that Shannon Entropy is ameasure of probabilistic (or information
theoretic) uncertainty in a distribution.

Instead of quantifying the inequality of the original part or whole, whichmay not be uniform, the abstract
SEE equivalent allows us to compute and compare the degree of uniformity of the part or whole on a level
playing field. This is because the redrawn SEE equivalents are (a) uniformdistributions and (b) have the same
entropic uncertainty as the original part or whole that we startedwith. It ismuch easier to compare and quantify
the degree of uniformity of SEE parts (albeit abstract) due to the uniformity in the distribution. This was the
main content of our exposition in Rajaram et al (2023, 2024).

We have developed a quantification called degree of uniformity or inequality in our previous papers (Rajaram
et al 2023, 2024) for parts that are contiguous in nature i.e. a consecutive set of indices {k1, k2} or a single sub-
interval (a,b). Among other things, we introduced the slope of diversity curvewhose slope of secant between the
end points of the contiguous part is a direct way ofmeasuring the degree of uniformity of the given part. The idea
of degree of uniformity of parts that are contiguous got us thinking along the following lines:

(1) Is there a way to generalize the idea of the slope of secant of the slope of diversity curve to parts that are not
contiguous but are arbitrarymeasurable subsets of the given probability space?

(2) Can this generalization be used to compare arbitrary measurable parts or whole of entirely different
distributions corresponding to randomvariablesX1 andX2 that have no relationship between each other,
and thereby show the truly scale-free and self contained nature of the idea of degree of uniformity.

Themain focus of the current paper is to answer the above two questions for discrete distributions.We introduce
a newmeasure called the degree of uniformitymeasuremD(P) that generalizes the concept of the slope of secant of
the slope of diversity curve (all defined later in the paper) for contiguous parts {k1, k2}with consecutive indices.
We also showhow this newly constructedmeasure can be used to compute and compare the degree of
uniformity of arbitrarymeasurable parts (not just contiguous ones).

The paper is organized as follows. In section 2, we recall the relevant definitions and results fromRajaram
et al (2023, 2024) that we are trying to generalize in this paper. In section 3, we introduce the newly discovered
degree of uniformitymeasuremD(P) and state and prove some properties that elucidate why thismeasure is a
generalization of results in the previous section. In sections 4 and 5, we state and prove some further properties
ofmD(P) that illustrate the truly scale-free and self-contained nature of the degree of uniformitymeasure. In
section 6, we show some computational examples to demonstrate howmD(P) can be used to compute the degree
of uniformity of parts across distributions.We conclude the paper in section 7with some insights into the results
and futurework, and a short discussion on potential applications in physics and engineering.

2. A formal introduction to diversity: backgroundmaterial

Mathematical diversity (denoted by 1DK or
1D) is a quantification of the interplay between the richness or

number of categories in a distribution, and its evenness which denotes the equi-probable occurrence of each
type, as studied in Jost (2006), macArthur (1965), Hill (1973), Peet (1974). Amajority of probability distributions
which are not uniform, can be redrawn as a Shannon Equivalent Equiprobable distributionwhich is uniformbut
has the same probabilistic uncertainty as the original distribution.Mathematical diversity is based on the idea
thatwhen all categories in a discrete probability distribution have an equal likelihood of occurring, the diversity
equals the number of categories. In a continuous distribution, the diversity of a uniformdistribution is
determined by the Lebesguemeasure of its support. Any deviation fromuniformprobabilities reduces diversity.
For background onmathematical diversity, we refer toChao and Jost (2015), Hsieh et al (2016), Jost
(2006, 2018), Leinster andCobbold (2012), Pavoine et al (2016).We recall a few definitions and theorems related
tomathematical diversity fromRajaram et al (2023, 2024) that are pertinent to this paper. Inwhat follows, we
will use the convention of a subscript ofK to denote a discrete distribution, {k1, k2} to denote a discrete part, a
subscript of (a,b) to denote a continuous distribution or similar intervals for its parts.When something is true
for both continuous and discrete distributions, wewill say so and omit the subscripts.Wewill use I to denote the
entire support of a distribution for both discrete and continuous case i.e. I= {1,K,K} or I= (a, b)whenever it is
pertinent.

Definition 2.1. (ShannonDiversity corresponding to q= 1 forHill numbers)Consider a discrete random
variableXwith support { }I K1,= ¼ (with K = ¥ allowed) and its probabilities pi, or a continuous random
variableXwith support ( )I a b,= (with a = -¥ and b = +¥ allowed) and its probability density p(x). The
diversity of the entire distribution D1 is defined as the length of the support of an equivalent uniformdistribution
that yields the same value of Shannon entropyH.
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Shannon entropy for discrete and continuous distributions is defined as below:

( ) ( ) ( ( )) ( )
( )

H p p H p x p x dxln ; ln . 1I
i

K

i i I
a b1 ,
òå= - = -

=

It was shown (Jost 2006,MacArthur 1965,Hill 1973, Peet 1974) that definition 2.1 implies that the total diversity
1D (for both continuous and discrete distributions) is given by:

( )D e . 2I
H1 I=

Wewill only consider the case q= 1 for theHill numbers and hence, wewill omit the left superscript of 1while
referring to the diversity asD. The reason for this choice of q= 1 is because for this choice, both richness and
evenness are equally weighted.We recall the diversity of parts theorem for discrete distributions below.

Theorem2.1. Let piwith { }i I K1,Î = ¼ be a discrete probability distribution, with K = +¥ permitted. Let p(x)
be a probability density function (pdf) on ( )I a b,= , with a = -¥ and b = +¥ permitted. Let ⋃P Pi i= be a
disjoint partition of a part P IÍ . Then the following is true for both discrete and continuous distributions:

( )⎜ ⎟⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

D

c

D

c
. 3P

P

c

P P

P

P

cP

i

i

i

Pi

=
Î

Wemake some definitions to establish some notation to state our next theorem.

Definition 2.2.Wedefine

· ·
( )A

D

c D
A

D

c D
and 4P

P

P I
P

P

P I
i

i

i

= =

to be the average case-based entropy per unit cumulative frequency for the part P and the sub-partPi respectively
for both discrete and continuous distributions.

We next define the degree of uniformity of a part P= {k1, k2} orP= (x1, x2).

Definition 2.3. LetP stand for a part of the form { }k k,1 2 for a discrete probability distribution or ( )x x,1 2 for a
continuous distribution. The ratio D

c
P

P
is termed as degree of uniformity of the part P.

In Rajaram et al (2023), the validity of the ratio D

c
P

P
as a quantitativemeasure of the degree of uniformity of a

part P of a discrete distributionwas established. The slope of diversity curvewas shown to be useful to compute
and compare the degrees of uniformity of continguous parts of a distribution of the form {k1, k2} or (x1, x2) in
Rajaram et al (2023, 2024), by comparing the slopes of secants of the corresponding parts from this curve.We
recall the version of that theorem for discrete distributions below.Wefirst define the slope of secant of the slope
of diversity curve, for a discrete distribution.

Definition 2.4.The graph of { }c k1, versus · ( ){ } { }c Alnk k1, 1, in the discrete case or ( )c a x, versus · ( )( ) ( )c Alna x a x, , is
known as the slope of diversity curve. Given the slope of diversity curve, we define { }S k k,1 2

or ( )S x x,1 2
as the slope of

the secant of this curve between the two points given by

( ( )) ( ( )){ } { } { } { } { } { }c c A c c A, ln and , lnk k k k k k1, 1, 1, 1, 1, 1,1 1 1 2 2 2

in the discrete case or

( ( )) ( ( ))( ) ( ) ( ) ( ) ( )c c A c c A, ln and , lna x a x a x a x a x a x, , , , , ,1 1 1 2 2 2

in the continuous case.

Theorem2.2. Let piwith { }i I K1,Î = ¼ be a discrete probability distribution, with K = +¥ permitted. Let
{ }k k,1 2 and { }k k,3 4 be parts that are subsets of I. Then the following are true:

⟺ ( ){ }

{ }

{ }

{ }
{ } { }⎜ ⎟ ⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

D

c

D

c
S S 5

k k

k k

k k

k k
k k k k

1,

1,

1,

1,
, ,

1 2

1 2

3 4

3 4

1 2 3 4

<
=
>

<
=
>

+

+

+

+

( ){ }

{ }
{ }

D

c
De . 6

k k

k k

S1,

1,

k k1 2

1 2

1, 2=+

+

Let p(x) be a probability density function (pdf) on (a,b), with a = -¥ and b = +¥ permitted. Let ( )x x,1 2 and
( )x x,3 4 be parts that are subsets of (a,b). Then the following are true:
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Remark 2.1.Theorem 2.1 relates the degree of uniformity D

c
P

P
of a given part P of a discrete distribution as the

weighted geometricmean of the degree of diversity of
D

c

Pi

Pi

of its sub-partsPiwith the cumulative probabilities cPi

as theweights. Theorem 2.2means that when comparing the slopes of secants { }S k k,1 2
and { }S k k,3 4 of the slope of

diversity curve, we are also comparing the degrees of uniformity in the parts { }k k1,1 2+ and { }k k1,3 4+ . It

alsomeans that we can compute the degree of uniformity { }

{ }

D

c

k k

k k

1 1, 2

1 1, 2

+

+
of an arbitrary part { }P k k1,1 2= + directly

from the slope of secant { }S k k,1 2
of the slope of diversity curve. Similar statements are true for continuous

distributions. This is themain importance of the two results in this section.

3.Degree of uniformitymeasure

Weconsider a discrete probability distribution on I= {1, 2, 3,K,K}, whereK can be infinite, and a continuous
probability distribution on I= (a, b)where a= –∞ and b=+∞ being permitted.We also assume that the
entropyH and diversityD are finite.We recall that we showed the following for the discrete case in Rajaram et al
(2023, 2024),

( )⎜ ⎟
⎛
⎝

⎞
⎠

c
D

c
p pln ln .P

P

P i P
i iå= -

Î

Wealso recall fromRajaram et al (2023) that if { }S SP k k,1 2
= denotes the slope of the secant line for the part

denoted by P= {k1, k2}, then

( )A S A e
D

c
Deln , or or .P P P

S P

P

SP P= = =

Wedefine the degree of uniformitymeasure as follows:

Definition 3.1. Let piwith { }i I K1,Î = ¼ be a discrete probability distribution, with K = +¥ permitted.
Alternatively, let p(x) be a probability density function (pdf) on ( )I a b,= , with a = -¥ and b = +¥
permitted. LetP be a generalmeasurable subset (not necessarily contiguous) of I.We define a new signed point
massmeasure on I called the degree of uniformity or degree of ineqalitymeasure for such ameasurable subset
P IÍ (irrespective of whether it is from a discrete or continuous distribution) by the following:

( ) ( ) ( )m P c A P Iln , measurable . 9D P P= " Í

The degree of uniformitymeasure is a signedmeasure as seen in definition 3.1. The sign of themeasure indicates
whether the givenmeasurable subsetPhas a degree of uniformity that is less than, equal to or greater thanD
which is the degree of uniformity of the entire distribution.We state and prove a theorembelow that shows this
fact.We label equationswith a (D) for discrete distributions and (C) for continuous distributions for results that
are slightly different for the respective kinds.

Theorem3.1. Let piwith { }i I K1,Î = ¼ be a discrete probability distribution, with K = +¥ permitted. Let p(x)
be a probability density function (pdf) on ( )I a b,= , with a = -¥ and b = +¥ permitted. LetP be a general
measurable subset (not necessarily contiguous) of I. Then the following are true:

(1)

( ) ( ) ( ) ( ) ( ) ( )⎧
⎨⎩

⎫
⎬⎭

c A m P p p D A
m P

c
Disc. ln ln and hence exp , 10P P D

i P
i i P

D

P
å= = - =
Î

( ) ( ) ( ) ( ) ( ( ) ) ( ) ( )⎧
⎨⎩

⎫
⎬⎭

c A m P p x p x D A
m P

c
Cont. ln ln and hence exp , 11P P D

P
P

D

P
ò= = - =
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(2)

( ) ( )⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

m P A0 1. 12D P

<
=
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<
=
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Proof.

(1) (Disc.)Applying theorem2.1 to { }P i i Pi = " Î , we have
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1
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P

c
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p
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Taking logarithms, we have
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⎛
⎝

⎞
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c
D

c
p pln ln .P
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P i P
i iå= -

Î

Hence,

( ) ( )
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( ( ) ( )
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⎜
⎜
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⎟
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m PWe are calling this

P

D

å

å å

å
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Î

Hence,

( ) ( ) ( )c A m P p p Dln ln .P P D
i P

i iå= = -
Î

Finally, taking the exponential on both sides, we have

( )⎧
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⎫
⎬⎭

A
m P

c
exp .P

D

P

=

This proves the discrete case of the first part. Next, we prove the continuous case. (Cont.)Wehave the
following:

{ }( ) ( ( ))

( ) [ ( ( )) ( )]

( ) ( ( )) ( ) ( )

( ) ( ( ))

⎜ ⎟
⎧
⎨⎩

⎛
⎝

⎞
⎠

⎫
⎬⎭

⎧

⎨
⎩

⎫

⎬
⎭

⎧
⎨⎩

⎫
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D p x p x dx

p x

c
p x c dx

c
p x p x dx c p x dx

c
c

p x p x dx

exp ln

exp ln ln

exp
1

ln ln

exp
1

ln .

P
P

P P

P P
P

P P
P

P
P

P
P P

1

ò

ò

ò ò

ò

= -

= - -

= - +

= -

=

Hence, we have { }( ) ( ( ))p x p x dxexp ln .D

c c P

1P

P P
ò= - Thus,

{ }( ) ( ( ))⎜ ⎟
⎛
⎝

⎞
⎠

D

c
p x p x dxexp ln .P

P

c

P

P

ò= -

So,
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c
D

c D
p x p x dx c D

p x p x dx p x dx D

p x p x p x D dx

c A p x p x p x D dx
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ln ln

ln ln ,
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Then,

( ) ( ) ( ) ( ( ) )c A m P p x p x D dxln ln .P P D
P
ò= = -

Finally, taking the exponential on both sides, we have

( )⎧
⎨⎩

⎫
⎬⎭

A
m P

c
exp .P

D

P

=

This proves the continuous case of the first part.

(2) The proof of the second part is directly observed from

( )⎧
⎨⎩

⎫
⎬⎭

A
m P

c
exp .P

D

P

=

This proves the Theorem.

Wenote that in theorem 3.1 part 2, the comparison ofAP to be less than, equal to or greater than 1 is
equivalent to the statement that the degree of uniformity ofP is less than, equal to or greater thanD, the degree of
uniformity of the entire distribution.

Our focus next, is to determine how to generalize the idea of comparing slopes of secants on the slope of
diversity curve to glean out the comparisons of degree of uniformity for parts P that don’t look like {k1, k2} or
(x1, x2). In otherwords, wewant to generalize theorem2.2 for partsP that are not a set of consecutive indices
such as {k1, k2}, but generalmeasurable subsets of I.

From theorem3.1, we have:

( ) ( )
A

m P

c
ln .P

D

P

=

In the above equation P is any general discrete or continuous part (or event)not necessarily consisting of
consecutive indices. For such arbitrarymeasurable subsets, the slope of secant as in theorem2.2will notmake
sense aswe cannot draw a secant for such subsets.

We have the following:

( ) ( )
A e

D

c
De .P

P

P

mD P
cP

mD P
cP=  =

Comparing { }P k k,1 2
or ( )P x x,1 2

from theorem2.2with

{ }

{ }

( )

( )
{ } ( )

D

c
De

D

c
De, .

k k

k k

S x x

x x

S,

,

,

,

k k x x1 2

1 2

1 1, 2
1 2

1 2

1, 2= =-

it is clear that the ratio ( )m P

c
D

P
takes the role of { }S k k1,1 2- or ( )S x x,1 2

, ifP is any generalmeasurable subset that does not

look like a contiguous part. In fact, this is themeaning and use for the signedmeasuremD(P).
Infigure 1 above, the union of red portions indicate a generalmeasurable set that is not just a consecutive set

of indices or a contiguous interval. For such subsets, we compute ( )m P

c
D

P
instead of the slope of secant, where P is

the part in red.
We state and prove a theorembelow that shows that for arbitrarymeasurable subsetsP, the ratio ( )m P

c
D

P
in fact

generalizes the slope of secant of the slope of diversity curve for partsP= {k1, k2} orP= (x1, x2) that are
contiguous.
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Theorem3.2. Let piwith { }i I K1,Î = ¼ be a discrete probability distribution, with K = +¥ permitted. Let
{ }P k k,1 2= Then, we have the following:

({ }) ( )
{ }

{ }
m k k

c
S

,
. 13D

k k
k k

1 2

,
1,

1 2

1 2= -

Let p(x) be a probability density function (pdf) on ( )I a b,= , with a = -¥ and b = +¥ permitted. Let
( )P x x,1 2= . Then, we have the following:

(( )) ( )
( )

( )
m x x

c
S

,
. 14D

x x
x x

1 2

,
,

1 2

1 2=

Proof. (Disc.) Let { }P k k,1 2= . Then from theorem3.1, we have:

( ) ( ) ( ) ( )
m P c A A

m P

c
ln ln .D P P P

D

P

=  =

Also, by definition 3.1, ({ }) ( )m k k p p D, lnD i k
k

i i1 2
1

2= -å = . Thus,

({ }) ( )

( ) ( )

({ }) ({ })
( ({ } { } { } { }

⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

m k k p p D

p p D p p D

m k m k

c A c A

, ln

ln ln

1, 1, 1

ln ln .

D
i k

k

i i

i

k

i i
i

k

i i

D D

k k k k

1 2

1 1

1

2 1

1, 1, 1, 1 1, 1

1

2

2 1

2 2 1 1

å

å å

= -

= - - -

= - -
= -

=

= =

-

- -

Hence, we have:

({ )} ( (
{ }

{ } { } { } { }

{ } { }

{ }

{ }

  



m k k

c

c A c A

c c

S

, ln ln

.

D

k k

k k k k

k k

c

k k

1 2

,

1, 1, 1, 1 1, 1

1, 1, 1

By Definition 2.4
1,

k k

1 2

2 2 1 1

2 1

1, 2

1 2

=
-
-

=

- -

-

-

This proves the discrete part of the Theorem. (Cont.)Let ( )P x x,1 2= . Then from theorem3.1, we have:

( ) ( ) ( ) ( )
m P c A A

m P

c
ln ln .D P P P

D

P

=  =

Also, by definition 3.1, (( )) ( ) ( ( ) )
( )

m x x p x p x D dx, lnD x x1 2 ,1 2
ò= - . Thus,

(( )) ( ) ( ( ) )

( ) ( ( ) ) ( ) ( ( ) )

(( )) (( ))
( (

( )

( ) ( )

( ) ( ) ( ) ( )

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

m x x p x p x D dx

p x p x D dx p x p x D dx

m a x m a x

c A c A

, ln

ln ln

, ,

ln ln .

D
x x

a x a x

D D

a x a x a x a x

1 2
,

, ,

2 1

, , , ,

1 2

2 1

2 2 1 1

ò

ò ò

= -

= - - -

= -
= -

Figure 1.Picture showing an arbitrarymeasurable subset of the probability space.
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Hence, we have:

(( ) ( ) ( )
( )

( ) ( ) ( ) ( )

( ) ( )

( )

( )

  



m x x

c

c A c A

c c

S

, ln ln

.

D

x x

a x a x a x a x

a x a x

c

x x

1 2

,

, , , ,

, ,

By Definition 5
,

x x

1 2

2 2 1 1

2 1

1, 2

1 2

=
-
-

=

This proves the continuous part of the Theorem.

Next, we state and prove a generalization of theorem 2.2 for generalmeasurable setsP:

Theorem3.3. Let piwith { }i I K1,Î = ¼ be a discrete probability distribution, with K = +¥ permitted. Let p(x)
be a probability density function (pdf) on ( )I a b,= , with a = -¥ and b = +¥ permitted. Let ( )P x x,1 2= . Let
P1 andP2 be arbitrarymeasurable subsets of I. Then, we have the following:

( ) ( ) ( )⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

D

c

D

c

m P

c

m P

c
. 15P

P

P

P

D

P

D

P

1 21

1

2

2 1 2

<
=
>


<
=
>

Proof. From theorem 3.1, we have:

( )D

c
De .P

P

mD P
cP=

Hence, we have the following:

( ) ( )
⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

D

c

D

c

m P

c

m P

c
.P

P

P

P

D

P

D

P

1 21

1

2

2 1 2

<
=
>


<
=
>

This proves the Theorem.

Hence,mD(P) allows us to compute and compare the degree of uniformity of partsP1 andP2 that don’t look
like a set of consecutive indices. This is a generalization of theorem 2.2.

Next, we prove a theorem that computes the degree of uniformitymeasure of a countable disjoint union of
measurable sets.

Theorem3.4. Let piwith { }i I K1,Î = ¼ be a discrete probability distribution, with K = +¥ permitted. Let p(x)
be a probability density function (pdf) on ( )I a b,= , with a = -¥ and b = +¥ permitted. Let P Pn nÈ= , where
P Pi j fÇ = for i j¹ be a countable disjoint union ofmeasurable subsets of I. Then, we have the following:

( )
( )⎜ ⎟

⎛
⎝

⎞
⎠

D

c
D

m P

c
exp . 16P

P

i D i

i Pi

=
å
å

Proof.Using the countable additivity of disjoint unions formeasures, we can expand onmD(P). Let P Pn nÈ= ,
where P Pi j fÇ = for i j¹ . Then,

( ) ( )

( ) ( ) ( )

( )
⎜ ⎟
⎛
⎝

⎞
⎠

m P m P

c c

A
m P

c

m P

c

A
m P

c

ln

exp .

D n n
n

D n

P
n

P

P
D

P

i D i

i P

P
i D i

i P

n

i

i

å

å

È =

=

= =
å
å

=
å
å

The latter equation implies that

( )
⎜ ⎟
⎛
⎝

⎞
⎠

D

c
D

m P

c
exp .P

P

i D i

i Pi

=
å
å

This proves the Theorem.

Hence, we can compute the degree of uniformity of a part P=∪nPnwhich is a disjoint union of partsPn
using the above formula. All we need is the value of the signedmeasuremD(Pn) and the cumulative probability
cPn

for the partsPn.
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Corollary 3.1. Let piwith { }i I K1,Î = ¼ be a discrete probability distribution, with K = +¥ permitted. Let
p(x) be a probability density function (pdf) on ( )I a b,= , with a = -¥ and b = +¥ permitted. Let

{ } { }P k k k k, ,1 2 3 4È= with k k2 3< or ( ) ( )P x x x x, ,1 2 3 4È= . Thenwe have the following:

( ) ( ) ({ }) ({ }) ( )
{ } { }

m P
m k k m k k

c c
Disc.

, ,
17D

D D

k k k k

1 2 3 4

, ,1 2 3 4

=
+
+

( ){ } { }

{ } { }

S S

c c
18

k k k k

k k k k

, ,

, ,

1 2 3 4

1 2 3 4

=
+
+

( ) ( ) (( )) (( )) ( )
( ) ( )

m P
m x x m x x

c c
Cont.

, ,
19D

D D

x x x x

1 2 3 4

, ,1 2 3 4

=
+
+

( )( ) ( )

( ) ( )

S S

c c
. 20

x x x x

x x x x

, ,

, ,

1 2 3 4

1 2 3 4

=
+
+

Proof. Follows directly from theorem3.4.

4. Properties ofmD(P)

Let I= {1,K,K} in the discrete casewithK=+∞ allowed and I= (a, b)with a=−∞ and b=+∞ allowed.
LetP be an arbitrarymeasurable subset of I and letP1 be an arbitrarymeasurable subset ofP.Wewant to
establish a relationship between the degree of uniformitymeasure ofP1 with respect to I andwith respect toP,
where P1⊆ P⊆ I.What is the relationship betweenmD(P1) and ( )m P1DP

cP
?

The key thing to understand is that the degree of uniformitymeasure of P1 with respect to I is in general
different than the degree of uniformitymeasure ofP1 with respect toP. Hence, wewant to quantify the
relationship betweenmD(P1) and ( )m P1DP

cP
.

Theorem4.1. Let piwith { }i I K1,Î = ¼ be a discrete probability distribution, with K = +¥ permitted. Let p(x)
be a probability density function (pdf) on ( )I a b,= , with a = -¥ and b = +¥ permitted. Let P P,1 be arbitrary
measurable subsets with P P I1 Í Í . Thenwe have the following:

1.

( ) ( ) ( ) ( )⎜ ⎟
⎛
⎝

⎞
⎠

m P m P
c

c
m P 21D

P

P
D1 1DP

cP

1= -

2.

( ) ( )
⎛

⎝

⎜
⎜

⎡
⎣

⎤
⎦

⎡⎣ ⎤⎦

⎞

⎠

⎟
⎟

m P c ln . 22P

D

c

D

c

1DP
cP

P

P

P

P

1

1

1=

Proof.

1. (Disc.) Starting from

( )⎧
⎨⎩

⎫
⎬⎭

D

c
D

m P

c
exp ,P

P

D

P

=

we have
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( )

( ) ( )

( ) ( )

( ) ( )

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎧
⎨⎩

⎫
⎬⎭

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛

⎝
⎜

⎞

⎠
⎟

p
D

c
p D

m P

c

p
D

c
p D

m P

c

p p
D

c
p p D p

m P

c

p p
D

c
p p D p

m P

c

exp

ln ln

ln ln

ln ln .

i
P

P
i

D

P

i
P

P
i

D

P

i i
P

P
i i i

D

P

i P
i i

P

P i P
i i

i P
i

D

P1 1 1

å å å

=

= +

= +

- =- -
Î Î Î

That is,

( ) ( ) ( )⎜ ⎟
⎛
⎝

⎞
⎠

m P m P
c

c
m P .D

P

P
D1 1DP

cP

1= -

This proves the discrete case of part (1) of the Theorem.Wenext prove the continuous case next: (Cont.)
Starting from

( )⎧
⎨⎩

⎫
⎬⎭

D

c
D

m P

c
exp ,P

P

D

P

=

we have

( ) ( ) ( )

( ) ( ( ) ) ( )

( ) ( ) ( ) ( ( ) ) ( ) ( )

( ) ( ) ( ) ( ( ) ) ( ) ( )

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎧
⎨⎩

⎫
⎬⎭

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

p x
D

c
p x D

m P

c

p x
D

c
p x D

m P

c

p x p x
D

c
p x p x D p x

m P

c

p x p x
D

c
dx p x p x D p x

m P

c

exp

ln ln

ln ln

ln ln .

P

P

D

P

P

P

D

P

P

P

D

P

P

P

P P P

D

P1 1 1
ò ò ò

=

= +

= +

- =- -

That is,

( ) ( ) ( )⎜ ⎟
⎛
⎝

⎞
⎠

m P m P
c

c
m P .D

P

P
D1 1DP

cP

1= -

This proves the continuous case of part (1).

2. We start by noting the following first:

( )
⎜ ⎟
⎛
⎝

⎞
⎠

D

c
D

m P

c
expP

P

D

P

=

and

{ }( ) ( ( ))⎜ ⎟⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

 
D

c p

D

c
p x p x dx

1
, exp lnP

P

c

i P i

p
P

P

c

Pdiscrete continuous

P i P

ò= = -
Î

is true forP andP1.Wefirst prove the discrete case of part (2). (Disc.)Recall that

( )

( ) ( )

( )

⎜ ⎟⎜ ⎟ ⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

D

c p
c

D

c
p p

m P p p D

m P p p
D

c

1
ln ln

ln

ln .

P

P

c

i P i

p

P
P

P i P
i i

D
i P

i i

i P
i i

P

P
1

P i

DP
cP

1

 å

å

å

=  = -

=-

=-

Î Î

Î

Î

From the right hand side of the last equationwe have
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( )

( )

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎡

⎣
⎢

⎤

⎦
⎥

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛

⎝

⎜
⎜

⎡
⎣

⎤
⎦

⎡⎣ ⎤⎦

⎞

⎠

⎟
⎟

m P p p
D

c

p p p
D

c

c
D

c
c

D

c

c

ln

ln ln

ln ln

ln .

i P
i i

P

P

i P
i i

i P
i

P

P

P
P

P
P

P

P

P

D

c

D

c

1DP
cP

P

P

P

P

1

1 1

1
1

1

1

1

1

1

å

å å

=-

=- -

= -

=

Î

Î Î

This proves the discrete case of part (2) of the Theorem.Wenext prove the continuous case of part(2) of the
Theorem. (Cont.)Recall that

{ }( ) ( ( )) ( ) ( ( ))

( ) ( ) ( ( ) )

( ) ( ) ( )

⎜ ⎟ ⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

D

c
p x p x dx c

D

c
p x p x

m P p x p x D

m P p x p x
D

c

exp ln ln ln

ln

ln .

P

P

c

P
P

P

P P

D
P

P

P

P
1

P

DP
cP 1

ò ò

ò

ò

= -  = -

=-

=-

From the right hand side of the last equationwe have

( ) ( ) ( )

( ) ( ( )) ( )

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎡
⎣

⎤
⎦

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛

⎝

⎜
⎜

⎡
⎣

⎤
⎦

⎡⎣ ⎤⎦

⎞

⎠

⎟
⎟

m P p x p x
D

c

p x p x p x
D

c

c
D

c
c

D

c

c

ln

ln ln

ln ln

ln .

P

P

P

P P

P

P

P
P

P
P

P

P

P

D

c

D

c

1DP
cP

P

P

P

P

1

1 1

1
1

1

1

1

1

1

ò

ò ò

=-

=- -

= -

=

This proves the continuous case of part (2).

Remark 4.1. If we choose P P1= in equation (22), we get

( ) ( ) ( )m P m I0 Special Case is 0. 23DDP
cP

= =

This tells us that the part Phas a degree of uniformity equal to D

c
P

P
. However, equation (21) tells us how the degree

of uniformitymeasure of P1 with respect toP is related to degree of uniformitymeasure ofP1 with respect to I.
Figure 2 shows the relationship between P1, P and Iwhere P P I1 Í Í . It also shows the equation relating the
degree of uniformity of the respective parts with the respective wholes, that are appropriately labeled.

We note thatP1⊆ P⊆ I. Equation (21) says that the degree of uniformitymeasure ofP1 with respect toP
given by ( )m P1DP

cP
equals the degree of uniformity ofP1 with respect to I given bymD(P1)minus a proportional

amount of degree of uniformity ofPwith respect to I given bymD(P), with
c

c

P

P

1 being the proportion.
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Remark 4.2.Wealso have an alternate proof for equation (22) starting from equation (21),

( ) ( ) ( )

⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛

⎝

⎜
⎜

⎡
⎣

⎤
⎦

⎡⎣ ⎤⎦

⎞

⎠

⎟
⎟

m P

c

m P

c

m P

c

D

c D

D

c D
ln ln

ln .

P

D

P

D

P

P

P

P

P

D

c

D

c

1
1

DP
cP

P

P

P

P

1 1

1

1

1

1

= -

= -

=

Next, we prove a very important theorem that relates partsP1 andP2 from two different distributions as shown
infigure 3. Themain point in this theorem is that the partsP1 andP2 can come from two different random
variablesX1 andX2 that are completely unrelated to each other.

Theorem4.2. Let piwith { }i I K1,1 1Î = ¼ and qiwith { }i I K1, ,2 2Î = ¼ be two different discrete probability
distributions corresponding to random variablesX1 andX2 respectively, with K1 = +¥ and K2 = +¥ permitted.
Similarly let p(x) and q(x) be two different continuous probability distributions on ( )I a b,1 = and ( )I c d,2 =
corresponding to random variablesX1 andX2 respectively, with a c, = -¥ and b d, = +¥ allowed. LetP1 andP2
bemeasurable subsets from the probability spaces ofX1 andX2 respectively. Then the following is true:

(1)

( ) ( )
⎛

⎝

⎜
⎜

⎡
⎣

⎤
⎦

⎡
⎣

⎤
⎦

⎞

⎠

⎟
⎟

m P c ln 24P

D

c

D

c

2DP
c P

P

P

P

P

1
1

2

2

2

1

1

=

Figure 2.Picture showing an arbitrarymeasurable subpartsP1 ⊆ P ⊆ I.
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(2)

( )
( )⎜ ⎟

⎛
⎝

⎞
⎠

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

D

c

D

c

m P

c
exp 25P

P

P

P P

2DP
c P2

2

1

1

1
1

2

=

(3)

( ) ( )⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

m P
D

c

D

c
0 26P

P

P

P
2DP

c P
1
1

2

2

1

1

>
=
<


>
=
<

(4)

( ) ( )
( )

m P

c

m P

c
0. 27

P P

2 1DP
c P

DP
c P

1
1

2

2
2

1

+ =

Proof.

(1) Remembering that P2 is a measurable subset of the probability space of X2, we have the following for the
discrete case:

( ) ( )

( )

⎜ ⎟

⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎛
⎝

⎞
⎠

⎛

⎝
⎜

⎞

⎠
⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛

⎝

⎜
⎜

⎡
⎣

⎤
⎦

⎡
⎣

⎤
⎦

⎞

⎠

⎟
⎟

m P q q
D

c

q q q
D

c

c
D

c
c

D

c

c

Disc. ln

ln ln

ln ln

ln .

i P
i i

P

P

i P
i i

i P
i

P

P

P
P

P
P

P

P

P

D

c

D

c

2DP
c P

P

P

P

P

1
1 2

1

1

2 2

1

1

2
2

2

2
1

1

2

2

2

1

1

å

å å

=-

=- -

= -

=

Î

Î Î

And the following for the continuous case:

Figure 3.Picture showing an arbitrarymeasurable subpartsP1 andP2 from two different distributions.
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( ) ( ) ( ) ( )

( ) ( ( )) ( )

⎜ ⎟
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⎝
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⎝
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⎞
⎠
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⎝

⎞
⎠
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⎠
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⎜
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⎤
⎦
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⎞
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⎟
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c
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D

c
c
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This proves part (1) of the Theorem.

(2) proof of part (2) follows by exponentiation of both sides of equation (24).
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(3) proof of part (3) follows by direct observation of equation (25).

(4) Toprove part (4), we note the following:
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This ends the proof of all parts of the Theorem.

Again to emphasize,P1 ä X1 andP2 ä X2 whereX1 andX2 are two completely different distributions with
totally different scales. This shows that the degree of uniformitymeasure allows us to compare the degrees of
uniformity of two completely unrelated parts in in a self containedmanner.

We note that equation (24) in theorem4.2 is a generalization of equation (22) in theorem4.1. Indeed if we

choose the part P1= I2 (say), then
D

c

P

P

1

1

is simply equal toD2 (since the total probability is 1) andwe recover

equation (22)with the identification thatD2=D.
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Wealso note that equation (27) is indicative of the fact the ratio ( )m P

c
D

P
is in the exponent of the formula for D

c
P

P

and hence
( )m P

c

DP
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1
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2

is of the opposite sign as
( )m P

c

DP
c P

P

2
2

1

1

. This is because if the degree of uniformity ofP1 is (say) x

times the degree of uniformity of P2, then thatmeansP2 has a degree of uniformity that is x−1 times that ofP1 and
that is reflected in the anti-symmetry in the exponents given by ( )m P

c
D

P
for the respective parts given by P1 andP2.

5. Scale free and self-contained nature of D

c
P

P

Equation (25) is a very interesting identity. It actually demonstrates the scale free nature of the ratioD/c for parts
P1 andP2 from two entirely different distributions. By scale free here, wemean that there is no explicit
dependence ofmD(P) on the original randomvariable but only on the probabilities themselves. In otherwords,
we can compute and compare the degree of uniformity ofP1ä X1 andP2ä X2 using equation (25)without
paying any heed to the scale of the original randomvariablesX1 orX2. Also, by self-contained, wemean that only
the probabilities from the partP are needed to computemD(P).

We show below that the computation of the degree of uniformity is totally self-containedwithin the part P
i.e. only requires the probabilities within the part P and also is scale-free i.e. does not require the knowledge of
the randomvariableX.
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In equations (28) and (29) above, we have derived explicit expressions for the ratio D

c
P

P
for both the

continuous and discrete cases.We note that the final expressions do not have any reference to the value of the
randomvariable directly (only probabilities), nor do they have any reference to probabilities outside of the part
P. Hence, this definitively shows that the degree of uniformity is a scale free and self contained quantity.

This shows thatwe can compare the degree of uniformity (or inequality) of parts of different distributions in
a self-normalizedway. It also shows that the ratioD/c for a part P is an inherent characteristic of the part Pʼs
shape and does not need any information other than the part P itself i.e. the probabilities that are not inP are not
required.

6. Examples

6.1. Example 1
In this section, we have chosen four examples of parts of distributionswith two discrete and two continuous
ones. Furthermore, the parts are all chosen to be union of two parts i.e. so that the slope of secant of the slope of
diversity curve cannot be computed. Here are the examples listed below and shown infigure 4:

(1) BinomialdistributionB(50, 0.6)with the part being k= {20,..,25}∪ {30,..,35}.

(2) StandardNormal distributionN(0, 1)with the part being (−3,− 1) ∪ (2, 4).

(3) Poisson distributionwithλ= 20with the part being k= {5,..15} ∪ {25,..35}.

(4) Exponential distributionwithmeanμ= 5with the part being (0, 5) ∪ (10, 15).
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WeusedMATLAB towrite functions that can compute the degree of uniformitymeasure for parts of a
discrete or continuous distribution. The functions basically compute the degree of uniformitymeasure as stated
in definition 3.1 and theorem3.1.

We show a table of results below:
Wemake some general observations on the four examples shown above:

(1) In table 1, the diagonal entries are zero because the ratio of degree of uniformity of the row part
corresponding to the columnpart is 1, since these two are the same parts. Correspondingly, in table 2 the
diagonal entries are 1 reaffirming the same idea. This is a demonstration of theorem 4.2, equations (24)
and (25).

(2) The off-diagonal entries in table 1 are positive or negative depending onwhether the row part ismore or less
uniformly distributed compared to the columnpart. The corresponding entries in table 2 are either larger or
smaller than 1. Also the (i,j)-th entry in table 2 is the reciprocal of the ( j,i)-th entry as expected. This
demonstrates equations (26) and (27) in theorem4.2.

(3) It is interesting to note that the Poisson part is about 4 times more uniformly distributed than the Normal
part, and the Binomial part is around 1.3 timesmore uniformly distributed than the Exponential part.
Stated differently, the Poisson or the Binomial part has a localization or concentration of inequality that is 4
and 1.3 timesmore than theNormal or the Exponential parts respectively.

(4) We also note that the Exponential part has a lesser degree of uniformity (or localization of inequality)
compared to all the other parts in the table. This is evident from the fact that all the numbers in the last row
of table 2 are at least 19 signifying that the Exponential part is at least 19 times less uniformly distributed
compared to all the other parts.

(5) On the other hand, the Poisson part is at least 2.8 times more uniformly distributed than the other parts as
seen in the third columnof table 2, where the smallest ratio is 2.8 in the third column.

(6) The Normal part is 3.7 times less uniformly distributed compared to the Poisson part but it is almost 19
timesmore uniformly distributed than the Exponential part.

6.2. Example 2
In this sectionwe consider the example of a power law (α= 3 and x 100min = )with four communities with
income ranges as below.

(1) P1: (105K, 110K ) ∪ (120K, 125K )

(2) P2: (140K, 145K ) ∪ (160K, 165K )

Table 1.The numbers are the values of the degree of uniformitymeasure for
the column part with respect to the rowpart.

mrow(col) Binomial Normal Poisson Exponential

Binomial 0 −0.0509 0.3225 −3.2447

Normal 0.1707 0 0.4109 −2.9619

Poisson −0.6229 −0.2367 0 −4.2768

Exponential 1.9582 0.5332 1.3364 0

Table 2.The numbers are the values of the degree of uniformitymeasure for
the columnpart with respect to the rowpart.

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

D

c

D

c

col

col

row

row Binomial Normal Poisson Exponential

Binomial 1 0.7537 2.8070 0.0390

Normal 1.3268 1 3.7224 0.0517

Poisson 0.3563 0.2685 1 0.0139

Exponential 25.6547 19.3351 72.0017 1
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(3) P3: (105K, 110K ) ∪ (160K, 165K )

(4) P4: (120K, 125K ) ∪ (140K, 145K )

Intuitively we expect the richer communityP2 to have a higher degree of inequality since there ismore
concentration of wealth there.Hencewe expect ( )m P2DP

c P
1
1

to be larger than zero and ( )m P1DP
c P

2
2

is less than zero.

Equivalently, we expect
D

c

P

P

2

2

to be larger than
D

c

P

P

1

1

.

We show the results in tabular formbelow:
The second richer community P2 has twice the degree of inequality as P1. Thismeans that there is twice as

much concentration of wealth inP2 corresponding toP1. As expected the degree of uniformitymeasure ofP2 with
respect toP1 is positive and vice versa forP1 with respect toP2 which is negative as expected.However, due to the
mixture of poor and rich sections in communities P3 andP4, intuition breaks down since it is not clear how to
compare these communities with respect to the other three.However,mathematics comes to our rescue, and it
is interesting to note thatP2,P3 andP4 all have a higher concentration of wealth thanP1, andP3 andP4 are both
more concentrated inwealth than P2, and lastly P4 comes closest in concentration of wealth toP1 (about 1.45
timesmore degree of uniformity than P1). Also P4 is 13 timesmore uniformly distributed compared toP1 as well.

Looking at table 5, we see that whileP1 andP2 both have similar diversities, P2 has fewer people than P1 as
seen by the lower c value of 0.0579 forP2 compared toP1. This explains why P2 has a larger degree of uniformity
(more than twice) thanP1 in table 4. Similarly, P4 has a larger diversity and the fewest people (c= 0.0890) and
this explains whyP4 has the largest degree of uniformity and has 13 timesmorewealth concentration than P1 for
example. In a similar way, the numbers in table 5 can be used to explain the numbers in tables 3 and 4
respectively. The key point here is that a visual inspection of the communities from figure 5 is not going to help
with a comparison ofwealth concentration in the communities, especially given themixture of rich and poor
sections.We really need to rely on a precisemathematical quantification of inequality asmeasured by the degree
of uniformitymeasuremD(P) and the degree of uniformity D

c
.

We useP1 andP3 from the power law example to showhow the ideas developed in the theorems in this paper
work.Wenote that the same observations can bemade for any two parts in this as well as the previous example.

(1) First, we note that we can compute the degree of uniformity for both parts P1 and P3 using theorem 3.4 and
corollary 3.1 by computingmD(P) for both the binomial and normal examples. This can be used tomatch
the answers obtained by directly computing the degree of uniformity of the parts from equations (28) and
(29) respectively. The diversities computed by bothmethodsmatch and are equal to 9.8060 and 67.8395
respectively.

(2) Next, we can verify theorem 4.2 by (a) directly computing the ratio of degree of uniformity of the Binomial
to theNormal parts by computing D

c
P

P
for the Binomial andNormal parts and taking the ratio explicitly. This

answermatches the answer by using equation (25)where 1 stands for Binomial and 2 stands forNormal.

Table 3.The numbers are the values of the degree of uniformity
measure for the columnpart with respect to the row part.

mrow(col) P1 P2 P3 P4

P1 0 0.0490 0.2282 0.2284

P2 −0.1144 0 0.1402 0.1530

P3 −0.2965 −0.0781 0 0.0329

P4 −0.3464 −0.0995 −0.0383 0

Table 4.The numbers are the values of the ratio of degree of
uniformity the columnpart with respect to the row part.

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

D

c

D

c

col

col

row

row P1 P2 P3 P4

P1 1 2.3326 8.9909 13.0047

P2 0.4287 1 3.8545 5.5753

P3 0.1112 0.2594 1 1.4464

P4 0.0769 0.1794 0.6914 1
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The degrees of uniformity computed by bothmethodsmatch and are equal to 72.6221 and 652.9385
respectively.

(3) We also note that from tables 3 and 4, that the degree of uniformity of the P3 is larger than the Normal part
(i.e. 8.9909 timesmore) and hence the corresponding degree of uniformitymeasure of the P1 with respect to
P3 is positive (i.e. 0.2282). This verifies equations (25) and (26) in theorem 4.2.

(4) Lastly, equation (27) can be directly verified by seeing that ( ) ( )ln 8.9909 ... ln 0.1112 ... 0+ = . The ‘...’
means that we need to used the unrounded versions.

Thus, we have used the partsP1 andP3 from the power law example to demonstrate the veracity of the theorems
proved in this paper.

This power law example shows that while it is sometimes intuitively clear which parts of a distribution are
more uniformly distributed compared to others visually for contiguous parts, such a luxury does not exist for
non-contiguous parts. That is where our newly created degree of uniformitymeasure comes to the rescue by
precisely quantifying the degree of uniformity and also allowing us to compute the ratio of degree of uniformity
of parts.

The examples above demonstrate that the degree of uniformitymeasure is a generalization of the slope of
secant of the slope of diversity curve thatwe introduced in Rajaram et al (2023, 2024) that allows us to compute
the degree of uniformity (or degree of localization of inequality) of arbitrarymeasurable parts (or subsets) of the
support of a given distribution that do not look like contiguous indices or intervals. Furthermore, we also see
thatwe can compare the degree of uniformity of parts between discrete and continuous distributions as seen in
theorem3.1. Thismeans that thismeasure ismuchmore versatile in it usage as a quantification of degree of
uniformity (or inequality)nomatter the type of distribution that the part under consideration is. At the outset,

wewant reiterate the the degree of uniformity D

c
P

P
as discovered in Rajaram et al (2023, 2024) depends on both the

SEE extentDP or ‘evenness’ aswell as the cumulative probability cP or ‘richness’. Hence, for arbitrarymeasurable
parts such as in table 4which is in general not a contiguous interval or set of indices, it is not intuitively clear
visually whether a certain part hasmore or less degree of uniformity. The degree of uniformitymeasure serves as
away to quantify and compare this extent of uniformity in amathematically soundmanner, and hence its
importance.

Figure 4.Two discrete and two continuous distributions chosen as examples.
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7. Conclusion

We started the paperwith two questions: (a) the question of generalizing the idea of degree of uniformity from
contiguous parts (that required the slope of secant of the slope of diversity curve) to arbitrarymeasurable parts
and (b) the question of comparison of degree of uniformity of two arbitrarymeasurable partsP1 andP2
corresponding to two randomvariablesX1 andX2 that have no relationship between each other.

The answer to both questions came from the construction of a signedmeasure called the degree of uniformity
measure in definition 3.1. The degree of uniformitymeasurewas shown to generalize the slope of secant of the
slope of diversity curve in theorem3.2 thatwas used tomeasure the degree of uniformity of contiguous parts.

More specifically the ratio ( )m P

c
D

P
for an arbitrary part P is exactly equal to the slope of secant if the part Pwere

contiguous.Hence, the newly constructedmeasure is a generalization of the slope of diversity curve for arbitrary
measurable parts that are not contiguous.

In fact, as shown in theorem3.3, comparing the ratio ( )m P

c
D

P
for two different arbitrary parts leads to the same

order of comparison for the degree of uniformity of the two parts, the keyword here being arbitrary. The same
result was proved to be true for contiguous parts with the slope of secant of the slope of diversity curve in
Rajaram et al (2023, 2024).We also showed in 3.4 that the newly constructedmeasure can be used to compute
the degree of uniformity of a part that is a countable union of indices or intervals.

Given partsP1, P of thewhole I that satisfyP1⊆ P⊆ I, in theorem 4.1, we established a relationship between
the value of degree of uniformitymeasure forP1 with respect toP, andwith respect to I in equation (21). Finally
in theorem4.2, we have themost general relationship between the degree of uniformitymeasure of a part P1
from a randomvariableX1 to another part P2 from a random variableX2.

We have also shown the application of our newly discoveredmeasure to four examples (two discrete and two
continuous) of parts of distributions and compared and contrasted the degree of uniformity (or inequality) in
said parts.We have also applied the degree of uniformitymeasure to a set of four communities in the
distribution of wealth. A visual representation of the parts gives no intuitive way to compare the inequality in the
parts, and hence, the importance of the degree of uniformitymeasure. The degree of uniformitymeasure allows
us to precisely compute the degree of uniformity of these non-contiguous parts. The comparisons in the follow
the intuition guided by the theoretical results that have been proved in this paper.

Figure 5.Union of disjoint intervals for the Power Lawwith alpha=3 and xmin = 100.

Table 5.The table shows theD, c and D

c
for the four

communities in figure 5.

P1 P2 P3 P4

D 9.8060 9.8072 67.8395 84.0769

c 0.1350 0.0579 0.1039 0.0890
D

c
72.6221 169.3954 652.9385 944.4270
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Wealso took the time to definitively showcase the scale-free and self-contained nature of the degree of
uniformitymeasure in section 5. This is an important property of themeasure as it illustrates the dependence of
themeasure only on the probabilities (or the density values) of the part Punder study. Themeasure depends
neither on the values of the randomvariable or its scale, nor on the value of probabilities that are outside of the
part P. This is a very unique property of degree of uniformity, as itmeans thatwe can compare parts or whole of
totally unrelated distributions. In a sense, themeasure only depends on the ‘y-axis’ values (or probabilities) and
hence is a quantification of inequality based solely on the inherent uncertainty (probability) that is present in the
part, something thatwe have set out to accomplish in our series of papers.

Given the above developments, the degree of uniformitymeasure of a given part Pwith respect to a
distributionwhose degree of uniformity is D

c
given by ( )m PD

c
is a fundamental part of answering the two

questions that we started the paperwith. It not only allows us to generalize the idea of degree of uniformity to
non-contiguous parts, but also allows us to compare partsP1 andP2 two entire different distributions governed
by random variablesX1 andX2 that have completely different scales.

In our future work, we aim to further develop the idea of the degree of uniformitymeasuremD(P) by looking
at ways inwhichwe could use themeasure to systematically decompose the original distribution into parts that
have an increasing or decreasing order of degree of uniformity. Such a decompositionwill pave theway towards
quantifying the inequality that is inherent in distributions in a systematic way. A systematic quantification of
inequality of a distribution and a decomposition of the distribution based on said quantificationwill be an
important step forward towards the study of inequality in distributions.We aim to lay down the foundation of
such a decomposition in our future paper.We also plan to apply the decomposition theory to real data in a
separate paper (or papers) to demonstrate the usage of our discovery.

We end the paper by discussing the value of our insights for engineering and physics, including two concrete
examples where the study of inequality in distributions is important. Probability distributions are usedwidely in
engineering and physics. TheNormal, Binomial and Poisson distributions are used in quality control;
Exponential,Weibull and Lognormal distributions are used in reliability engineering and failure analysis; the
Poisson and Exponential are used in queuing theory and network analysis, theGaussian, Rayleigh andRice
distributions are used in signal processing and communication systems; and theNormal, Lognormal and
ExtremeValue distributions are used in structural reliability and risk assessment. The celebrated Boltzmann,
Bose–Einstein and Fermi distributions are used in Physics to describe the statisticalmechanics to describe the
kinetic energy of particles. Recently, probabilitymodels were used to describe the randomness associatedwith
radioactive decay in Sanchez-Sanchez et al (2024).

As further evidence, consider these two examples. First, in kinetic theory of gases, theMaxwell-Boltzmann
distribution describes the distribution of speeds among gas particles in thermal equilibrium. This distribution is
highly non-uniform, withmany particles having speeds around themost probable value, but fewer particles
having very high or very low speeds. The probability distribution function of particle speeds v is given by:

( ) ⎜ ⎟
⎛
⎝

⎞
⎠

f v
m

k T
v e4

2
,

B

2 v
kBT

3
2 2

2p
p

= -

wherem is themass of the particle,T is the temperature and kB is the Boltzmann constant. The distribution peaks
at a certain speed but has a long tail,meaning there are always some particles withmuch higher or lower speeds
than average. Studying the inequality in distribution of speeds is crucial for understanding phenomena like
diffusion, viscosity, and thermal conductivity in gases. For example, even though themajority of particlesmove
atmoderate speeds, the fastest-moving particles can dominate energy transfer processes,making the variation in
the speed distribution an important aspect of gas behavior.

Next, in structural engineering, the design of buildings, bridges, and other structures often relies on
understanding the unequal distribution of loads (forces acting on a structure). Engineers need to account for the
fact that whilemost of the time, loads likewind, traffic, or weight aremoderate, therewill be rare instances of
extreme loads (e.g. during hurricanes or earthquakes) that could pose significant risks to the structure. Here,
ExtremeValue Theory (EVT) is used tomodel the probability distribution ofmaximumorminimumvalues of a
dataset. Instead of assuming a uniformdistribution of loadmagnitudes, EVT specifically focuses on the tail
behavior of distributions—how likely extreme, rare events are. TheGeneralized ExtremeValue (GEV)
distribution, for example,models these extremes:

( )( )( )P X e ,1 x
1

x = x- + m
s

x- -

whereμ is the location parameter,σ is the scale parameter and ξ is the shape parameter controlling how ‘fat’ the
tail is. Studying the inequality in the load distribution helps engineers design structures that canwithstand not
just average loads, but also rare extreme events. The non-uniformity and the rare, extreme values in load
distributions are crucial for safety in engineering design.
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In both examples, the variation of inequality in probability distributions—whether in gas particle speeds or
in structural loads—plays a critical role in the physical behavior of systems and the design considerations that
engineersmust take into account. Our theory (specifically the decomposition thatwementioned for future
work) can be used to precisely identify the ranges of speeds that have a larger localization of inequality thereby
pinning down the exact variation of inequality in speeds of particles or the variation of inequality in the
distribution of load.
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