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Abstract

A key challenge in studying probability distributions is quantifying the inherent inequality within
them. Certain parts of the distribution have higher probabilities than others, and our goal is to
measure this inequality using the concept of mathematical diversity, a novel approach to examining
inequality. We introduce a new measure mp(P), called the degree of uniformity measure on a given
probability space that generalizes the idea of the slope of secant of the slope of diversity curve. This
measure generalizes the idea of degree of uniformity of a contiguous part (P = {k, k, } in the discrete
case or P = (g, b) in the continuous case) in a probability space related to arandom variable X, to an
arbitrary measurable part P. We also demonstrate the truly scale free and self-contained nature of the
concept of degree of uniformity by relating the measure of two parts P; and P, from completely
unrelated distributions with random variables X; and X, that have completely different scales of
variation.

1. Introduction

A fundamental characteristic of probability distributions is the inequality that is inherent in the distribution.
Some parts of the distribution are more likely than others. This inequality is visually apparent in the shape of the
distribution as the probabilities increase or decrease from left to right. While there are several ways to quantify
this inherent inequality in a distribution through its shape, such as statistical measures of center and spread etc.,
there is a need to quantify this inequality for the parts (measurable subsets) or the whole of the distribution,
which stems from the inherent uncertainty (information) that is present in the part or whole. Such a
quantification can lead to (a) comparing the degree of uniformity (inequality) of the parts or the whole, not just
within the same distribution but across different distributions; and (b) a truly scale-free and self-contained way
of describing the inequality of a part or whole based solely on its inherent uncertainty.

Distributions that are uniform to begin with have a mathematical diversity that is equal to the support of the
distribution itself. For discrete uniform distributions that have a support of { 1, ... K}, the diversity 'D evaluates
to K and for continuous uniform distributions on the interval (a,b) the diversity ' D evaluates to (b — a).
Distributions that deviate from uniformity will have a diversity that is necessarily less than a uniform
distribution on the same support. Furthermore, the diversity ' D in these cases have the intuition that we can
redraw the original non-uniform distribution into a Shannon Equivalent Equi-probable (SEE) uniform
distribution whose support has a size equal to ' D. We note that this equivalence is abstract yet useful in terms of
visualization of the idea of diversity. The idea of diversity can also be visualized for parts of a distribution, as seen
in Rajaram et al (2023, 2024). In short, a part P that has a cumulative probability of cp and a diversity of Dp, can be
visualized as a SEE part that is uniform, has a support length of Dp and an equal probability of

We use the term Shannon Equivalent to emphasize the fact that the original part or whole of the distribution
has the same conditional Shannon Entropy as the equivalent abstract uniform part of the whole that is being
visualized. We have chosen to use the exponential of Shannon Entropy (also called mathematical diversity) as a
way to quantify the inequality in distributions. The main reason is because amongst all the Hill numbers D with
q being a parameter, which are measures of diversity, the one corresponding to ¢ = 1 weights both the richness
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and evenness equally. Also, it is well known that Shannon Entropy is a measure of probabilistic (or information
theoretic) uncertainty in a distribution.

Instead of quantifying the inequality of the original part or whole, which may not be uniform, the abstract
SEE equivalent allows us to compute and compare the degree of uniformity of the part or whole on alevel
playing field. This is because the redrawn SEE equivalents are (a) uniform distributions and (b) have the same
entropic uncertainty as the original part or whole that we started with. It is much easier to compare and quantify
the degree of uniformity of SEE parts (albeit abstract) due to the uniformity in the distribution. This was the
main content of our exposition in Rajaram et al (2023, 2024).

We have developed a quantification called degree of uniformity or inequality in our previous papers (Rajaram
etal 2023, 2024) for parts that are contiguous in nature i.e. a consecutive set of indices { k, k, } or a single sub-
interval (a,b). Among other things, we introduced the slope of diversity curve whose slope of secant between the
end points of the contiguous part is a direct way of measuring the degree of uniformity of the given part. The idea
of degree of uniformity of parts that are contiguous got us thinking along the following lines:

(1) Is there a way to generalize the idea of the slope of secant of the slope of diversity curve to parts that are not
contiguous but are arbitrary measurable subsets of the given probability space?

(2) Can this generalization be used to compare arbitrary measurable parts or whole of entirely different
distributions corresponding to random variables X; and X, that have no relationship between each other,
and thereby show the truly scale-free and self contained nature of the idea of degree of uniformity.

The main focus of the current paper is to answer the above two questions for discrete distributions. We introduce
anew measure called the degree of uniformity measure mp(P) that generalizes the concept of the slope of secant of
the slope of diversity curve (all defined later in the paper) for contiguous parts {k;, k, } with consecutive indices.
We also show how this newly constructed measure can be used to compute and compare the degree of
uniformity of arbitrary measurable parts (not just contiguous ones).

The paper is organized as follows. In section 2, we recall the relevant definitions and results from Rajaram
etal (2023, 2024) that we are trying to generalize in this paper. In section 3, we introduce the newly discovered
degree of uniformity measure mp(P) and state and prove some properties that elucidate why this measure is a
generalization of results in the previous section. In sections 4 and 5, we state and prove some further properties
of mp(P) that illustrate the truly scale-free and self-contained nature of the degree of uniformity measure. In
section 6, we show some computational examples to demonstrate how mp(P) can be used to compute the degree
of uniformity of parts across distributions. We conclude the paper in section 7 with some insights into the results
and future work, and a short discussion on potential applications in physics and engineering.

2. A formal introduction to diversity: background material

Mathematical diversity (denoted by ' Dy or ' D) is a quantification of the interplay between the richness or
number of categories in a distribution, and its evenness which denotes the equi-probable occurrence of each
type, as studied in Jost (2006), macArthur (1965), Hill (1973), Peet (1974). A majority of probability distributions
which are not uniform, can be redrawn as a Shannon Equivalent Equiprobable distribution which is uniform but
has the same probabilistic uncertainty as the original distribution. Mathematical diversity is based on the idea
that when all categories in a discrete probability distribution have an equal likelihood of occurring, the diversity
equals the number of categories. In a continuous distribution, the diversity of a uniform distribution is
determined by the Lebesgue measure of its support. Any deviation from uniform probabilities reduces diversity.
For background on mathematical diversity, we refer to Chao and Jost (2015), Hsieh et al (2016), Jost

(2006, 2018), Leinster and Cobbold (2012), Pavoine et al (2016). We recall a few definitions and theorems related
to mathematical diversity from Rajaram et al (2023, 2024) that are pertinent to this paper. In what follows, we
will use the convention of a subscript of K to denote a discrete distribution, {k;, k,} to denote a discrete part, a
subscript of (a,b) to denote a continuous distribution or similar intervals for its parts. When something is true
for both continuous and discrete distributions, we will say so and omit the subscripts. We will use I to denote the
entire support of a distribution for both discrete and continuous casei.e. [ = {1,...,K} or I = (a, b) whenever it is
pertinent.

Definition 2.1. (Shannon Diversity corresponding to g = 1 for Hill numbers) Consider a discrete random
variable X with support I = {1,...K} (with K = oo allowed) and its probabilities p;, or a continuous random
variable X with support I = (a, b) (witha = —coand b = + o0 allowed) and its probability density p(x). The
diversity of the entire distribution 'D is defined as the length of the support of an equivalent uniform distribution
that yields the same value of Shannon entropy H.

2
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Shannon entropy for discrete and continuous distributions is defined as below:
K
=S H=— [ poln(px)ds. M
i=1 (@b)

It was shown (Jost 2006, MacArthur 1965, Hill 1973, Peet 1974) that definition 2.1 implies that the total diversity
'D (for both continuous and discrete distributions) is given by:
ID; = et )

We will only consider the case g = 1 for the Hill numbers and hence, we will omit the left superscript of 1 while
referring to the diversity as D. The reason for this choice of g = 1 is because for this choice, both richness and
evenness are equally weighted. We recall the diversity of parts theorem for discrete distributions below.

Theorem 2.1. Letp;with i € I = {1,...K} bea discrete probability distribution, with K = + 00 permitted. Let p(x)
be a probability density function (pdf) on I = (a, b), witha = —ocoand b = +oco permitted. Let P = | J;P, bea
disjoint partition of a part P C 1. Then the following is true for both discrete and continuous distributions:

By-n ()
cp PicP cp;

We make some definitions to establish some notation to state our next theorem.

Definition 2.2. We define

Dp.
Ap = Dr and Ap = —2 (4)

cp - Dy cp, - Dy

to be the average case-based entropy per unit cumulative frequency for the part P and the sub-part P; respectively
for both discrete and continuous distributions.

We next define the degree of uniformity of a part P = {k;, k,} or P = (x1, x).

Definition 2.3. Let Pstand for a part of the form {k;, k,} for a discrete probability distribution or (x;, x,) fora
continuous distribution. The ratio % is termed as degree of uniformity of the part P.
P
In Rajaram et al (2023), the validity of the ratio 2 as a quantitative measure of the degree of uniformity ofa

part Pofadiscrete distribution was established. The slope of diversity curve was shown to be useful to compute
and compare the degrees of uniformity of continguous parts of a distribution of the form {k,, k,} or (x, x,) in
Rajaram et al (2023, 2024), by comparing the slopes of secants of the corresponding parts from this curve. We
recall the version of that theorem for discrete distributions below. We first define the slope of secant of the slope
of diversity curve, for a discrete distribution.

Definition 2.4. The graph of c{y ) versus ¢(1,k} - In(A;1,x}) in the discrete case or ¢(,x) Versus c,x) - In(A¢ ) is
known as the slope of diversity curve. Given the slope of diversity curve, we define Sy, 1} Or S, x,) as the slope of
the secant of this curve between the two points given by

(ctkp cLkyIn(Aqey) and  (cukp 1Lk In(AfLL)))
in the discrete case or
(Camy Camyn(Agy)) and  (Cax,) Cax)N(A@x,)
in the continuous case.

Theorem 2.2. Letp; with i € I = {1,...K} beadiscrete probability distribution, with K = + o0 permitted. Let
{ki, kp} and {ks, ky} be parts that are subsets of 1. Then the following are true:

Di+1.k) [ = Ptk 1.ka) .
1Lk} = —— = St k)| = |Stkka) v
ClhatLi} \>) Clkst ki) g
D
Zlhatbl} DeStkka, ©
Cll+1,ky}

Letp(x) be a probability density function (pdf) on (a,b), witha = —oo and b = + oo permitted. Let (x;, %) and
(x3, x4) be parts that are subsets of (a,b). Then the following are true:




10P Publishing

J. Phys. Commun. 8 (2024) 115003 R Rajaram et al

D) [ =) Dy <
a = ) <=>S(Xl»xz) - S(x3,x4)- (7)
Clax) \>) Clxsxg) >
D(Xbxz) — Desm»xz). (8)
Clxpx2)

Remark 2.1. Theorem 2.1 relates the degree of unlformlty £ of a given part P of a discrete distribution as the

weighted geometric mean of the degree of diversity of — Dr of its sub-parts P; with the cumulative probabilities cp,

as the weights. Theorem 2.2 means that when comparlng the slopes of secants Sy, ,j and Sy, x,; of the slope of
diversity curve, we are also comparing the degrees of umformlty intheparts {k; + 1, kh}and {ks + 1, ku}. It

k1+1 ka}

also means that we can compute the degree of uniformity ——=2 of an arbitrary part P = {k; + 1, k} directly

Clk1+1,k2}
from the slope of secant Sy, x,; of the slope of diversity curve. Similar statements are true for continuous

distributions. This is the main importance of the two results in this section.

3. Degree of uniformity measure

We consider a discrete probability distribution on I = {1, 2, 3,...,K}, where K can be infinite, and a continuous
probability distribution on I = (a, b) where a = — 0o and b = + oo being permitted. We also assume that the
entropy H and diversity D are finite. We recall that we showed the following for the discrete case in Rajaram et al
(2023, 2024),

cPln(D ) ZP;IH(R
cp

ieP

We also recall from Rajaram et al (2023) thatif Sp = S, 1,} denotes the slope of the secant line for the part
denoted by P = {ky, k,}, then

D
In(Ap) = Sp, orAp = 5 or —= = De*.
cp

We define the degree of uniformity measure as follows:

Definition 3.1. Let p; with i € I = {1,...K} be a discrete probability distribution, with K = 400 permitted.
Alternatively, let p(x) be a probability density function (pdf) on I = (a, b),witha = —occand b = +©
permitted. Let Pbe a general measurable subset (not necessarily contiguous) of I. We define a new signed point
mass measure on [ called the degree of uniformity or degree of ineqality measure for such a measurable subset

P C [ (irrespective of whether it is from a discrete or continuous distribution) by the following:

mp(P) = cpIn(Ap), V measurable P C I. 9)

The degree of uniformity measure is a signed measure as seen in definition 3.1. The sign of the measure indicates
whether the given measurable subset P has a degree of uniformity that is less than, equal to or greater than D
which is the degree of uniformity of the entire distribution. We state and prove a theorem below that shows this
fact. We label equations with a (D) for discrete distributions and (C) for continuous distributions for results that
are slightly different for the respective kinds.

Theorem 3.1. Letp;with i € I = {1,...K} beadiscrete probability distribution, with K = +oc permitted. Let p(x)
be a probability density function (pdf) on I = (a, b), witha = —ocand b = + oo permitted. Let P be a general
measurable subset (not necessarily contiguous) of 1. Then the following are true:

(1)
(Disc.) cpIn(Ap) = mp(P) = —Zpi In(p,D) and hence Ap = exp {mD—(P)}, (10)
icP Cp
(Cont.)epIn(Ap) = mp(P) = —j}; p(x)In(p(x)D) and hence Ap = exp {mDC—(D}, (11)
P
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(2)

< <
> >

Proof.

(1) (Disc.) Applying theorem 2.1to P, = {i} Vi € P,wehave

&) -n )

& 1n(&) = =S pIn(p,).

Taking logarithms, we have

cp ieP
Hence,
Dp
cpln| — | = —Zpi In(p,) — cpIn(D)
oD ieP
——
Ap
=—>_pIn(p) — > pnD)
icp iep
= —Z(Pi In(p;) + p; In(D)
iepP
=cpln(Ap) = —Z p;In(p.D).
ieP
We are calling this mp (P)
Hence,

cpIn(Ap) = mp(P) = =) p;In(p,D).

i€eP

Finally, taking the exponential on both sides, we have

Ap = exp {mD—(m}

cp

This proves the discrete case of the first part. Next, we prove the continuous case. (Cont.) We have the
following:

Dp = exp {— fp pp(3)In( pp(x))dx}

—expl— f PO ) 1n(p(x) — In(ep)ldx
P Cp

=1

1
=expi-— fp p()In(p(x))dx + In(cp) fP pp () dx

= cpexp {—if p(x)ln(p(x))dx}.
CpYP

Hence, we have % = exp { —Cip j;p(x)ln(p x)) dx}. Thus,

(&) —exp { - [ pelnpeords ).
Cp P

So,
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| -
o ln o fp P In(p(x)dx — cp In(D)
——
Ap

—— [ peomn(pnas — ( [ peods inco)
p P
= fp (P@)In(p(x)) + p(x)In(D))dx,

=opIn(Ap) = — j; (p()In(p(x)) + p(o)In(D))dx.

We are calling this mp (P)

Then,
cpIn(Ap) = mp(P) = —fp PO In(p(x) D) dx.

Finally, taking the exponential on both sides, we have

Ap = exp {mDC—(m}
P

This proves the continuous case of the first part.

(2) The proofof the second partis directly observed from
mp (P) }

Ap = exp{
cp

This proves the Theorem.

We note that in theorem 3.1 part 2, the comparison of Ap to be less than, equal to or greater than 1 is
equivalent to the statement that the degree of uniformity of Pis less than, equal to or greater than D, the degree of
uniformity of the entire distribution.

Our focus next, is to determine how to generalize the idea of comparing slopes of secants on the slope of
diversity curve to glean out the comparisons of degree of uniformity for parts P that don’t look like {k;, k, } or
(%1, x5). In other words, we want to generalize theorem 2.2 for parts P that are not a set of consecutive indices
such as {ky, k, }, but general measurable subsets of I.

From theorem 3.1, we have:

mD(P).

cp

In(Ap) =

In the above equation Pis any general discrete or continuous part (or event) not necessarily consisting of
consecutive indices. For such arbitrary measurable subsets, the slope of secant as in theorem 2.2 will not make
sense as we cannot draw a secant for such subsets.

We have the following:

mp(P) Dp mp(P)
Ap=e® = — =De > .
cp

Comparing Py, k,} OF Py, ) from theorem 2.2 with

D D,
k) DeStki-1k2), o) DeSei,

C[ kiko} Clx1,x2)

itis clear that the ratio ™= (P) takes the role of Sgx,—1,k,) Or Sy, ), if Pis any general measurable subset that does not
look like a contiguous part In fact, this is the meaning and use for the signed measure mp(P).
In figure 1 above, the union of red portions indicate a general measurable set that is not just a consecutive set

n()

of indices or a contiguous interval. For such subsets, we compute —=— instead of the slope of secant, where Pis

the partin red.

We state and prove a theorem below that shows that for arbitrary measurable subsets P, the ratio —=— mo(P) §

cp

generalizes the slope of secant of the slope of diversity curve for parts P = {k;, k,} or P = (x}, x,) thatare
contiguous.

in fact
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Union of red portions (dashed line) indicate a general part of the
distribution, which are not just consecutive indices.

Ce1 e In(A
iy In(Ag1iy) - NN ER—
C{llk} ‘Q.. "0

Figure 1. Picture showing an arbitrary measurable subset of the probability space.

Theorem 3.2. Letp; with i € I = {1,...K} beadiscrete probability distribution, with K = + o0 permitted. Let

P = {ky, k,} Then, we have the following:
mp ({ki, k}) _
Clk,ky}

S{klfl»kz}'

Let p(x) be a probability density function (pdf) on I = (a, b), witha = —oo and b = +oo permitted. Let
P = (x1, x3). Then, we have the following:

mp ((x1, %))
Claxpx2)

Proof. (Disc.) Let P = {k;, k;}. Then from theorem 3.1, we have:

= S(xbxz)'

mp (P)
Cp '

mp(P) = cpln(Ap) = In(Ap) =

Also, by definition 3.1, mp ({k;, kp}) = —Zf;kl p;In(p,D). Thus,

ky
mp({h, k}) = —Z p;In(p,D)
i=k

k, k—1
= [_E P, ln(pl.D)) — (—Z p; ln(piD))

i=1 i=1
=mp({1, k}) — mp({1, ky — 1})
= ik IN(A k) — -1y INA K -1
Hence, we have:
mp({hki kb)) kg In(Apk) — co-1yIn@Ap k-1

Clkik} ClLk) — ClLk—1}

Clkik2)

= S{ k—1k}
By Definition 2.4

This proves the discrete part of the Theorem. (Cont.) Let P = (x;, %). Then from theorem 3.1, we have:

mp(P) = cpIn(Ap) = In(Ap) = mD_(P).
cp
Also, by definition 3.1, mp ((x1, %)) = —‘/(‘x X)P(x)ln(P (x)D)dx . Thus,
mp((x1, %)) = — ( )p(x)ln(p(X)D)dx

(—f p(x)ln(p(x)D)dx)—(—f p(x)ln(p(x)D)dx)
(a,x2) (a,x1)

= mp((a, %)) — mp((a, x1))
= CaunIN(Ax) — Cam In(Agx)-

(13)

(14)
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Hence, we have:

mp ((x1, %) _ C(ﬂ,xz)ln(A(ﬂ)xz)) — C(“)xl)ln(A(”)xl))

Clxx2) Cla,xy) — Ca,x)
Jer) | eR)
Cxp,x2)
= Sex,x0)-
By Definition 5

This proves the continuous part of the Theorem.
Next, we state and prove a generalization of theorem 2.2 for general measurable sets P:

Theorem 3.3. Letp;with i € I = {1,...K} bea discrete probability distribution, with K = +o00 permitted. Let p(x)
be a probability density function (pdf) on I = (a, b), witha = —ocoand b = +oo permitted. Let P = (x;, x,). Let
P; and P, be arbitrary measurable subsets of 1. Then, we have the following:

@(f)@ - mD(Pl)( )mD(sz

cpp \>) Cp, cp cp,

<

15)
>

Proof. From theorem 3.1, we have:

Dp

cp

mp(P)
e P .

Hence, we have the following:

<

Dpl(i) Dy mD(Pl)(

cp \>) Cp, cp

)mD(PZ).

> cp,

This proves the Theorem.

Hence, mp(P) allows us to compute and compare the degree of uniformity of parts P; and P, that don’tlook
like a set of consecutive indices. This is a generalization of theorem 2.2.

Next, we prove a theorem that computes the degree of uniformity measure of a countable disjoint union of
measurable sets.

Theorem 3.4. Letp; with i € I = {1,...K} beadiscrete probability distribution, with K = o0 permitted. Let p(x)
be a probability density function (pdf) on I = (a, b), witha = —oocand b = +oc permitted. Let P = U, P, where
PN P; = ¢ fori = j be acountable disjoint union of measurable subsets of 1. Then, we have the following:

Dp _ Dexp(—zlmD(p ")). (16)
Cp iCPz

Proof. Using the countable additivity of disjoint unions for measures, we can expand on mp(P). Let P = U, P,
where PN P; = ¢ fori = j. Then,

mp(U,B) = > mp(B)

n
CP:ZCPn
n

mp(P) _ >imp(P)

In(Ap) =
cp >icp,
. P;
Ap = exp Z,mD( 1) .
ZiCPi
The latter equation implies that
mp (P;
& — Dexp(iz’mD( )).
Cp iCPi

This proves the Theorem.

Hence, we can compute the degree of uniformity of a part P = U,,P,, which is a disjoint union of parts P,
using the above formula. All we need is the value of the signed measure mp(P,) and the cumulative probability
cp, for the parts P,,.
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Corollary 3.1. Let p; with i € I = {1,...K} bea discrete probability distribution, with K = 400 permitted. Let
p(x) be a probability density function (pdf) on I = (a, b), witha = —oocand b = o0 permitted. Let
P = {k, k} U {ks, ky} withky < ksor P = (x1, %) U (x3, x4). Then we have the following:

(Disc.) iy (P) — mp({ki, ko}) + mp({ks, ks}) (17)

Clkk} T Clksks}

_ Sk} + Stkska) (18)

Clk,k) T Clks,ke)

(Cont.) mp(P) = mp (%1, %)) + mp((xs, x4)) (19)

C(xl,xz) + C(x3,x4)

— S(Xl»xz) + S(xs,n) (20)
Clux) T Clan)

Proof. Follows directly from theorem 3.4.

4. Properties of mp(P)

LetI = {1,...,K} in the discrete case with K = 4 oo allowed and I = (g, b) with a = — 0o and b = + oo allowed.
Let Pbe an arbitrary measurable subset of I and let P; be an arbitrary measurable subset of P. We want to
establish a relationship between the degree of uniformity measure of P, with respect to I and with respect to P,
where P; C P C I. What is the relationship between mp(P;) and m o (P)?

The key thing to understand is that the degree of uniformity measure of P; with respect to I'is in general
different than the degree of uniformity measure of P; with respect to P. Hence, we want to quantify the
relationship between mp(P;) and moe ).

Theorem 4.1. Letp;with i € I = {1,...K} bea discrete probability distribution, with K = +o00 permitted. Let p(x)
be a probability density function (pdf) on I = (a, b), witha = —ooand b = +oc permitted. Let P, P be arbitrary
measurable subsets with Py C P C I. Then we have the following:

1.
m, (P) = mp(Py) — (%)mD(P) @1)
cp P
2.
]
m p, (P1) = cp, In [DP] : (22)
Proof.

1. (Disc.) Starting from

Dr = Dexp {—mD(P) },
Cp Cp

we have
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p; Dr = p;Dexp {—mD (P) }

Cp Cp
In[ p.22) = n(pp) + T2
Cp Cp
oo p 22| = pnpD) + 1, ’”D(P )

cp

D P
721’1'11‘1 pi_P _Zpiln(PiD)(zpz)mD( )

i€P p iep, i€P

Thatis,
cp,
i, (P1) = mp(Py) — (C—)mD(P)-
& »

This proves the discrete case of part (1) of the Theorem. We next prove the continuous case next: (Cont.)

Starting from
Dp _ Dexp{mD(P)},
Cp cp
we have
P22 = p)Dexp {’”D_(”}
cp cp
1n(p<x)&) In(p()) + 228
Cp cp
De mp(P)
p@In| p(x)== | = p(0)In(p(x)D) + p(x)———
Cp cp
-, P(xﬂn(p(x)&)dx = p@(p@D) - ( | p(x))—mD(P ).
P, Cp P, P, cp
Thatis,

m o, (P) = mp(Py) — (ﬂ)mD(P).

cp

This proves the continuous case of part (1).

Dr _ D exp (—mD(P) )
Cp Cp

c b; [
DP P i DP P _ _
(;) = II (P,) (;) = eXP{ fpp(x)ln(P(x))dX}

discrete i€P continuous

2. We start by noting the following first:

and

is true for Pand P;. We first prove the discrete case of part (2). (Disc.) Recall that

cp b;
(- (] (2] o
cp iep \ Pi cp iep

mp(P)=—>_ p.In(p,D)

icP
M p, (P1) = — ZP;IH(R )
r i€eP;

From the right hand side of the last equation we have

10
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D
mp, (P) = _Z b ln(Pi_P)
P Cp

ieP,

=3 pIn(p) — [Zpilln(%)

i€P, i€P;

— Dp, Dp
=cp In —cpIn| —
Cp1 Cp
Dp,
oy
[2])
cp

=cp In

This proves the discrete case of part (2) of the Theorem. We next prove the continuous case of part(2) of the
Theorem. (Cont.) Recall that

(&) = exp {ff p(x)ln(p(x))dx} = op ln(&) = ff p()In(p(x))
cp p cp P

mp(P) = — fp p()In(p(x)D)

m p, (Py) = — fp p(x)ln(p(x)%).
cp 1 P

From the right hand side of the last equation we have

oy, (Pr) = —fpl p(x)ln(P(x)IC)—:)
- P@In(p() — [LP(’C)]ID(%)
= cp, ln(DPI) — Cp, 111(&)
cp, cp
B
[21)

=Cp In

This proves the continuous case of part (2).

Remark 4.1. If we choose P = P in equation (22), we get

mop (P) = 0 Special Case ismp(I) = 0. (23)

This tells us that the part P has a degree of uniformity equal to %. However, equation (21) tells us how the degree

of uniformity measure of P, with respect to Pis related to degree of uniformity measure of P, with respect to L.
Figure 2 shows the relationship between P;, Pand I where P, C P C I.Italso shows the equation relating the
degree of uniformity of the respective parts with the respective wholes, that are appropriately labeled.

We note that P; C P C I. Equation (21) says that the degree of uniformity measure of P; with respect to P
given by moe (Py) equals the degree of uniformity of P; with respect to I given by mp(P;) minus a proportional

amount of degree of uniformity of P with respect to I given by mp(P), with ? being the proportion.
P

11
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mDp/c (P1) = mp(Py) — CPI/CP mp(P)
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respect to the Part P respect to / respect to /

Figure 2. Picture showing an arbitrary measurable subparts P, C P C I.

Remark 4.2. We also have an alternate proof for equation (22) starting from equation (21),

"o ®) ey me)

C P C P Cp
D D
=In| =2 |- In| =%
Cp, D Cp D
Dn
Cpy
5] |
cp
Next, we prove a very important theorem that relates parts P; and P, from two different distributions as shown

in figure 3. The main point in this theorem is that the parts P, and P, can come from two different random
variables X; and X, that are completely unrelated to each other.

=In

Theorem4.2. Letp;withi € I = {1,...Kj}andqwithi € L, = {1,...,K} be two different discrete probability
distributions corresponding to random variables X; and X, respectively, with Kj = +00 and K; = 400 permitted.
Similarly let p(x) and q(x) be two different continuous probability distributionson I, = (a, b) and , = (¢, d)
corresponding to random variables X; and X, respectively, with a, ¢ = —ooand b, d = +oc allowed. LetP; and P,
be measurable subsets from the probability spaces of X; and X, respectively. Then the following is true:

(1)

My, (P2) = cp, In

‘P %
cp

(29

12
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Figure 3. Picture showing an arbitrary measurable subparts P; and P, from two different distributions.

(2)
m,, (P
DPZ B DP1 13;;11( 2)
=|—|exp| ————
Ccp, Cp Cp,
(3)
> Dp (~\D
muPl(Pz)(:)O@ Pz(:)_Pl
P < cp, \ <) €p
(4)
m%(PZ) muﬂ(Pl)
L‘Pl + CPZ — 0‘
sz Cp1
Proof.

(25)

(26)

(27)

(1) Remembering that P, is a measurable subset of the probability space of X,, we have the following for the

discrete case:

(Disc.) m,, (P) =~ ¢In (qi&)

P i€pP, cp

=->gIn(q) — (Z q;

i€eP, i€eP,

D D
=cp, ln(—Pz) — cp, ln(
sz

Dp,
cpy
Dp,
cpy

= szln

And the following for the continuous case:

13
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(Cont.) m, (Py) = —j; q(x)In (q(x)&)dx

Py Cp1

_ _j;z q(x)In(q(x)) — (LZQ(X))ln(IC)—:)
= cpzln(DPZ) - szln(ﬁ)
cp, h
B
B

= chln

That s,

mp, (P2) = cp,In

Py % .
Cpy
(2) proofofpart(2) follows by exponentiation of both sides of equation (24).

[2]) (e 2]
o, (P2) = cp, In 2ol s exp| —— | = exp|In f2

P, Dp, cp, Dp,
cpy cpy

my, (P2)
& De _ (&) exp —%}

sz Cp1 sz

This proves part (1) of the Theorem.

(3) proofofpart (3) follows by direct observation of equation (25).

(4) To prove part (4), we note the following:

D
mDPl(PZ):CPZII’I(M)

Py DPI/CPl
D

My, (P1) = cp, ln( PI/CPI)

<P Dyp,/cp,
my, (P2)  mp, (P1)
l;T{)ll + I‘JTPZZ :ln(DPZ/CPZ)—f—ln(DPl/CPI)
cp, cp Dp,/cp, Dp,/cp,
=0.
That s,

mm(PZ) muﬂ(Pl)

& + —= = 0.
cp, cp

This ends the proof of all parts of the Theorem.

R Rajaram et al

Again to emphasize, P; € X; and P, € X, where X, and X, are two completely different distributions with
totally different scales. This shows that the degree of uniformity measure allows us to compare the degrees of

uniformity of two completely unrelated parts in in a self contained manner.

We note that equation (24) in theorem 4.2 is a generalization of equation (22) in theorem 4.1. Indeed if we

choose the part P; = I, (say), then D1 i simply equal to D, (since the total probability is 1) and we recover

cpy

equation (22) with the identification that D, = D.

14
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We also note that equation (27) is indicative of the fact the ratio Z2~2 (P) is in the exponent of the formula for
mm (P) mDPz (P

and hence —— is of the opposite sign as C— This is because if the degree of unlformlty of Py is (say) x

times the degree of uniformity of P,, then that means P, has a degree of uniformity that is x ' times that of P and
thatis reflected in the anti-symmetry in the exponents given by m‘z ) for the respective parts given by P, and P,.
b

5. Scale free and self-contained nature of LC)—P[
Equation (25) is a very interesting identity. It actually demonstrates the scale free nature of the ratio D/ c for parts
Py and P, from two entirely different distributions. By scale free here, we mean that there is no explicit
dependence of mp(P) on the original random variable but only on the probabilities themselves. In other words,
we can compute and compare the degree of uniformity of P; € X; and P, € X, using equation (25) without
paying any heed to the scale of the original random variables X; or X,. Also, by self-contained, we mean that only
the probabilities from the part P are needed to compute mp(P).

We show below that the computation of the degree of uniformity is totally self-contained within the part P
i.e. only requires the probabilities within the part P and also is scale-free i.e. does not require the knowledge of

( DP )CP ( )p
— = H
cp discrete icP P,

= cp ln(&) = —Zpi In(p,)
cp

i€eP

the random variable X.

= — = exp

Dp 1
= 2. pn(p) (28)
cp l (Sicopi) ieZP }

(&)P = exp {—f p(x)ln(p(x))dx}
cp continuous p

. ln(D ) f p(O)In(p(x))dx

Dp 1
= — =ep|——F—"—C
cp

In equations (28) and (29) above, we have derived explicit expressions for the ratio 22 for both the

[ peom(peax (29)

continuous and discrete cases. We note that the final expressions do not have any reference to the value of the
random variable directly (only probabilities), nor do they have any reference to probabilities outside of the part
P. Hence, this definitively shows that the degree of uniformity is a scale free and self contained quantity.

This shows that we can compare the degree of uniformity (or inequality) of parts of different distributions in
aself-normalized way. It also shows that the ratio D/cfor a part Pis an inherent characteristic of the part P’s
shape and does not need any information other than the part Pitselfi.e. the probabilities that are not in Pare not
required.

6. Examples

6.1. Example 1
In this section, we have chosen four examples of parts of distributions with two discrete and two continuous
ones. Furthermore, the parts are all chosen to be union of two parts i.e. so that the slope of secant of the slope of
diversity curve cannot be computed. Here are the examples listed below and shown in figure 4:

(1) Binomialdistribution B(50, 0.6) with the part being k = {20,..,25} U {30,..,35}.

(2) Standard Normal distribution N(0, 1) with the partbeing (—3, — 1) U (2,4).

(3) Poisson distribution with A = 20 with the part being k = {5,..15} U {25,..35}.

(4) Exponential distribution with mean p = 5 with the part being (0, 5) U (10, 15).
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Table 1. The numbers are the values of the degree of uniformity measure for
the column part with respect to the row part.

Myow(col) Binomial Normal Poisson Exponential
Binomial 0 —0.0509 0.3225 —3.2447
Normal 0.1707 0 0.4109 —2.9619
Poisson —0.6229 —0.2367 0 —4.2768
Exponential 1.9582 0.5332 1.3364 0

Table 2. The numbers are the values of the degree of uniformity measure for
the column part with respect to the row part.

(Dcol )
Ccol

(%) Binomial Normal Poisson Exponential
Binomial 1 0.7537 2.8070 0.0390
Normal 1.3268 1 3.7224 0.0517
Poisson 0.3563 0.2685 1 0.0139
Exponential 25.6547 19.3351 72.0017 1

We used MATLAB to write functions that can compute the degree of uniformity measure for parts ofa
discrete or continuous distribution. The functions basically compute the degree of uniformity measure as stated
in definition 3.1 and theorem 3.1.

We show a table of results below:

We make some general observations on the four examples shown above:

(1) In table 1, the diagonal entries are zero because the ratio of degree of uniformity of the row part
corresponding to the column part is 1, since these two are the same parts. Correspondingly, in table 2 the
diagonal entries are 1 reaffirming the same idea. This is a demonstration of theorem 4.2, equations (24)
and (25).

(2) The off-diagonal entries in table 1 are positive or negative depending on whether the row part is more or less
uniformly distributed compared to the column part. The corresponding entries in table 2 are either larger or
smaller than 1. Also the (3,j)-th entry in table 2 is the reciprocal of the (j,i)-th entry as expected. This
demonstrates equations (26) and (27) in theorem 4.2.

(3) Itis interesting to note that the Poisson part is about 4 times more uniformly distributed than the Normal
part, and the Binomial part is around 1.3 times more uniformly distributed than the Exponential part.
Stated differently, the Poisson or the Binomial part has alocalization or concentration of inequality that is 4
and 1.3 times more than the Normal or the Exponential parts respectively.

(4) We also note that the Exponential part has a lesser degree of uniformity (or localization of inequality)
compared to all the other parts in the table. This is evident from the fact that all the numbers in the last row
of table 2 are at least 19 signifying that the Exponential part is at least 19 times less uniformly distributed
compared to all the other parts.

(5) On the other hand, the Poisson part is at least 2.8 times more uniformly distributed than the other parts as
seen in the third column of table 2, where the smallest ratio is 2.8 in the third column.

(6) The Normal part is 3.7 times less uniformly distributed compared to the Poisson part but it is almost 19
times more uniformly distributed than the Exponential part.

6.2. Example 2
In this section we consider the example of a power law (o = 3 and x,,;, = 100) with four communities with

income ranges as below.

(1) P;: (105K, 110K) U (120K, 125K)
(2) P,: (140K, 145K ) U (160K, 165K)
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Table 3. The numbers are the values of the degree of uniformity
measure for the column part with respect to the row part.

yow(cOl) P1 P2 P3 P4
P1 0 0.0490 0.2282 0.2284
P2 —0.1144 0 0.1402 0.1530
P3 —0.2965 —0.0781 0 0.0329
P4 —0.3464 —0.0995 —0.0383 0

Table 4. The numbers are the values of the ratio of degree of
uniformity the column part with respect to the row part.

( Dcol)
Ccol

B Pl P2 P3 P4
Pl 1 23326 89909  13.0047
P2 0.4287 1 38545 55753
P3 01112 0.2594 1 1.4464
P4 00769 01794  0.6914 1

(3) Ps: (105K, 110K) U (160K, 165K)
(4) P,: (120K, 125K) U (140K, 145K)

Intuitively we expect the richer community P, to have a higher degree of inequality since there is more
concentration of wealth there. Hence we expect mpop, (P,) to be larger than zero and mpoe, (Py) is less than zero.
Py P

. Dy Dy
Equivalently, we expect —* to be larger than —.
P P

We show the results in tabular form below:

The second richer community P, has twice the degree of inequality as P;. This means that there is twice as
much concentration of wealth in P, corresponding to P;. As expected the degree of uniformity measure of P, with
respect to P, is positive and vice versa for P, with respect to P, which is negative as expected. However, due to the
mixture of poor and rich sections in communities P; and Py, intuition breaks down since it is not clear how to
compare these communities with respect to the other three. However, mathematics comes to our rescue, and it
is interesting to note that P,, P; and P, all have a higher concentration of wealth than P;, and P; and P, are both
more concentrated in wealth than P,, and lastly P, comes closest in concentration of wealth to P; (about 1.45
times more degree of uniformity than P;). Also P, is 13 times more uniformly distributed compared to P; as well.

Looking at table 5, we see that while P; and P, both have similar diversities, P, has fewer people than P; as
seen by the lower c value 0f 0.0579 for P, compared to P,. This explains why P, has a larger degree of uniformity
(more than twice) than P; in table 4. Similarly, P, has alarger diversity and the fewest people (¢ = 0.0890) and
this explains why P, has the largest degree of uniformity and has 13 times more wealth concentration than P; for
example. In a similar way, the numbers in table 5 can be used to explain the numbers in tables 3 and 4
respectively. The key point here is that a visual inspection of the communities from figure 5 is not going to help
with a comparison of wealth concentration in the communities, especially given the mixture of rich and poor
sections. We really need to rely on a precise mathematical quantification of inequality as measured by the degree
of uniformity measure mp(P) and the degree of uniformity D

We use P, and P; from the power law example to show how the ideas developed in the theorems in this paper
work. We note that the same observations can be made for any two parts in this as well as the previous example.

(1) First, we note that we can compute the degree of uniformity for both parts P, and P; using theorem 3.4 and
corollary 3.1 by computing m,(P) for both the binomial and normal examples. This can be used to match
the answers obtained by directly computing the degree of uniformity of the parts from equations (28) and
(29) respectively. The diversities computed by both methods match and are equal to 9.8060 and 67.8395
respectively.

(2) Next, we can verify theorem 4.2 by (a) directly computing the ratio of degree of uniformity of the Binomial
to the Normal parts by computing % for the Binomial and Normal parts and taking the ratio explicitly. This
P

answer matches the answer by using equation (25) where 1 stands for Binomial and 2 stands for Normal.
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Figure 4. Two discrete and two continuous distributions chosen as examples.

The degrees of uniformity computed by both methods match and are equal to 72.6221 and 652.9385
respectively.

(3) We also note that from tables 3 and 4, that the degree of uniformity of the P; is larger than the Normal part
(i.e. 8.9909 times more) and hence the corresponding degree of uniformity measure of the P; with respect to
P5 is positive (i.e. 0.2282). This verifies equations (25) and (26) in theorem 4.2.

(4) Lastly, equation (27) can be directly verified by seeing that 1n(8.9909...) + In(0.1112...) = 0. The *...
means that we need to used the unrounded versions.

Thus, we have used the parts P; and P; from the power law example to demonstrate the veracity of the theorems
proved in this paper.

This power law example shows that while it is sometimes intuitively clear which parts of a distribution are
more uniformly distributed compared to others visually for contiguous parts, such a luxury does not exist for
non-contiguous parts. That is where our newly created degree of uniformity measure comes to the rescue by
precisely quantifying the degree of uniformity and also allowing us to compute the ratio of degree of uniformity
of parts.

The examples above demonstrate that the degree of uniformity measure is a generalization of the slope of
secant of the slope of diversity curve that we introduced in Rajaram et al (2023, 2024) that allows us to compute
the degree of uniformity (or degree of localization of inequality) of arbitrary measurable parts (or subsets) of the
support of a given distribution that do not look like contiguous indices or intervals. Furthermore, we also see
that we can compare the degree of uniformity of parts between discrete and continuous distributions as seen in
theorem 3.1. This means that this measure is much more versatile in it usage as a quantification of degree of
uniformity (or inequality) no matter the type of distribution that the part under consideration is. At the outset,
we want reiterate the the degree of uniformity % as discovered in Rajaram et al (2023, 2024) depends on both the

SEE extent Dp or ‘evenness’ as well as the cumulative probability cp or ‘richness’. Hence, for arbitrary measurable
parts such as in table 4 which is in general not a contiguous interval or set of indices, it is not intuitively clear
visually whether a certain part has more or less degree of uniformity. The degree of uniformity measure serves as
away to quantify and compare this extent of uniformity in a mathematically sound manner, and hence its
importance.
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Figure 5. Union of disjoint intervals for the Power Law with alpha=3 and xmin = 100.

Table 5. The table shows the D, cand g for the four

communities in figure 5.

P] Pz P3 P4
D 9.8060 9.8072 67.8395 84.0769
c 0.1350 0.0579 0.1039 0.0890
? 72.6221 169.3954 652.9385 944.4270

7. Conclusion

We started the paper with two questions: (a) the question of generalizing the idea of degree of uniformity from
contiguous parts (that required the slope of secant of the slope of diversity curve) to arbitrary measurable parts
and (b) the question of comparison of degree of uniformity of two arbitrary measurable parts P; and P,
corresponding to two random variables X; and X, that have no relationship between each other.

The answer to both questions came from the construction of a signed measure called the degree of uniformity
measure in definition 3.1. The degree of uniformity measure was shown to generalize the slope of secant of the
slope of diversity curve in theorem 3.2 that was used to measure the degree of uniformity of contiguous parts.
More specifically the ratio m[:_}()m for an arbitrary part Pis exactly equal to the slope of secant if the part P were

contiguous. Hence, the newly constructed measure is a generalization of the slope of diversity curve for arbitrary
measurable parts that are not contiguous.

In fact, as shown in theorem 3.3, comparing the ratio m’Z—l()m for two different arbitrary parts leads to the same
order of comparison for the degree of uniformity of the two parts, the key word here being arbitrary. The same
result was proved to be true for contiguous parts with the slope of secant of the slope of diversity curve in
Rajaram et al (2023, 2024). We also showed in 3.4 that the newly constructed measure can be used to compute
the degree of uniformity of a part that is a countable union of indices or intervals.

Given parts Py, P of the whole I that satisfy P; C P C I, in theorem 4.1, we established a relationship between
the value of degree of uniformity measure for P; with respect to P, and with respect to I in equation (21). Finally
in theorem 4.2, we have the most general relationship between the degree of uniformity measure of a part P,
from a random variable X to another part P, from a random variable X,.

We have also shown the application of our newly discovered measure to four examples (two discrete and two
continuous) of parts of distributions and compared and contrasted the degree of uniformity (or inequality) in
said parts. We have also applied the degree of uniformity measure to a set of four communities in the
distribution of wealth. A visual representation of the parts gives no intuitive way to compare the inequality in the
parts, and hence, the importance of the degree of uniformity measure. The degree of uniformity measure allows
us to precisely compute the degree of uniformity of these non-contiguous parts. The comparisons in the follow
the intuition guided by the theoretical results that have been proved in this paper.
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We also took the time to definitively showcase the scale-free and self-contained nature of the degree of
uniformity measure in section 5. This is an important property of the measure as it illustrates the dependence of
the measure only on the probabilities (or the density values) of the part P under study. The measure depends
neither on the values of the random variable or its scale, nor on the value of probabilities that are outside of the
part P. This is a very unique property of degree of uniformity, as it means that we can compare parts or whole of
totally unrelated distributions. In a sense, the measure only depends on the ‘y-axis’ values (or probabilities) and
hence is a quantification of inequality based solely on the inherent uncertainty (probability) that is present in the
part, something that we have set out to accomplish in our series of papers.

Given the above developments, the degree of uniformity measure of a given part P with respect to a
distribution whose degree of uniformity is ? given by m»p (P) is a fundamental part of answering the two
questions that we started the paper with. It not only allows us to generalize the idea of degree of uniformity to
non-contiguous parts, but also allows us to compare parts P; and P, two entire different distributions governed
by random variables X; and X, that have completely different scales.

In our future work, we aim to further develop the idea of the degree of uniformity measure mp(P) by looking
at ways in which we could use the measure to systematically decompose the original distribution into parts that
have an increasing or decreasing order of degree of uniformity. Such a decomposition will pave the way towards
quantifying the inequality that is inherent in distributions in a systematic way. A systematic quantification of
inequality of a distribution and a decomposition of the distribution based on said quantification will be an
important step forward towards the study of inequality in distributions. We aim to lay down the foundation of
such a decomposition in our future paper. We also plan to apply the decomposition theory to real datain a
separate paper (or papers) to demonstrate the usage of our discovery.

We end the paper by discussing the value of our insights for engineering and physics, including two concrete
examples where the study of inequality in distributions is important. Probability distributions are used widely in
engineering and physics. The Normal, Binomial and Poisson distributions are used in quality control;
Exponential, Weibull and Lognormal distributions are used in reliability engineering and failure analysis; the
Poisson and Exponential are used in queuing theory and network analysis, the Gaussian, Rayleigh and Rice
distributions are used in signal processing and communication systems; and the Normal, Lognormal and
Extreme Value distributions are used in structural reliability and risk assessment. The celebrated Boltzmann,
Bose—FEinstein and Fermi distributions are used in Physics to describe the statistical mechanics to describe the
kinetic energy of particles. Recently, probability models were used to describe the randomness associated with
radioactive decay in Sanchez-Sanchez et al (2024).

As further evidence, consider these two examples. First, in kinetic theory of gases, the Maxwell-Boltzmann
distribution describes the distribution of speeds among gas particles in thermal equilibrium. This distribution is
highly non-uniform, with many particles having speeds around the most probable value, but fewer particles
having very high or verylow speeds. The probability distribution function of particle speeds v is given by:

3
m 2 y2
V) = 41 v2e T,
f( ) (Zﬂ'kBT) ’

where m is the mass of the particle, T'is the temperature and kg is the Boltzmann constant. The distribution peaks
ata certain speed but has a long tail, meaning there are always some particles with much higher or lower speeds
than average. Studying the inequality in distribution of speeds is crucial for understanding phenomena like
diffusion, viscosity, and thermal conductivity in gases. For example, even though the majority of particles move
at moderate speeds, the fastest-moving particles can dominate energy transfer processes, making the variation in
the speed distribution an important aspect of gas behavior.

Next, in structural engineering, the design of buildings, bridges, and other structures often relies on
understanding the unequal distribution ofloads (forces acting on a structure). Engineers need to account for the
fact that while most of the time, loads like wind, traffic, or weight are moderate, there will be rare instances of
extreme loads (e.g. during hurricanes or earthquakes) that could pose significant risks to the structure. Here,
Extreme Value Theory (EVT) is used to model the probability distribution of maximum or minimum values of a
dataset. Instead of assuming a uniform distribution of load magnitudes, EVT specifically focuses on the tail
behavior of distributions—how likely extreme, rare events are. The Generalized Extreme Value (GEV)
distribution, for example, models these extremes:

o

PX < &) = e (1+(54) ¢

where 11 is the location parameter, o is the scale parameter and £ is the shape parameter controlling how ‘fat’ the
tail is. Studying the inequality in the load distribution helps engineers design structures that can withstand not
just average loads, but also rare extreme events. The non-uniformity and the rare, extreme values in load
distributions are crucial for safety in engineering design.
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In both examples, the variation of inequality in probability distributions—whether in gas particle speeds or
in structural loads—plays a critical role in the physical behavior of systems and the design considerations that
engineers must take into account. Our theory (specifically the decomposition that we mentioned for future
work) can be used to precisely identify the ranges of speeds that have a larger localization of inequality thereby
pinning down the exact variation of inequality in speeds of particles or the variation of inequality in the
distribution of load.
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