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3 Department of Engineering, University of Durham, South Road, Durham DH1 3LE, UK
4 Department of Mathematics, Faculty of Sciences, University Abdelmalek Essaadi, Tetouan, Morocco

Abstract

A conservative semi-Lagrangian finite volume method is presented for the numerical solution of
convection-diffusion problems on unstructured grids. The new method consists of combining the
modified method of characteristics with a cell-centered finite volume discretization in a fractional-step
manner where the convection part and the diffusion part are treated separately. The implementation
of the proposed semi-Lagrangian finite volume method differs from its Eulerian counterpart in the fact
that the present method is applied at each time step along the characteristic curves rather than in the
time direction. To ensure conservation of mass at each time step, we adopt the adjusted advection
techniques for unstructured triangular grids. The focus is on constructing efficient solvers with large
stability regions and fully conservative to solve convection-dominated flow problems. We verify the
performance of our semi-Lagrangian finite volume method for a class of advection-diffusion equations
with known analytical solutions. We also present numerical results for a transport problem in the
Mediterranean sea.

Keywords. Finite volume method; Modified method of characteristics; Cell-centered discretization;
Convection-diffusion equations; Unstructured grids.

1 Introduction

Many physical applications in fluid mechanics, air pollution, atmospheric dynamics, ocean circulation,
transport in porous media or meteorology have been modeled using a class of convection-diffusion-reaction
equations as

∂c

∂t
+ v(t,x) · ∇c− ν∆c = f(t,x), (t,x) ∈ (0, T ]× Ω,

(1)
c(0,x) = c0(x), x ∈ Ω,

where Ω is an open bounded subdomain in R2 with smooth boundary Γ and [0, T ] is a time interval.
Here, c(t,x) denotes the concentration of some species, v (t,x) the velocity field, ν the diffusion coefficient,
f(t,x) the reaction term, and c0(x) is fixed initial condition. We assume that equations (1) are equipped
with well defined boundary conditions depending on the problem under study. We also assume that v is
divergence-free

∇ · v = 0. (2)
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Solving numerically the equations (1) is still a challenging task in the case of convection-dominated
problems, particularly when certain nondimensional parameters governing the dynamics of these problems
reach high values. As example of these parameters, we mention the Reynolds number for the Navier-
Stokes equations and the Peclet number for the convection-diffusion equations. At high Peclet numbers,
this convective term is a source of computational difficulties and oscillations, see for example [29]. It is also
well known that the solutions of equations (1) present steep fronts and even shock discontinuities, which
need to be resolved accurately in applications and often cause severe numerical challenges. Lagrangian
methods are among the numerical techniques widely used to handle these difficulties generated from the
presence of convective terms in the governing equations. The main shortcoming for these methods is
the grid distortion drawback specially when characteristic curves are required to be computed for time-
dependent velocity fields. To overcome this disadvantage, the so-called semi-Lagrangian methods are
considered in the literature. In contrast to the traditional Lagrangian methods, which follow the flow
particles forward in time, the semi-Lagrangian methods trace backward the position at current time level
of particles that will reach the points of a fixed mesh at next time level. The semi-Lagrangian methods
have been extensively used in weather prediction for their power to describe the motion of a particle fluid,
see for instance [26, 27, 30]. Allowing for large timesteps to be used in the simulations while guarantying
stability and accuracy make this class of methods a very attractive choice in engineering computations.
However, the drawback of these methods is the failure to conserve the mass during the simulation.

Several contributions have been published in the literature to develop fully conservative semi-Lagran-
gian methods. For example, authors in [32] proposed remapping the Lagrangian volume procedure using
cubic-interpolated propagation method. However, the mass is introduced as an additional variable and
used in a correction step. A conservative semi-Lagrangian method is introduced in [7] for the Vlasov-
Poison system in collision-less plasma applications. The procedure to guarantee conservation in this
approach is based on dimensional splitting using a fifth-difference Hermite weighted interpolation with
WENO limiters to control oscillations. However, this method would be computationally very demanding
for realistic applications. Another procedure based on the adjoint property is proposed in [8]. This method
follows ideas of support operators introduced in [33] where the adjoint property between continuity
equation and advection equation is used together with column-balance property to enforce conservation
on an arbitrary advection scheme. For convection-dominated problems on unstructured meshes, this
method may become unstable. In electromagnetic field, authors in [20] studied a time-splitting Fourier
spectral method for solving the semi-classical Schrödinger equation. The focus in their approach is on
the non-uniform fast Fourier transform algorithm to interpolate Fourier series in the convection step but
the conservation is achieved using high-order interpolation technique and considering periodic boundary
conditions only.

Coupling the semi-Lagrangian method with finite volume discretizations has also been investigated in
recent years. A conservative semi-Lagrangian finite volume method using spectral element dynamics for
multi-tracer applications has been proposed in [17]. Similar ideas were proposed in [5] for the same field of
applications with the difference in enforcing conservation via a problem of optimization instead. However,
the extension of these techniques to unstructured meshes is not straightforward. Reconstruction of mass-
conservative semi-Lagrangian method without relying on splitting operators, authors in [6] implemented
a discontinuous Galerkin method. The main idea in their implementation was to reconstruct quadratic
curves to approximate sides of upstream cells and to preserve positivity of the computed solution, a
high-order bound-preserving filter is employed. However, the reconstruction of numerical fluxes in these
methods requires solution of Riemann problems at the control volumes that may become complicated for
convection problems for highly deformational fields. Following similar ideas as those reported in [20], a
class of semi-Lagrangian finite volume method with arbitrary order of accuracy is proposed [13]. In this
approach, spectral methods of periodic type are used for spatial discretization and high-order schemes
are used for time integration. It should be stressed that most of previous methods are applied on regular
Cartesian meshes and their extension to general complex geometries may be challenging in terms of
computational cost and difficult in implementation. In addition, these methods have been studied for
pure convection problems and their extension to convection-diffusion problems may limit their efficiency.
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The objective of the current work is to devise a numerical approach able to accurately approximate
solution to convection-diffusion problems on unstructured grids. The aim is to develop a fast and ac-
curate family of semi-Lagrangian finite volume methods that satisfy the mass-conservation at each time
step during the simulation process. Our main goal is to present a class of numerical methods that are
simple, easy to implement, fully conservative, and accurately solve convection-dominated problems with-
out relying on highly demanding solvers. The proposed semi-Lagrangian finite volume algorithm belongs
to the class of methods that employ fractional steps where the convection part and the diffusion part
are treated separately. To ensure conservation of mass at each time step, we implement the adjusted
advection techniques for unstructured triangular grids. It should be mentioned that semi-Lagrangian
finite element methods with adjusted advection have been proposed in [10] for solving transport prob-
lems on structured grids. The main features of the semi-Lagrangian finite volume method proposed in
this study are on one hand, the capability to satisfy the conservation property resulting in numerical
solutions free from spurious oscillations, and on the other hand, the achievement of strong stability and
high accuracy for numerical solutions containing steep gradients. These features are verified using several
test examples of the two-dimensional convection-diffusion problems (1) including a transport problem of
pollution in the Mediterranean sea. Results presented in this paper show high resolution of the proposed
semi-Lagrangian finite volume method and permit the straightforward application of the method to more
complex, physically based convection-diffusion problems. The present study represents a step towards the
implementation of a fully conservative semi-Lagrangian finite volume method for the numerical solution
of transport and dispersion of pollutants on large sea-surface regions.

This paper is organized as follows. Formulation of the semi-Lagrangian finite volume method for
convection problems is presented in section 2. We propose several procedures for the interpolation step
of the Lagrangian stage and we also consider the adjusted advection procedure to ensure conservation in
the method. Section 3 is devoted to the implementation of the method for convection-diffusion problems.
We implement a second-order implicit scheme for the time integration of semi-discrete equations. In
section 4, we examine the numerical performance of the proposed method using various test examples of
convection-diffusion problems. The obtained results demonstrate that our semi-Lagrangian finite volume
method preserves the expected conservation as well as the accuracy. Concluding remarks are summarized
in section 5.

2 Conservative semi-Lagrangian finite volume method

To explain the steps involved in the semi-Lagrangian finite volume method we first consider the homo-
geneous advective part of the problem (1) reformulated using the total derivative as

Dc

Dt
:=

∂c

∂t
+ v(t,x) · ∇c = 0, (t,x) ∈ (0, T )× Ω,

(3)
c(0,x) = c0(x), x ∈ Ω.

Notice that Dc
Dt measures the rate of change of the solution c following the trajectories of the flow particles.

The main idea of the semi-Lagrangian method is to impose a regular grid at the new time level and to
backtrack the flow trajectories to the previous time level. At the old time level, the quantities that are
needed are evaluated by interpolation from their known values on a regular grid. In this section we
formulate the fundamental steps of the semi-Lagrangian finite volume method we consider in the current
work.

2.1 Calculation of departure points

Let us divide the time interval into sub-intervals [tn, tn+1] with uniform length ∆t and discretize the
spatial domain Ω̄ = Ω ∪ Γ in conforming triangular elements Ti as Ω̄ = ∪Nei=1Ti, with Ne is the total
number of control volumes. Each triangle represents a control volume and the variables are located at

3



Figure 1: A schematic diagram showing the main quantities used in calculation of the departure points.

the geometric centers of the cells. We use the notation wn to denote the value of a generic function w at
time tn and wni to denote the average value of the solution w in the cell Ti at time tn,

wni =
1

|Ti|

∫
Ti
w(tn,x) dx,

where |Ti| is the area of the control volume Ti. Following for example [27], the characteristic curves of
the equation (3) are solutions of the following initial-value problem

dX i(t)

dt
= vi (t,X i(t)) , t ∈ [tn, tn+1],

(4)
X i(tn+1) = xi.

Here, X i(t) = (Xi(t), Yi(t))
T is the departure point at time t of a particle that will arrive at xi = (xi, yi)

T

the center of the control volume Ti. Note that the semi-Lagrangian finite volume method does not follow
the flow particles forward in time, as a Lagrangian method does, instead it traces backwards the position
at time tn of particles that will reach the points of a fixed mesh at time tn+1, see Figure 1 for an
illustration. Therefore, the semi-Lagrangian finite volume method avoids the grid distortion difficulties
that the conventional Lagrangian schemes have. Hence, the solutions of (4) can be expressed as

X i(tn) = xi −
∫ tn+1

tn

vi (t,X (t)) dt. (5)

To evaluate the integral in (5), we use a second-order extrapolation based on the mid-point rule investi-
gated in [31] among others. Thus, we use δi to denote the displacement between a mesh point xi on the
new level and the departure point X i(tn) of the trajectory to this point on the previous time level i.e.

δi = xi −X i(tn). (6)

Applying the mid-point rule to approximate the integral in (5) yields

δi = ∆tvi

(
tn+ 1

2
,X i(tn+ 1

2
)
)
.

Using the second-order extrapolation

vi

(
tn+ 1

2
,X i(tn+ 1

2
)
)

=
3

2
vi

(
tn,X i(tn+ 1

2
)
)
− 1

2
vi

(
tn−1,X i(tn+ 1

2
)
)
,
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and the second-order approximation

X i(tn+ 1
2
) = xi −

1

2
δi,

we obtain the following implicit formula for δi

δi = ∆t

(
3

2
vi

(
tn,xi −

1

2
δi

)
− 1

2
vh

(
tn−1,xi −

1

2
δi

))
.

To compute δi we consider the following successive iteration procedure

δ
(0)
i = ∆t

(
3

2
vi (tn,xi)−

1

2
vh (tn−1,xi)

)
,

(7)

δ
(k)
i = ∆t

(
3

2
vi

(
tn,xi −

1

2
δ

(k−1)
i

)
− 1

2
vi

(
tn−1,xi −

1

2
δ

(k−1)
i

))
, k = 1, 2, . . . .

The iterations (7) are terminated when the following criteria∥∥∥δ(k) − δ(k−1)
∥∥∥∥∥∥δ(k−1)

∥∥∥ < ε, (8)

is satisfied for the Euclidean norm ‖ · ‖ and a given tolerance ε. In our computational test examples,
the iterations in (7) were continued until the trajectory changed by less than ε = 10−7. Once an
approximation of the displacement δi is achieved in (7), the characteristic curves are obtained for each
control volume from (6) as

X i(tn) = xi − δi. (9)

The departure points X i(tn) do not coincide with the spatial position of a gridpoint in general. In order
to find the host control volume which such point belongs, we apply the search-locate algorithm proposed
in [1] for triangular elements in unstructured grids.

2.2 Interpolation procedures

Once the characteristics feet X i(tn) are calculated in (9), the solution of (3) in the control volume Ti and
at instant tn+1 is defined as

cn+1
i = c (tn,X i(tn)) . (10)

Note that, since the departure point X i(tn) would not lie on a mesh point, the solution c (tn,X i(tn)) at
the characteristic feet is obtained by interpolation from known values at the control volume T̂i where X i(t)
belongs and its neighbors. In the present study, the following interpolation procedures are considered.

Inverse Distance Weighted (IDW) scheme. This technique is a simple method widely used to
interpolate a field with a known scattered set of points, see for example [2, 19]. Thus, the solution (10)
is obtained using the IDW interpolation as

c (tn,X i(tn)) =
M∑
j=1

ωij
ω
cnj , (11)

where the weight ωij are calculated using the distances between the departure point and the cell centers

of the host control volume T̂i and its neighbors as shown in Figure 2. In (11), cnj are known solutions at
time tn on the control volumes Tj . Hence,

ωij =
1

d2
ij

, ω =
M∑
j=1

ωj ,
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where dij = ‖X i(tn)− xj‖ is the Euclidean distance between the departure point X i(tn) and the cell
center xj of the control volume Tj given by

‖X i(tn)− xj‖ =

√(
Xi(tn)− xj

)2
+
(
Yi(tn)− yj

)2
. (12)

In the present work, the total number M is either 2, 3 or 4 depending on how many neighbors the host
control volume T̂i may have.

Least Squares (LS) scheme. This method is known as one of the most accurate approaches to solve
a problem of finding the best polynomial approximation to the input data, compare for example [24, 3].
Let Ini be a given set of indices of control volumes surrounding the host control volume T̂i where X i(tn)
resides at time t = tn, and cn the vector of solutions cnj at points xj with j ∈ Ini . Using the LS
interpolation, the solution (10) is evaluated as

c (tn,X i(tn)) =
M∑
k=0

CnkΨk (X i(tn)) , (13)

where Cnk are the fitting coefficients, ψk(x, y) are the polynomial basis functions and M is the total
number of fitting data assumed to be less than the dimension of the set Ini . To solve this problem, the
least squares method uses a linear regression to compute Cnk based on the merit function F defined as

F 2 =
∑
j∈Ini

(
cnj −

M∑
k=0

Cnkψk (xj)

)2

. (14)

The LS interpolation estimates the vector Cn = (Cn0 , C
n
1 , . . . , C

n
M )> as the best fit to a given data set, if

Cn minimizes the functional (14). Thus, the fitting coefficients Cnk can be obtained by solving the M + 1
normal equations

∂F 2

∂Cnk
= 0, k = 0, 1, . . . ,M.

Hence, using the definition (14), the normal equations are given by

∑
j∈Ini

(
cnj −

M∑
l=0

Cnl ψl (xj)

)
ψk (xj) = 0, k = 0, 1, . . . ,M, (15)

which can be reformulated for each departure point X i(tn) as a linear system of the form

DCn = b, (16)

where D = A>A with A is the matrix with entries ψl (xj), 1 6 l 6 M , j ∈ Ini , and the right-hand side
vector b = A>f with f is the vector with entries cnj , j ∈ Ini . For instance, a linear approximation of the
function cn(x, y) is defined as

cn(x, y) = Cn0 + Cn1 (x−Xi) + Cn2 (y − Yi) . (17)

To calculate the coefficients Cn0 , Cn1 and Cn2 , we first evaluate (17) at the departure point X i(tn) =
(Xi(tn), Yi(tn))> to obtain Cn0 , then we solve the linear system (16) to obtain Cn1 and Cn2 . In this case,
the inverse matrix D−1 is given by

D−1 =
1

∆i


∑
j∈Ini

(yj − Yi)2 −
∑
j∈Ini

(xj −Xi) (yj − Yi)

−
∑
j∈Ini

(xj −Xi) (yj − Yi)
∑
j∈Ini

(xj −Xi)
2

 ,
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Figure 2: The control volume T̂i where the departure point X i(tn) belongs and its neighboring elements
used for IDW interpolation (left plot) and the set Ini of points inside the dashed circle used for LS and
TPS interpolations (right plot).

where

∆i =

∑
j∈Ini

(xj −Xi)
2

∑
j∈Ini

(yj − Yi)2

−
∑
j∈Ini

(xj −Xi) (yj − Yi)

2

.

Note that the formulation of a quadratic approximation in (17) can be obtained following similar steps as
in the linear case. In our simulations, the set Ini is formed by the neighboring cells that have a common

edge or vertex with the control volume T̂i, see Figure 2 for an illustration.

Thin-Plate Spline (TPS) scheme. Interpolation with so-called thin-plate splines (also known as
surface splines, Dm-splines or poly-harmonic splines) is a classical topic in spline theory, see for instance
[25, 15]. Using the set Ini with dimension Ni introduced above and shown in Figure 2, the solution (10)
is calculated using the TPS interpolation as

c (tn,X i(tn)) =
∑
j∈Ini

λj ‖X i(tn)− xj‖ log
(
‖X i(tn)− xj‖

)
+ α0 + α1xi + α2yi, (18)

where the coefficients (λj)j∈Ini
, α0, α1 and α2 are obtained by solving the linear system



φ11 φ12 · · · φ1Ni 1 x1 y1

φ21 φ22 · · · φ2Ni 1 x2 y2

...
...

. . .
...

...
...

...

φNi1 φNi2 · · · φNiNi 1 xNi yNi





λ1

...

λNi

α0

α1

α2


=



c1

c2

...

cNi


, (19)

where φij are the radial basis functions defined as

φij = ‖X i(tn)− xj‖ log
(
‖X i(tn)− xj‖

)
.
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By introducing the following matrices

φ =



φ11 φ12 · · · φ1Ni

φ21 φ22 · · · φ2Ni

...
...

. . .
...

φNi1 φNi2 · · · φNiNi


, P =



1 x1 y1

1 x2 y2

...
...

...

1 xNi yNi


,

and the following vectors

λ =


λ1

...

λNi

 , C =



c1

c2

...

cNi


, α =


α0

α1

α2

 ,

the linear system (19) can be formulated in a compact form as

(
φ P

) λ

α

 = C. (20)

Note that the system (20) is formed with Ni equations for Ni + 3 unknowns. Therefore, a non-singular
system can be constructed by adding the constraints

Ni∑
j=1

cj = 0,

Ni∑
j=1

cjxj = 0,

Ni∑
j=1

cjyj = 0.

Hence, the coefficients (λj)j∈Ini
, α0, α1 and α2 in (18) are determined by solving the block linear system φ P

P T 0


 λ

α

 =

 C

0

 . (21)

Note that other radial basis functions can also be used in (18) without major conceptual modifications.

2.3 Advection adjusted algorithm

For the convection problem (3), the divergence-free condition (2) implies that∫
Ω
v · ∇c dx =

∮
Γ
cv · n ds, (22)

where n is the unit outward normal to the boundary Γ. Assuming that at any time t, the amount of mass
entering and exiting the domain is the same, then the net flux through the boundary Γ vanishes and
the right-term in (22) is zero. Consequently, integrating (3) over the domain Ω leads to the conservation
property ∫

Ω
c(t,x) dx =

∫
Ω
c0(x) dx, ∀ t ∈ [0, T ], (23)
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In general, a semi-Lagrangian method does not preserve the condition (23) and further reconstructions
are needed to convert the method to mass conservative. In the present study, we propose an algorithm
for the finite volume discretization in unstructured meshes based on the adjusted advection techniques.
Thus, given the solution c(tn,x) at current time tn, the solution at the next time level c(tn+1,x) is
obtained as follows:

For each control volume Ti in the computational mesh, compute the departure point X i(tn) using the
iterative procedure (5)-(7), identify the control volume T̂i where such a point is located, and compute
the approximation ĉ(tn+1,xi) = c (tn,X i(tn)) employing an interpolation procedure from section 2.2.
Evaluate the conservation integrals C(tn) and Ĉ(tn+1) as

Cn =

∫
Ω
c(tn,x) dx, Ĉn+1 =

∫
Ω
ĉ(tn+1,x) dx.

Perturb the characteristic curves according to

X+
i (tn) = X i(tn) + hδi and X−i (tn) = X i(tn)− hδi,

where δi is the displacement obtained from the iterations (7) and h denotes the radius of the circle
circumscribed by the host triangle T̂i. Then, define the solution c̃(tn+1,xi) by

c̃(tn+1,xi) =


max

(
c
(
tn,X+

i (tn)
)
, c
(
tn,X−i (tn)

))
, if Cn > Ĉn+1,

min
(
c
(
tn,X+

i (tn)
)
, c
(
tn,X−i (tn)

))
, if Cn ≤ Ĉn+1,

and calculate the corresponding conservation integral

C̃n+1 =

∫
Ω
c̃(tn+1,x) dx.

If Cn 6= Ĉn+1, we compute the limiter function θ(tn) such that

θĈn+1 + (1− θ)C̃n+1 = Cn.

Update the new solution c(tn+1,x) using a limiter procedure as

c(tn+1,x) =

θĉ(tn,x) + (1− θ)c̃(tn+1,x), if C̃n+1 6= Ĉn+1,

ĉ(tn,x), if C̃n+1 = Ĉn+1.
(24)

Note that it is easy to verify that

Cn+1 =

∫
Ω
c(tn+1,x) dx = θĈn+1 + (1− θ)C̃n+1 = Cn,

and therefore, the proposed advection adjusted solution (24) conserves the mass at each time step. Similar
approaches have been investigated in [9, 11] for semi-Lagrangian methods on structured meshes. It should
be stressed that this advection adjusted method which requires additional computational work can be
easily implemented in an existing conventional semi-Lagrangian code.

3 Implementation for convection-diffusion problems

We consider the convection-diffusion problem (1) reformulated using the total derivative as

Dc

Dt
−∇ · (ν∇c) = f(t,x). (25)
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Figure 3: An illustration of the co-volume used in the discretization of diffusion terms.

Hence, using the control volume depicted in Figure 3, a finite volume discretization of (25) yields

Dci
Dt

=
1

|Ti|
∑
j∈N(i)

∮
Γij

ν∇c · n dσ +
1

|Ti|

∫
Ti
f(t,x) dx, (26)

where N(i) is the set of neighboring triangles of the cell Ti, n = (nx, ny)
T denotes the unit outward normal

to the surface of control volume Ti, and |Ti| denotes the area of Ti. For a scalar diffusion coefficient,

ν∇c · n = ν
∂c

∂x
nx + ν

∂c

∂y
ny.

To discretize the diffusion fluxes in (26) we consider a Green-Gauss diamond reconstruction as discussed
in [4] among others. This method is second-order accurate and it can be applied on general unstructured
grids with large deformation since there is no serious restrictions on the angles of control volumes. Hence,
a co-volume, covT , is first constructed by connecting the barycenters of the control volumes that share
the edge Γij and its endpoints as shown in Figure 3. Then, in the x-direction, the diffusion fluxes are
evaluated at an inner edge Γij as∮

Γij

ν
∂c

∂x
nx dσ =

ν

|covT |
∑
ε∈∂T

ce1 + ce3
2

∮
ε
nxε dσ, (27)

where e1 and e3 are the nodes of the edge ε on the surface ∂covT , ce1 and ce3 are the values of the
concentration c at node e1 and e3, respectively. Since this method is cell centered, all unknowns should
be expressed in term of control volumes centroids. For this reason, the solutions at endpoints of Γij are
approximated by interpolation from the values on the cells sharing the same vertex ek. Notice that for a
non-constant diffusion, the diffusion coefficient ν In (27) is defined by

ν =
νe1 + νe2 + νe3 + νe4

4
,

with νek , k = 1, . . . , 4, are values of the diffusion coefficient ν at the co-volume nodes ek. The semi-
discrete equations (26) can be reformulated in in a compact form as a system of ordinary differential
equations

Dc

Dt
= [S] c + f(t), (28)

where c is solution vectors with entries ci, [S] is the stiffness matrix the entries of which are defined
above, and f(t) the force vector with entries

fi(t) =
1

|Ti|

∫
Ti
f(t,x) dx.

10



For the time discretization, we integrate the system (28) along the characteristics using a second-order
implicit time stepping scheme as

cn+1 − ĉn

∆t
=

1

2
[S] cn+1 +

1

2
[S] ĉn +

1

2
fn+1 +

1

2
fn, (29)

where ĉn is the solution vector with entries c (tn,X i(tn)) obtained in (24) using the adjusted advection
algorithm. It is worth remarking that to update the solution cn+1 in (29), a linear system of algebraic
equation has to be solved each time step. To perform this step in our semi-Lagrangian finite volume
method, we use the conjugate gradient solver with incomplete Cholesky decomposition. In addition,
all stopping criteria for iterative solvers were set to 10−7, which is small enough to guarantee that the
algorithm truncation error dominates the total numerical error.

4 Numerical results and examples

A number of numerical examples are selected to illustrate the accuracy of the new semi-Lagrangian finite
volume method introduced in the above sections. For some of these test examples the analytical solution
is known, so that we can evaluate the error function e at time tn as

eni = cni − cexact(tn,xi), (30)

where cexact(tn,xi) and cni are the exact and numerical solutions, respectively, at time tn in the control
volume with center xi. We also define the CFL number associated with equation (1) as follows

CFLx = max
x,y
|u|∆t

h
, CFLy = max

x,y
|v|∆t

h
, CFL =

√
CFL2

x + CFL2
y. (31)

It should be stressed that, in all our computations the resulting linear systems of algebraic equations
were solved using the preconditioned conjugate gradient and a tolerance of 10−7h to stop the iterations.

4.1 Advection-diffusion of a Gaussian pulse

To ascertain the performance of the semi-Lagrangian finite volume method we consider the advection-
diffusion of a rotating Gaussian pulse investigated in [11, 12] among others. The governing equation is
of the form (1) with v = (−ωy, ωx)T and ω = 4 and f = 0. Initial and boundary conditions are taken
from the analytical solution

cexact(t, x, y) =
100

1 + 2νt
σ2

exp

(
−(x̄− x0)2 + (ȳ − y0)2

2(σ2 + 2νt)

)
,

where x̄ = x cos(ωt) + y sin(ωt), ȳ = −x sin(ωt) + y cos(ωt), x0 = −0.25, y0 = 0 and σ2 = 0.002. The
computational domain is Ω = [−0.5, 0.5] × [−0.5, 0.5] covered by different uniform meshes and the time
period required for one complete rotation is π

2 . From (31), the CFL number associated to this test

example is ω
√

2
2

∆t
h and it is set to 3π

√
2 in our simulations.

In the first run of this example we consider the problem of pure advection corresponding to ν = 0.
Table 1 presents a quantitative comparison of the results obtained using different interpolation procedures
on different structured meshes after 1, 2 and 5 revolutions. We report the L1-errors, relative mass (Mass),
maximum (max) values of the computed solutions, and CPU times given in seconds. We also present
a comparison between conventional approach (without using adjusted advection procedure) and the
conservative approach proposed in this study. For the considered meshes and numbers of revolutions,
the conservative approach preserves the mass conservation at an additional cost referring to the CPU
times. Failure of mass conservation is clear in the results obtained using the conventional approach
whereas, the relative mass remains fixed to unity in the conservative approach. The numerical diffusion
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Table 1: Results for advection of the Gaussian pulse test after 1, 2 and 5 revolutions using different
meshes and interpolation procedures. The analytical maximum is 1 and the CPU times are given in
seconds.

Results for the IDW interpolation

Conventional approach Conservative approach

# Rev Mesh max c L1-Error Mass CPU max c L1-Error Mass CPU

32× 32 0.6930 1.048E-02 1.0327 0.04 0.6851 1.035E-02 1.0000 0.05

1 64× 64 0.8073 6.949E-03 0.9979 0.22 0.8077 6.965E-03 1.0000 0.26

128× 128 0.8912 5.606E-03 1.0222 1.42 0.8876 5.522E-03 1.0000 1.69

32× 32 0.5416 1.755E-02 1.0456 0.07 0.5282 1.723E-02 1.0000 0.09

2 64× 64 0.6786 1.223E-02 0.9960 0.35 0.6790 1.228E-02 1.0000 0.42

128× 128 0.8065 1.062E-02 1.0414 2.45 0.7986 1.039E-02 1.0000 2.89

32× 32 0.3188 3.090E-02 1.0351 0.16 0.3068 3.052E-02 1.0000 0.19

5 64× 64 0.4525 2.423E-02 0.9866 0.62 0.4547 2.446E-02 1.0000 0.72

128× 128 0.6319 2.343E-02 1.0859 5.44 0.6135 2.258E-02 1.0000 6.25

Results for the LS interpolation

Conventional approach Conservative approach

# Rev Mesh max c L1-Error Mass CPU max c L1-Error Mass CPU

32× 32 0.8163 4.71740E-03 0.9895 0.12 0.8178 4.81230E-03 1.0000 0.15

1 64× 64 0.8923 2.45723E-03 1.0000 2.20 0.8925 2.48778E-03 1.0000 2.75

128× 128 0.9466 1.23609E-03 0.9994 66 0.9464 1.26036E-03 1.0000 81

32× 32 0.6830 8.54007E-03 0.9844 0.22 0.6870 8.76210E-03 1.0000 0.27

2 64× 64 0.8135 4.66360E-03 1.0001 4.38 0.8138 4.75328E-03 1.0000 5.41

128× 128 0.8999 2.43363E-03 0.9979 132 0.8990 2.50876E-03 1.0000 160

32× 32 0.4682 1.68701E-02 0.9698 0.64 0.4708 1.76955E-02 1.0000 0.78

5 64× 64 0.6431 1.03115E-02 1.0030 10.85 0.6390 1.10730E-02 1.0000 12.91

128× 128 0.7838 1.43739E-03 0.7164 330 0.8001 1.85016E-03 1.0000 402

Results for the TPS interpolation

Conventional approach Conservative approach

# Rev Mesh max c L1-Error Mass CPU max c L1-Error Mass CPU

32× 32 0.9874 1.848E-04 0.9982 0.30 0.9711 1.119E-03 1.0000 0.37

1 64× 64 0.9887 7.246E-05 0.9997 3.29 0.9929 5.298E-04 1.0000 3.91

128× 128 0.9993 4.062E-05 1.0002 73 0.9975 2.951E-04 1.0000 91

32× 32 0.9822 3.854E-04 0.9944 0.62 0.9626 2.168E-03 1.0000 0.77

2 64× 64 0.9909 1.377E-04 0.9997 6.58 0.9865 1.094E-03 1.0000 7.91

128× 128 0.9999 7.796E-05 0.9996 145 0.9947 6.148E-04 1.0000 185

32× 32 0.9759 3.854E-04 0.9980 1.38 0.9104 7.844E-04 1.0000 1.89

5 64× 64 0.9810 3.311E-04 0.9994 17 0.9655 3.310E-04 1.0000 19.85

128× 128 0.9996 1.965E-04 0.9985 365 0.9856 1.965E-04 1.0000 454
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Figure 4: Numerical solutions obtained using LS (first column), TPS (second column) and exact solution
(third column) for ν = 0 on a mesh with 64 × 64 control volumes after one rotation (first row) and 2
rotations (second row) and 5 rotations (third row).

is also more visible in the results obtained using the conventional approach than those obtained using the
conservative approach, compare the maximum values of the computed solutions in Table 1. Note that
in all considered cases the CPU time in the conservative approach is about 1.25 times larger than that
in the conventional approach. In terms of accuracy, Table 1 demonstrates that the TPS interpolation
is the more accurate than the IDW and LS interpolation procedures. In addition, the IDW procedure
requires less CPU times than the other procedures but the results obtained using the IDW procedure
are the worst. It is to be remarked that, the semi-Lagrangian finite volume method is typically built to
solve this class of convection-dominated problems using CFL numbers four to five times larger than its
Eulerian counterparts.
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Figure 5: Cross-sections of the results in Figure 4 at y = 0 after one revolution (first column), 2 revolutions
(second column) and 5 revolutions (third column) using a mesh with 64× 64 control volumes (first row)
and 128× 128 control volumes (second row).

In Figure 4 we display 20 equi-distributed contourlines of the solutions obtained by the conservative
approach using LS and TPS interpolation procedures after 1, 2 and 5 revolutions on the mesh with 64×64
control volumes. For comparison, we have also included the exact solutions in this figure. Note that the
results obtained using the IDW interpolation are not included in this figure as they exhibit nonphysical
oscillations and substantially greater distortion, specially at the feet of the Gaussian pulse where the
gradients are sharper. The corresponding one-dimensional cross-sections at y = 0 are illustrated in
Figure 5 using two unstructured meshes with 64× 64 and 128× 128 control volumes. It is evident that,
after one revolution on the fine mesh of 128×128 control volumes, the considered interpolation procedures
give roughly similar results with some small differences on the maximum value of the numerical solutions.
However, by increasing the number of revolutions to 5, the results obtained using the TPS procedure are
more accurate than those obtained using the IDW and LS procedures.

Next we include a physical diffusion in this problem by solving the advection-diffusion equations (1)
with diffusion coefficients ν = 10−5, 10−4 and 10−3. For these coefficients, a quantitative comparison of
the results computed using conventional and conservative approaches not reported here for brevity, yields
similar conclusions as those drawn from the results summarized in Table 1. Here, we illustrate only the
one-dimensional cross-sections at y = 0 for a comparison reason. Figure 6 depicts the obtained results
for the considered diffusion coefficients using two structured meshes with 64× 64 and 128× 128 control
volumes. It is clear that numerical diffusion is very pronounced in the results computed using the IDW
and LS interpolations compared to the TPS procedure. However, by increasing the physical diffusion
or refining the mesh, the considered interpolation procedures produce the same results. Again the TPS
interpolation performs best for this test example of linear advection-diffusion problems.
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Figure 6: Cross-sections of the results for the advection-diffusion problem with ν = 10−5 (first column),
ν = 10−4 (second column) and ν = 10−3 (third column) using a mesh with 64× 64 control volumes (first
row) and 128× 128 control volumes (second row).

4.2 A deformational flow problem

In this example we consider the well-established problem of the deformational flow example widely been
served as a prototype to examine the performance of advection schemes and semi-Lagrangian methods,
see for example [14, 23]. Here, we solve the linear advection equation (1) in the spatial domain Ω =
[−4, 4] × [−4, 4] equipped with a highly deformational flow field and the initial condition for the scalar
field

c(0, x, y) = − tanh

(
y − y0

η

)
, (32)

where η is the width of the front zone. The velocity field is a steady circular vortex with tangential
velocity depending on the radius of the vortex as

vt(r) = v0sech2(r) tanh(r), (33)

where v0 is such that the maximum value of vt never exceeds unity. The analytical solution of the
considered problem is defined by

cexact(t, x, y) = − tanh

(
y − y0

η
cos (ωt)− x− x0

η
sin (ωt)

)
, (34)

with (x0, y0) is the center of the vortex and ω = vt
r is its angular velocity. In our simulations, the vortex

is centered at the origin of the computational domain, v0 = 2.58, η = 0.05 and numerical results are
presented at time t = 4. Note that the considered value of η in the initial data corresponds to a steep
hyperbolic tangent profile that results in a highly deformational solution as the time progresses.

In Figure 7 we display snapshots of the computed solutions obtained using the LS and TPS proce-
dures with CFL = 3 at time t = 4 on two unstructured meshes with 9908 and 33078 control volumes.
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Figure 7: Results for the deformational flow example at time t = 4 using the LS procedure(first column),
TPS procedure (second column) and exact solution (third column) on a mesh with 9908 control volumes
(first row) and 33078 control volumes (second row).

For comparison reasons, we have also included the exact solution in Figure 7. Notice that the results ob-
tained using the IDW procedure are not included in this figure because these results exhibit non-physical
oscillations. As in the previous example, we display in Figure 8 the corresponding one-dimensional cross-
sections at x = 0 and y = 0 of the computed results. As expected, the IDW and LS procedures exhibit
substantially greater numerical dissipation, specially at the center of the spatial domain where the gra-
dient is steep. From the same figures we observe an absence of this numerical diffusion in the results
obtained using the TPS procedure. It is clear that the numerical results obtained by the LS procedure
are more diffusive than those computed using the TPS procedure and the IDW procedure is the most
diffusive. Compare the good agreement between the results obtained using the TPS procedure and the
analytical solutions even when using the coarse mesh with 9908 control volumes.

To further quantify the accuracy of the proposed semi-Lagrangian finite volume method for this
deformational flow problem, we compare in Table 2 the conventional approach (without using adjusted
advection procedure) and the conservative approach using the TPS interpolation. Here, we present the
L1-errors, relative mass (Mass), and CPU times given in seconds for different unstructured meshes and
values of CFL. The clear indication from Table 2 is that the L1-errors decay as the number of control
volumes increases for both conventional and conservative methods. Moreover, increasing the CFL number
results in a decrease of the L1-errors. The TPS interpolation performs very satisfactorily for this highly
deformational flow problem. An examination of the relative mass in Table 2 reveals that, the proposed
semi-Lagrangian finite volume method is fully conservative on all considered meshes and used values of
CFL in the simulations. In addition, the CPU time in Table 2 confirms that, on the coarse meshes,
there is no noticeable differences between the computational cost required for both methods. In all the
results presented in Table 2, the CPU time needed for the conservative approach is about two times more
than that needed for the conventional approach. It should be pointed out that the performance of the
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Figure 8: Cross-sections of the results in Figure 7 at y = 0 (first column) and at x = 0 (second column)
using a mesh with 9908 control volumes (first row) and 33078 control volumes (second row).

proposed method is very attractive since the computed solutions remain stable and conservative even
when coarse meshes are used without requiring Riemann solvers or complicated techniques to reconstruct
the numerical fluxes.

4.3 Moving fronts problem

We consider the problem of moving fronts modeled by the equations (1) equipped with a velocity field
varying in time. Initially, two separate fronts travel along the main diagonal of the computational domain
at different speeds and eventually coalesce into one front for longer time. This problem has been previously
solved in a squared domain in [22] using a moving finite element method and in [16] using a family of
finite element alternating-direction methods combined with a modified method of characteristics. In the
present study, we compute the solution of this problem in a circular domain centered at (0.5, 0.5) and
with radius 0.5. Thus, we solve the equations (1) with f = 0 and the velocity field given by

u(t, x, y) =
−0.1e−A(t,x) + 0.5e−B(t,x) + e−C(t,x)

e−A(t,x) + e−B(t,x) + e−C(t,x)
, v(t, x, y) =

−0.1e−A(t,y) + 0.5e−B(t,y) + e−C(t,y)

e−A(t,y) + e−B(t,y) + e−C(t,y)
,
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Table 2: Error-norms and computational times for the deformational flow problem at t = 4 using different
meshes and different CFL numbers. CPU time is listed in seconds.

Conventional approach Conservative approach

CFL # of control volumes L1-Error Mass CPU L1-Error Mass CPU

1541 2.32818E-02 0.9974 0.98 2.33210E-02 1.0000 1.21
3 3068 1.74345E-02 1.0010 2.76 1.74259E-02 1.0000 3.33

15452 7.69612E-03 1.0024 60 7.69413E-03 1.0000 75

1541 1.91841E-02 0.9988 0.52 1.92648E-02 1.0000 0.63
6 3068 1.55190E-02 1.0013 1.55 1.54372E-02 1.0000 1.90

15452 4.75112E-03 1.0020 28.38 4.74362E-03 1.0000 34.1

1541 1.63514E-02 0.9989 0.34 1.63169E-02 1.0000 0.41
10 3068 8.60391E-03 0.9997 0.88 8.58088E-03 1.0000 0.97

15452 2.84319E-03 1.0009 15.62 2.82657E-03 1.0000 18.95

Figure 9: Results for the moving fronts problem using ν = 1.5 × 10−3 at time t = 0.2 (first column),
t = 0.4 (second column) and t = 0.6 (third column) using the TPS procedure (first row) and exact
solution (second row) on a mesh with 9670 control volumes and CFL = 5.

where

A(t, z) =
0.05

ν
(z − 0.5 + 4.95t), B(t, z) =

0.25

ν
(z − 0.5 + 0.75t), C(t, z) =

0.50

ν
(z − 0.375),

with z = x or y. Initial and boundary conditions are defined by the following analytical solution
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Figure 10: Results for the moving fronts problem using ν = 4 × 10−3 at time t = 0.2 (first column),
t = 0.4 (second column) and t = 0.6 (third column) using the TPS procedure (first row) and exact
solution (second row) on a mesh with 9670 control volumes and CFL = 5.

c(t, x, y) = u(t, x, y)v(t, x, y).

The computational domain is discretized into an unstructured triangular mesh with 9670 control volumes
and two diffusion coefficients ν = 1.5× 10−3 and 4× 10−3 are used in the simulations. The CFL is fixed
to 5 and numerical results are presented at three different instants namely t = 0.2, 0.4 and 0.6. In Figure
9 we present 20 equi-distributed contourlines of the solutions obtained by the conservative approach
using TPS interpolation procedure and ν = 1.5 × 10−3 at the three selected times. Exact solution is
also included in this figure for comparisons. Those results obtained using ν = 4 × 10−3 are depicted in
Figure 10. It is clear that, by decreasing the values of ν the convective term becomes dominant and steep
internal layers are formed near the vicinity of front lines in the computational domain. For both values
of ν, the internal layers are wide and diffuse in the flow domain and as time increases, the moving fronts
merge in a single front which moves along the main diagonal of the circular domain. It is apparent that
the solution structures are in good agreement with the exact solutions presented in these figures. These
results give a clear view of the overall transport pattern and the effect of the diffusion coefficient ν on
the structure of moving fronts in the circular domain. It is worth remarking that the thinning of the
internal layers with decreasing ν is evident from these plots and the rate of this thinning is slower for
ν = 1.5 × 10−3 than for ν = 4 × 10−3. These features clearly demonstrate the high accuracy achieved
by the proposed semi-Lagrangian finite volume method for solving moving fronts problems using large
time steps. In addition, compared to the results published for example in [22, 16], it can be seen that
our method resolves accurately the solution features and the moving fronts seem to be localized in the
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Figure 11: Cross-sections of the results for the moving fronts problem at the main diagonal y = x using
ν = 1.5× 10−3 (first row) and ν = 4× 10−3 (second row) at time t = 0.2 (first column), t = 0.4 (second
column) and t = 0.6 (third column) using different interpolation procedures on a mesh with 9670 control
volumes and CFL = 5.

correct place in the flow domain.

For visualizing the comparisons, we display in Figure 11 cross-sections of the results at the main
diagonal y = x using IDW, LS and TPS interpolation procedures. For large values of ν, it is clear that
the LS and TPS procedures produce practically identical results on the mesh of 9670 control volumes.
This can be attributed to the large physical diffusion presented in the problem. However, decreasing
the value of ν the results computed by TPS procedure are more accurate than those computed by the
LS procedure. Apparently, by using the TPS procedure, high resolution is achieved in those regions
where the solution gradients are steep such as the moving fronts. Comparing the results obtained using
the considered procedure, it is clear that the IDW procedure produces diffusive solutions resulting in
smearing the shocks. On the other hand, this numerical diffusion has remarkably been reduced in the
results computed using the TPS procedure. Needless to say that for convection-dominated cases, the
semi-Lagrangian finite volume method does not diffuse the fronts or gives spurious oscillations near the
steep gradients. To quantify the results for this test example, we present in Table 3 L1-errors and
computational times for LS and TPS interpolation procedures at t = 0.2 and 0.6 using different meshes.
In terms of the L1-errors, the TPS results are more accurate than the results obtained using the LS
procedure for both diffusion coefficients considered. Concerning the computational times, Table 3 shows
that the CPU time of TPS procedure is less than 1.3 times the CPU time of LS procedure.

4.4 Transport problem in the Mediterranean sea

The Mediterranean sea is considered to be an almost isolated water system as it is nearly completely
surrounded by land; on the north by Europe, on the south by North Africa, and on the east by the
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Table 3: Error-norms and computational times for the moving fronts problem at t = 0.2 and t = 0.6
using different meshes and interpolation procedures with ν = 1.5× 10−3 and ν = 4× 10−3.

t = 0.2 t = 0.6

LS method TPS method LS method TPS method

ν # elements L1-error CPU L1-error CPU L1-error CPU L1-error CPU

1.5×10−3

1066 2.67697E-02 1.5 1.05318E-02 1.8 4.02518E-02 4.6 1.08510E-02 5.5
1978 1.75511E-02 4 6.29145E-03 4.8 2.26506E-02 12.5 6.64615E-03 14.7
3680 1.03368E-02 20 4.40345E-03 25 2.30111E-02 62 4.75241E-03 77
7583 8.68046E-03 152 2.88446E-03 178 9.02707E-03 451 3.94406E-03 540

4× 10−3

1066 1.72880E-02 1.5 4.08353E-03 1.9 3.14676E-02 4.7 5.02832E-03 5.7
1978 1.14393E-02 4 3.02945E-03 4.9 1.74601E-02 13 4.11802E-03 14.8
3680 7.73985E-03 22 2.33330E-03 26 1.27555E-02 61 3.72815E-03 78
7583 4.80700E-03 145 1.70628E-03 177 6.73888E-03 453 3.38959E-03 544

Figure 12: Computational mesh (left plot) and velocity field (right plot) used for the transport problem
in the Mediterranean sea.

Middle east. The Mediterranean Sea has an average depth of 1500 m and its west-east length, from
strait of Gibraltar to the Gulf of Iskenderun on the southwestern cost of Turkey, is about 4000 km.
The Mediterranean climate is characterized by warm temperatures, winter-dominated rainfall, and dry
summer, see for example [21] and further references are therein. Connected with the Atlantic Ocean, the
Mediterranean sea exchanges water, salt, heat, and other properties with the north Atlantic Ocean. The
Mediterranean sea is also known as one of the busiest shipping lanes in the world with 15 % of global
maritime transport in terms of number of stopovers and 10 % in terms of deadweight tons. Usually
these shipping activities are sources of sea pollution, see [18] among others. The transport and dispersion
of pollutants closely depend on the circulation of sea which is forced by water flow exchange through
various straits (Gibraltar, Otranto and Sicily), by wind stress, and by buoyancy forces at the surface
due to fresh water and heat fluxes, see for instance [28]. In this test example, we consider a problem of
pollutant transport released in the Mediterranean sea. The velocity fields in this test case is obtained from
the incompressible steady-state Navier-Stokes model subject to given inflow conditions on the strait of
Gibraltar. A pollutant concentration is initially released in the sea-surface and its transport is computed
using the proposed method at different times. Our objective for this numerical example is twofold, on
one hand to assess the capability of our semi-Lagrangian finite volume method to accurately handle
complex geometry and on the other hand to develop robust numerical tools to efficiently study pollution
transport in the Mediterranean sea. Hence, the problem statement consists of solving the equations (1)
in the computational domain defined by the Mediterranean sea with ν = 100 m2/s and subject to a
continuous release defined as

f(t, x, y) = 100 exp

(
−(x− x0)2 + (y − y0)2

40000

)
,
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Figure 13: Results for pollutant transport in the the Mediterranean sea at eight different times t = 2, 5,
7, 9, 10, 11, 13 and 15 days using a mesh of 18827 control volumes and CFL = 10.

where (x0 = 900 km, y0 = 880 km) is the selected location for pollutant release. The computational
domain is discretized in an unstructured triangular mesh with a total number of 18827 control volumes
and the CFL = 10. In Figure 12 we present the computational mesh and the velocity field used in our
simulations of the advection-diffusion problem (1). Note that, unlike the previous test examples where
advection-diffusion problems are solved in small simple geometries, the considered transport problem is
solved in a large domain with complex geometry. As a consequence, the later transport is more difficult to
handle and the results shown here illustrate the robustness of the semi-Lagrangian finite volume method.
Furthermore, the considered pollutant transport is a problem conservative in nature and therefore, good
numerical accuracy is required in order to capture the different phenomena present in its evolving solution.

Figure 13 shows the concentration distribution at eight different times, namely t = 2, 5, 7, 9, 10, 11,
13 and 15 days. At earlier time of the simulation, the concentration front released in the sea starts to
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develop and is transported later on by the flow at far east of the Mediterranean sea. The interaction
between the pollution transport and the water flow is detected across the sea during the simulation
time. It can be clearly seen that the complicated concentration is captured by the semi-Lagrangian finite
volume method. We can see that the major recirculations are located near the Sicily narrow and Sypric
basin. Inside these recirculations, there is a more complex transport pattern. The decrease and increase
of the strengths of recirculations with time can be seen in Figure 13. Note that results from the proposed
transport model should be compared with observations of real pollutant distributions on the sea-surface
in the Mediterranean sea. However, there is no data available until now in the literature to carry out
this work. Thus, at the moment we can only perform simulations and verify that results are plausible
and consistent. In summary, the pollutant transport is captured accurately and the concentration front
is resolved reasonably. It should be stressed that all these features have been achieved using time steps
larger than those required for Eulerian-based methods in convection-dominated flows.

5 Conclusions

In this study we have developed a new conservative semi-Lagrangian finite volume method for solving
convection-diffusion equations using the adjusted advection technique for unstructured triangular grids.
This method exploits the interesting features offered by both techniques to construct a fully conservative
algorithm for numerical treatment of convection-diffusion problems. The important advantage of the
new method is that, the convective term that has to be treated carefully in most of Eulerian-based
finite volume methods has been removed from the new method by using the semi-Lagrangian method
to interpret the transport nature of the governing equations. A comparison to the conventional semi-
Lagrangian finite volume method demonstrates the feasibility of the present adjusted advection approach
to solve convection-dominated flow problems. A series of numerical examples including a transport
problem in the Mediterranean sea were considered to test the accuracy of the proposed method. A
comparison to the conventional semi-Lagrangian finite volume method were also performed in the present
study. The obtained results using the present adjusted advection algorithm show good solution accuracy
and less numerical dissipation compared to the results obtained using the conventional semi-Lagrangian
method. It should be mentioned that, since the present method uses fractional steps to separately resolve
the convection and the diffusion terms, the overall accuracy is first order and to increase its accuracy,
high-order splitting operators should be employed. The future research should also be focused on the
extension of these techniques to systems of nonlinear convection-dominated problems on unstructured
meshes. The computational efficiency of the method can be further improved by advanced interpolation
procedures and optimization of the code. A desirable study would also be a more thorough evaluation of
the method accuracy in the semi-Lagrangian finite volume method for three-dimensional problems. The
computational domains in these problems are more typical of realistic cases and is expected to be more
interesting and serve as a better test of efficiency and accuracy.
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[30] A. Staniforth and Côté J. Semi-Lagrangian integration schemes for the atmospheric models: A
review. We. Rev., 119:2206–2223, 1991.

[31] C. Temperton and A. Staniforth. An efficient two-time-level Galerkin-characteristics semi-implicit
integration scheme. Quart. J. Roy. Meteor. Soc., 113:1025–1039, 1987.

[32] T. Yabe, R. Tanaka, T. Nakamura, and F. Xiao. An exactly conservative semi-Lagrangian scheme
(CIP–CSL) in one dimension. Monthly Weather Review, 129(2):332–344, 2001.

[33] Z. Zhang. Conservative finite-difference methods on general grids. SIAM Review, 39(2):367–369,
1997.

25



Citation on deposit: Asmouh, I., El-Amrani, M., Seaid, 

M., & Yebari, N. (2020). A Conservative Semi-Lagrangian 

Finite Volume Method for Convection–Diffusion Problems 

on Unstructured Grids. Journal of Scientific Computing, 

85(1), Article 11. https://doi.org/10.1007/s10915-020-

01316-8 

For final citation and metadata, visit Durham Research Online URL: 

https://durham-repository.worktribe.com/output/1233015  

Copyright statement: This content can be used for non-commercial, personal 

study. 

https://doi.org/10.1007/s10915-020-01316-8
https://doi.org/10.1007/s10915-020-01316-8
https://durham-repository.worktribe.com/output/2873617

