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2 Dpto. Matemáticas Applicada, Universidad Rey Juan Carlos, 28933 Móstoles-Madrid, Spain
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Abstract

We present an efficient Galerkin-characteristic finite element method for the numerical solution of
convection-diffusion problems in three space dimensions. The modified method of characteristics is used
to discretize the convective term in a finite element framework. Different types of finite elements are
implemented on three-dimensional unstructured meshes. To allocate the departure points we consider
an efficient search-locate algorithm for three-dimensional domains. The crucial step of interpolation
in the convection step is carried out using the basis functions of the tetrahedron element where the
departure point is located. The resulting semi-discretized system is then solved using an implicit time-
stepping scheme. The combined method is unconditionally stable such as no Courant-Friedrichs-Lewy
condition is required for the selection of time steps in the simulations. The performance of the proposed
Galerkin-characteristic finite element method is verified for the transport of a Gaussian sphere in a
three-dimensional rotational flow. We also apply the method for simulation of a transport problem
in a three-dimensional pipeline flow. In these test problems, the method demonstrates its ability to
accurately capture the three-dimensional transport features.

Keywords. Three-dimensional convection-diffusion equations; Galerkin-characteristic method; Finite
elements; Unstructured grids; Convection-dominated problems.

1 Introduction

In many practical transport problems from engineering and mathematical sciences, the governing equa-
tions involve convection-dominated flow systems. This class of problems has important applications in
a variety of physical and engineering areas such as weather prediction, ocean circulation, petroleum
reservoir among others. The physical phenomena in these areas can be modeled by transport-diffusion
equations with the property that the convective terms are distinctly more important than the diffu-
sive terms; particularly when certain nondimensional parameters reach high values. Examples of these
parameters include the Peclet number for convection-diffusion equations and the Reynolds number for
incompressible Navier-Stokes equations. Furthermore, it is well known that for large values of these pa-
rameters, the convective terms are a source of computational difficulties and nonphysical oscillations. In
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addition, steep fronts and boundary layers are among the difficulties that most of Eulerian finite element
methods fail to resolve accurately, see for example [12]. In general, the Eulerian methods use fixed grids
and incorporate some upstream weighting in their formulations to stabilize the spatial discretization.
As examples of Eulerian methods we mention the Petrov-Galerkin methods, the streamline diffusion
methods, discontinuous Galerkin methods and also many other methods such as the high resolution
methods from computational fluid dynamics, in particular, the Godunov methods and the essentially
non-oscillatory methods, see [3, 19] among others. The main limitation of these methods is the stability
conditions which impose a severe restriction on the size of time steps taken in the simulations. Needless
to mention that the complexity and the huge memory requirements of such methods make the state of
art in this area more advanced for two-dimensional problems than their three-dimensional counterparts.

The modified method of characteristics is second-order accurate in space and time provided the
characteristic curves are exactly calculated, compare for example [14, 22]. However, for general convection
problems, the accuracy of the method depends on the order of the interpolation procedure used to
calculate the departure points and on the time integration procedure. Theoretical analysis of convergence
and stability of the Galerkin-characteristic finite element method have been carried out in many studies,
see for example [5, 14, 22, 6]. It should be stressed that research works presented in these references
have focused on the analysis of the Galerkin-characteristic finite element method with no algorithmic
formulation of the method for engineering applications. Furthermore, our present study differs from the
investigations reported in [5, 14, 22, 6] in the fact that it focuses on the computational implementation
of the method for three-dimensional convection-diffusion equations on unstructured meshes and it also
presents a comprehensive numerical assessment of the method using several test problems. The main
objective of our work is the development of a highly efficient Galerkin-characteristic finite element method
to numerically solve the convection-dominated problems in three space dimensions. The central idea in
these methods is to rewrite the governing equations in terms of Lagrangian coordinates as defined by the
characteristics associated with the problem under consideration. The time derivative and the advection
terms are combined as a directional derivative along the characteristics, leading to a characteristic time-
stepping procedure. The Lagrangian treatment in these methods greatly reduces the time truncation
errors in the Eulerian methods, see for example [17, 24]. Furthermore, the Galerkin-characteristic finite
element method offers the possibility of using time steps that exceed those permitted by the Courant-
Friedrichs-Lewy (CFL) stability condition in Eulerian-based methods for convection-dominated problems.
A class of Galerkin-characteristic methods for solving two-dimensional problems has been investigated in
[5, 14, 22, 9, 8, 7] among others. Solving three-dimensional advection-diffusion problems has also been
reported in [4, 11, 13, 25, 10] among others. Most of these references considered linear advection-diffusion
problem with constant coefficients or used structured meshes for the spatial discretization. It should be
noted that tetrahedral finite elements are attractive because of their flexibility for representing irregular
boundaries and for local mesh refinements. It should also be noted that numerical comparisons between
the Galerkin-characteristic finite element method and a class of Eulerian finite element methods have
been performed in [7] for two-dimensional convection-dominated flow problems and it has been found
that the Galerkin-characteristic finite element method is far more efficient than its Eulerian counterparts.

Our objective in this work is to develop an efficient finite element method for solving three-dimensional
convection-diffusion equations using unstructured grids. It has been shown that the method is uncondi-
tionally stable provided the characteristics are transported by a divergence-free field that is deduced from
the flow velocity. The case where the characteristics are transported by a discrete velocity field which
is not divergence-free has been studied in [22]. Analysis of a Galerkin-characteristic method using the
standard finite difference discretization has been presented in [5] for convection-diffusion equations. In
all these references the convergence and stability of the method are proven under the assumption that all
the inner products are calculated exactly. Furthermore, the evaluation of the solutions at the departure
points in [5, 14, 22] is performed using an L2 projection on the finite element space. The present study
represents a step towards the implementation of an unconditionally stable Galerkin-characteristic method
for the solution of convection-dominated problems in three space dimensions. The unconditional stability
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of the proposed method is inherited from the use of the method of characteristics for the convection part
and a fully implicit scheme for the diffusion part. In addition, a rigorous analysis of convergence and
stability of the Galerkin-characteristic method can be found in [6] in the framework of finite element dis-
cretizations. The paradigm one should keep in mind is that, in the Galerkin-characteristic finite element
context, the interpolation consists of evaluating the solution at the characteristic curves using the nodal
basis functions associated with the host element where the departure points are located. In the current
work, we consider both the linear and quadratic basis functions on the host tetrahedron to calculate the
solution at the characteristic curves.

Numerical results are presented for a linear advection-diffusion problem in a three-dimensional rotat-
ing velocity field and a transport problem in a well-developed pipeline flow. In the first case, analytical
solution is available and thus it can be used to assess the accuracy of the proposed approach. In the
other case, mesh convergence is shown to illustrate the ability of the Galerkin-characteristic finite ele-
ment method to resolve transport problems in irregular domains subject to complex flows. Our method
highly approximates numerical solution to these three-dimensional convection-diffusion problems. The
obtained results demonstrate good front resolution without any oscillations near the areas with steep
gradients or extensive numerical dissipation and without relying on very refined meshes. It should be
mentioned that the main limitation of the Galerkin-characteristic finite element method in its current
form remains the failure to conserve the mass for hyperbolic systems of conservation laws. In this case,
correction terms and limiting procedures need to be accounted for in order to remedy this drawback.
This paper is organized as follows. Formulation of the Galerkin-characteristic finite element method for
three-dimensional convection-dominated problems is presented in section 2. The implementation of the
method for the solution of convection-diffusion equations is also discussed in this section. In section 3, we
examine the numerical performance of the proposed method using several test examples of convection-
diffusion problems in three-dimensional domains. The proposed method is shown to enjoy the expected
accuracy as well as the efficiency. Concluding remarks are summarized in section 4.

2 Three-dimensional Galerkin-characteristic finite element method

In this section we formulate the Galerkin-characteristic method in tetrahedral finite element framework
for the numerical solution of the following three-dimensional convection-diffusion problem

∂u

∂t
+ v(x, t) · ∇u− ν∆u = f(x, t), (x, t) ∈ Ω× (0, T ],

(1)
u(x, 0) = u0(x), x ∈ Ω,

where x = (x, y, z)T is the position variable, ∇ = ( ∂
∂x ,

∂
∂y ,

∂
∂z )

T the gradient operator, Ω a spacial bounded

domain in R3 with boundary ∂Ω, and (0, T ] a time interval. Here, u(x, t) denotes the concentration
of some species, v(x, t) = (v1(x, t), v2(x, t), v3(x, t))

T the velocity field assumed to be given either by
measurements or by solving a flow problem such as Navier-Stokes equations. In (1), ν is the diffusion
coefficient and u0(x) a given initial solution. Note that the convection-diffusion equations (1) have to
be solved for the time interval (0, T ] in the spatial domain Ω equipped with given boundary and initial
conditions. In practice, the boundary conditions are problem-dependent and their discussion is postponed
for section 3 where numerical examples are discussed. For convection-diffusion equations, we also use the
material derivative

Du

Dt
=

∂u

∂t
+ v(x, t) · ∇u, (2)

to model the convective term in (1). Note that the total derivative (2) measures the change rate of the
function u following the trajectories of the flow particles.

To discretize the spatial domain Ω, we generate a quasi-uniform partition Ωh ⊂ Ω of small elements
Tj that satisfy the following conditions:
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(i) Ωh =
Ne⋃
j=1

Tj , where Ne is the number of elements in Ωh.

(ii) If Ti and Tj are two different elements of Ωh, then

Ti ∩ Tj =


Pij , a mesh point, or

Γij , a common face, or

∂Γij , a common edge, or

∅, empty set.

(iii) There exists a positive constant k such that for all j ∈ {1, . . . , Ne}, Rj

hj
> k (hj ≤ h), where Rj is

the radius of the sphere inscribed in Tj , and hj is the largest edge of Tj .

The conforming finite element space for the solution that we use is defined as

Vh =
{
Ch ∈ C0(Ω) : Ch

∣∣
Tj

∈ P (Tj), ∀ Tj ∈ Ωh

}
, (3)

with
P (Tj) =

{
p(x) : p(x) = p̂ ◦ F−1

j (x), p̂ ∈ Pm(T̂ )
}
,

where p̂(x) is a polynomial of degree ≤ m defined on the element T̂j and Pm(T̂ ) is the set of polynomials
of degree ≤ m defined on the reference element T̂ . Here, Fj : T̂ −→ Tj is an invertible one-to-one
mapping between physical and reference elements.

For the time discretization, we divide the time interval into N subintervals [tn, tn+1] with length
∆t = tn+1− tn for n = 0, 1, . . . , N . We also use the notation wn to denote the value of a generic function
w at time tn. Hence, we formulate the finite element solution to un(x) as

unh(x) =
M∑
j=1

Un
j ϕj(x), (4)

where M is the number of solution mesh points in the partition Ωh. Here, the functions Un
j are the

corresponding nodal values of unh(x) defined as Un
j = unh(xj) where {xj}Mj=1 are the set of solution mesh

points in the partition Ωh. In (4), {ϕj}Mj=1 are the set of global nodal basis functions of Vh characterized
by the property ϕi(xj) = δij with δij denoting the Kronecker symbol. We introduce {x1, . . . ,xN} the
set of N node points in the element Tj . We also define {φj}Nj=1 the set of local basis functions for Tj in
Vh characterized by the property φi(xj) = δij . Hereafter, unless otherwise stated, the subscripts h and j
are used to refer to coefficients associated with the whole mesh Ωh and a mesh element Tj , respectively.
Notice that the set {φj}Nj=1 is a local restriction on the element Tj of the set of the global basis functions
{ϕj}Mj=1.

2.1 Approximation of characteristic curves

The modified method of characteristics aims to impose a regular grid at the new time level and to
backtrack the flow trajectories to the previous time level. At the old time level, the required variables
are evaluated by interpolation from their known values on a regular grid. Following for example [16, 5],
the characteristic curves associated with the equation (2) are the solution of the initial value problem

dXh(t;xh)

dt
= v

(
Xh(t;xh), t

)
, t ∈ [tn, tn+1],

(5)
Xh(tn+1;xh) = xh.
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Note that Xh(t;xh) =
(
Xh(t;xh), Yh(t;xh), Zh(t;xh)

)T
is the departure point at time t of a particle that

will arrive in xh =
(
xh, yh, zh

)T
at time tn+1. In general, the Galerkin-characteristic method does not

follow the flow particles forward in time, as the Lagrangian method does, instead it traces backwards the
position at time tn of particles that will reach the points of a fixed mesh at time tn+1. Therefore, the
Galerkin-characteristic method avoids the grid distortion difficulties that the conventional Lagrangian
schemes have. The solutions of ordinary differential equations (5) can be expressed as

Xh(tn;xh) = xh −
∫ tn+1

tn

v (Xh(t;xh), t) dt. (6)

To evaluate the integral in (6), we use a second-order extrapolation based on the mid-point rule used in
the context of semi-Lagrangian schemes to integrate the weather prediction problems in [23]. Hence, we
use dh to denote the displacement between a mesh point xh on the new level and the departure point
Xh(tn;x) of the trajectory to this point on the previous time level i.e.

dh = xh −Xh(tn;xh). (7)

Applying the mid-point rule to approximate the integral in (6) yields

dh = ∆tvh

(
Xh(tn+ 1

2
;xh), tn+ 1

2

)
.

Using the second-order extrapolation

vh

(
xh, tn+ 1

2

)
=

3

2
vh (xh, tn)−

1

2
vh (xh, tn−1) ,

and the second-order approximation

Xh(tn+ 1
2
;xh) = xh −

1

2
dh,

we obtain the following implicit formula for dh

dh = ∆t

(
3

2
vh

(
xh −

1

2
dh, tn

)
− 1

2
vh

(
xh −

1

2
dh, tn−1

))
.

To compute dh we consider the following successive iteration procedure:

d
(0)
h = ∆t

(
3

2
vh (xh, tn)−

1

2
vh (xh, tn−1)

)
,

(8)

d
(k)
h = ∆t

(
3

2
vh

(
xh −

1

2
d
(k−1)
h , tn

)
− 1

2
vh

(
xh −

1

2
d
(k−1)
h , tn−1

))
, k = 1, 2, . . . .

The iterations (8) are terminated when the following criteria∥∥d(k) − d(k−1)
∥∥∥∥d(k−1)

∥∥ < ε, (9)

is satisfied for the Euclidean norm ∥ · ∥ and a given tolerance ε. In our computational test examples, the
iterations in (8) were continued until the trajectory changed by less than 10−7. However, in practice it
is not recommended to repeat the iteration process more than few times due to efficiency considerations.
Once an approximation of the displacement dh is achieved in (8), the characteristic curves are obtained
for each gridpoint from (7) as

Xh(tn;xh) = xh − dh.
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In general the departure points Xh(tn;xh) do not coincide with the spatial position of a gridpoint. A
requirement is then that the scheme to compute Xh(tn;xh) be equipped with a search-locate algorithm
to find the host element where such point is located. To perform this step in our computations, we have
implemented a search-locate algorithm especially designed in [1] for the semi-Lagrangian method that
works for triangles, quadrilaterals, tetrahedra, and hexahedra elements in unstructured discretizations.
Since the departure point Xh(t;xh) would not lie on a mesh point, the solution field at the characteristic
feet must be obtained by interpolation from known values at the gridpoints of the element whereXh(t;xh)
belongs. Here, the Lagrangian interpolation is performed in the host element of departure points using the
finite element basis functions. Therefore, an advantage of the finite element method is that it can employ
a high-order basis functions and there is no need for constructing explicitly interpolation polynomials
as usually carried out in the finite difference discretizations, compare the references [18, 15, 20] among
others. Thus, the finite element solution to ũnh = u (Xh(tn;xh), tn) is approximated by

ũnh =

M∑
j=1

Ũn
j ϕj , (10)

where Ũn
j are evaluated by finite element interpolation of unh(x) at the feet of characteristic curves

Xh(tn;xh). Note that, this procedure needs less computational work than using a piecewise exact method
for projecting the information from the background Eulerian grid onto the Lagrangian grid as those
reported in [5, 14] for two-dimensional problems.

2.2 Implementation for convection-diffusion problems

In the current study, to deal with the diffusive part in the equations (1) we consider the second-order
Crank-Nicolson integration method along the characteristics. Thus, assuming the solution uh is approx-
imated by the characteristic method, then the weak formulation reads(

Du

Dt
, vh

)
− (ν∆uh, vh) = (fh, vh) , ∀ vh ∈ Wh, (11)

where

Wh =

{
uh ∈ Vh : ν

∂uh
∂n

∣∣∣∣
∂Ω

= 0

}
.

By virtue of definitions of the finite element operators given above, it follows that (11) reduces to a
system of ordinary differential equations as

[M]
DU

Dt
+ [S]U = [M]F, t ∈ [tn, tn+1], (12)

where Ũn known as initial condition at tn. In (12), U = (U1, . . . , UM )T , [M] and [S] are sparse symmetric
matrices the elements of which are given by

mij =

∫
Ω
ϕiϕj dx, i, j = 1, 2 . . . ,M,

and

sij =

∫
Ω
ν∇ϕi∇ϕj dx, i, j = 1, 2 . . . ,M,

respectively. Applied to the semi-discrete equations (12), the Crank-Nicolson scheme yields

[M]
Un+1 − Ũn

∆t
+

1

2
[S]Un+1 +

1

2
[S] Ũn =

1

2
[M]Fn+1 +

1

2
[M] F̃n, (13)
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Figure 1: Uniform meshes with spatial steps h = 1
32 (left), 1

64 (middle) and 1
128 (right) used in our

simulations for advection-diffusion problems in circular and elliptical flow fields.

where all the terms with tilde are evaluated at the departure point X (tn;x). Note that the considered
method requires solution of uncoupled elliptic problems such that their finite element discretization
leads to well-conditioned linear systems of algebraic equations for which, very efficient solvers can be
implemented. Therefore, by taking advantage of these properties we solve the linear systems in (13)
by the conjugate gradient solver using an incomplete Cholesky factorization. This yields to an efficient
method for solving this class of linear systems of algebraic equations, compare for example [7].

3 Numerical results

In this section we present numerical results for several examples to demonstrate the performance of
the proposed Galerkin-characteristic finite element method. For the first class of examples, analytical
solutions are readily available which makes it ideal for a quantitative as well as qualitative validation of
the proposed method. We compare numerical results obtained using the linear P1 and quadratic P2 finite
elements for these examples. We also present numerical results for a transport problem in pipeline flows.
The objective of this test example is to illustrate that, using reasonably large time steps, the Galerkin-
characteristic finite element method reproduces the corresponding transport patterns and it accurately
captures the flow structures with very little numerical diffusion even after long time simulations. Here,
we define the CFL number associated to the equations (1) as

CFL =
√

CFL2
x +CFL2

y +CFL2
z, (14)

where

CFLx = max
x,y,z

|v1|
∆t

h
, CFLy = max

x,y,z
|v2|

∆t

h
, CFLz = max

x,y,z
|v3|

∆t

h
.

Notice that to reduce the computational cost, the timesteps ∆t are chosen as large as possible. This makes
most explicit Eulerian-based finite element methods noncompetitive, since they are subject to stability
restriction conditions. Therefore, the criteria of choosing time steps in our algorithm was mainly based
on accuracy considerations. Practically, we take the spatial step h proportional to the time step ∆t, so
the error decreases quadratically in both h and ∆t. In order to obtain convergence at a quadratic rate,
it is only needed that h/∆t is bounded above. In other words, our proposed method is unconditionally
stable with no need to satisfy a CFL-type condition. All the computations were performed on a Pentium
PC with one processor of 2.2 GB of RAM and 1.8 GHz using serial Fortran compiler.
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P1 elements P2 elements Exact

Figure 2: Contours of the solution in the x-z plane at y = 0 for pure advection of rotating the Gaussian
sphere after 2 revolutions using CFL = 10 and meshes with h = 1

64 (first row) and h = 1
128 (second row).

3.1 Rotating a Gaussian sphere in circular flow fields

We consider the advection-diffusion problem of rotating a Gaussian sphere in circular three-dimensional
flow fields. The two-dimensional version of this example has been extensively used in the literature to
test the accuracy of transport methods, see for example [16, 21]. The equations are of the form (1) with
v = (−ωy, ωx, 0)T . Initial and boundary conditions are taken from the analytical solution

u(x, y, z, t) =
σ2

σ2 + ωνt
exp

(
−(x̄− x0)

2 + (ȳ − y0)
2 + (z − z0)

2

σ2 + ωνt

)
,

where x̄ = x cos(ωt) + y sin(ωt), ȳ = −x sin(ωt) + y cos(ωt), x0 = −0.25, y0 = 0 and σ2 = 0.002. The
computational domain is the unit cube [−1

2 ,
1
2 ] × [−1

2 ,
1
2 ] × [−1

2 ,
1
2 ] and the time period required for one

complete rotation is π
2 . In all our simulations for this test example, we use uniform meshes with spatial

steps h = 1
32 ,

1
64 and 1

128 as shown in Figure 1. From the definition (14), the CFL number associated to

this example is ω
√
2
2

∆t
h and it is set to different values in our simulations.

In Figure 2 we illustrate 10 equi-distributed contourlines of the cross-section solutions in the x-z plane
at y = 0 obtained using P1 and P2 elements after 1 revolution using a CFL = 10 and two structured
meshes with h = 1

64 and h = 1
128 . For a comparison reason, we have also included analytical solutions

in this figure. It is evident that the solutions obtained using P2 elements are more accurate than those
obtained using the P1 elements for both meshes considered. The one-dimensional plots in Figure 3
and Figure 4 correspond to cross-section solutions at y = z = 0 of the results obtained after 1 and 2
revolutions, respectively. We consider three different CFL numbers in this case namely, CFL = 2.5, 5
and 10. A visual comparison of the results in these figures shows severe numerical dissipation in the
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Table 1: Results for pure advection of rotating the Gaussian sphere after 1 and 2 revolutions using
different meshes and values of CFL. The analytical maximum is 1 and the CPU times are given in
seconds.

After 1 revolution

P1 elements P2 elements

CFL h Max L1-error CPU Max L1-error CPU

1
32 0.041340 7.302728E-04 0.032 0.385970 4.008634E-04 0.269

2.5 1
64 0.149291 5.856856E-04 0.237 0.833229 7.841065E-05 2.149
1

128 0.440721 2.966778E-04 2.091 0.986686 6.424644E-06 17.071

1
32 0.089497 7.073935E-04 0.014 0.561956 2.592411E-04 0.138

5 1
64 0.276455 4.458083E-04 0.127 0.887428 4.158871E-05 1.092
1

128 0.604019 1.806305E-04 1.090 0.990603 3.842980E-06 9.043

1
32 0.220604 5.739867E-04 0.008 0.601914 1.856439E-04 0.067

10 1
64 0.425191 3.058723E-04 0.065 0.944249 2.421203E-05 0.546
1

128 0.746478 1.021212E-04 0.558 0.994381 2.302662E-06 4.499

After 2 revolutions

P1 elements P2 elements

CFL h Max L1-error CPU Max L1-error CPU
1
32 0.018815 7.003067E-04 0.062 0.290810 5.099891E-04 0.526

2.5 1
64 0.083973 6.945126E-04 0.471 0.756841 1.304702E-04 4.152
1

128 0.282445 4.374713E-04 4.089 0.973744 1.187163E-05 33.891
1
32 0.046456 7.338695E-04 0.028 0.463282 3.724758E-04 0.268

5 1
64 0.167037 5.792228E-04 0.267 0.844775 6.649892E-05 2.170
1

128 0.434056 2.978817E-04 2.245 0.984570 6.565027E-06 17.671
1
32 0.107079 7.015479E-04 0.015 0.547961 2.631193E-04 0.141

10 1
64 0.285538 4.403378E-04 0.128 0.912359 4.084245E-05 1.109
1

128 0.590172 1.805293E-04 1.131 0.991105 3.863595E-06 9.091
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CFL = 2.5 CFL = 5 CFL = 10

Figure 3: Cross-sections of the solution at y = z = 0 for pure advection of rotating the Gaussian sphere
after 1 revolution using different values of CFL numbers and meshes with h = 1

64 (first row) and h = 1
128

(second row).

CFL = 2.5 CFL = 5 CFL = 10

Figure 4: Same as Figure 3 but after 2 revolutions.
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P1 elements P2 elements Exact

Figure 5: Contours of the solution in the x-z plane at y = 0 for advection-diffusion of rotating the
Gaussian sphere after 2 revolutions using ν = 10−5, CFL = 10 and meshes with h = 1

64 (first row) and
h = 1

128 (second row).

P1 solutions. This numerical dissipation is more pronounced for small values of CFL and it reduces as
the mesh is refined. For a mesh with h = 1

64 and after 2 revolutions, the the solutions obtained using
P1 elements exhibit substantially large diffusion, specially at the feet of the Gaussian pulse where the
gradient is sharp. From the same figures we observe an absence of this numerical dissipation in the P2

results. Note that the accuracy in the proposed Galerkin-characteristic finite element method improves as
the value of CFL increases, compare the results obtained using CFL = 2.5 and CFL = 10 in Figure 3 and
Figure 4. It is clear that the Galerkin-characteristic finite element method using P2 elements performs
best for this test example.

A quantitative comparison of the results computed using P1 and P2 elements for different values of
CFL numbers and meshes is summarized in Table 1. We report the L1-error, the maximum (Max) values
of the computed solutions, and the CPU times given in seconds. We present numerical results after 1 and
2 revolutions using different meshes and CFL numbers. In terms of the considered error, the P2 results
are more accurate than the results obtained using the P1 elements for all the CFL numbers considered.
From the values of Max in Table 1 we observe very low values for the P1 results compared to those
obtained using the P2 elements. After 2 rotations, the Galerkin-characteristic finite element method
using P1 yields large values of the L1-error and low values for the maximum of the computed solutions
for the considered transport conditions. It is also evident that the CPU times of the P2 elements are
larger than the CPU time of the P1 elements. For the considered adevction conditions with CFL = 10,
the CPU time of the quadratic P2 elements is about nine times larger than the CPU time of the linear
P1 elements.

Next we include the physical diffusion in the problem by solving the advection-diffusion equation (1)
with two diffusion coefficients ν = 10−6 and ν = 10−5. The obtained results for ν = 10−5 using the P1
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CFL = 2.5 CFL = 5 CFL = 10

Figure 6: Cross-sections of the solution at y = z = 0 for advection-diffusion of rotating the Gaussian
sphere after 1 revolution using ν = 10−5, different values of CFL and meshes with h = 1

64 (first row) and
h = 1

128 (second row).

and P2 elements along with exact solutions are presented in Figure 5 for 10 equi-distributed contourlines
of the cross-section solutions in the x-z plane at y = 0 after 2 revolution using a CFL = 10 and two
meshes with h = 1

64 and h = 1
128 . Figure 6 shows the cross-section solutions at y = z = 0 of the results

obtained after 2 revolutions. As in the previous simulations, it is clear from the results presented that
the numerical diffusion is more pronounced in the results obtained using the P1 elements, compare the
two-dimensional contours in Figure 5 and the one-dimensional cross-sections in Figure 6. Again the
Galerkin-characteristic finite element method using P2 elements performs best for this test example of
advection-diffusion problems.

To quantify the comparison between the results computed using P1 and P2 elements, the L1 errors,
maximum values of the computed solutions and the CPU times are presented in Table 2 for ν = 10−6

and ν = 10−5. We present numerical results after 1 revolution using different meshes and values of
CFL. In terms of the L1 errors, the P2 results are more accurate than the results obtained using the
P1 elements for both diffusion coefficients considered. From the values of Max in Table 2 for ν = 10−6

and ν = 10−5 we observe low values for the P1 results that are substantially improved in the P2 results.
Concerning the computational cost, the CPU times of the P2 elements are larger than the CPU time
of the P1 elements. Note that timings, in seconds, include all aspects of computations (grid generation,
search-locate procedure, reconstruction of matrices and solution of linear systems). It is to be remarked
that, the Galerkin-characteristic finite element method is typically built to solve this class of convection-
dominated advection-diffusion problems using times steps ten to twenty times larger than its Eulerian
counterparts.
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Table 2: Results for advection-diffusion of rotating the Gaussian sphere for two diffusion coefficients
ν = 10−5 and ν = 10−6 after 1 revolutions using different meshes and values of CFL. The analytical
maximum for ν = 10−5 and ν = 10−6 are 0.969540 and 0.996868, respectively. The CPU times are given
in seconds.

ν = 10−5

P1 elements P2 elements

CFL h Max L1-error CPU Max L1-error CPU

1
32 0.040616 7.260997E-04 0.311 0.373080 4.005624E-04 0.591

2.5 1
64 0.145579 5.835766E-04 1.069 0.794779 7.552244E-05 7.219
1

128 0.426542 2.947165E-04 5.998 0.938866 8.405223E-06 37.014

1
32 0.087743 7.079410E-04 0.145 0.539201 2.587153E-04 0.241

5 1
64 0.267674 4.413862E-04 0.531 0.846346 4.080042E-05 3.312
1

128 0.580847 1.811738E-04 3.311 0.945034 7.950874E-06 18.911

1
32 0.213674 5.670267E-04 0.017 0.577416 1.870931E-04 0.113

10 1
64 0.409034 3.044726E-04 0.272 0.901420 2.354583E-05 1.613
1

128 0.714854 1.037857E-04 1.679 0.950017 7.745346E-06 9.409

ν = 10−6

P1 elements P2 elements

CFL h Max L1-error CPU Max L1-error CPU

1
32 0.219893 5.728901E-04 0.191 0.384640 4.019564E-04 1.010

2.5 1
64 0.148908 5.053470E-04 1.517 0.829107 7.808369E-05 7.141
1

128 0.439262 2.964940E-04 9.231 0.981404 6.303629E-06 49.981

1
32 0.089316 7.068638E-04 0.051 0.559582 2.605622E-04 0.461

5 1
64 0.275546 4.453763E-04 0.731 0.883068 4.142742E-05 3.138
1

128 0.601621 1.807011E-04 4.819 0.985718 3.825651E-06 25.411

1
32 0.041256 7.256858E-04 0.026 0.599351 1.869357E-04 0.151

10 1
64 0.423516 3.057508E-04 0.342 0.939765 2.401774E-05 1.951
1

128 0.743204 1.022450E-04 2.330 0.989836 2.270755E-06 12.719

3.2 Rotating a pulse in elliptical flow fields

In this example we consider a fully three-dimensional advection problem of rotating a pulse in oblique
flow fields proposed in [2]. The governing equations are given by (1) where the velocity is defined as
u = (−ωy, ωx, (x+ y)/2)T with ν = 0 and ω = 4. Initial and boundary conditions are derived from the
analytical solution

u(x, y, z, t) =


(1 + cos (ωπr))2

4
, if r <

1

ω
,

0, if r ≥ 1

ω
,

where r =
√
(x̄− x0)2 + (ȳ − y0)2 + (z̄ − z0)2 with x0 = −0.25, y0 = 0, z0 = 0.25, x̄ = x cos(ωt) +

y sin(ωt), ȳ = −x sin(ωt)+y cos(ωt) and z̄ = z− (x̄−x+ ȳ−y)/2. The computational domain is the unit
cube Ω = [−0.5, 0.5]3 covered by different uniform meshes and the time period required for one complete
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oblique rotation is π
2 . As in the previous example, we present results for different values of CFL and the

time steps used in the simulations are calculated using the definition (14).

t = 0 t = π
4 t = 3π

4

Figure 7: Numerical iso-surfaces (first row) and analytical results (second row) for rotating a pulse in
elliptical flow fields at three different times using h = 1

64 and CFL =10.

In Figure 7 we display the iso-surfaces of the initial solution and the computed solutions at two
different times, t = π

4 and 3π
4 using a mesh with P2 elements and h = 1

64 . For comparison, analytical
solutions are also included in this figure. It is clear that the Galerkin-characteristic finite element method
accurately captures the expected transport and its propagation along the elliptical trajectory. Figure 8
and Figure 9 exhibit 10 equi-distributed contourlines of the cross-section solutions in the x-z plane at
y = 0 after 1 and 2 revolutions, respectively. We present analytical and computational results using P1

and P2 elements with CFL = 10 and two meshes with h = 1
64 and h = 1

128 . As expected, the numerical
results obtained using P1 elements are more diffusive than those computed using P2 elements. To further
visualize this effect we display in Figure 10 and Figure 11 the cross-section along the horizontal line at
y = z = 0 for the results using three different values of CFL = 2.5, 5 and 10. It is clear that the transport
resolution and location are deteriorated with the excessive dissipation included by the P1 elements. On
the other hand, the P2 solutions are free of excessive numerical diffusion and the transport is well resolved
without requiring fine meshes or small time steps.

Now we turn our attention to a quantitative comparison of the results computed using P1 and P2

elements for different values of CFL and mesh densities. In Table 3 we list the L1-error, the maximum
(Max) values of the computed solutions, and the CPU times for results computed using P1 and P2

elements for different values of CFL and meshes after 1 and 2 revolutions. Under the considered transport
conditions, the results obtained using the P2 elements are more accurate than the results obtained using
the P1 elements for both 1 and 2 revolutions. Notice that low values of Max have been detected in the
P1 solutions compared to those obtained for the P2 solutions. Refining the mesh or increasing the CFL
numbers yield improvements in the results obtained for the L1-error and maximum values of the computed
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P1 elements P2 elements Exact

Figure 8: Contours of the solution in the x-z plane at y = 0 for a pulse in elliptical flow fields after 1
revolution using CFL = 10 and meshes with h = 1

64 (first row) and h = 1
128 (second row).

P1 elements P2 elements Exact

Figure 9: Same as Figure 8 but after 2 revolutions.
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CFL = 2.5 CFL = 5 CFL = 10

Figure 10: Cross-sections of the solution at y = z = 0 for a pulse in elliptical flow fields after 1 revolution
using different values of CFL and meshes with h = 1

64 (first row) and h = 1
128 (second row).

CFL = 2.5 CFL = 5 CFL = 10

Figure 11: Same as Figure 10 but after 2 revolutions.
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Table 3: Results for rotating a pulse in elliptical flow fields after 1 and 2 revolutions using different
meshes and values of CFL. The analytical maximum is 1 and the CPU times are given in seconds.

After 1 revolution

P1 elements P2 elements

CFL h Max L1-error CPU Max L1-error CPU

1
32 0.044876 7.079468E-03 0.031 0.642729 2.394240E-03 0.282

2.5 1
64 0.262814 4.997751E-03 0.262 0.958052 4.263776E-04 2.295
1

128 0.640505 2.233033E-03 2.161 0.997189 7.976341E-05 20.046

1
32 0.126730 6.020042E-03 0.015 0.810252 1.437504E-03 0.140

5 1
64 0.448218 3.476596E-03 0.133 0.956235 3.873386E-04 1.172
1

128 0.776398 1.269638E-03 1.178 0.998302 6.639879E-05 10.946

1
32 0.286340 4.490564E-03 0.007 0.858095 9.906020E-04 0.073

10 1
64 0.634328 2.139306E-03 0.072 0.986434 1.758627E-04 0.613
1

128 0.872638 6.863190E-04 0.669 0.998905 5.062391E-05 6.409

After 2 revolutions

P1 elements P2 elements

CFL h Max L1-error CPU Max L1-error CPU
1
32 0.116924 6.694012E-03 0.061 0.494941 3.467405E-03 0.555

2.5 1
64 0.126201 6.317412E-03 0.538 0.920680 7.284590E-04 4.471
1

128 0.453411 3.457695E-03 4.336 0.994886 1.116419E-04 40.477

1
32 0.043784 6.860131E-03 0.030 0.703023 2.191195E-03 0.276

5 1
64 0.266623 4.890499E-03 0.236 0.959980 4.103942E-04 2.327
1

128 0.632906 2.167155E-03 2.379 0.997024 8.671431E-05 22.243

1
32 0.013168 7.093278E-03 0.016 0.809315 1.518063E-03 0.148

10 1
64 0.462410 3.317591E-03 0.141 0.979549 2.702004E-04 1.243
1

128 0.774063 1.241712E-03 1.330 0.998416 6.579213E-05 12.889

solutions for both P1 and P2 elements but the results obtained using P2 elements are more accurate than
those obtained using P1 elements. Needless to say that for this convection-dominated situation, the
Galerkin-characteristic finite element method does not diffuse the pulse or give spurious oscillations
near the steep gradients. Our Galerkin-characteristic finite element method accurately approximates the
solution to this three-dimensional advection problem.

3.3 Passive transport in a pipe

Our final concern is to ascertain the behavior of the Galerkin-characteristic finite element method to solve
pure transport problems in pipelines. To this end we consider a passive transport of concentration in a
deformed pipe subject to incompressible flow. The geometry of the pipe is illustrated in Figure 12 and
a well developed velocity field shown in Figure 13 is assumed to be given by solving the incompressible
Navier-Stokes equations. Initially, the concentration c(x, y, z, 0) = 0 and a release source f is included in
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Figure 12: Geometry of the pipe used in our simulations.

Figure 13: Velocity field (left) and streamlines (right) used for passive transport in a deformed pipe.

Mesh A Mesh B

Figure 14: Computational meshes used in our simulations for passive transport in a deformed pipe.

Table 4: Mesh statistics and results for maximum concentration and CPU times (in seconds) for the
problem of a passive transport in a deformed pipe.

Mesh # of elements # of nodes Max CPU

Mesh A 67989 106693 0.203681 20.223

Mesh B 907892 1270219 0.283702 345.764

Mesh C 3351827 4590175 0.287182 850.864

Reference 5301234 7205051 0.287438 1490.378
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Mesh A Mesh B

Figure 15: Numerical results obtained for passive transport in a deformed pipe using Mesh A (first
column) and Mesh B (second column) at nine different instants. From top to bottom t = 0.3 s, 0.5 s,
1 s, 1.5 s, 2 s, 2.5 s, 3 s, 3.5 s and 4 s.

the system as

f(x, y, z, t) =


exp

(
−(x− 2)2 + y2 + z2

σ2

)
, if t < 1s,

0, if t ≥ 1s,

where σ2 = 0.008. In our computations, we use CFL = 10 and we consider a series of nonuniform meshes
with tetrahedral finite elements as depicted in Figure 14. The corresponding statistics of elements and
nodes are listed in Table 4. Note that Mesh C and the reference mesh are not included in Figure 14
because of their density which results in a heavily black plot. Figure 15 illustrates the concentration
patterns at nine different times, namely t = 0.3 s, 0.5 s, 1 s, 1.5 s, 2 s, 2.5 s, 3 s, 3.5 s and 4 s
obtained using Mesh A and Mesh B. For better insight, we show in Figure 16 horizontal cross-sections
of the concentration at y = z = 0. It is easy to see from both figures, that solutions obtained using
the Mesh A are far from those obtained by the Reference mesh. Increasing the density of elements,
the results for the Mesh B, Mesh C, and Reference Mesh are roughly similar. To further quantify the
results for these meshes we summarize in Table 4 the computational times and maximum values of the
concentration. Here, we present results obtained using the Galerkin-characteristic finite element method
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Figure 16: Cross-sections of the solution at y = z = 0 for the passive transport in a deformed pipe using
different meshes and at four different times.

on the considered meshes including the reference mesh. As can be observed, there is little differences
between the last two mesh levels. For instance, the discrepancies in the maximum values of concentration
on Mesh B and Reference Mesh are less than 0.25%. This difference becomes less than 0.018% on meshes
Mesh C and Reference Mesh. Therefore, bearing in mind the slight change in the results from Mesh B
and Mesh C at the expanse of rather significant increase in CPU times, the Mesh B is believed to be
adequate to obtain the results free of grid effects. From the computed results we can observe that the
complicated transport structures in the pipe being captured by the Galerkin-characteristic finite element
method. It is worth remarking that all these features have been achieved using time steps larger than
those required for Eulerian-based methods in convection-dominated flows.

4 Conclusions

In this study we have presented a class of unconditionally stable Galerkin-characteristic finite element
methods for solving convection-diffusion problems in three space dimensions. This method exploits the
interesting features offered by both techniques to construct a highly accurate algorithm for numerical
simulation of convection-diffusion problems. The important advantage of the proposed method is that,
the convective term that has to be treated carefully in most of Eulerian-based finite element methods has
been removed from the proposed method by using the modified method of characteristics to interpret

20



the transport nature of the equation. The favorable performance of the Galerkin-characteristic finite
element has been demonstrated using a series of numerical examples including transport in pipelines.
A comparison between linear P1 and quadratic P2 elements were also performed in the present study.
The obtained results using the P2 elements show good solution resolution and less numerical dissipation
compared to the results obtained using the P1 elements. This fact, as well as its favorable stability
properties, make it an attractive alternative for three-dimensional convection-diffusion solvers based on
Galerkin-characteristic finite element techniques. Finally, we should point out that due to the use of the
Lagrangian coordinates, the Galerkin-characteristic finite element method requires more implementation
work than the Eulerian methods which are relatively easy to formulate and to implement. The algorithms
presented in this study can be highly optimized for vector computers, because they do not require
nonlinear solvers and contain no recursive elements. Some difficulties arise from the fact that for efficient
vectorization the data should be stored contiguously within long vectors rather than three-dimensional
arrays. Future work will also concentrate on developing efficient Galerkin-characteristic finite element
method for nonlinear convection-diffusion problems including incompressible Navier-Stokes equations in
three space dimensions.
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