
Journal of Computational and Graphical Statistics

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/ucgs20

AddiVortes: (Bayesian) Additive Voronoi
Tessellations

Adam. J. Stone & John Paul Gosling

To cite this article: Adam. J. Stone & John Paul Gosling (16 Oct 2024): AddiVortes: (Bayesian)
Additive Voronoi Tessellations, Journal of Computational and Graphical Statistics, DOI:
10.1080/10618600.2024.2414104

To link to this article: https://doi.org/10.1080/10618600.2024.2414104

© 2024 The Author(s). Published with
license by Taylor and Francis Group, LLC

View supplementary material

Accepted author version posted online: 16
Oct 2024.

Submit your article to this journal

Article views: 275

View related articles

View Crossmark data

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=ucgs20

https://www.tandfonline.com/journals/ucgs20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/10618600.2024.2414104
https://doi.org/10.1080/10618600.2024.2414104
https://www.tandfonline.com/doi/suppl/10.1080/10618600.2024.2414104
https://www.tandfonline.com/doi/suppl/10.1080/10618600.2024.2414104
https://www.tandfonline.com/action/authorSubmission?journalCode=ucgs20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=ucgs20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/10618600.2024.2414104?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/10618600.2024.2414104?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/10618600.2024.2414104&domain=pdf&date_stamp=16%20Oct%202024
http://crossmark.crossref.org/dialog/?doi=10.1080/10618600.2024.2414104&domain=pdf&date_stamp=16%20Oct%202024
https://www.tandfonline.com/action/journalInformation?journalCode=ucgs20

AddiVortes: (Bayesian) Additive Voronoi Tessellations

Adam. J. Stone* and John Paul Gosling

Department of Mathematical Sciences, Durham University, UK

*adam.stone2@durham.ac.uk

Abstract

The Additive Voronoi Tessellations (AddiVortes) model is a multivariate regression model

that uses Voronoi tessellations to partition the covariate space in an additive ensemble model.

Unlike other partition methods, such as decision trees, this has the benefit of allowing the

boundaries of the partitions to be non-orthogonal and non-parallel to the covariate axes. The

AddiVortes model uses a similar sum-of-tessellations approach and a Bayesian backfitting

MCMC algorithm to the BART model. We utilize regularization priors to limit the strength

of individual tessellations and accepts new models based on a likelihood. The performance of

the AddiVortes model is illustrated through testing on several data sets and comparing the

performance to other models along with a simulation study to verify some of the properties of

the model. In many cases, the AddiVortes model outperforms random forests, BART and

other leading black-box regression models when compared using a range of metrics.

Supplementary materials for this article are available online.

Keywords: Bayesian Methods, Black Box Algorithm, Multivariate Analysis, Nonparametric

Regression, Voronoi Tessellations.

 Acc
ep

te
d

M
an

us
cr

ipt

http://crossmark.crossref.org/dialog/?doi=10.1080/10618600.2024.2414104&domain=pdf

1 Introduction

Many methods aim to model a conditional expectation function f that relates the continuous

variable Y to some or all of p (potential) covariates 1(, ,)px x x , such that

2() , ~ (0,),Y f    x

under the assumption that the noise is mean zero and homoscedastic. In the present paper, we

model the systematic part of this relationship using a sum of step-wise functions built upon

Voronoi tessellations. More specifically, we approximate () (|)f Yx x , the mean of Y

given x , by the sum of many piecewise constant functions with boundaries defined by

Voronoi tessellations.

The use of Voronoi tessellations can be traced back to Descartes in 1644, but the first

noteworthy use was in Dirichlet (1850) where two-dimensional and three-dimensional

Voronoi tessellations (Dirichlet diagrams) were used in his research on quadratic forms.

These tessellations were later named after Georgy Voronoi, who extended them to the general

n-dimensional case in Voronoi (1908). Voronoi tessellations have applications in many areas

such as computer science (for example, Musgrave et al., 1989; Shewchuk, 2002; Galceran

and Carreras, 2013) and biology (for example, Bock et al., 2009; Li et al., 2012). More

recently, in Pope et al. (2021), Voronoi tessellations were employed in a reversible-jump

MCMC (Monte Carlo Markov Chain) algorithm by modifying centers to partition the

covariate space and perform separate Gaussian processes over different regions to model high

dimensional non-smooth functions.

In this paper, we utilize Voronoi tessellations as part of an ensemble algorithm for naturally

partitioning the covariate space. An ensemble method is a kind of a “meta-algorithm” that

aggregates over several potentially weaker sub-models to produce one high-performing

predictive model. These are powerful methods because ensemble techniques can improve

prediction accuracy, handle complexity and offer interpretability. However, these methods

have high computational expense and require careful tuning of the hyperparameters. Some

popular ensemble methods include bagging (Breiman, 1996), boosting (Freund and Schapire,

1997) and random forests (Breiman, 2001). Boosting builds a sequence of trees where each

tree corrects the errors made by the previous ones, while bagging and random forests use

randomness to generate a large collection of individual trees and average their predictions to

make them more robust.

An additive approach is an ensemble technique that makes predictions by summing the

outputs of individual models. The BART model, introduced by Chipman et al. (2010), is an

example of such a method, and is referred to as a sum-of-trees model in the paper. In the

BART model, several decision trees’ outputs are summed together to provide a prediction

and the advantage of this approach lies in its ability to capture both the main effects,

nonlinearities and interaction effects of the covariates. In Bayesian additive models, to

prevent any single model from exerting too much influence and to mitigate over-fitting,

regularization priors are employed. Regularization priors limit the complexity of a single

model. In the case of the BART model, these priors are used to constrain the depth of each

decision tree, thereby reducing over-fitting.

Acc
ep

te
d

M
an

us
cr

ipt

In this paper, we introduce the Additive Voronoi Tessellation (AddiVortes) model. It is an

ensemble method that models m (Voronoi) tessellations by using a reversible-jump MCMC

backfitting algorithm to iteratively update each tessellation. An additive approach is used so

each tessellation captures a fraction of the overall prediction since the outputs of each are

added together to give the expected value of the dependent variable. Regularization priors are

used to reduce the likelihood of individual tessellations having too many centers and

dimensions and thus reducing over-fitting.

To facilitate the use of the AddiVortes methods described in this paper, we have provided a

repository on GitHub with all the code to run the algorithm and produce all the figures in this

paper. It is available at https://github.com/Adam-Stone2/AddiVortes.

The remainder of the paper is organized as follows. In Section 2, the fundamental concepts

which AddiVortes is built upon are outlined. In Section 3, a Bayesian backfitting MCMC

algorithm and methods for inference are described. In Sections 4 and 5, we illustrate the

potential of AddiVortes through a diverse range of examples, encompassing both simulated

scenarios and real-world data. Section 7 concludes the paper with a discussion and possible

extensions to the AddiVortes algorithm.

2 Fundamentals of the AddiVortes model

In general, a Voronoi tessellation partitions a metric space (,)d . In this paper, tessellations

partition subsets of the covariate space using the Euclidean distance. However, the algorithm

can be easily modified to accommodate other metrics. Given a set of b distinct points

1 2{ , , , }bc c c M in the metric space, a Voronoi cell iV , associated with the center ic , is

defined as:

{ : (,) (,) for all }.i i jV d c d c j i   x x x

In other words, a point in the space is in a cell associated with a center if it is closest in

distance (with respect to the given distance metric) to that center compared to the others.

For AddiVortes, each tessellation incorporates unique covariates as dimensions, i.e. if the thj

tessellation includes 3 covariates then it is 3 dimensional. Tessellations have parameters

ij  for each of the 1,..., ji b cells in the thj tessellation and this value is referred to as

the output value for all the samples contained within that cell. For instance, in Figure 1, the

tessellation includes the covariates 1x and 2x so is 2 dimensional and the points represent

observations which correspond to the output value for the cell they are in. The set of all

output values for the
thj tessellation is denoted by 1{ ,... }

jj j b j M .

For ease of computation, like in Chipman et al. (2010), we scale and transform the dependent

variable Y such that the minimum and maximum values of trainy are 0.5 and 0.5,

respectively, i.e. trainmin{ } 0.5y   and trainmax{ } 0.5y  . Similarly, to determine appropriate

prior distributions for the coordinates of the centers, we linearly scale and shift the covariates

so that their minimum and maximum values of the training data are at 0.5 and 0.5,

respectively.

Acc
ep

te
d

M
an

us
cr

ipt

2.1 Categorical data

To allow nominal categorical data to be used in AddiVortes, we convert categorical variables

into numerical variables. There are several established methods to deal with categorical data,

and a review of different techniques can be found in Kosaraju et al. (2023) where they

applied categorical encoding to a Heart Disease Prediction data set. We recommend two

methods depending on the number of categorical variables and categories within each

variable.

If there are a small number of categories and a small number of categorical variables, then we

may use the one-hot method to encode the categorical variables. This involves treating each

category as a new variable and assigning the sample a value of one if the sample falls into

that category and zero otherwise. An obvious problem with the one-hot method is that if there

are many categories then the number of variables in the model increases significantly. This

will increase the uncertainty in choosing the correct variables in the tessellations that are the

most influential on the outcome variable.

Alternatively, one can numerically encode the categories with equal spacing and permutate

the encoding when adding the nominal covariate as a dimension to a tessellation, this allows

all class interactions to be considered.

2.2 Sum-of-tessellations

Our sum-of-tessellations model consists of a predetermined fixed number m of tessellations,

a hyperparameter in our proposed method. jT denotes the structure of the thj tessellation,

that is, which covariates are dimensions in the tessellation and the coordinates of the centers

of the cells. The corresponding values for each cell are given by 1{ , , }
jj j b j  M , where

jb is the number of cells in tessellation jT . The output value for a sample x of tessellation

jT is given by the function (| ,)j jg Tx M . If we consider the case in which the model consists

of only a single tessellation, then we have

2

1 1(| ,) , ~ (0,),Y g T    x M (1)

where 1 1(| ,)g Tx M is the average of all the samples in the given cell that x is in. In the

AddiVortes model, an estimation of E[| , ,]train trainY x y X is given by the sum of all the

outputs of the tessellations that x corresponds too, that is

2

1

(| ,) , ~ (0,).
m

j j

j

Y g T   


  x M

If 1m  , then this case is the same as case 1, but, if 1m  , then each tessellation captures a

fraction of E[| , ,]train trainY x y X . In single-dimension tessellations, the ij represent main

effects since (| ,)j jg Tx M only depends on a single covariate but will represent interaction

effects when the tessellations are multi-dimensional. Thus, AddiVortes can capture both the

main effects and interaction effects in the model. The other advantage of using an additive

Acc
ep

te
d

M
an

us
cr

ipt

approach is that we will be considering several tessellations with smaller dimensions and

centers and there exists algorithms that efficiently find the associated centers of samples for

this case. We use the FNN: Fast Nearest Neighbor Search Algorithms and Applications

CRAN package from Alina Beygelzimer et al. (2023) to implement our algorithm.

2.3 Regularization priors

Priors are specified for the parameters of the sum-of-tessellations model, specifically for

1 1(,), , (,)m mT TM M , and  . These priors are strategically chosen to favor less complex

configurations with fewer dimensions and cells. This regularization controls the influence of

individual tessellation effects, preventing any one of them from becoming dominant. Without

these regularization priors, complex tessellations with a large number of dimensions and

centers would cause over-fitting and limit the advantages of the additive model in both

approximation and computation.

To simplify the implementation of AddiVortes, we propose default specifications for the

priors, which have proven effective in numerous examples (as detailed in Sections 4 and 5).

We achieve this by reducing the prior formulation problem to a few interpretable

hyperparameters governing priors on jT , jM and  . Our recommended defaults are

obtained by leveraging the observed variation in Y to estimate reasonable hyperparameter

values. As an alternative strategy, one can specify a range of plausible hyperparameter values

using the considerations provided and then utilize cross-validation to select the most suitable

ones. However, it is important to note that this approach will require more computational

resources that may not justify the improved accuracy.

2.3.1 Prior independence and symmetry

The specification of the regularization priors is simplified if we apply independence

restrictions, similar to one found in Chipman et al. (2010), such that,

    

 

1 1

1

1

, , , , , (,) ()

| () ()

m

m m j j

j

m

j j j

j

T T T

T T

    

   





    

 
 





M M M

M

and

 
1

(|) | ,
jb

j j ij j

i

T T  


M

where ij j M . Here, we have restricted the prior distributions so that the tessellations are

independent of each other and of  a priori and the output values in a given tessellation are

also independent of each other. Note, however, that the acceptance probability of a new

tessellation in the MCMC algorithm (as described in Section 3) is dependent on the other

tessellations in the model and induces dependence a posteriori.

Acc
ep

te
d

M
an

us
cr

ipt

By imposing independence here, we greatly simplify the process of defining prior

distributions. Specifically, we only need to specify forms for ()jT , (|)ij jT  , and ()  ,

rather than dealing with complex joint distributions across all tessellations. This

simplification is further enhanced by using identical prior forms for all tessellations’ structure

()jT and all parameters within each tessellation (|)ij jT  .

In practice, we adopt similar prior distributions to the ones proposed by Chipman et al.

(1998) for the Bayesian CART (Classification and Regression Trees) model. In the

subsequent subsections, we will observe that these prior forms offer computational efficiency

and are defined by a concise set of interpretable hyperparameters, enhancing their practical

value.

2.3.2 jT prior

The prior for the tessellation structure jT is specified by multiple factors:

1. the number of covariates considered in jT ,

2. the number of centers in jT ,

3. the covariates that are included in jT and

4. the coordinates of the centers.

We assign the probability of the number of covariates a (shifted) binomial distribution,

1~ Binomial(1,)jd p
p


  where jd is the number of covariates included in tessellation j,

and p is the total number of covariates. The probability density for the number of centers in

the model is a (shifted) Poisson distribution 1~ Poisson()j cb  , where jb is the number of

cells in tessellation jT and c is the rate parameter. The probability that a covariate is chosen

as a dimension in a tessellation follows a (discrete) uniform distribution over the remaining

covariates that are not already in the tessellation.

For all tessellations, we assign the probability of the coordinates of the centers a normal

distribution: 2(0,)c . We set the mean of the normal distribution as 0 as we have

performed a linear transformation to the covariates so that the maximum and minimum

values are at 0.5 and 0.5 and in many cases the mean of the transformed covariates will be

near zero. Most centers, that will partition the data such that some observations fall within the

new cell created by the new center, will have coordinates between 0.5 and 0.5, the

maximum and minimum values of the covariates after transformation. Thus, we choose a

value for c so that the probability that the majority of the centers have coordinates within

the interval (0.5,0.5) , that is between the maximum and minimum values of the observed

covariate measurement. However, there are cases that the coordinates of the centers will fall

outside this range, thus the normal distribution is useful as it assigns a lower probability for

coordinates the higher the absolute value of the coordinates.

Acc
ep

te
d

M
an

us
cr

ipt

2.3.3 |ij jT prior

We handle the parameters ij using a conjugate normal distribution
2(,)N    similar to one

used in Chipman et al. (2010), which confers significant computational advantages as we can

easily marginalize ij . One of our objectives is to estimate E[| , ,]train trainY x y X , which equals

the sum of the output values over all tessellations. Since the ij are independent and

identically distributed, the induced prior on E[| , ,]train trainY x y X follows a normal distribution

2(,)N m m   .

To ensure that E[| , ,]train trainY x y X predominantly lies within the observed range min max(,)y y ,

where miny and maxy represent the minimum and maximum observed values of the output Y,

we again choose appropriate hyperparameters. Specifically, we set the hyperparameters such

that 0.5m k m     and 0.5m k m    , where k is a preselected

hyperparameter determining the prior probability of E[| , ,]train trainY x y X being within the

interval min max(,)y y .

Given the prior centered at 0 (0 ), the prior distribution for ij is expressed as:

2 0.5
~ (0,), where .ij N

k m
    

This prior encourages the tessellation parameters ij to shrink towards zero, effectively

constraining the influence of individual tessellation components and keeping them relatively

small. As we increase k and/or the number of tessellation components m, this prior becomes

more restrictive, leading to stronger shrinkage of the ij .

2.3.4  prior

For  , a conjugate prior is employed: a natural choice for this prior is the inverse chi-square

distribution 2 2/    . To guide the calibration of hyperparameters  and  , a data-

informed approach is adopted where we assign a significant probability to a range of credible

 values while maintaining a balance between concentration and dispersion within the

distribution. The objective is to adjust the prior’s degrees of freedom  and scale parameter

 using a “rough data-based overestimate” ̂ of  .

Two plausible choices for ̂ are considered. The first is the “naive” option, wherein ̂

corresponds to the sample standard deviation of the transformed training response values.

The second is the “linear model” choice, where ̂ is based on the residual standard deviation

from a least-squares linear regression of scaled Y on the scaled X variables. Subsequently, a

value for  within the range of 3 to 10 is selected to shape the prior appropriately.

Additionally, a suitable  value is determined such that the
thq quantile of the prior on 

aligns with ̂ , that is ˆ()Pr q   . A suitable range for q is values between 0.7 and 0.99.

Acc
ep

te
d

M
an

us
cr

ipt

2.4 Choice of m

A fixed number of tessellations are used, and an iterative backfitting algorithm is employed

to cycle through these tessellations. Determining an appropriate value for the number of

tessellations m presents a challenge. Two common strategies to address this challenge are: (1)

to treat m as an unknown parameter and assign a prior to it and (2) to use cross-validation to

select the ‘best’ value for m from a range of reasonable choices. However, both of these

strategies incur significant computational costs. Typically, as illustrated in Section 5,

increasing m from one leads to considerable enhancements in predictive performance until a

point where it levels off. Beyond this point, for large m values, performance slowly degrades,

because each tessellation contributes such a small fraction of the expected outcome and there

is uncertainty within each tessellation.

To avoid computational overhead, a practical approach is to start with a default value of

200m  . In numerous scenarios, this default value has demonstrated excellent predictive

performance and this is illustrated in Section 4 and 5. However, other considerations might

come into play, particularly when using AddiVortes for variable selection, where the choice

of m could be influenced by additional factors.

3 MCMC backfitting algorithm

The aim of AddiVortes is to extract the posterior distribution of all unknown parameters in

the sum-of-tessellations model,

1 1((,), , (,), | ,),m mT T M M y X (2)

by utilizing the MCMC backfitting algorithm. Note to simplify notation, in this chapter, we

let y and X denote the training data for the output variables and the covariates,

respectively. The Gibbs sampler involves m successive draws of (,)j jT M conditionally on

({ , } , , ,)
j j j j

T   
M y X for 1, ,j m  , followed by a draw of  from its full conditional

distribution. Hastie and Tibshirani (2000) previously explored a similar application of the

Gibbs sampler for posterior sampling in additive and generalized additive models, with 

held fixed. They demonstrated that this approach is a stochastic generalization of the

backfitting algorithm used in such models.

The draw of  from the full conditional can simply be achieved by sampling from an inverse

gamma distribution,

 2 2 2

1 1 1 1

2

1 1

| (,), , (,), , (| (,), , (,),) ()

(| ,)

IG , .
2 2

m m m m

n m

i i j j

i j

T T T T

y g x T
n

     


  

  

  
   
   

  
 
 
 

 

M M y X y M M

M

Acc
ep

te
d

M
an

us
cr

ipt

It is more difficult to sequentially sample (,) | ({ , } , ,)j j j j j j
T T   

M M y for all m

tessellations. It is important to note that the conditional probability

(, |{ , } , ,)j j j j j j
T T   

M M y relies solely on ({ , } , ,)
j j j j

T   
M y X through the expression

(| ,),j k k

k j

g T


 R y x M

where jR represents the n-vector of partial residuals derived from a fitting process that

excludes the thj tessellation. Thus, the m draws of (,)j jT M given () ()(, , , ,)j jT M y X are

equivalent to m draws from

(,) | , ,j j jT M R (3)

1, ,j m  . Now, (3) is formally equivalent to the posterior of the single tessellation model

(; ,)j j jg x T R M where jR plays the role of the data y . Since we have used a conjugate

prior for jM ,

(| ,) () (| , ,) (| ,) j j j j j jTj Rj Tj T T d        R M M M (4)

can be obtained in closed form up to a normalizing constant. This allows us to carry out each

draw from (4) in two successive steps as

| , ,

| , , .

j j

j j j

T

T





R

M R
 (5)

The draw of jT in (5) can be obtained using the Metropolis–Hastings (MH) algorithm similar

to the one proposed by Chipman et al. (1998). Six moves are suggested to propose a new

tessellation based on the current tessellation, each with its associated proposal probability:

• adding/removing a center (0.2 each),

• adding/removing a covariate (0.2 each),

• swapping a covariate (0.1) or

• changing the position of a center (0.1).

To incorporate a new center, we simply sample coordinates (from a normal distribution

described in Section 2.3.2) for each dimension in the tessellation. To eliminate a center, we

uniformly sample one and remove it. Adding a dimension involves uniformly selecting a new

dimension from ones not in the tessellation and sampling coordinates for each center, while

removing a dimension entails uniformly sampling a dimension in the tessellation and deleting

it by removing all its coordinates. Changing a center involves uniformly sampling one and

sampling new coordinates. Swapping a covariate requires uniformly sampling a dimension to

Acc
ep

te
d

M
an

us
cr

ipt

delete, then randomly selecting a covariate not in the tessellation and sampling coordinates

for the new dimension for each center.

Note, adjustments to the acceptance probability need to be made to take into account when

certain moves cannot occur, for example a center cannot be removed if there is only one

center in the tessellation. These adjustments are described in Appendix B.

By integrating out jM in (4), we avoid the complexities of reversible jumps between

continuous spaces of varying dimensions Green (1995).

Subsequently, the draw of jM in Equation (5) involves independent draws of ij from a

normal distribution. The draw of jM enables the calculation of the subsequent residual 1jR  ,

which is essential for the next draw of jT .

We initiate the chain with m simple single-center one-dimensional tessellations, and then we

repeat iterations for a burn-in period until satisfactory convergence is achieved. We usually

choose a relatively small burn-in period of 200 iterations since convergence is fast, as

illustrated in Section 5.

Algorithm 1 Bayesian backfitting MCMC for posterior inference in AddiVortes

Data: Training data (,)train trainX y , AddiVortes hyperparameters (, , , , , ,)c cm q k   

1 Find  ; // Using naive or linear method

2 for 1j  to m do

3 Initialize tessellation jT ; // Create m single center tessellations

4 Assign 1 j ; // 1 mean()j train  y

5 for 1i  to number of iterations do

6 Sample 2 ; // Sample from inverse gamma distribution

7 for 1j  to m do

8 Compute residuals jR ; // (| ,)ij i i k k

k j

R y g x T


  M

9 Propose new tessellation;

10 Accept or reject tessellation;

11 Sample ij ; // Sample from conjugate normal distribution

In Section 5, we see that the backfitting MCMC algorithm performs well, even for

challenging cases, and repeated use of the algorithm yield similar results consistently. As the

Acc
ep

te
d

M
an

us
cr

ipt

results are consistent, we typically run one long chain with AddiVortes instead of using

multiple starts. The backfitting MCMC algorithm for the sum-of-tessellations model shows

significant advantages in terms of mixing and flexibility, making it a powerful tool for

various complex modeling tasks.

3.1 Inference for the model parameters

The backfitting algorithm described in the previous section is ergodic, producing a sequence

of draws 1 1(,), , (,),m mT T M M that converges (in distribution) to the posterior

1 1((,), , (,), | ,).m mT T X M M y

The corresponding sequence of sum-of-tessellations functions is given by

* *

1

(·) (·; ,)
m

j j

j

f g T M


 (6)

where * * * *

1 1(,), , (,)m mT M T M are the draws from the posterior. This sequence of functions is

thus converging to the posterior distribution (|)f y on the “true” function (·)f . By

running the algorithm for a sufficient number of iterations after a suitable burn-in period, we

obtain a sample * *

1 , , Kf f that can be treated as an approximate, dependent sample of size K

from (|)f y . To estimate ()f x , we can take the average or median of the posterior

samples.

A (1)% posterior interval for ()f x is the interval between the upper and lower / 2

quantiles but this a “Naive” approach as it doesn’t consider the noise . Alternatively, “true”

prediction intervals which includes the affect of the noise and its estimation error can be

obtained by adding the noise to each posterior sample for each observation and taking the

upper and lower / 2 quantiles. These uncertainty intervals behave sensibly, widening at x

values far from the data.

In some cases, thinning may be appropriate. Thinning the chain, explained in Owen (2017), is

a technique used to reduce auto-correlation in the samples by only retaining every thk sample

from the sequence. This is done to ensure that the retained samples are more independent of

each other, which can improve the accuracy of parameter estimates and the efficiency of the

algorithm.

4 Performance on regression data sets

We conducted a comprehensive comparison of the predictive performance of AddiVortes

against several competing algorithms across a range of data sets obtained from Loh et al.

(2007). Due to availability of data sets we completed our analysis on a a fraction of data sets

listed and the ones used are given in Table 1. These datasets exhibit varying sample sizes,

ranging from 96 to 4,177, with each dataset comprising an output variable and between 4 and

21 covariates. We applied the one-hot encoding method to handle categorical covariates since

all the data sets we considered had fewer than five categories for all covariates.

Acc
ep

te
d

M
an

us
cr

ipt

For each data set, we created 20 independent train/test splits, with 5/6 of the data allocated to

the training set. Two versions of AddiVortes were considered: AddiVortes-CV, where prior

hyperparameters (, , , , , ,)c cm q k    were chosen via five-fold cross-validation, and

AddiVortes-default, utilizing predetermined hyperparameters based analysis on many

simulated and real world data sets, (, , , , , ,) (200,6,0.85,3,0.8,3,25)c cm q k     , as

detailed in the supplementary material. A burn-in of 200 iterations was chosen, demonstrating

sufficient convergence in many cases.

As competitors, we evaluated four black-box methods: random forests (Breiman, 2001,

implemented as randomforest in R), gradient boosting (Freund and Schapire, 1997,

implemented as gbm in R), BART (Chipman et al., 2010, implemented as bart from the

BayesTree R package) and SoftBART (Linero and Yang, 2018, implemented as SoftBart

in R). These models were selected for their robust multivariate regression capabilities,

interpretability and comparability.

All methods, except AddiVortes-default, underwent five-fold cross-validation to select

hyperparameters and the considered values for each method are provided in Table 2. In

particular, for AddiVortes-CV, we considered the following cross validation ranges:

• 1, 3k  , reflecting moderate to heavy shrinkage for the  prior hyperparameter,

• 0.255, 0.8  , considering low to high variation in the coordinates of centers,

• 5, 25c  , evaluating lower and higher number of centers in each tessellation, and

• 50, 200m  , for the number of trees,

a total of 42 16 potential choices for (, , ,)ck m  . All other hyperparameters take their

default value as they are less influential on performance and considering more values would

increase computational time.

To facilitate performance comparisons across data sets, we employed the relative RMSE

(RRMSE), defined as the RMSE divided by the minimum RMSE obtained by any method for

each test/train split. This normalization allows for meaningful comparisons irrespective of

location and scale transformations of the response variables. Boxplots of the RRMSE values

for each method across test/train splits are depicted in Figure 2 and the (50%, 75%) RRMSE

quantiles are provided in Table 3.

Note, we didn’t included gradient boosting in the box-plot as the RRMSE values was much

higher then the competitors included. We also removed all RRMSE values greater then 1.5 so

that the box-plot gave a better comparison between competing methods. No RRMSE value

was removed for AddiVortes-CV or BART, only one value for AddiVortes-default, four

values for SoftBART and nine values for random forests.

While the relative performance in Figure 2 exhibits variation across different data sets, it is

evident from the RRMSE distribution that AddiVortes-CV consistently achieved smaller

RMSE values more frequently than its competitors. Notably, AddiVortes-default exhibited

impressive overall performance. This is particularly noteworthy given that random forests,

Acc
ep

te
d

M
an

us
cr

ipt

SoftBART and BART relied on cross-validation for hyperparameter tuning, while

AddiVortes-default excelled without the need for such specifications.

5 Illustrating AddiVortes on simulated data

We use simulated data to evaluate the performance of AddiVortes against known values and

consider the set up originally explored in Friedman (1991). We generate data by simulating

the values of 1 2(, , ,)px x x x , with 1 2, , , px x x being independently drawn from the

standard uniform distribution and the response variable Y given by

2

1 2 3 4 5() 10sin() 20(0.5) 10 5 ,Y f x x x x x       x (7)

where ~ (0,1) . Notably, Y is solely dependent on 1 5, ,x x , so the predictors 6 , , px x

are inactive variables. The introduction of these extraneous variables injects a layer of

complexity.

5.1 Illustrating AddiVortes’ abilities

To help compare the AddiVortes model with BART, we have used examples with similar

iterations to the ones used in Chipman et al. (2010). To begin, we highlight the fundamental

aspects of AddiVortes by employing a single simulated data set from the Friedman function,

with 10p  predictors and 150n  observations. To facilitate our illustration, we apply the

default values (, , , , , ,) (200,6,0.85,3,0.8,3,25)c cm q k     and we generate 1,800 MCMC

posterior samples
*f , discarding the initial 200 iterations as burn-in.

For each unique x value, we compute posterior mean estimates ˆ ()f x by averaging the 1,800

posterior samples
*()f x , and we ascertain the endpoints of “Naive” 90% posterior intervals

for each ()f x by identifying the 5% and 95% quantiles of the
*f values. Figure 3 (a)

illustrates the predicted output values ˆ ()f x vs the true values ()f x for the 150n  in-

sample x values that generated the corresponding Y values through Equation (7) and the

vertical lines denote the 90% posterior intervals for ()f x . Here, we see that the ˆ ()f x values

are near the true ()f x values, while the true values are within the intervals. Figure 3 (b)

extends this to 150 randomly selected out-of-sample x values. Although the correlation

between ˆ ()f x and ()f x is slightly weaker, accompanied by slightly wider intervals,

AddiVortes performs considerably well with a small number of training samples.

Note that the 90% posterior intervals may not precisely match 90% frequentist coverage

and, in this case, for the training data the intervals cover 92% the true values and 98% of the

true values for the testing data. In scenarios involving real-world data where f remains

unknown, bootstrap and cross-validation methodologies could provide insights into interval

coverage. Notably, for extreme x values, the influence of the prior could entail a more

pronounced shrinkage towards zero, which leads to reduced coverage frequencies.

Acc
ep

te
d

M
an

us
cr

ipt

Figure 3 (c) shows the draw of  and the horizontal line symbolizes the true value of 1  .

This illustrates the Markov chain’s quick convergence to equilibrium and the  draws

varying around the true value 1  suggests the model is not over-fitting.

Figure 4 shows for the average number of dimensions (left) and average number of centers

(right) for the simulation above, with the default hyperparameters used and 2000 iterations.

There is quick convergence to approximately 2.4 and 3.5, for the average number of

dimensions and centers, respectively. However, the graphs do suggest that the tessellations

are still exploring the space since these averages are still oscillating around these values.

AddiVortes estimates the partial dependence function [Friedman (2001)], which summarizes

the individual ix ’s marginal effects on Y. Figure 5 provides point estimates of the partial

dependence functions for 1 10, ,x x derived from the 5,000 posterior samples. This illustrates

the impact of 1 10, ,x x on Y, clearly there is significant marginal effects for 1 5, ,x x and

almost constant marginal effects for 6 10, ,x x .

In addition to prediction, AddiVortes can be used as a variable selection tool by identifying

the variables that are most frequently included in accepted tessellations. Figure 6 illustrates

the percentage of each variable used in accepted tessellations for each covariate 1 10, ,x x ,

across 5,000 posterior draws
*f , across a range of m values: 10, 20, 50, 100, and 200. We

use a sample of 500n  simulated observations of the Friedman function (7) with 10p  ,

matching the graph used in the BART paper. When the number of tessellations m is lower,

the ensemble of sum-of-tessellations models progressively includes only the variables—

namely 1 5, ,x x —causing Y’s variation. Without invoking any presumptions or knowledge

of the actual functional form of f in Equation (7), AddiVortes adeptly identifies the subset of

variables that underpin the dependency of f.

AddiVortes is robust to changes in the hyperparameters. To illustrate this, we use 150

samples of the Friedman equation with 10p  and we calculate the RMSE of 150 out-of-

sample values and run AddiVortes 100 times for 3 cases: aggressive, default and

conservative. For the aggressive hyperparameters, we chose

(, , , , ,) (10,0.75,3,0.8,1,5)c cq k     where there is high shrinkage towards zero and

probability of lower dimension tessellations with less centers. Whereas, for the conservative

setting hyperparameters (, , , , ,) (6,0.95,1,1.5,3,25)c cq k     , there is lower shrinkage

towards zero and higher probability for higher dimensional tessellations with a higher number

of centers. The default setting, (, , , , ,) (6,0.85,3,0.8,3,25)c cq k     , is between the

aggressive and conservative setting. Figure 7 shows the RMSE for the 3 hyperparameter

settings for m increasing from 1 to 500, and the 90% intervals for each case. We see the

RMSE values are close for all settings for any number of tessellations, with the aggressive

setting performing worse for smaller values of m. The graph also illustrates a trend in RMSE

values with varying numbers of tessellations. Initially, there is a noticeable improvement in

RMSE values as we increase the number of tessellations from 1 to 50. However, as the

number of tessellations continues to rise beyond 200, there is a gradual degradation in RMSE

values. This is probably due to the uncertainty in individual tessellations. Notably, when the

number of tessellations exceeds 100, the 90% intervals become much smaller. This implies

Acc
ep

te
d

M
an

us
cr

ipt

that multiple algorithm runs consistently produce similar results and it is best to run one long

chain instead of multiple smaller chains.

Next, we consider higher-dimensional data, for the function f in Equation (7), with its

dependency on only five variables (1 5, ,x x). Building upon our earlier exploration of

AddiVortes in Friedman’s setup with 10p  and 150n  observations, we include higher p

values. In the simulations, AddiVortes’ ability to find low-dimensional relationships when

there is a high number of inactive covariates in the data is highlighted. We replicate the

illustrations featured in Figure 3, now with 20p  , 100, and 1000, all while keeping a small

number of observations.

For 20p  , we used the hyperparameters values similar to the default setting but with

50m  instead of 200. For 100p  and 1000p  , the hyperparameters used were

(, , , , , ,) (50,6,0.99,3,0.2,3,25)c cm q k     and we use the naive estimate ̂ (sample

standard deviation of Y) instead of the least squares estimate to anchor the qth prior quantile,

adeptly accommodating the problems arising when p n .

Figure 8 highlights the performance of AddiVortes to for in-sample and out-of-sample data

when the p value is increased and the coverage of the 90% posterior intervals are give in

Table 4. The in-sample approximations and their accompanying 90% intervals for ()f x are

impressively accurate across all p values. In the out-of-sample scenario, with larger p, the

estimation of extreme ()f x shifts towards the mean. The AddiVortes algorithm performs

extremely well with a small number of samples training the model, even with a very high

number of inactive covariates.

In the third column of Figure 8, an illustration of the MCMC progression of  estimations

with a solid line at 1  , the known variance of the data. This  draws frequently cross the

line for 1  but with larger p, it increasingly tends to stray back toward larger values, a

reflection of increasing uncertainty.

An appealing feature of AddiVortes is its robustness to being misled by inactive covariates.

To explore this, we simulated 150n  observations with 0f  , for 10p  , 100, and 1000.

Using these settings, AddiVortes indicated that f intervals—both in-sample and out-of-

sample—centered around 0 for 10p  and 100p  , indicating no relationship. For

1000p  , where data provides limited insights, some in-sample intervals moved away from

0 due to the prior’s influence. However, out-of-sample 90% posterior intervals consistently

included zero.

5.2 Evaluating Out-of-Sample Performance across Competing Approaches

For our simulated study to gauge the effectiveness of AddiVortes within the Friedman setup,

we compare random forests, BART, gradient boosting and SoftBART.We estimate the

function f with 200n  observations with 10p  . To conduct this experiment, for

AddiVortes model, we performed 1,000 MCMC iterations after discarding an initial 200

draws as burn-in. For hyperparameter specification, we employed 5-fold cross-validation

with values from Table 2.

Acc
ep

te
d

M
an

us
cr

ipt

We simulated 100 data sets, each comprising 200n  observations. Given that the data

generating process is known, we did not need to simulate a test set; instead, for each

method’s estimate f̂ derived from each data set, 800 independent x values were randomly

selected to assess the fit using the RMSE, calculated as:

800
2

1

1 ˆRMSE (() ()) .
800

i i

i

f x f x


 

Thus, we obtained 100 RMSE values for each method.

Figure 9 illustrates the outcomes using a box plot (note that the box plot in Figure 9

represents RMSE values and not relative RMSE values as in Figure 2). As expected,

SoftBART performs particularly well against its competitors because it uses a sparsity

inducing prior for selecting variables to use in the trees introduced by Linero (2016), a

modification that can easily be applied to AddiVortes. AddiVortes performs slightly better

then BART but both perform much better then gradient boosting and random forests. This

shows that the AddiVortes can find relevant variables for predicting outcomes and can out-

perform leading black-box methods. Once further modifications and optimizations are

applied to AddiVortes it is likely to perform as well or even better then SoftBART.

6 Computational Expense

The AddiVortes Algorithm is currently not optimized to be computationally efficient when

running. For example, we have coded the algorithm in R studio which is a slower

programming language then many competitors. Despite using the efficient FNN: Fast Nearest

Neighbor Search Algorithms and Applications CRAN package that uses C++, AddiVortes

can be programmed to run faster than the current version.

The advantage of using an additive approach means that we can regularize the tessellation

structures thereby limiting the number of centers and dimensions. Thus, when the number of

covariates increases it does not have a significant effect on the computational time and there

exists fast algorithms to find the centers of observations.

7 Discussion

The application of AddiVortes to diverse data sets and a simulation experiment highlights its

attractive features. Notably, in terms of out-of-sample predictive RMSE performance,

AddiVortes outperforms gradient boosting, BART and random forests. In simulation

experiments, AddiVortes consistently yields reliable posterior mean and interval estimates of

the true regression function, along with correct marginal predictor effects. The performance is

robust to hyperparameter specification even in higher-dimensional spaces. AddiVortes is a

useful tool for variable selection as when running the algorithm with fewer tessellations the

more influential covariates are included in tessellations.

Usually, models that use Voronoi tessellations, such as the one described in Pope et al.

(2021), are very computationally expensive and can not be scaled for higher dimensional

tasks. However, due to using an additive approach and regularization priors, we only consider

low dimensional tessellations which are less computationally expensive to find output values

Acc
ep

te
d

M
an

us
cr

ipt

as there exits algorithms that efficiently find the nearest center for an observation and

increasing the number of covariates has negligible effect on computational time.

Currently, the AddiVortes algorithm has not been optimized in terms of coding and is

currently computationally expensive when compared to other methods. For instance, in

Kapelner and Bleich (2016), an R package called “bartMachine” was introduced that uses

Java to optimize the BART algorithm and similar techniques could be used to reduce

computational expense.

In this paper, we have exclusively looked at using the Euclidean metric space. However,

further research could look into changing the metric used in the tessellations, for example

using the Manhattan distance or using multiplicatively-weighted metrics. Some metrics

would lead to the boundaries of the cells being curved and possibly partitioning the covariate

space in a more suitable way for particular data sets.

AddiVortes can be adapted for binary classification by employing a probit link, similar to the

one described in Zhang and Härdle (2010) to modify the BART algorithm, to predict the

probability of activity. This adaptation incorporates data augmentation techniques outlined in

Albert and Chib (1993). The approach can be further extended to handle classification

problems, following a similar approach applied to BART described in Lee and Hwang (2024)

for ordinal classification and Kindo et al. (2016) for nominal classification.

In the AddiVortes algorithm, tessellations partition the covariate space and output values are

based on the cell the sample falls in. However, if we apply a probabilistic approach to which

cell a sample falls into based on the distance to the center of its cell and the others then this

would further smooth the output function of the algorithm. This approach is similar to to

SoftBART presented in Linero and Yang (2018), where they modified BART such that the

function was smoothed by adding a probabilistic aspect to each tree.

Expanding the model’s scope from regression, we note that BART has been successfully

adapted for causal inference in Hill (2011). Similar adjustments to the AddiVortes algorithm

can be made so that it can be used for causal inference applications. We believe that the

AddiVortes algorithm will perform well in causal inference settings as tessellations flexibly

partition the covariate space and determine interactions between variables well. For causal

inference, further modifications to the algorithm can be made such as including the treatment

application probability in the covariate space, similar to the method presented in Hahn et al.

(2019), and applying shrinkage for data sets that are sparse, similar to the technique used in

Caron et al. (2021).

8 Acknowledgments

We thank Dr Emmanuel Ogundimu for his insightful and constructive comments and

suggestions that improved the paper.

9 Conflict of Interest statement

The authors report there are no competing interests to declare.

Acc
ep

te
d

M
an

us
cr

ipt

References

Albert, J. H. and Chib, S. (1993). Bayesian analysis of binary and polychotomous response

data. Journal of the American Statistical Association, 88(422):669–679.

Alina Beygelzimer, S. K., John Langford, S. A., and David Mount, S. L. (2023). Fast nearest

neighbor search algorithms and applications.

Bock, M., Tyagi, A. K., Kreft, J.-U., and Alt, W. (2009). Generalized Voronoi tessellation as

a model of two-dimensional cell tissue dynamics.

Breiman, L. (1996). Bagging predictors. Machine Learning, 24:123–140.

Breiman, L. (2001). Random forests. Machine Learning, 45(1):5–32.

Caron, A., Baio, G., and Manolopoulou, I. (2021). Shrinkage Bayesian causal forests for

heterogeneous treatment effects estimation.

Chipman, H. A., George, E. I., and McCulloch, R. E. (1998). Bayesian CART model search.

Journal of the American Statistical Association, 93(443):935–948.

Chipman, H. A., George, E. I., and McCulloch, R. E. (2010). BART: Bayesian additive

regression trees. The Annals of Applied Statistics, 4(1):266 – 298.

Dirichlet, G. L. (1850). Über die Reduction der positiven quadratischen Formen mit drei

unbestimmten ganzen Zahlen. Crelle’s Journal, 40:209–227.

Freund, Y. and Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning

and an application to boosting. J. Comput. System Sci., 55:119–139. Second Annual

European Conference on Computational Learning Theory (EuroCOLT ’95) (Barcelona,

1995).

Friedman, J. H. (1991). Multivariate adaptive regression splines. Ann. Statist., 19(1):1–141.

With discussion and a rejoinder by the author.

Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. Ann.

Statist., 29(5):1189–1232.

Galceran, E. and Carreras, M. (2013). A survey on coverage path planning for robotics.

Robotics and Autonomous Systems, 61(12):1258–1276.

Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian

model determination. Biometrika, 82(4):711–732.

Hahn, P. R., Murray, J. S., and Carvalho, C. (2019). Bayesian regression tree models for

causal inference: regularization, confounding, and heterogeneous effects.

Hastie, T. and Tibshirani, R. (2000). Bayesian backfitting. Statist. Sci., 15(3):196–223.

Acc
ep

te
d

M
an

us
cr

ipt

Hill, J. L. (2011). Bayesian nonparametric modeling for causal inference. Journal of

Computational and Graphical Statistics, 20(1):217–240.

Kapelner, A. and Bleich, J. (2016). bartmachine: Machine learning with Bayesian additive

regression trees. Journal of Statistical Software, 70(4):1–40.

Kindo, B. P., Wang, H., and Peña, E. A. (2016). Mpbart - multinomial probit bayesian

additive regression trees.

Kosaraju, N., Sankepally, S. R., and Mallikharjuna Rao, K. (2023). Categorical data: Need,

encoding, selection of encoding method and its emergence in machine learning models—a

practical review study on heart disease prediction dataset using Pearson correlation. In

Saraswat, M., Chowdhury, C., Kumar Mandal, C., and Gandomi, A. H., editors, Proceedings

of International Conference on Data Science and Applications, pages 369–382, Singapore.

Springer Nature Singapore.

Lee, J. and Hwang, B. S. (2024). Ordered probit bayesian additive regression trees for ordinal

data. Stat, 13(1):e643.

Li, H., Li, K., Kim, T., Zhang, A., and Ramanathan, M. (2012). Spatial modeling of bone

microarchitecture. In Baskurt, A. M. and Sitnik, R., editors, Three-Dimensional Image

Processing (3DIP) and Applications II, volume 8290, page 82900P. International Society for

Optics and Photonics, SPIE.

Linero, A. (2016). Bayesian regression trees for high dimensional prediction and variable

selection. Journal of the American Statistical Association, 113.

Linero, A. R. and Yang, Y. (2018). Bayesian Regression Tree Ensembles that Adapt to

Smoothness and Sparsity. Journal of the Royal Statistical Society Series B: Statistical

Methodology, 80(5):1087–1110.

Loh, W.-Y., Shih, Y.-S., and Chaudhuri, P. (2007). Visualizable and interpretable regression

models with good prediction power. Iie Transactions, 39:565–579.

Musgrave, F. K., Kolb, C. E., and Mace, R. (1989). The synthesis and rendering of eroded

fractal terrains. Proceedings of the 16th annual conference on Computer graphics and

interactive techniques.

Owen, A. B. (2017). Statistically efficient thinning of a markov chain sampler.

Pope, C. A., Gosling, J. P., Barber, S., Johnson, J. S., Yamaguchi, T., Feingold, G., and

Blackwell, P. G. (2021). Gaussian process modeling of heterogeneity and discontinuities

using Voronoi tessellations. Technometrics, 63(1):53–63.

Shewchuk, J. R. (2002). Delaunay refinement algorithms for triangular mesh generation.

Computational Geometry, 22(1):21–74. 16th ACM Symposium on Computational Geometry.

Voronoi, G. (1908). Nouvelles applications des paramètres continus à la théorie des formes

quadratiques. Premier mémoire. Sur quelques propriétés des formes quadratiques positives

Acc
ep

te
d

M
an

us
cr

ipt

parfaites. Journal für die reine und angewandte Mathematik (Crelles Journal), 1908(133):97–

102.

Zhang, J. L. and Härdle, W. K. (2010). The bayesian additive classification tree applied to

credit risk modelling. Computational Statistics & Data Analysis, 54(5):1197–1205.

Acc
ep

te
d

M
an

us
cr

ipt

Figure 1: Example of predictive modeling using a two-dimensional Voronoi tessellation with

centers at crosses, labeled with output values 1 8(, ,)  associated to the given cell.

Samples are represented by points with their output value corresponding to the cell they are

in.

Acc
ep

te
d

M
an

us
cr

ipt

Figure 2: Boxplot of RRMSE for competing methods on 13 data sets.

Acc
ep

te
d

M
an

us
cr

ipt

Figure 3: Inference about Friedman’s ()f x for p = 10 dimensions.

Acc
ep

te
d

M
an

us
cr

ipt

Figure 4: The average number of dimensions (left) and centers (right) per tessellation for each

iteration.

Acc
ep

te
d

M
an

us
cr

ipt

Figure 5: Partial dependence plots for the 10 predictors in Friedman function

Acc
ep

te
d

M
an

us
cr

ipt

Figure 6: A graph showing the percentage of the covariates’, 1 10,...x x , that are most frequently

included in accepted tessellations.

Acc
ep

te
d

M
an

us
cr

ipt

Figure 7: The RMSE value and 90% intervals as m is increased from 1 to 500 for three

hyperparameter settings. An aggressive setting (circle)

(, , , , ,) (10,0.75,6,0.8,1,5)c cq k     , the default setting (square) and a conservative setting

(triangle) (, , , , ,) (6,0.95,1,1.5,3,25)c cq k     have been considered. Note that that the

points have been shifted minimally left and right to make the graph more interpretable.

Acc
ep

te
d

M
an

us
cr

ipt

Figure 8: Inference about Friedman’s function for p = 20, 100, 1000 dimensions.

Acc
ep

te
d

M
an

us
cr

ipt

Figure 9: RMSE values for Friedman’s function for p = 10 covariates.

Acc
ep

te
d

M
an

us
cr

ipt

Table 1: A table showing the data sets used in our analysis.

Name n Name n Name n Name n Name n

Abalone 4177 Baskball 96 Boston 506 Edu 1400 Enroll 258

Fat 252 Hatco 100 Labor 2953 Medicare 4406 Mpg 392

Ozone 330 Price 159 Rate 144

Table 2: A table showing the cross-validation values for competing methods.

Method Parameters Values considered

Random forests Number of trees 500

% variables sampled to grow each node 10, 25, 50, 100

Gradient boosting Number of trees 50, 100, 200

Shrinkage (multiplier of each tree added) 0.01, 0.05, 0.10, 0.25

Max depth permitted for each tree 1, 2, 3, 4

BART Sigma prior: (,)q combinations (3, 0.90), (3, 0.99), (10, 0.75)

Number trees, m 50, 200

  prior: k value for  1, 2, 3, 5

SoftBART Number trees, m 50, 200

  prior: k value for  1, 2, 3, 5

AddiVortes # Tessellations: m 50, 200

Sigma prior: (,)q (6,0.85)

  prior: k value for  1, 3

Standard deviation of center location: c 0.255, 0.8

Probability weight for # covariates:  3

Poisson rate for # centers: c 5, 25

Acc
ep

te
d

M
an

us
cr

ipt

Table 3: (50%, 75%) quantiles of relative RMSE values for each method.

Method (%, %)50 75

AddiVortes-CV (1.007635, 1.026602)

AddiVortes-Def (1.011348, 1.028736)

SoftBART (1.007709, 1.026700)

BART (1.013905, 1.056225)

Random Forests (1.036218, 1.100439)

Gradient Boosting (1.068354, 1.184328)

Table 4: Coverage for the posterior intervals with increasing number of inactive covariates.

 p In-Sample Out-of-Sample

20 95% 92%

100 97% 98%

1000 93% 90%

Acc
ep

te
d

M
an

us
cr

ipt

