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Abstract: The attended home healthcare (AHH) industry is experiencing rapid growth due to the rising demand from an

aging population and the potential benefits of alleviating pressures on traditional healthcare resources. However, ensur-

ing timely one-on-one AHH services for homebound patients remains a challenge because of cascading delays arising

from uncertainties in travel and service times. To address this issue in last-mile homecare delivery, we develop a sys-

tematic cascading delay mitigation strategy to ensure patients receive dependable homecare services. Specifically, we

introduce a compound set reliability index (CSRI) that captures risk exposure by separately characterizing distinct travel

and service time uncertainties, instead of approaching them as a single type of uncertainty in previous studies. The CSRI-

based service-level constraints are then integrated into a set-partitioning formulation to mitigate the cascading delays.

We devise an exact branch-price-and-cut framework and employ a variable neighborhood search metaheuristic to achieve

fast-effective solutions. Numerical experiments with benchmark and real-world datasets validate the effectiveness of our

methods, underscore the benefits of adopting a systematic cascading delay mitigation strategy, and provide insights to

AHH service providers regarding the impact of crucial managerial parameters on delay manifestation. The CSRI con-

straints and dedicated solution methods can effectively support practical decision-making and enhance the punctuality of

AHH services, leading to better service dependability and heightened stakeholder satisfaction.
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1 Introduction
As we step into the future, an extraordinary shift is taking place in global population dynamics. The world is witnessing

incredible growth in both the size and proportion of the elderly population. By 2050, 22% of the global population is

projected to be over 60 years old, which is double the figure in 2015 reported by World Health Organization (2022). While

this demographic enjoys longer life spans, the healthcare sector grapples with increasing pressure as medical demand

outpaces both population growth and the availability of resources. The burgeoning healthcare needs of elderly individuals,

primarily driven by their heightened susceptibility to health issues, are pushing service demand to unprecedented levels.
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For example, a US-based study highlighted that the healthcare expenditure for those aged 65 and above was $22,356 per

person in 2020, more than five times the spending per child ($4,217) and nearly three times that of working-age individuals

($9,154) (Centers for Medicare & Medicaid Services 2023). Global healthcare systems are facing a daunting challenge in

preparation for this demographic shift, necessitating innovative solutions to meet these escalating medical demands (Green

2012).

In response, attended home healthcare (AHH) services are emerging as promising alternatives to traditional hospital

care, offering multifaceted benefits (Rowe et al. 2016). Specifically, AHH caregivers, such as registered nurses, physi-

cal therapists, or personal support workers, are responsible for administering medical treatment, managing palliative care

plans, and delivering superior one-on-one healthcare services at the patient’s residence. This new health system presents

significant advantages in terms of cost, convenience, prevention or postponement of hospital readmission, and less strain

on mainstream medical resources (Cire and Diamant 2022). For example, the NHS (2022) in the UK advocated homecare

treatments for mobility-challenged patients owing to their adaptability, comfort, and cost-effectiveness, pricing treatments

as low as £20. Such services have proven invaluable, particularly during pandemics, by safeguarding clinically vulnerable

populations through essential interventions such as vaccinations and PCR testing (NHS 2020). In the US, it is estimated

that up to $265 billion worth of care services for Medicare fee-for-service and Medicare Advantage beneficiaries could shift

to the home by 2025 (Mckinsey 2022a). Furthermore, a comprehensive survey involving 393,858 homecare visits revealed

that prolonging treatment during a homecare visit by just one minute could reduce the likelihood of hospital readmission by

1.39%. A 10% extension in treatment time could reduce this likelihood by an additional 6% (Song et al. 2022), showcasing

the immense value offered by AHH services to patients and healthcare infrastructures alike.

Parallel to this trend, there is a growing interest in reenvisioning the future of care at home ecosystems (Mckinsey

2022b). Generally, the primary goal of AHH is to provide professional services in residential and community settings,

supporting patients in various aspects of health and social care, including home care, long-term care, assisted living, and

substance use disorder treatments. Some of these services, such as insulin injections (Fikar and Hirsch 2017), heart failure

care (NHS 2023), and surgical wound care (Sessler 2006), are critically time-sensitive. Any delays, even minor delays,

can result in severe complications, deterioration in patient health, or rehospitalization. As Song et al. (2022) stressed, each

minute of AHH services is invaluable in reducing readmission rates. Additionally, delays that may seem trivial in other

contexts, such as grocery delivery, are unacceptable in the AHH context, especially for patients enduring suffering. Even

delays in less time-critical services can result in patient dissatisfaction or loss of demand. A survey of over 9,000 homecare

clients indicated that unmet expectations, particularly regarding punctual and accountable caregivers, are among the most

common complaints (Kumar Saha 2020, Julie 2022). On the other hand, service delays can also lead to extended working

hours, causing caregiver complaints or voluntary turnover (Kong et al. 2022, Bergman et al. 2023). Thus, effective delay

management is crucial in the AHH context.

However, delays are omnipresent as evidenced by our field investigation of the Chinese AHH service provider, Pinetree.

An analysis of approximately 150 real-world schedules and visit routes from the company revealed an average delay of 8.59

minutes per patient. Figure 1a illustrates the delay distribution for routes catering to at least two patients. The pronounced

tail in this histogram highlights significant delays relative to the expected schedules, with some stretching to 110 minutes.

Interestingly, our data analysis flagged a cascading effect, as shown in Figure 1b. This effect suggests that the average delay

(i.e., the postponed service starting time) tends to amplify progressively, with subsequent visits inheriting and potentially

exacerbating previous delays. This phenomenon resembles the backward propagation bullwhip effect in classical supply

chain models (Lee et al. 1997) and is also observed in other areas, such as the increasing interappointment times in the
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Figure 1 Description of the Practical Scheduling Situations for an AHH Service Provider

appointment scheduling sector (Benjaafar et al. 2023). However, to our knowledge, this cascading effect has not been

explored and addressed well in the AHH domain, especially from scheduling and routing perspectives.

After identifying the cascading effect, a pertinent follow-up question emerges: What are the primary factors and how

do they result in and then propagate these delays along visiting paths? An intuitive reason can be traced back to the

convolutional uncertainties of travel and service times that arise when caregivers deliver AHH services in line with the

initial plans. To quantify the pattern in which convolutional uncertainties contribute to delays, we empirically studied the

correlation between the deviation (from the planned schedule) associated with the last (i.e., most recent) single travel and

service time and the actual delay for the realized AHH delivery, as illustrated in Figure 1c. The findings indicate a positive

correlation between the latest deviation for each visit and its delay value on a log scale, with an R2 value of 0.625. This

signals that, in addition to the latest deviation, the previous accumulation is also responsible for causing delays and the

resulting cascading effects. We further investigated the impact of endogeneity (time dependency) on the delay behavior.

Interestingly, while uncertain travel and service time delays contribute almost equally to the overtime, they display distinct

temporal patterns1, as presented in Figure 1d. Delays arising from travel time reach ‘peak’ during morning and evening

rush hours, possibly because of heightened congestion from commuting traffic. In contrast, delays induced by service

time exhibit a more consistent trend across different times of the day. In light of these observations, we conclude that the

1 Note that the delay associated with travel and service times measures the difference between pre-planned and actual realizations.
Ideally, a zero delay for travel and service times indicates adherence to the planned schedule.
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uncertain nature of both travel and service times is the primary source of cascading delays. They exhibit different features

and introduce a fresh challenge in maintaining a resilient schedule, delivering services as promised, and adhering to the

working time regulation.

To mitigate delays, both academic and industrial efforts have strived to develop sophisticated techniques for ensuring

timely service and completion. This surge of interest has led to a flurry of activities in the community adopting modern

operations research tools to achieve on-time and reliable schedules (Lu and Shen 2021). Notably, the Markov decision

process formulation (Sauré et al. 2020), the stochastic mixed-integer programming model (Zhan et al. 2021), and the

mixed-integer robust optimization model (Naderi et al. 2023) have been established to counter potential delays in AHH

service delivery. Unfortunately, technical challenges such as intractability have limited studies ensuring on-time service

and completion when accounting for unknown distributions of travel and service times. Their distributions are seldom

accurately derived from observations, yet they are the primary reasons for delays. To tackle this, distributionally robust

optimization (DRO), which assesses the worst-case over the empirical distribution vicinity, has been introduced to reduce

service delays in robust vehicle routing studies. However, the majority of studies in this stream either focus on individual

uncertainty components (travel/service time) or treat them as homogeneous (Zhang et al. 2019, 2021, 2024, Tsang and

Shehadeh 2023), thereby overlooking their delineated characteristics. This oversight fails to accurately capture real-world

scenarios, particularly when the uncertainties exhibit distinct features that are not easily defined by a single ambiguity

set. Unluckily, this is exactly the case confirmed by the descriptive analytics using real-world AHH data from our case

company (details are presented in Figure 1d and EC.1). We find that uncertain travel and service times are equally to

blame for causing delays but present inherently different characteristics. Indeed, travel times in urban areas are correlated,

presenting an obvious time-dependent (endogenous) property (Parent and LeSage 2010, Xing and Zhou 2011). On the

other hand, service times seem generally independent and exhibit lower variability (Liu et al. 2021, 2024a). As a result,

ignoring these unique attributes and characterizing them through a single ambiguity set will lead to inferior precision in

risk assessment and subsequently, diminished performance. For example, Chen et al. (2023) highlighted that while the

moment-based ambiguity set effectively captures the interdependency of a multivariate random variable’s components,

its application for representing independently distributed random variables leads to a significant overestimation of actual

risks. Moreover, Jiang et al. (2017) adopted a first-moment ambiguity set for heterogeneous random no-shows and service

durations simultaneously, and their distinct features prevent the capture of more information (e.g., variance) through a

single ambiguity set. Hence, it is crucial to govern the inherent features of uncertain travel and service times separately, and

address them convolutively by employing a compound ambiguity set to alleviate the cascading effect.

Despite various delay-reduction initiatives, comprehensive studies in the AHH domain that explore the adverse effects of

propagating delays in terms of both probability and magnitude are still scarce. The challenges in ensuring on-time service

and completion in scenarios plagued by uncertain travel and service times often render delay assessments futile (Tsang and

Shehadeh 2023). To our knowledge, no existing study has evaluated or measured AHH cascading delays stemming from

cumulative uncertainties. Instead, many AHH studies resort to basic assumptions such as the linear penalty function for

overtime expectations when scheduling caregiver visits, underestimating and oversimplifying the repercussions of delay

propagation for downstream patients caused by the cascading effect (Zhang et al. 2021). To rectify this, we introduce

a patient-centric delay metric capped by a threshold, aiming to counteract the cascading effect. More importantly, these

service-level constraints, which establish a ceiling on the specific risk measures for each node, have proven effective in

other domains, such as appointment scheduling (Benjaafar et al. 2023), inventory routing (Cui et al. 2023), and surgical

scheduling (Zhou et al. 2021).



Article submitted to: Production and Operations Management
Liu, Zhao and Xie: Last-Mile Attended Home Healthcare Delivery 5

In this article, we investigate a robust AHH scheduling and routing problem (RSRP) for managing last-mile homecare

deliveries. This problem is categorized as a robust heterogeneous site-dependent vehicle routing problem with time win-

dows (RHSDVRPTW). To this end, we propose a comprehensive framework that can address such a complicated problem

effectively, that is, a set partitioning formulation encompassing various operational features in the AHH sector, and an exact

solution approach that is able to solve the prescribed model efficiently. Leveraging this framework, we aim to answer the

following questions: (i) How should uncertain travel and service times be accurately calibrated considering their distinct

characteristics? (ii) What strategies can be employed to assign and schedule visits in advance for cost-optimal delivery,

while ensuring on-time service and completion? To answer these questions, we contribute as follows:

• Systematic cascading delay mitigation strategy: (i) As AHH operational practices present different uncertainties, we

introduce a compound ambiguity set that reconciles multivariate random variables with independent distributions

and distinct features, enhancing risk assessment accuracy over conventional ambiguity sets. (ii) Moreover, to assess

punctuality violations and quantify the risk exposure of scheduling outcomes, we adopt a tailored decision criterion —

compound set reliability index (CSRI), which gauges delays from both probability and magnitude perspectives based

on the compound ambiguity set. We also theoretically demonstrate its effectiveness against the prevalent lateness

probability index (LPI; Adulyasak and Jaillet 2016). (iii) Finally, to mitigate cascading delays, our approach is rooted

in the CSRI-based service-level constraints, which are further embedded in the set-partitioning model and evaluated

leveraging three customized methods in the developed solution approach.

• Dedicated cascading delay mitigation approach: A holistic exact solution approach, built upon the branch-price-

and-cut framework (CSRI-BPC), is developed to solve the RSRP, which subtly embodies flexibility against the

CSRI constraints in the pricing subproblems amidst uncertain travel and service times. Among others, techniques such

as the CSRI-based variable neighborhood search metaheuristic (CSRI-VNS) and CSRI-based dominance rule, are

further designed to enhance the solution efficiency. Numerical evaluations validate the ability of our solution approach

to address both benchmark and practical instances with up to 100 patients. This efficiency can be generalized to other

stochastic programming or (distributionally) robust optimization problems by bridging our CSRI-BPC framework

with the tailored risk measures, satisficing measures, and disutility functions therein.

• Pragmatic cascading delay mitigation implications: Empirical results and comparisons with other risk measures

underscore the efficacy of our CSRI-based strategy in mitigating delay propagation. Remarkably, the average delay

tested on real-world instances decreases from 8.59 minutes to a minuscule 0.16 minutes, with the cascading effect

being nearly imperceptible. Moreover, we find that the delay manifestation is contingent on the topological struc-

ture of the graph. Specifically, clustered nodes seem to be susceptible to amplifying the cascading effect compared

with randomly distributed nodes, thereby leading to larger expected lateness times. Such observations could guide

decision-makers in wisely configuring on-time service levels to align with patient distributions in different districts.

Additionally, the delay mitigation strategy also offers profound insights into optimizing multiple model choices

against operating costs, customizing patient service times, and regulating caregiver working hours in AHH service

management.

2 Literature Review
This research intersects with literature streams on AHH services and vehicle routing problems (VRPs) that consider uncer-

tainty. In the following, we review seminal works in each domain and elucidate how our study can be distinguished from

these frontiers.
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2.1 Research on Attended Home Healthcare Services

The AHH scheduling and routing problem, which has been extensively investigated in recent decades, is essentially a

variant of the VRP with time windows (VRPTW) that features unique constraints stemming from the AHH landscape. For

a comprehensive overview, we suggest referring to Fikar and Hirsch (2017).

A significant difference in AHH services relative to conventional VRPTWs is the heterogeneity of caregivers. This dis-

parity is underscored by attributes such as individual home addresses, skill portfolios, and demographic features (Naderi

et al. 2023). Traditional AHH research typically categorizes caregivers by their skill levels and assumes that patient require-

ments are fulfilled by caregivers with higher skill levels (Bard et al. 2014). To describe divergent and incompatible skills

and patient preferences, Cire and Diamant (2022) defined skill sets and adopted a hierarchy to verify caregiver competence,

leading to a site-dependent VRP to ensure skill-matching requirements (Baldacci et al. 2010).

However, deterministic schedules often fail to deliver AHH services as promised facing uncertainty. Considering uncer-

tain patient demand, Cire and Diamant (2022) developed a discrete-time, rolling-horizon, infinite-stage Markov decision

process and proposed an approximate dynamic programming approach to solve the problem. Kong et al. (2020) deployed

a distributionally robust model to handle time-dependent patients with no-show behavior and reformulated the problem

as a copositive program. Considering the uncertain times embedded in AHH services, Sauré et al. (2020) formulated a

Markov decision model that captures stochastic service times, prioritizing cost-effectiveness in overtime and idle times.

Naderi et al. (2023) incorporated uncertain travel time and employed a hybrid of interval and polyhedral uncertainty sets

to formulate the protection function for deadline violations. The authors subsequently designed a logic-based Benders

branching-decomposition algorithm to solve the problem.

The robust AHH scheduling and routing problem is further complicated by time window constraints. To achieve on-

time performance, most studies explicitly formulate time-related decision variables to incorporate the overtime and idle

time penalties for each patient in the objective minimization, which is associated with a substantial computational burden.

For example, Zhan et al. (2021) developed a stochastic mixed integer programming (MIP) model and proposed an integer

L-shaped method to solve the sample average approximation (SAA) version of the problem. More recently, Tsang and

Shehadeh (2023) applied mean-support and 1-Wasserstein ambiguity sets to characterize uncertain times and derived equiv-

alent MIP reformulations of both DRO models. However, their maximum-scale tested instances include only 10 patients,

and the proposed approaches are insufficient to support practical operations. Despite sharing certain similarities with cur-

rent studies (Tsang and Shehadeh 2023, Naderi et al. 2023, Liu et al. 2024a), our work departs from the traditional robust

AHH stream in terms of comprehensive AHH formulation, compound uncertainty characterization, and dedicated solution

approach capable of handling real-world instances.

2.2 Research on the Vehicle Routing Problem with Uncertain Factors

Previous studies have extensively examined the deterministic VRPTW, yet comparatively little effort has been devoted to

exploring its uncertain counterparts. However, the practical significance of uncertainty has been gradually acknowledged,

catalyzing growing interest in integrating data into the model-building process for robust vehicle routing optimization. For

example, Ghosal and Wiesemann (2020) and Ghosal et al. (2024) developed a unified branch-and-cut framework to solve

the capacitated vehicle routing problem (CVRP) with uncertain demands. Nevertheless, this framework is not applicable

to VRP with sequence-related constraints (e.g., time windows, distance, or working length restrictions) because it violates

the permutation invariant assumption. We close this gap and investigate the RSRP with cascading delays in the AHH

context, where the visiting sequence needs to be explicitly considered and two sources of uncertainty exist with different
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characteristics. To this end, we reviewed relevant studies on stochastic VRP optimization and particularly, (distributionally)

robust optimization.

In the context of stochastic VRP, most studies assume independent travel and service times with fully known distribu-

tions and endeavor to minimize deadline violations (e.g., caregiver’s working time regulation). For example, Laporte et al.

(1992) defined illegal routes by bounding the probability of late return in the chance-constrained model and demonstrated

that the model is similar to a deterministic VRP model if travel and service times have additive probability distribu-

tions. In terms of the penalty cost of exceeding the route duration, the authors proposed recourse models and developed a

branch-and-cut approach for solving the problem. Incorporating customer time windows renders the problem more chal-

lenging. Hashemi Doulabi et al. (2020) formulated the VRPTW with stochastic travel and service times as a two-stage

stochastic integer programming model without big-M constraints, which was solved by an L-shaped algorithm with the

maximum tested instances including 20 patients. In practice, however, the distribution functions typically cannot be accu-

rately obtained for stochastic programming, and the involved calculation is time-consuming since the multivariate integral

is #P-hard (Esfahani and Kuhn 2018).

Some studies subsequently adopted robust optimization paradigms and characterized unknown durations with different

classes of uncertain sets. For example, Munari et al. (2019) addressed the VRPTW with uncertain travel time through a

budgeted polyhedral uncertainty set. The authors proposed a branch-price-and-cut (BPC) method that relies on a robust

resource-constrained elementary shortest path problem to generate robust routes in terms of both vehicle capacity and

customer time windows. Bartolini et al. (2021) studied a robust traveling salesman problem with time windows in which

the travel times are within a knapsack-constrained uncertainty set. The authors devised an exact method based on column

generation and route enumeration. However, the robust optimization approach used by this stream of studies is excessively

conservative as the extreme situations included in the uncertain set definition generally incur more costs and poor out-of-

sample performance.

To ensure timely service and completion, certain initiatives have integrated the DRO approach with crafted decision

criteria regarding delays to strengthen scheduling resilience. Specifically, Zhang et al. (2019) proposed a DRO model with

a cross moment ambiguity set for uncertain travel times and the essential riskiness index to characterize delays in the trav-

eling salesman problem. Zhang et al. (2021) solved the VRPTW counterpart with a Wasserstein distance-based ambiguity

set and proposed a new decision criterion service fulfillment risk index (SRI). The authors incorporated the optimality and

feasibility constraints of SRI into a branch-and-cut scheme to eliminate violated solutions. More recently, Zhang et al.

(2024) designed a general decision criterion, termed the generalized riskiness index, and developed a BPC algorithm that

can consistently solve Solomon’s instances with up to 50 nodes. However, they assumed the known distribution of uncer-

tainty to evaluate the index value, which fails to work when the uncertainty is represented by ambiguity sets. Although

adopting similar decision criteria as the above studies, our work captures the delineated uncertainties in the AHH context

and demonstrates that precisely governing the different features of travel and service times with compound ambiguity set

can effectively enhance the efficacy of mitigating cascading delays. More specifically, our work combines the SRI risk

measure with a convolutional ambiguity set that is composed of different types of uncertainty sets, versus the same type of

uncertainty sets with different parameters, to achieve better risk management. Additionally, the current stream of studies

usually optimizes the total risk measures within a budget constraint, which may incur risk imbalance among individual

nodes and lead to severe delays due to propagation. As a result, we adhere to a different formulation by restricting the

CSRI constraints to each node and guaranteeing individual service quality.
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3 Problem Description and Formulation
In this section, we describe the business problem (i.e., RSRP) observed from the AHH practice and present a set-partitioning

formulation to characterize the decision process.

3.1 RSRP Description

The RSRP depicts a general AHH scheduling and routing problem that assigns available caregivers to geographically

dispersed patients and plans their visiting routes. Before each service day, the service provider manually finalizes criti-

cal operational decisions to minimize the operating costs, which include: (i) assigning patients to specific caregivers; (ii)

designing the visiting sequence for each caregiver; and (iii) determining the arrival time at each patient’s residence. In fact,

the service provider pays caregivers proportional to their total engagement time, which includes both service duration and

travel time2. Since all patients must be served and their random no-shows are omitted, the total service duration is predeter-

mined. By normalizing the cost related to total service duration to zero, consequently, the objective of minimizing total cost

is equivalent to minimizing total travel cost, thus they are used interchangeably hereafter. To obtain an optimal solution,

these decisions are constrained by various AHH features in practice, including but not limited to the following:

• Stakeholder heterogeneity and skill matching: Caregivers and patients differ in terms of health skills, service require-

ments, period availability, service duration, and region of residence. This results in several remarks. First, advanced

AHH studies assume that caregivers depart from and return to their homes and have diverse availability patterns for

providing services (Mosquera et al. 2019, Liu et al. 2024a). Second, the depots (caregivers’ homes) are predefined.

Finally, each caregiver is characterized by qualifications and skillsets, as well as some demographic characteristics,

such as gender and age (Cire and Diamant 2022).

• Time window and working time regulation: When providing AHH services, respecting time window and working

time regulation is critical for ensuring stakeholder satisfaction as previously emphasized. The former refers to the

specific intervals during which a patient can receive services, accommodating her availability and preferences. The

latter pertains to the maximum shift lengths and mandatory rest periods for caregivers, complying with labor laws

and caregiver well-being considerations. To hedge against uncertain durations, an on-time service-level constraint is

necessary to ensure that the schedule respects these two requirements to a prescribed extent (Benjaafar et al. 2023,

Cui et al. 2023, Zhou et al. 2021).

• Workload, fatigue and medical resources: Even when adhering to working time regulations, consecutive services,

especially for patients who are clustered with trivial travel times, can lead to excessive workload and fatigue in care-

givers, compromising the quality of care provided by them. Additionally, caregivers require various medical consum-

ables for patient care, such as insulin syringes, venipuncture needles, blood collection tubes, nebulizers, and wound

care supplies. Consequently, there is a prescribed capacity for each caregiver, representing the maximum number of

patients or medical resources they can effectively manage within a given period, typically a shift. This constraint

helps prevent caregivers from becoming overburdened, reducing the risk of fatigue-related errors and ensuring the

well-being of both patients and caregivers (Yang et al. 2021).

• Continuity of care: In the AHH sector, continuity of care is an important factor for maintaining high service quality

and patient satisfaction (Cappanera et al. 2018, Liu et al. 2024a). This constraint requires that the number of caregivers

assigned to a single patient over the time horizon is limited within a cohort, enabling consistent and coordinated

2 Note that the service provider does not account for uncertainty when calculating payments for caregivers, as incorporating such
factors would significantly complicate the operational process.
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care delivery. By restricting caregiver changes, continuity of care enhances trust and rapport between patients and

caregivers, minimizes disruptions, and ensures that caregivers are well-acquainted with their patients’ specific needs

and preferences.
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Figure 2 Example of Trade-offs in the RSRP

On each working day, caregivers depart from their homes to visit the assigned patients sequentially as indicated by

the agendas, and finally return home after completing all the assigned tasks. In practical scenarios, however, the actual

realization may deviate from the expectation significantly due to advanced (and static) assignments and routing decisions

made without accounting for the uncertain nature of travel and service times. To better illustrate the downside caused by

uncertain durations, we present a simplified realistic instance in Figure 2 with five patients and three caregivers, which

also indicates the underlying trade-offs in the choice of robustness and operating costs. The data triplet next to each patient

node displays individual information, including the prescribed time window, skill-matching requirements, service duration,

arrival time, and service start time. The optimal routes under deterministic circumstances are described by blue solid lines,

in which each patient can receive AHH service at the prescribed time slot, constituting the advanced schedule. However,

upon actual realization, route 1→ A→ B→C→ 1 results in late arrivals due to disturbances in several travel and service

times. These situations are common in practice because of unexpected traffic congestion and caregivers spending additional

time in patients’ homes to handle emergencies. Note that even though the subsequent visits proceed as expected after

arriving at patient B, patient C still suffers from a delay of 46 minutes due to the cascading effect, which further propagates

and finally leads to a violation of working time regulation with up to 22 minutes. In contrast, route 0→ D→ E → 0 is

robust and remains eligible in both scenarios. As a remedy for this scenario, if rescheduling the patient C to caregiver 2

satisfies all constraints, then this new arrangement could mitigate delays and preclude potential patient dissatisfaction, at

the expense of extra travel costs.

Therefore, considering these features in AHH practice, we formulate the RSRP as a mathematical program and aim to

achieve a satisfactory trade-off between scheduling resiliency and operating costs, aided by the risk measure CSRI to ensure

the promised on-time service level (for each patient) and completion target (for each caregiver).
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3.2 Set Partitioning Formulation

The RSRP is defined on a directed graph G = (V ,A), where V denotes the set of nodes and A represents the set of

arcs. The node set V is partitioned as V = I ∪ J , with I = {0, ..., |I | − 1} representing the caregiver locations, and J =

{|I |, ..., |I |+ |J | − 1} denoting patient addresses. The arc set A is defined as {(v, v′)|v, v′ ∈ V , v ̸= v′}\{(v, v′)|v, v′ ∈ I}.
Let M represent the set of patients’ service requirements as well as caregivers’ skills. Each node v∈V is associated with a

series of binary parameters υvm ∈ {0,1}, a demand dv ∈R+, an uncertain service time s̃v and a time window [ev, lv], where

υvm denotes whether caregiver or patient v ∈ V owns (or requires) skill m ∈M , if yes, then υvm = 1; otherwise, υvm = 0.

The parameters ev ∈R+ and lv ∈R+ prescribe the earliest and latest service start times, respectively. Following convention,

in case the earliest or latest time is not explicitly specified for some particular node v ∈ V , we assign ev = 0 or lv = ∞

to represent the absence of such constraints, respectively. As a result, the node sets with explicit earliest and latest time

window constraints are denoted as V = {v ∈ V | ev > 0} and V = {v ∈ V | lv < ∞}. For example, we have I ⊂ V where

li∈I represents the working time regulation for returning to the depot. For each patient j ∈ J , the service start time cannot

be earlier than e j or later than l j. Otherwise, early arrival will result in idle waiting time until e j, whereas late arrival after

l j will lead to patient dissatisfaction. We assume a prescribed capacity Qi ∈N+ of each caregiver i∈ I due to the limitation

for carrying medical instruments to serve patients. Without loss of generality, we define s̃i∈I = 0, di∈I = 0 and d j∈J = 1 such

that Qi represents the maximum number of patients to be visited by a caregiver i. For each arc (v, v′) ∈ A , the travel cost

and uncertain travel time are denoted as cvv′ ∈ R+ and t̃vv′ , respectively. Let ξ̃v denote the uncertain delay of node v ∈ V

along the given route, then the corresponding service level can be evaluated by the CSRI ργ(ξ̃v), which is a risk measure

of delay with the risk aversion parameter γ ∈ [0,1] and will be explained in more detail in Section 4.2. Finally, let β ∈R+

be a prescribed threshold to restrict the CSRI for each node. Note that, a smaller β value reflects more stringent punctuality

requirements, indicating the decision-maker’s conservative attitude toward prioritizing service quality over minimizing the

operating costs. In contrast, a larger β value signifies that the decision-maker values the cost objective over the schedule

dependability. For ease of readability, we have described all the parameters and decision variables in Table EC.1 of the

e-companion.

We assume that G is an acyclic graph, and a feasible route corresponds to an elementary path r = (i, j1, ..., jk, i) for a

caregiver i∈ I and visiting patients j1, ..., jk ∈ J such that

(i) the sum of patient demands cannot exceed caregiver’s capacity: ∑ j∈{ j1,..., jk} d j ≤Qi;

(ii) the caregiver possesses the specific skill that the visited patients require: υim ≥ υ jm,∀ j ∈ { j1, ..., jk},m∈M ;

(iii) the service level upon each node v ∈ { j1, ..., jk, i} satisfies the predefined risk level: β ∈ R+: ργ(ξ̃v) ≤ β,∀v ∈
{ j1, ..., jk, i}. Note that, this condition primarily encompasses the consideration of time windows for patients and

working time regulation for caregivers.

To characterize this problem, let R̃ be the set of all feasible routes (i.e., elementary routes that satisfy the capacity, skill-

matching and CSRI constraints of each node) and let cr ∈R+ denote the corresponding travel cost for route r ∈ R̃ , in other

words, the total travel cost on arcs connecting all traversed nodes within the route. Furthermore, let binary parameter br
v

indicate whether node v∈V is traversed (br
v = 1) or not (br

v = 0) by the route r.

For each route r ∈ R̃ , we define the binary decision variables zr∈R̃ , where zr = 1 indicates that route r is selected in the

solution; otherwise, zr = 0. Thus, the RSRP can be formulated as the following set partitioning model FSPF:

[FSPF] min ∑
r∈R̃

crzr (1a)
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s.t. ∑
r∈R̃

br
i zr ≤ 1, ∀i∈ I, (1b)

∑
r∈R̃

br
jzr = 1, ∀ j ∈ J , (1c)

zr ∈ {0,1}. ∀r ∈ R̃ . (1d)

The objective function (1a) aims to minimize the total travel cost. Constraints (1b)-(1c) ensure the availability of care-

givers and patients with medical needs being visited. Finally, constraints (1d) define the domains of the decision variables.

For clarity, we also present a compact formulation to characterize the RSRP in EC.2.

Note that a significant benefit of formulating the RSRP as FSPF is that some of the constraints, such as the capacity,

skill-matching and service-level constraints, do not need to be explicitly expressed but are instead implicitly considered in

the definition of route r ∈ R̃ . This allows feasibility checks for these constraints to be integrated into the column generation

procedure presented in Section 5.1.2. However, two major challenges are still waiting to be solved: First, evaluating the

service-level constraint for each node is not trivial, and depends on the decision variable zzz, uncertain service times s̃ss and

uncertain travel times t̃tt. Indeed, the service-level constraints are formally defined as follows.

ργ(ξ̃v(zzz, s̃ss, t̃tt))≤ β, ∀v∈V . (2)

In the next section, we will explain how incorporating these CSRI-based service-level constraints helps mitigate delay

risk. Second, FSPF focuses solely on single-period scheduling and routing decisions to develop an effective cascading

delay mitigation strategy, and thus neglects the continuity of care requirements in the multiple-period setting for ease

of computational burden. As an extension, in EC.7, we introduce the model and solution approach that incorporates the

continuity constraints. Additionally, we conduct further numerical experiments to evaluate the performance of the delay

mitigation strategy across various continuity scenarios.

4 CSRI-Based Delay Risk Mitigation
In this section, we first introduce the compound ambiguity set for governing distinct travel and service time uncertainties.

Next, we present CSRI as a metric to assess schedule performance, discuss the implications of CSRI constraints (2), and

analyze its structural properties for tractable reformulations from three different perspectives. Finally, we theoretically

compare the CSRI with the prevalent decision criterion LPI.

4.1 Compound Ambiguity Set

In real-world situations, the exact distributions Pt̃tt and Ps̃ss of travel and service times usually cannot be obtained exactly from

observations. However, with some information on how they have evolved from historical records, we can approximate them

by assuming that the true distributions Pt̃tt and Ps̃ss belong to certain families of distributions Ft̃tt and Fs̃ss, respectively. In this

regard, existing DRO studies typically assume the same type of ambiguity set for uncertain travel and service times (Tsang

and Shehadeh 2023, Zhang et al. 2021). Nevertheless, sometimes travel and service times manifest different characteristics,

especially in the AHH context as previously depicted in Figure 1d. Consequently, the classical single ambiguity set, even

with different parameters, turns out to be “coarse” for precise risk evaluation, as we will see later in the next section. To

assess risk more accurately, we separately capture the characteristics of travel and service times by constructing the most

suitable ambiguity set individually, and cast them into a compound ambiguity set as follows.

DEFINITION 1. The compound ambiguity set is defined as the Cartesian product of an ambiguity set Ft̃tt for travel time and

an ambiguity set Fs̃ss for service time, given by

F = Ft̃tt ×Fs̃ss. (3)
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In fact, some existing studies have implicitly adopted a compound ambiguity set in cases where Ft̃tt and Fs̃ss belong to the

same type of ambiguity set and their compound ambiguity set coincidentally reduces to a classical single ambiguity set.

For instance, when both Ft̃tt and Fs̃ss are modeled as mean-support ambiguity sets, their Cartesian product remains a single

mean-support ambiguity set (Tsang and Shehadeh 2023). However, if Ft̃tt and Fs̃ss are based on different types of ambiguity

sets, then their Cartesian product cannot be represented as a single unified type of ambiguity set.

This is exactly the case for the compound ambiguity set in the AHH context, which necessitates the examination of

two different ambiguity sets. Our study is also the first to consider this scenario in general. As previously revealed in

Figure 1d, travel times are highly time-dependent and correlated, and may even exhibit considerable fluctuations due to

unforeseen emergencies. In contrast, service times remain independent and relatively stable, as the duration is primarily

managed by caregivers. These distinct features necessitate a compound ambiguity set for describing travel and service times

separately. For travel time uncertainty, some studies often circumvent interdependencies by presuming that travel times are

independently distributed (Tsang and Shehadeh 2023, Zhang et al. 2021). As this assumption simplifies risk assessment, the

actual risk could be underestimated in the absence of correlations (Chen et al. 2023). On the contrary, ambiguity sets that

depend on decision variables to fully counteract endogenous uncertainty may lead to considerable computational intricacy

(Kong et al. 2020). Therefore, we employ the following cross moment ambiguity set to hedge against uncertain travel times

by resorting to a variance-covariance matrix, which is sufficient to characterize their correlations (Prakash and Srinivasan

2018, Rostami et al. 2021) and avoids excessive conservatism associated with only specifying marginal distributions (Chen

et al. 2022).

Ft̃tt(µµµ,ΣΣΣ) =
{
P∈ P (R|A |) EP(t̃tt) = µµµ

EP
(
(t̃tt − µµµ)(t̃tt − µµµ)⊤

)
= ΣΣΣ

}
, (4)

where µµµ∈R|A |++ is a positive vector, ΣΣΣ≻ 0 is a positive definite matrix, and P represents the set of all probability distributions

on R|A |.
With respect to the service time uncertainty, although a diagonal covariance matrix can describe uncorrelated distributed

random variables, the cross moment ambiguity set may not be sufficient for capturing their independence, which is a

more stringent condition than simply being uncorrelated. In other words, relying solely on the cross moment ambiguity

set for robust risk evaluation may result in a significant overestimation of the actual risk (Chen et al. 2023). Therefore,

the Wasserstein ambiguity set over the empirical distribution vicinity is more advantageous for effectively utilizing reliable

historical data (Esfahani and Kuhn 2018, Zhang et al. 2021, Chen et al. 2024) and circumvent the omission of unobserved

scenarios encountered by the φ divergence-based ambiguity set (Ben-Tal et al. 2013, Gao and Kleywegt 2023). Let ŝssω

denote the empirical service times for scenario ω∈Ω, where Ω = {1,2, . . . ,N} represents all possible scenarios. Then the

empirical distribution of the service time is

P† [s̃ss† = ŝssω

]
=

1
N
, ∀ω∈Ω. (5)

The Wasserstein ambiguity set, defined with a radius θ∈R+, is given by:

Fs̃ss(θ) =

{
P∈ P (W )

s̃ss∼ P, s̃ss† ∼ P†

dW
(
P,P†

)
≤ θ

}
, (6)

where W = {sss | sss≥ sss} is the corresponding support set with the lower bounds sss and

dW
(
P,P†)= inf

{∫
Ω

||sss1− sss2||pΠ(dsss1,dsss2) :
Π is a joint distribution of sss1 and sss2
with marginals P and P† respectively

}
, (7)

where || · ||p represents a polynomial norm for which p≥ 1. Note that the case of θ = 0 ignores distributional ambiguity

and corresponds to the SAA approach.

Conclusively, we obtain the compound ambiguity set Ft̃tt(µµµ,ΣΣΣ)×Fs̃ss(θ) through the Cartesian product. Our numerical anal-

ysis (see Section 6.3) indicates that using this compound ambiguity set for disjoint travel and service times can effectively

enhance robustness compared with only employing a single ambiguity set for embedded uncertainties.
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4.2 Compound Set Reliability Index

The service fulfillment risk index (SRI) is an effective decision criterion for evaluating both the probability and magnitude

of lateness, where the uncertainty is governed by a single ambiguity set as the service times are assumed to be implicitly

included in the travel times (Zhang et al. 2021). Building on this concept, we extend it and obtain a new risk measure,

the CSRI, by explicitly incorporating the service time as an independent multivariate random variable and constructing

a compound ambiguity set for disjoint travel and service times. We show that the CSRI could enhance precision in risk

assessment theoretically and numerically, but also lead to new solution challenges, as Section 4.3 elaborates.

Given a vehicle routing solution zzz, we can extract the corresponding route(s) in the form of node sequence(s). Consider a

route (i, j1, j2, . . . , jk−1, jk, . . . , i′) that visits node v = jk ∈V and ends at dummy depot i′ (i.e., a duplicate of i). Regarding

the partial path to node v, we define the sets of visited nodes and traversed arcs as

Nv(zzz) = {i, j1, j2, . . . , jk−1, v} and (8)

Av(zzz) = {(i, j1), ( j1, j2), . . . , ( jk−1, v)}, (9)

respectively. For each node v∈V , corresponding to Nv(zzz) and Av(zzz), let us define πππv(zzz) and ςςςv(zzz) as 0-1 vectors such that

π
j
v(zzz) = 1 if and only if node j ∈Nv(zzz), and ςa

v(zzz) = 1 if and only if arc a∈Av(zzz). Similarly, we define the set of traversed

nodes and arcs (starting) from an upstream node v′ = jk′ ∈Nv(zzz) to v as

Nv′v(zzz) = {v′, jk′+1, . . . , jk−1} and (10)

Av′v(zzz) = Av(zzz)\Av′(zzz) = {(v′, jk′+1), ( jk′+1, jk′+2), . . . , ( jk−1, v)}, (11)

respectively, and πππv′v(zzz) and ςςςv′v(zzz) are the corresponding 0-1 vectors as we defined above but acting on Nv′v(zzz) and Av′v(zzz).

It is important to note that Nv(zzz) includes node v, whereas Nv′v(zzz) does not. We now introduce the calculation of service

start time and delay function, which are widely adopted in the VRPTW literature (see e.g., Zhang et al. 2019, 2021). The

separation of travel and service times can be incorporated straightforwardly as follows.

LEMMA 1. Given a routing solution zzz, a realization sss of service times and a realization ttt of travel times, the service start

time for each node v∈V is determined by the function

Sv(zzz, sss, ttt) = max
v′∈Nv(zzz)

{
ev′ + ∑

j∈Nv′v(zzz)

s j + ∑
a∈Av′v(zzz)

ta

}
. (12)

We present the proof in EC.3.1. Following this, we introduce the delay function, which plays a pivotal role in characterizing

the CSRI metric.

DEFINITION 2. Given the service start time, the delay function upon a node v∈V is defined as

ξv(zzz, sss, ttt) = Sv(zzz, sss, ttt)− lv. (13)

Clearly, the delay function captures the temporal difference between the realized service start time and the latest time

window as promised. By analyzing such discrepancies across all travel and service time realizations, a comprehensive view

of the delay emerges. However, as the distributions of travel times t̃tt and service times s̃ss are unobservable by nature, the

delay ξ̃(zzz, s̃ss, t̃tt) is also a random variable3.

3 For clarity in our exposition, we denote random variables with a tilde ( ˜ ) symbol. In contrast, variables without a symbol or
variables with a hat (ˆ) symbol, represent their realized values. We denote the empirical distribution P† with a dagger superscript (†).
For example, s̃ss† denotes the random variable governed by the empirical distribution P† of service times, whereas sss and ŝss represent
a specific realization of these service times.
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DEFINITION 3. (Compound set reliability index, CSRI) Given a random delay denoted by random variable ξ̃ with proba-

bility distribution P and a service level γ∈ [0,1], we define the CSRI as

ργ(ξ̃) = min
{

α≥ 0 | F-CVaRγ(max{ξ̃,−α})≤ 0
}
, (14)

where F-CVaRγ(ξ̃) is the worst-case conditional value-at-risk (CVaR) for random variable ξ̃ over the compound ambiguity

set F of distribution P:

F-CVaRγ(ξ̃) = min
α

{
α+

1
1− γ

sup
P∈F

EP

[
(ξ̃−α)+

]}
. (15)

Intuitively, the CSRI of each node is the minimum nonnegative constant α such that the F-CVaRγ of the regularized delay

does not exceed 0, where the regularized delay is acquired by forcing the excess early arrival time beyond α equal to α,

that is, let ξ̃ =−α when ξ̃≤−α. Given the CSRI definition, we aim to answer the following questions.

First, what do we lose if we implicitly embed service time uncertainty in travel time counterparts? From the robust

optimization standpoint, the worst-case delay is less encapsulated for the joint ambiguity set of the sum of travel and service

times than the compound ambiguity set. This distinction arises from the subadditivity property of the supremum operator.

That is,

sup
ŝss∈Wsss, t̂tt∈Wttt

ξ(zzz, ŝss, t̂tt)≥ sup
t̂tt∈Wsss+ttt

ξ(zzz,000, t̂tt), (16)

where Wttt and Wsss denotes the data-driven support set for travel and service times, respectively, and Wsss+ttt signifies the

counterpart with the assumption that the service time at each node is included in the travel time of its outgoing arcs. This

underscores the imperative to handle uncertain travel and service times separately in the context of robust optimization. We

illustrate this result by using an example constructed on the Wasserstein ambiguity set.

EXAMPLE 1. We reveal the distinction between the compound Wasserstein ambiguity sets based on separate and indepen-

dent travel and service times versus the single ambiguity set for their sum. A comparison of these two methods can be found

in Table 1, where different on-time metrics are analyzed under θ = 0 and γ = 0.1 without loss of generality. Notably, despite

the duration samples (columns ‘Uncertain deviation’) being identical, the single and compound ambiguity sets present

remarkably divergent results. Specifically, the former over the empirical distribution P(ξ) =
2
3

δ(ξ+1)+
1
3

δ(ξ+4), where

δ(·) denotes the Dirac distribution, manifests a pronounced reliability of the current schedule, with all the metrics indicat-

ing no delay risks (columns ‘Single’). It seems that the potential delays are entirely avoided. However, this evaluation is

obviously impractical, as scenarios with delays can easily be identified. For example, if the uncertain deviations for both

travel and service times are 5 minutes, as historically recorded, then a worst-case delay of 10 minutes would be observed.

In contrast to the “satisfactory” outcome obtained through the single ambiguity set, metrics derived from the compound

ambiguity set raise serious concerns about punctuality (columns ‘Compound’). As shown in Table 1, the lateness probabil-

ity is as high as 33%, with an expected delay of 1.78 minutes. The result indicates poor on-time performance, which is not

perceived as an acceptable outcome. This is because the compound ambiguity set successfully captures the delay records

for separate travel and service times (e.g., the 5-minute delay for service time in scenario 1), offering more risk assessment

precision than the one implicitly blending them. ■

Table 1 Comparison between the Single and Compound Wasserstein Ambiguity Sets

Uncertain deviation Single Compound

Scenario Service Travel Total Lateness
probability(%)

Expected
delay

Worst-case
delay SRI Lateness

probability(%)
Expected

delay
Worst-case

delay CSRI

1 5 −6 −1
2 −6 5 −1 0 0 0 0 33 1.78 10 4.76
3 −2 −2 −4
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Second, why are CSRI constraints effective in addressing the cascading effect? To elucidate this, we analyze how the

CSRI constraints function via another illustrative example. As mentioned previously, the literature has not yet fully investi-

gated or addressed the cascading effect. For example, by degenerating the compound ambiguity set into a single Wasserstein

ambiguity set, Zhang et al. (2021) focused on minimizing the total index metric of customer nodes within a specified travel

cost budget. Similar research ventures have considered other index metrics (e.g., Jaillet et al. 2016, Zhang et al. 2019, 2024).

The primary objective of these studies has been to control the overall delay risk, which is a crucial concern for practitioners,

but the reason for the cascading effect has not been discussed. In other words, little attention is directed toward balancing

the CSRI for managing individual node-level delays. While the overall CSRI values may exhibit trivial differences, differ-

ent formulations for integrating CSRI (i.e., minimizing total CSRI versus restricting CSRI for individual nodes) can lead to

varying robustness levels for individual nodes.

EXAMPLE 2. We illustrate the service-level fairness of restricting the CSRI for each patient in Figure 3. The figure elu-

cidates three potential routes, each characterized by distinct uncertain delay distributions (i.e., uncertain delay realization

and probability) for each patient. Here, we use τ to represent a large constant value and γ = 0.1. In terms of the objective of

minimizing the overall CSRI, route 2 emerges as the top choice, boasting the lowest total CSRI value of 1.18. However, in

the worst-case scenario, patient A on route 2 might endure a waiting time of 20 minutes (with a probability of 0.05), which

is unacceptable and bound to cause dissatisfaction and complaints. Conversely, the maximum waiting time on routes 1 and

3 is only 10 minutes, which is considered trivial. Route 1, in particular, stands out as it optimally distributes the CSRI,

ensuring timely service for each patient. ■

1 A B 1
CSRI: 0.59

-𝜏𝜏: 0.95
10: 0.05Delay:

CSRI: 0.63

-𝜏𝜏: 0.9
5: 0.1Delay:

Total CSRI: 1.22
Route 1

0 B A 0
CSRI: 0

Delay: -𝜏𝜏: 1

CSRI: 1.18

-𝜏𝜏: 0.95
20: 0.05Delay:

Total CSRI: 1.18Route 2

0 A B 0
CSRI: 1.25

-𝜏𝜏: 0.9
10: 0.1Delay:

Total CSRI: 1.25CSRI: 0

Delay: -𝜏𝜏: 1
Route 3

Caregiver node

Patient node

Travel path

Figure 3 Comparison of Delay Mitigation Strategies: Individual Restriction versus Total Minimization

This example clearly demonstrates that setting a cap on the CSRI for each node is crucial and necessary to prevent

situations from deteriorating beyond the prescribed criterion and boost the satisfaction of both patients and caregivers. The

implementation of CSRI constraints is deemed an effective tool to mitigate cascading delays caused by the convolutional

travel and service uncertainties, which distinguishes this work from Zhang et al. (2021). Therefore, we incorporate this

measure into our formulation and explore its closed forms in the following subsection.

4.3 Evaluating the CSRI in Closed Forms

To embody the left side of constraints (2), namely the CSRI value, we reformulate ργ(ξ̃v(zzz, s̃ss, t̃tt)) for node v ∈ V under a

given routing solution zzz as the following semi-infinite programming problem (Zhang et al. 2021, Theorem 1).

[FCSRI-SIP] ργ(ξ̃v(zzz, s̃ss, t̃tt)) = min α (17a)

s.t. sup
P∈Ft̃tt (µµµ,ΣΣΣ)×Fs̃ss(θ)

EP

[(
ξ̃v(zzz, s̃ss, t̃tt)+α

)+
]
≤ (1− γ)α, (17b)

α≥ 0. (17c)
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Note that FCSRI-SIP is intractable because of the complexity related to high-dimensional integration. To address such a

technical challenge, in this section, we develop three different CSRI solution approaches by exploiting the structure and

deriving tractable reformulations. Specifically, we introduce the SAA approach ΦCSRI-SAA in Section 4.3.1 and the exact

CSRI approach ΦCSRI-EXA as well as the sufficient CSRI acceleration approach ΦCSRI-SUF in Section 4.3.2 to obtain the

CSRI value for each node given the preceding partial path under the assumption of implicit time windows. These approaches

can easily be adapted for CSRI-feasibility checks and are applicable to any exact or heuristic algorithm. In Section 5, we

develop an exact and metaheuristic algorithm integrated with these CSRI-tailored closed forms to ensure on-time service

and completion requirements.

4.3.1 Sample Average Approximation

SAA is a simulation-based approach proposed by Kleywegt et al. (2002) to handle stochastic discrete optimization problems

through the basic idea that the expected objective value of the stochastic problem can be approximated by the corresponding

average value of sampling problems. Owing to the intractability of calculating the sum of random variables, we reformulate

FCSRI-SIP with the SAA method into the following linear programming (LP) model where the ambiguity set is a singleton

that contains only the empirical distribution.

[FCSRI-SAA] min α (18a)

s.t.
1
N ∑

ω∈Ω

yω ≤ (1− γ)α, (18b)

yω ≥ ξv(zzz, ŝssω, t̂ttω)+α, ∀ω∈Ω, (18c)

yω ≥ 0, ∀ω∈Ω, (18d)

α≥ 0, (18e)

where ŝssω and t̂ttω denote the ω-th realization of s̃ss† and t̃tt†, respectively, and each scenario ω ∈ Ω occurs with even prob-

ability. The auxiliary decision variables yω = (ξv(zzz, ŝssω, t̂ttω) + α)+,ω ∈ Ω are introduced to linearize the reformulation.

FCSRI-SAA can be solved directly via state-of-the-art commercial solvers such as CPLEX and Gurobi and adapted in column

generation to check route feasibility. We thus represent this evaluation procedure as the ΦCSRI-SAA approach.

4.3.2 Closed-Form Evaluation

The SAA method estimates the objective value via the empirical distribution, assigning an equal mass of 1/N to each

historical sample. However, this approach may lead to estimation errors and yield inferior decisions, which perform poorly

in practice. To leverage the advantages of CSRI constraints over the compound ambiguity set and solve the FCSRI-SIP for all

nodes in V , we utilize duality theory and obtain its tractable reformulation as follows.

THEOREM 1. FCSRI-SIP can be equivalently represented as the following optimization problem with second-order conic

constraints.

[FCSRI-SOC] min α (19a)

s.t. θ |Av(zzz)|
p−1

p +
1
N ∑

ω∈Ω

αω ≤ (1− γ)α, (19b)

ςςςv′v(zzz)
⊤

ΣΣΣςςςv′v(zzz)≤ 4αω

(
αω−α− ev′ + lv− ςςςv′v(zzz)

⊤µµµ− πππv′v(zzz)⊤ŝssω

)
, ∀ω∈Ω, v′ ∈Nv(zzz), (19c)

αω ∈R+, ∀ω∈Ω, (19d)

α∈R+, (19e)

where αω is the auxiliary decision variable for each scenario ω∈Ω.
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The proof of Theorem 1 follows from the concurrent duality over the two ambiguity sets and subsequent reformulations,

which subtly integrate the duality results of the Wasserstein distance-based ambiguity set in Zhang et al. (2021) and that of

the cross moment ambiguity set in Zhang et al. (2019). Note that Theorem 1 indicates that the CSRI of a node under a given

routing solution can be addressed via a conic program comprising at least O(N) decision variables and O(N) constraints

even if ev′ = 0 for all v′ ∈V , which is of the same scale as FCSRI-SAA and thus tends to be computationally demanding. In

other words, it is computationally prohibitive to solve the compact formulation by substituting the CSRI constraints with

FCSRI-SOC and solving the resulting mixed-integer second-order conic program using state-of-art techniques (Drewes and

Ulbrich 2009), as the basic VRP is still NP-hard. To accelerate the procedure, we introduce the following proposition to

highlight the properties of this conic program given graph G = (V ,A).

PROPOSITION 1. For each node v∈V , the solution of FCSRI-SOC must fulfill the following constraints:

θ |Av(zzz)|
p−1

p + 1
N ∑ω∈Ω αω

1− γ
= α = αω−

ςςςv(zzz)
⊤ΣΣΣςςςv(zzz)
4αω

− ξv(zzz, ŝssω,µµµ), ∀ω∈Ω. (20)

Proposition 1 provides the optimal conditions of the CSRI solution, which supports us in developing the following

CSRI evaluation approaches. Before formalizing the theorem, we first denote the CVaR of the delay given the empirical

distribution of service times and the expected travel times as CVaRγ(ξ̃v(zzz, s̃ss†,µµµ)). With the result presented in Sarykalin

et al. (2008), we can compute CVaRγ(ξ̃v(zzz, s̃ss†,µµµ)) as

CVaRγ(ξ̃v(zzz, s̃ss†,µµµ)) =
⌊(1−γ)N⌋

∑
ω=1

ξv
(
zzz, ŝss(ω),µµµ

)
(1− γ)N

+

(
1− ⌊(1− γ)N⌋

(1− γ)N

)
× ξv

(
zzz, ŝss(⌊(1−γ)N⌋+1),µµµ

)
, (21)

where ξv(zzz, ŝss(ω),µµµ) represents the decreasing order statistics of the empirical delays such that ξv(zzz, ŝss(1),µµµ)≥ ξv(zzz, ŝss(2),µµµ)≥
...≥ ξv(zzz, ŝss(N),µµµ).

THEOREM 2. (Sufficient CSRI) The CSRI in constraints (2) of node v∈V under a given routing solution zzz can be equiva-

lently reformulated as

[FCSRI-SUF] min α (22a)

s.t. θ |Av(zzz)|
p−1

p +
1
N ∑

ω∈Ω

(α+ ξv(zzz, ŝssω,µµµ))+
√
(α+ ξv(zzz, ŝssω,µµµ))

2
+ ςςςv(zzz)⊤ΣΣΣςςςv(zzz)

2
≤ (1− γ)α, (22b)

α∈R+, (22c)

Furthermore, if CVaRγ(ξ̃v(zzz, s̃ss†,µµµ))≤−Γv(zzz), then constraints (2) are satisfied when

max
{

max
n∈{1,2,...,⌊(1−γ)N⌋}

{
∑

n
ω=1 ξv(zzz, ŝss(ω),µµµ)+ (1− γ)NΓv(zzz)

(1− γ)N− n

}
,Γv(zzz)

}
≤ β, (23)

where Γv(zzz) =
2θ|Av(zzz)|

p−1
p +
√

ςςςv(zzz)⊤ΣΣΣςςςv(zzz)
2(1−γ) .

Note that FCSRI-SUF favourably harbors both modeling fidelity and computational traceability. Compared with the same

measure index under the Wasserstein ambiguity set for joint travel and service times in Zhang et al. (2021), FCSRI-SUF fully

captures the structure of the variance-covariance matrix of travel times with the term ςςςv(zzz)
⊤ΣΣΣςςςv(zzz), avoiding the compu-

tational intractability or the simplified assumption that correlation exists only between adjacent links for computational

convenience (Rostami et al. 2021). If travel times are deterministic as in the mean values, then constraint (22b) degenerates

into the form θ |Av(zzz)|
p−1

p + 1
N ∑ω∈Ω (α+ ξv(zzz, ŝssω,µµµ))

+ ≤ (1− γ)α, which is exactly the variant in Zhang et al. (2021). In

this regard, FCSRI-SUF imposes a more rigorous criterion for measuring travel time correlation.
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The left-hand side of Eq. (23) serves as a conservative (larger) approximation of the CSRI value. The advantage of

this sufficient condition is that it can be assessed easily in a constant time. Nonetheless, this condition is not a necessary

condition for the fulfillment of ργ(ξ̃v(zzz, s̃ss, t̃tt)). In other words, it is possible to construct problem instances that satisfy

constraints (2) but violate Eq. (23). Our preliminary experimental results show that the approach is less computationally

intensive but overly conservative such that a portion of feasible routes are ruled out. In light of these observations, we

apply Eq. (23) first in column generation as a preliminary check to accelerate CSRI-feasibility evaluation by avoiding

exact examination with a larger computational burden, which is denoted as the ΦCSRI-SUF approach hereafter. However,

this approach may mistakenly exclude some feasible routes as a sufficient condition for constraints (2). To check the

CSRI feasibility of each route exactly, we develop the sufficient and necessary conditions as follows.

THEOREM 3. (Exact CSRI) Suppose that ev′ = 0 for ∀v′ ∈ V , we have ργ(ξ̃v(zzz, s̃ss, t̃tt)) < +∞ if and only if there exists an

α∗ ∈R+ such that

γ− 1
2
+

1
N ∑

ω∈Ω

ξv(zzz, ŝssω,µµµ)
2
√

ξv(zzz, ŝssω,µµµ)2 + ςςςv(zzz)⊤ΣΣΣςςςv(zzz)
≤ 0, (24)

γ− 1
2
+

1
N ∑

ω∈Ω

α∗+ ξv(zzz, ŝssω,µµµ)

2
√
(α∗+ ξv(zzz, ŝssω,µµµ))

2 + ςςςv(zzz)⊤ΣΣΣςςςv(zzz)
= 0, (25)

θ |Av(zzz)|
p−1

p +
1
N ∑

ω∈Ω

α∗+ ξv(zzz, ŝssω,µµµ)+
√
(α∗+ ξv(zzz, ŝssω,µµµ))

2 + ςςςv(zzz)⊤ΣΣΣςςςv(zzz)

2
+(γ− 1)α∗ ≤ 0, (26)

which serve as the sufficient and necessary conditions of the existence of ργ(ξ̃v(zzz, s̃ss, t̃tt)). If ργ(ξ̃v(zzz, s̃ss, t̃tt))<+∞, then con-

straints (2) hold if one of the following two inequalities is satisfied:

γ− 1
2
+

1
N ∑

ω∈Ω

β+ ξv(zzz, ŝssω,µµµ)

2
√
(β+ ξv(zzz, ŝssω,µµµ))

2 + ςςςv(zzz)⊤ΣΣΣςςςv(zzz)
≥ 0, (27)

θ |Av(zzz)|
p−1

p +
1
N ∑

ω∈Ω

β+ ξv(zzz, ŝssω,µµµ)+
√

(β+ ξv(zzz, ŝssω,µµµ))
2 + ςςςv(zzz)⊤ΣΣΣςςςv(zzz)

2
+(γ− 1)β≤ 0. (28)

Note that the check of condition (24) is trivial. However, the expression of α∗ by known parameters is impracticable.

Fortunately, we can utilize gradient descent to evaluate the CSRI existence and a subsequent bisection algorithm to obtain

the exact CSRI value efficiently. Specifically, consider a function f : R+ 7→R, given by

f (α) = θ |Av(zzz)|
p−1

p +
1
N ∑

ω∈Ω

α+ ξv(zzz, ŝssω,µµµ)+
√
(α+ ξv(zzz, ŝssω,µµµ))

2 + ςςςv(zzz)⊤ΣΣΣςςςv(zzz)

2
+(γ− 1)α. (29)

Since the function f (α) is convex (see EC.3.6 for proof details), the α∗ can thus be easily obtained through iterative descent

searches. That is, we start with an initial point α0 = 0 and successively generate a list of points α1,α2, ... via Newton’s

method such that f is decreased in each iteration. Once a nonpositive f value is obtained, the remaining conditions (25)-

(26) are guaranteed. Then, the bisection method is utilized on the last iterative interval to find the value of CSRI with

f (ργ(ξ̃v(zzz, s̃ss, t̃tt))) = 0. The above process is described in Algorithm 1 in EC.4 and is denoted as ΦCSRI-EXA for the CSRI fea-

sibility check.
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4.4 Comparison with the Lateness Probability Measure

When measuring on-time service and completion in routing optimization, the lateness probability index (LPI) is perhaps the

most natural and ubiquitous decision criterion to improve scheduling resiliency (Adulyasak and Jaillet 2016). For example,

in our case, this approach involves considering the same setting of FSPF but replacing the CSRI constraints (2) with the LPI

constraints as the measure of punctuality. In this section, we theoretically illustrate that the CSRI is more sensitive to the

magnitude of delays than the general LPI measure. We first formally present the LPI definition concerning the compound

ambiguity set as follows.

DEFINITION 4. (Lateness probability index under the compound ambiguity set, LPIc) Given a random delay denoted by

the random variable ξ̃ with probability distribution P, we define the LPIc as

χ(ξ̃) = min

{
α≥ 0 | sup

P∈Fs̃(θ)×Ft̃ (µµµ,ΣΣΣ)
P
(

ξ̃ > 0
)
≤ α

}
. (30)

LEMMA 2. Given routing solution zzz, the LPIc for node v∈V can be obtained via the semi-infinite program as follows.

[FLPI-SIP] min α (31a)

s.t. sup
P∈Ft̃tt (µµµ,ΣΣΣ)×Fs̃ss(θ)

F-CVaR1−α(ξ̃v(zzz, s̃ss, t̃tt))≤ 0, (31b)

α≥ 0. (31c)

Intuitively, the LPIc calculates the least quantile to curb the conditional expectation of lateness and provides decision-

makers with the flexibility to customize service levels in terms of probabilistic guarantees of on-time service and comple-

tion. Although the same objective, risk threshold and CVaR are adopted to quantify the tail lateness, the CSRI procures the

least normalized value for regularizing the excess early arrival time instead of the least quantile as the LPIc. As a result,

the CSRI is more sensitive than the LPIc to the magnitude of lateness rather than early arrival. For example, the LPIc might

prioritize a delay with a lower probability but notably longer duration, as long as the lateness magnitude is negligible com-

pared with the early arrival. The CSRI comprehensively quantifies both the lateness magnitude and probability, thereby

avoiding such a dilemma. Furthermore, contrary to the computational intractability for FLPI-SIP, FCSRI-SIP allows concise

reformulations in Section 4.3, which enables us to develop efficient solution algorithms in Section 5.

5 Solution Approaches
The challenges for addressing FSPF are twofold. On the one hand, the CSRI constraints (2), which can be computed through

the evaluation approaches in Section 4.3, i.e., ΦCSRI-SAA, ΦCSRI-EXA, ΦCSRI-SUF, are not linear constraints; thus, FSPF cannot

be directly solved by off-the-shelf solvers such as CPLEX and Gurobi. On the other hand, even excluding the CSRI con-

straints, solvers can rarely provide optimal solutions for medium- or large-size instances in a reasonable computing time,

because the reduced problem, as a variant of VRP, is still a well-known NP-hard problem.

To address these concerns and solve RSRP instances more efficiently, this section designs an exact algorithm

(CSRI-BPC) based on the FSPF formulation and a metaheuristic method (CSRI-VNS). Specifically, CSRI-BPC can

solve the problem to proven optimality, whereas CSRI-VNS achieves high-quality solutions efficiently. Moreover,

CSRI-BPC can be enhanced with CSRI-VNS to achieve fast-effective performance. For conciseness, we provide only

the main components for each approach here and present more details in EC.5-EC.6.
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5.1 Main Components of CSRI-BPC

Branch-price-and-cut (BPC) is a method of combinatorial optimization to solve MIP models where both column generation

(CG) and the separation of cutting planes are exploited simultaneously to solve the restricted master problem at each node

of the branch-and-bound tree (Costa et al. 2019).

5.1.1 Master problem.

The master problem (MP) has been presented in the FSPF formulation. To solve this integer programming problem, we first

relax FSPF to the LP model by setting the decision variables zzz to be continuous. Additionally, the cuts (see Section 5.1.3)

and branching rules (see Section 5.1.5) are applied to this relaxed MP to obtain integer solutions efficiently. The restricted

master problem (RMP) is derived by replacing R̃ with a subset R̂ ⊆ R̃ in the MP, which expands through iterative CG and

finally converges to optimal solutions.

5.1.2 Pricing subproblem.

Let ψi (i∈ I ) and ψ j ( j ∈ J ) represent the dual variables of constraints (1b) and constraints (1c), respectively. The reduced

cost for a route r ∈ R̃ is given by

Cr = cr−∑
i∈I

br
i ψi−∑

j∈J
br

jψ j = ∑
(v,v′)∈A

br
vv′cvv′ (where cvv′ = cvv′ −ψv). (32)

The binary parameter br
vv′ indicates whether an arc (v, v′) is selected in the route r ∈ R̃ , which is generated through the

label-setting algorithm. We can conveniently obtain a support graph Gi (i ∈ I ) with the modified cost cvv′ only on arcs by

changing the values of its outgoing arcs according to Eq. (32). Therefore, the original problem of minimizing the reduced

cost Cr can be converted to the shortest path problem under the capacity, skill-matching and CSRI constraints on graph Gi.

That is, the pricing subproblem is an NP-hard elementary shortest path problem with resource constraints.

Now we introduce the label-setting algorithm by only focusing on one support graph Gi to simplify the exposition, where

a list of labels at each node is defined to represent the information of partial paths. More specifically, a label L j is a tuple

L j = (v j,C j,q j,ρ j, (ℶv
j)v∈V ) representing the partial path r(L j) originating from depot i and extending (directly/indirectly)

through the network to node j ( j ∈V ). The elements in L j are described as follows:

• v j: the last vertex along path r(L j), v j =−1 if j is the initial depot;

• C j: the reduced cost of path r(L j);

• q j: the accumulated demand over path r(L j);

• ρ j: the CSRI of node j along path r(L j);

• ℶv
j: a binary variable. ℶv

j = 1 if node v has been visited or unreachable from L j; otherwise ℶv
j = 0.

After label initialization at depot i by setting all elements to 0 except vi = −1, new labels are generated iteratively by

performing forward extensions along feasible arcs through resource extension functions (REFs). The feasibility of extend-

ing each selected node is determined according to the skill-matching, CSRI and capacity constraints, thereby excluding

infeasible nodes from the paths. Specifically, let ⊕ be the concatenation symbol, and the extension of path r(L j) along arc

( j, k) to obtain new path r(Lk) = r(L j)⊕ ( j, k) is performed as the following REFs:

vk = j; Ck =C j + c jk; qk = q j + dk; (33a)

ρk← ργ

(
ξ̃k
(
r(Lk), s̃ss, t̃tt

))
; (33b)

ℶv
k =

{
ℶv

j + 1, if v = k;
max{ℶv

j,URv(Lk)}, otherwise. (33c)
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Here, ξ̃k(r(Lk), s̃ss, t̃tt) is the uncertain delay of node k along path r(Lk) and ργ

(
ξ̃k
(
r(Lk), s̃ss, t̃tt

))
is the CSRI value, which

can be computed through the approaches (i.e., ΦCSRI-SAA, ΦCSRI-EXA, ΦCSRI-SUF) in Section 4.3. Furthermore, URv(Lk) is a

binary variable indicating whether the node v is unreachable from label Lk. Specifically, URv(Lk) = 1 when at least one of

the following conditions is violated.

• Workload, fatigue and medical resources: the sum of patient demands cannot exceed the caregiver’s capacity, qk ≤Qi;

• Skill matching: the caregiver possesses the specific skill that the next node v requires, υim ≥ υvm,∀m∈M ;

• Time window: the extension to the next node v satisfies the predefined risk level, ργ

(
ξ̃v
(
r(Lk)⊕ (k, v), s̃ss, t̃tt

))
≤ β;

• Working time regulation: after completing the service at node v, the caregiver can directly return to the depot,

ργ

(
ξ̃i
(
r(Lk)⊕ (k, v)⊕ (v, i), s̃ss, t̃tt

))
≤ β.

As the continuity of care constraints impose restrictions on the number of caregivers serving each patient, it is handled in

the master problem with additional robust cuts. We introduce the formulation and solution approach in EC.7.

5.1.3 Subset row inequalities and the CSRI-based dominance rule.

To strengthen the quality of the MP lower bound, we adopt subset-row cuts (SRCs) in the CSRI-BPC procedure. Accord-

ingly, the dominance rule considering the impact of non-robust SRCs must be updated in the subproblem.

5.1.4 Warm-up and acceleration techniques.

The warm-up procedure is incorporated to generate the initial column pool R̂ and obtain an initial upper bound. We first

propose a backtracking algorithm and further develop a CSRI-VNS algorithm (Section 5.2) to close the initial solution

gap. Furthermore, we adopt strategies such as ng-route, heuristic pricing and digital tree (trie) to accelerate the solving

process of the subproblem.

5.1.5 Branching scheme.

To obtain integer solutions, we enforce the following branching rules in the branch-and-bound search tree: (i) on the

fractional total flow of an arc visited by all caregivers; (ii) on the node visited a fractional number of times; and (iii) on the

fractional total flow of an arc visited by one caregiver.

5.2 Main Components of CSRI-VNS

To solve large-scale real-world instances and obtain high-quality solutions, we develop a metaheuristic framework based

on the variable neighborhood search (VNS), which can be integrated with our CSRI approach to obtain suboptimal or even

optimal solutions for the RSRP (referred to as CSRI-VNS). The main components are described as follows:

• Initial solution generation. The initial solutions (i.e., routes) are constructed by the backtracking algorithm outlined

in Section 5.1.4.

• Local search procedure. Four operators (i.e., relocate, exchange, reverse and interchange) are adopted to produce

more promising solutions.

• Diversification procedure. To escape from the incumbent local optimum, we randomly remove several patient nodes

and then insert them back via the backtracking method.

Specifically, for each new route generated either by local search or diversification, the CSRI evaluation approaches are

applied to calculate the CSRI value and ensure that it does not exceed the threshold β; otherwise, the route is excluded.

Overall, the CSRI-VNS complexity is O(|V |).
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As mentioned above, the CSRI-VNS algorithm includes the backtracking algorithm as its initial baseline, enabling it

to produce better solutions without consuming excessive computational effort. Therefore, it outperforms the backtracking

algorithm in terms of solution quality and efficiency. We thus adopt CSRI-VNS to quickly obtain a suboptimal, or even

optimal, solution to warm up CSRI-BPC for a tighter upper bound, which terminates when either it does not improve the

best solution for 10 iterations or the one-hour time limit is reached.

6 Numerical Experiments
In this section, we provide a comprehensive experimental analysis that explores the efficiency and effectiveness of our

models, methodologies, and algorithms. We begin by introducing the benchmark and real-world instances used for our

experiments in Section 6.1. In Section 6.2.1, we evaluate the performance of the exact methods outlined in Section 5.1 by

comparing different tailored CSRI-solution approaches and explore the searchability and performance of the metaheuristic

approach described in Section 5.2. Next, we investigate the impacts of the topological structure on the solution performance

in Section 6.2.2. In Section 6.3, we highlight the advantage of incorporating the compound ambiguity set relative to the

single joint ambiguity set. Finally, we present the performance of our methods in solving real-world instances and derive

pragmatic managerial insights in Section 6.4.

We implement the designed algorithm in C++ and use IBM ILOG CPLEX V20.1 to solve the LP and MIP models. Our

experimental environment is an AMD Ryzen Threadripper 3990x 64-core, 128-thread CPU. All the experiments are run on

a single thread. The overall time limit to terminate the solving process is 3,600 seconds (denoted as T.L.).

6.1 Datasets and Methods

Through the tests, we selected two datasets: a benchmark dataset and an industrial dataset. The benchmark dataset is widely

adopted in the literature, notably in the SRI study (Zhang et al. 2021), whereas the industrial dataset aims to provide more

managerial insights from a practitioner’s perspective. The construction of the two datasets is as follows.

The benchmark instances tested in our experiments are adapted from the widely used deterministic VRPTW instances

with tight time windows proposed by Solomon (1987), which consist of 100 customer nodes and 29 instances in total.

Instances are divided into three classes on the basis of the nodes’ geographic distribution: c-type (clustered), r-type (ran-

dom), and rc-type (mixed clustered-random). Furthermore, these instances are commonly categorized into three different

scales based on selecting the first 25, 50, and 100 nodes, with the corresponding numbers of available vehicles being 8, 15,

and 25, respectively. For brevity, we use the notation (8,25) to represent an instance with 8 vehicles and 25 customers. This

results in a total of 87 (29× 3) instances used in the benchmark testbed. We compute the travel time and cost for each arc

based on the Euclidean distance and rounded them down to the first decimal place. To account for uncertainty, we modify

the deterministic travel and service times using asymmetric two-point distributions supported on µ− σ/
√

3 and µ +
√

3σ

with probabilities of 0.75 and 0.25 respectively (Zhang et al. 2021). Here, µ is the original value, and σ = λµ is its standard

deviation, where λ is generated randomly from the interval [0.1,0.5].

Furthermore, we obtain an operational dataset from our AHH industry partner. This dataset contains 142 AHH visiting

routes with 332 detailed appointments from November 1 to November 6, 2019, including information such as the actual

service time, appointment time (i.e., the latest service time required by the patient and the working time regulation), the

longitude and latitude of the caregiver and patient locations, and patient conditions and caregiver skills. The distance matrix

is acquired with the longitudes and latitudes of locations from Amap (https://developer.amap.com), i.e., the shortest integer

travel time by taking a combination of metro and bus between any two nodes (the travel times satisfy the triangular inequal-

ity conditions). We generate 50 medium-scale instances with 15 caregivers and 50 patients and 50 large-scale instances with
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25 caregivers and 100 patients. The patients are randomly selected based on the five most common medical services, and

we preprocess the data to ensure compatibility between caregivers and patients by matching their skills and requirements.

To reflect real-world situations, we retrieve 100 copies of travel times via Amap and service times for selected patients at

different times and dates. Overall, we utilize this dataset and its generated instances as a practice testbed to study the AHH

industry and analyze the performance of different algorithms.

To construct the cross moment ambiguity set, we empirically estimate the means µµµ and the covariance matrix ΣΣΣ based on

the samples from the joint travel time distribution P†
ttt , as in many studies (e.g., Zhang et al. 2019, Ghosal and Wiesemann

2020). For our analysis, we set the risk aversion parameter γ to 0.1 following the convention. Unless specified otherwise,

we always set the CSRI threshold β = 0.2, the Wasserstein radius θ = 0.05 and use N = 20 travel and service time samples

across all tests, which are calibrated via a preliminary fourfold cross-validation technique (Esfahani and Kuhn 2018). For

comprehensive study purposes, we conducted a sensitivity analysis to investigate the impact of key robustness parameters

(θ, N and γ) and provided managerial explanations in EC.9.

In addition to defining the benchmark and real-world testbeds, we evaluate the effectiveness of the following methods in

our experiments:

i. CSRI-VNS: The variable neighborhood search algorithm developed in Section 5.2 and equipped with the

ΦCSRI-EXA approach to solve the RSRP. Furthermore, let SRI-VNS denote the variable neighborhood search algo-

rithm developed for handling the CSRI governed by a single Wasserstein ambiguity set that embeds service time

uncertainty in travel times, as described in Zhang et al. (2021).

ii. CSRI-BPC: The branch-price-and-cut algorithm proposed in Section 5.1 to solve the RSRP. We use BPCSAA, BPCE,

and BPCSE to represent the CSRI-BPC equipped with the ΦCSRI-SAA, ΦCSRI-EXA and ΦCSRI-SUF+ΦCSRI-EXA approaches

(mentioned in Section 4.3), respectively. In addition, we define the BPCVNSto indicate that CSRI-VNS is adopted in

the warm-up procedure (see Subsection 5.1.4). Therefore, enhanced by CSRI-VNS, the CSRI-BPC algorithm further

evolves into the BPCVNS+SAA, BPCVNS+E and BPCVNS+SE.

After obtaining the routing and scheduling solution, we perform the out-of-sample evaluation by testing the solution

on another 10,000 newly generated travel and service time samples. Finally, we report the following characteristics of the

solutions: Instance solved/tested (number of tested and solved instances for each type), T (s) (the runtime in seconds), Ob j

(the optimal or best-known value, where ‘–’ indicates that an upper bound with at least one integer solution cannot be

derived, and thus no corresponding gap exists), Gap(%) (the relative gap computed with respect to the lower bound and

best-known values obtained in the branch-and-bound tree, (best-known value - lower bound)/lower bound× 100), MaxProb

(the maximum lateness probability across all nodes), AveProb (the average lateness probability across all nodes), MaxExp

(the maximum expected lateness time across all nodes), AveExp (the average expected lateness time across all nodes), and

SumCSRI (the sum of out-of-sample CSRI values for all nodes).

6.2 Comparison of Solution Methods and Topological Structures

6.2.1 Experiments on Algorithm Performance Evaluation

To evaluate the computational performance of our proposed exact algorithm framework, which incorporates various

CSRI solution approaches, we investigate the BPCVNS+SAA, BPCE, BPCVNS+E, and BPCVNS+SE methods for solving bench-

mark instances. We present the overall performance summary in Table 2 and show the detailed results in Tables EC.2-EC.7.

The results indicate that BPCVNS+SE generally outperforms the other methods, achieving the highest number of solved

instances and the smallest exit gap. This superior performance can be attributed to the reduced computational time spent on
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Table 2 Computational Performance Summary of the CSRI-BPC with Different CSRI Evaluation Approaches

BPCVNS+SAA BPCE BPCVNS+E BPCVNS+SE

Instance
type

Instance
solved/tested T (s) Gap(%)

Instance
solved/tested T (s) Gap(%)

Instance
solved/tested T (s) Gap(%)

Instance
solved/tested T (s) Gap(%)

c 0/27 T.L. - 5/27 3460 6.52 9/27 2568 3.95 10/27 2507 3.75
r 0/36 T.L. - 12/36 2555 1.63 12/36 2440 1.48 16/36 2359 0.66
rc 0/24 T.L. - 8/24 2623 5.25 9/24 2538 2.79 10/24 2323 1.58
All 0/87 T.L. - 25/87 2842 4.14 30/87 2379 2.61 36/87 1742 1.89

the CSRI-feasibility checks. Specifically, the ΦCSRI-SUF approach embedded in the BPCVNS+SE avoids unnecessary CSRI-

feasibility checks with trivial assessments that take constant computational time. Additionally, both the ΦCSRI-SUF approach

and the ΦCSRI-EXA approach are more efficient than the ΦCSRI-SAA approach, which involves a linear program with O(N)

decision variables and O(N) constraints, rendering it quite computationally demanding. This explains why BPCVNS+SAA can-

not obtain a feasible upper bound for even one instance. It is worth mentioning that the BPCVNS+SE is capable of solving

most instances with the shortest computational time across all methods. Specifically, 28 of the 29 (8,25)-instances are

solved to optimality, and the average unsolved gap for all 87 instances is merely 1.89%. This performance outperforms

existing exact algorithms dedicated to solving DRO models for VRPTW (e.g., Zhang et al. 2019, 2021). Therefore, it is

reasonable to use BPCVNS+SE as the primary representation of exact methods in future experiments unless otherwise spec-

ified. To further justify this decision, we compare the performance profiles across all methods on the benchmark testbed.

As shown in Figure 4, BPCVNS+SE is capable of solving most instances to proven optimality with the shortest computational

time on average, which reinforces the notion that it is the most efficient and effective exact solution approach.
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Figure 4 Performance Profile of the BPCVNS+SE, BPCVNS+E, BPCE and BPCVNS+SAA Algorithms: Percentage of Instances Solved to

Optimality within the Given Computing Times

To investigate the computational enhancement achieved by the metaheuristic, we examine the CSRI-VNS and

BPCVNS+SE methods with more benchmark instances. We subsequently evaluate the performance of these two methods

through out-of-sample tests. The average performance is presented in Table 3 grouped by instance type and the detailed

results can be found in Tables EC.6-EC.10.

Table 3 indicates that CSRI-VNS exhibits excellent searchability, as exact methods fail to provide better solutions for

21 of the 29 (8,25)-instances and can only obtain the same solutions as those produced by the CSRI-VNS. Moreover,

when solving larger-scale instances, CSRI-VNS can quickly find near-optimal or potentially even optimal solutions. The

experiments indicate that a graph structure with up to 25 caregivers and 100 patients might be a suitable scale for efficient

optimization. Finally, the out-of-sample results suggest that the solutions generated by CSRI-VNS are as robust as those

obtained by the BPCVNS+SE, as evidenced by the corresponding out-of-sample indicators, e.g., smaller AvgExp values. More

importantly, these results also demonstrate that our formulations can significantly balance patient satisfaction and cost
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Table 3 Computational and Out-of-Sample Performance of CSRI-VNS, SRI-VNS and BPCVNS+SE for Different Scale Instances

Performance
Method Scale Instance T (s) Ob j Gap(%) AveProb MaxProb AveExp MaxExp SumCSRI

CSRI-VNS (8,25) c 7 242.4 - 0.01 0.10 0.23 2.38 1.88
r 8 424.0 - 0.01 0.12 0.05 0.92 2.68
rc 7 332.9 - 0.02 0.13 0.11 0.97 2.65
Average 7 342.5 - 0.01 0.12 0.12 1.39 2.42

(15,50) c 39 494.2 - 0.01 0.10 0.17 2.22 3.85
r 49 731.4 - 0.02 0.17 0.11 1.47 5.27
rc 40 799.5 - 0.03 0.21 0.27 3.05 5.55
Average 43 676.6 - 0.02 0.16 0.17 2.14 4.90

(25,100) c 233 1104.7 - 0.01 0.20 0.29 6.50 8.19
r 356 1102.6 - 0.02 0.21 0.13 2.65 9.81
rc 365 1317.2 - 0.02 0.21 0.19 3.24 10.67
Average 320 1162.4 - 0.02 0.20 0.20 4.01 9.55

SRI-VNS (8,25) c 2 241.0 - 0.01 0.10 0.20 2.33 3.30
r 2 416.7 - 0.01 0.15 0.12 1.36 3.12
rc 1 334.5 - 0.02 0.21 0.25 2.92 3.34
Average 2 339.5 - 0.01 0.15 0.18 2.09 3.24

(15,50) c 14 494.7 - 0.01 0.14 0.21 3.43 6.70
r 12 712.9 - 0.03 0.22 0.22 2.42 6.52
rc 7 727.5 - 0.04 0.25 0.45 4.35 6.77
Average 11 649.2 - 0.03 0.20 0.28 3.27 6.64

(25,100) c 95 1102.3 - 0.01 0.17 0.29 6.53 13.47
r 121 1086.9 - 0.02 0.22 0.12 2.34 13.64
rc 114 1248.2 - 0.03 0.26 0.29 4.12 13.68
Average 111 1136.2 - 0.02 0.21 0.22 4.13 13.60

BPCVNS+SE (8,25) c 644 241.9 0.09 0.01 0.08 0.18 1.55 1.87
r 33 421.7 0.00 0.01 0.12 0.05 0.94 2.68
rc 153 327.3 0.00 0.02 0.13 0.11 0.98 2.56
Average 256 339.9 0.03 0.01 0.11 0.11 1.14 2.39

(15,50) c 3219 492.1 4.50 0.01 0.12 0.17 2.22 3.85
r 3374 722.9 1.03 0.02 0.18 0.11 1.45 5.25
rc 2934 726.9 2.10 0.03 0.21 0.29 2.91 5.47
Average 3204 625.3 2.40 0.02 0.16 0.18 2.09 4.88

(25,100) c 3658 1099.2 6.67 0.01 0.20 0.29 6.50 8.17
r 3668 1092.4 0.95 0.02 0.21 0.15 2.68 9.76
rc 3712 1294.3 3.29 0.02 0.21 0.16 2.74 10.53
Average 3677 1150.2 3.38 0.02 0.20 0.19 3.88 9.48

reduction, aligning with our initial motivation to enhance caregiver efficiency and reduce operating costs by allowing for a

slight amount of patient-tolerant overtime. For example, the average lateness probability (AveProb) for the (15,50)-instances

of the CSRI-VNS solution is 0.02, and the average expected lateness time (AveExp) is 0.17 minutes. These results reveal

the potential to pursue operational excellence by allowing trivial lateness. Therefore, by restricting the CSRI constraints for

each patient and caregiver, the CSRI formulations can assist practitioners in pursuing economic benefits while minimizing

negative impacts on patient satisfaction.

6.2.2 Impact of Topological Structures

Based on the results presented in Table 2, the performance of BPCVNS+E and BPCVNS+SE is significantly influenced by

the graph’s topological structure, i.e., the geographical distribution of nodes. The r-type instances appear to be the most

straightforward to optimize and have smaller exit gaps. This might be attributed to the fact that clustered nodes result in

relatively shorter travel times, thereby introducing more combination patterns and expanding the solution-searching space.

Consequently, decision-makers should evaluate the distribution of patients and arrange them into clusters to streamline

scheduling and improve service efficiency. Following these insights, the existing literature has developed a plethora of

clustering policies for informed decisions in the AHH sector (e.g., Cire and Diamant 2022, Pahlevani et al. 2022).

However, few past studies have investigated the implications of the graph’s topological structure on the manifestation of

delays. Interestingly, we find that schedules for various geographical distributions exhibit different overtime risk patterns
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because of the cascading effect. As depicted in Figure 5a, despite having similar out-of-sample CSRI levels, patients dis-

tributed randomly are more likely to either experience no overtime or a trivial delay with a higher frequency. In contrast,

patients in clustered distributions generally endure delays with more consistent low-level overtime probabilities but larger

average expected lateness times, as shown in Figure 5b. The reasoning behind this is clear: Clustering patients geographi-

cally can lead to more efficient routing and scheduling, as caregivers can visit multiple patients in close proximity within

a single trip. This reduces the proportion of time spent traveling compared to providing service, which in turn increases

the number of visiting patients, intensifying the cascading effect caused by the aggregated uncertain durations. Finally,

the same CSRI threshold could lead to different delay manifestations for different topological structures. Hence, decision-

makers should factor in patient distribution when setting the CSRI threshold to strike a balance between operating costs and

service level. Clustered patients combined with more restrictive service-level requirements are recommended to enhance

visiting effectiveness as well as prevent potential nontrivial delays.

(a) (b)
Figure 5 Comparison of Topological Structures: (a) MaxProb and AveExp; (b) MaxExp and SumCSRI

6.3 Comparison of Compound vs. Single Ambiguity Sets

To understand the benefits of using a compound ambiguity set in contrast to a single ambiguity set for integrated travel and

service times, we compared the CSRI-VNS and SRI-VNS methods over Solomon’s instances, which were adopted for

SRI tests in Zhang et al. (2021). We assessed the effectiveness of these two approaches via out-of-sample tests, highlighting

the significance of individually addressing travel and service times due to their distinct intrinsic attributes. The mean

performance for each approach is displayed in Table 3, categorized by instance type. The detailed outcomes are elaborated

in Tables EC.8-EC.13.

As expected, Table 3 indicates that CSRI-VNS exhibits better on-time service performance than SRI-VNS does when

evaluated under identical CSRI constraints. This advantage is particularly evident in instances involving 100 customers.

Figure 6a visually reinforces the notion that the compound ambiguity set, as defined in Section 4.1, outperforms the single

Wasserstein ambiguity set, especially in terms of punctuality across various instance sizes. For example, in the context

of the (25,100)-instances for the CSRI-VNS solution, the sum of out-of-sample CSRI values (SumCSRI) reaches 9.55.

In contrast, the SRI-VNS strategy yields a value that is increased by 42.41%. Moreover, the CSRI-VNS method consis-

tently outperforms the SRI-VNS technique when metrics such as AveProb, MaxProb, AveExp, and MaxExp are taken

into account, accomplishing better punctuality with a mere 2.31% increase in the total cost. Our analysis suggests that
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the enhanced performance stemming from the compound ambiguity set is due to its refined ability to encompass and syn-

chronize a diverse array of uncertainties. Specifically, the variance-covariance matrix adeptly captures the correlations in

uncertain travel times, whereas the Wasserstein ambiguity set leverages the historical data of fluctuating service periods.

Together, these elements aid in the creation of more resilient scheduling.

(a) (b)
Figure 6 Comparison of CSRI-VNS and SRI-VNS: (a) Summed CSRI Values and (b) Runtime

While the compound ambiguity set yields improved out-of-sample performance, it does entail a marginally increased

computational time (see Figure 6b). As a result, for those targeting near-optimal solutions, the SRI-VNS method might

be more efficient than the CSRI-VNS. However, the observed difference in computational time between the two methods

is marginal and remains within acceptable limits for practical applications. Despite its slightly elevated computational

requirements, the CSRI-VNS approach is both efficient and insightful for exploring real-world situations, as shown in the

upcoming Section 6.4. In addition, CSRI outperforms the traditional LPI in terms of both computational efficiency and

on-time performance, as detailed in EC.8.

6.4 Real-World Dataset Tests

To evaluate the performance of our algorithms in solving practical problems, we apply the CSRI-VNS and

BPCVNS+SE methods to solve real-world AHH instances, and summarize the detailed results in Tables EC.14-EC.17.

(1) Summary of average performance. The numerical results demonstrate that the CSRI-VNS and BPCVNS+SE methods

are effective when handling real-world instances. Specifically, both methods achieve satisfactory out-of-sample perfor-

mance, with average MaxProb and MaxExp values of less than 25% and 5 minutes, respectively, for all instances. Notably,

as depicted in Figure 7a, there is no significant difference regarding the average summed CSRI values per schedule. Com-

putationally, for the (15,50)- and (25,100)-instances, BPCVNS+SE takes 1,478 seconds, on average, solving 71 (out of 100)

instances to optimality. As a comparison, Figure 7b shows that CSRI-VNS is faster by at least one order of magnitude

and acquires equivalent-quality solutions. Therefore, CSRI-VNS is more advantageous when handling practical instances,

with a focus on both computational efficiency and solution resiliency.

(2) Effectiveness of cascading delay mitigation. Next, we highlight the effectiveness of our methods in mitigating the cas-

cading delays that arise due to uncertainties in AHH scheduling and routing practices. Figure 8 illustrates the performance

of our model and dedicated solution approaches when addressing the cascading effect. To facilitate clear comparisons,

we duplicate the actual cascading delays presented in Figure 1. Specifically, as Figure 8a shows, the CSRI-VNS solution

achieves an average expected delay of 0.16 minutes (compared with 8.59 minutes for manual schedules), with a 0.96%
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(a) (b)
Figure 7 Average Performances for Real-World Instances: (a) Summed CSRI Values and (b) Runtime

lateness probability (compared with 70.83% for manual schedules) for all patients within the (15,50)-instances. This signif-

icant improvement in punctuality effectively eliminates the vast majority of delays in the manual schedules. Furthermore,

as shown in Figure 8b, the cascading effect has been effectively curtailed, with the (originally) increasing tendency being

flattened (almost unobservable compared with the original case) through our CSRI-tailored mitigation strategy.

(a) (b)
Figure 8 Delay Description of All (15,50)-Instances Solved by CSRI-VNS

The BPCVNS+SE method also yields similar results when solving both (15,50)- and (25,100)-instances. Note that the

average travel times for each node are 10.8 and 16.4 minutes for (15,50)- and (25,100)-instances, respectively. After ana-

lyzing the instance features, we attribute this superiority to the tendency of patients to cluster in different urban regions,

such as neighborhoods or residential zones, whereas these urban regions themselves are randomly scattered and often far

apart. However, while this rc-type pattern (mixed clustered-random) facilitates cost-effective solutions, it also necessitates

decision-makers to enforce stricter on-time requirements (i.e., smaller β) to mitigate the cascading effect as previously

analyzed.

In summary, the above findings demonstrate that our proposed algorithms significantly improve caregiver visiting effec-

tiveness, reduce operating costs, and minimize patient dissatisfaction (caused by delays) compared with the manual sched-

ule. We further visualize this comparison for a (15, 50) instance in Figure 9, which displays the visiting sequence for each

patient and labels the route with the maximum individual CSRI value. Figure 9a depicts the current real-world schedule,

which is executed independently by different schedulers and lacks comprehensive optimization. For comparison, Figure
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(a) Industry partner’s manual schedule (b) The schedule obtained by BPCVNS+SE
Figure 9 Comparison between Manually Obtained Schedules and Those Generated by BPCVNS+SE

Notes. The red and blue icons represent caregivers’ and patients’ locations, respectively, and the edges connecting nodes represent

the caregivers’ scheduling and movement paths.

9b presents an optimized schedule via our BPCVNS+SE method. All patients in densely populated residential areas are prop-

erly allocated and sequenced, and caregivers living nearby can efficiently provide services without traversing the whole

city, thereby avoiding costly commuting routes. Moreover, the cascading delays are effectively managed for the clustering

structure. As indicated, the maximum patient CSRI value has been reduced from 9.75 to 0.144, showcasing a substantial

improvement in the on-time performance of the schedule. The total travel cost has been significantly reduced from 2025

to 741. This comparison illustrates that the current manual schedule is dominated by our recommended solutions, which

highlights the effectiveness of the proposed method and its potential for practical applications.

(3) Impact of the key managerial parameters. Finally, we aim to explore pragmatic improvements that practitioners can

undertake for operational excellence. To ensure computational convenience while maintaining generality, we randomly

select several instances with scales of (15,50) and (25,100). Then, we vary the parameters within a range, including the

CSRI threshold β, service time variation ∆s, and working time regulation variation ∆l . Finally, the results are summarized

in Tables EC.26-EC.28, and graphical comparisons are provided in Figure 10. Specifically,

(a) (b) (c)
Figure 10 Description of the Key Managerial Parameter Tests

(i) Impact of the on-time service requirement. The results demonstrate that, as the on-time service and completion require-

ments gradually shift from leniency to stringency (i.e., β decreases), the objectives described in Figure 10a increase

for boosting out-of-sample performance, whereas computational efficiency improves (see Table EC.26). For example,
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in the case of instance ‘25 100 01’, the objective increases from 2,063 to 2,197 (from β = 1 to β = 0.2), with T (s)

decreasing from 2,475 seconds to 764 seconds, and AveExp from 0.21 minutes to 0.07 minutes. However, as expected,

some instances (e.g., ‘25 100 03’) become infeasible when the punctual criterion is excessively strict, which should

serve as a warning to overly conservative decision-makers who prioritize service quality over all else. Therefore, we

conclude that stringent on-time service and completion requirements inevitably lead to additional operating costs with

improved computational efficiency, posing challenges for decision-makers who must balance schedule resilience and

efficiency against operating costs.

(ii) Impact of the service time duration. When service times are reduced by a certain number of minutes, the objective

improves significantly, as shown in Figure 10b, but the computational burden also increases. For example, in the

case of ‘25 100 01’ with ∆s = −10, the objective value decreases more than 10% from 2,103 to 1,868, whereas

T (s) increases from 455 seconds to 1,460 seconds. This outcome aligns with our expectation that shorter ser-

vice times allow for more flexible travel schedules, leading to diverse visiting routes and additional computational

demands. Therefore, when decision-makers consider hiring additional caregivers with specialized skills to provide

more scheduling flexibility, employing proficient caregivers is crucial, as shorter service times can substantially reduce

the operating costs associated with medical services.

(iii) Impact of the working time regulation. Finally, the results in Figure 10c indicate that the current working time regu-

lation, which was designed to cover all possible patient time windows, is overly conservative. Reducing the working

time regulation by 120 minutes would lead to a substantial improvement in caregiver satisfaction without incurring

significant additional costs. That is, if the service provider could adopt our solutions, then they might be able to cut

down the working time length appropriately while still serving all patients and eliminating delays.

In summary, this section presents various numerical experiments that validate the efficiency and effectiveness of our

cascading delay mitigation strategy and solution methodology. We truly hope that these insights can support managers in

achieving operational excellence, particularly in the context of AHH scheduling and routing.

7 Conclusion
In this article, we investigate a last-mile attended home healthcare (AHH) delivery problem, which has gained considerable

attention in recent years due to the aging population trend. We analyze operational data from a service provider and discover

a cascading delay effect in the AHH business that has not been fully discussed. This phenomenon is significant as delay

propagation impairs patient satisfaction and companies’ operational performance. To address this concern, we attribute the

key reasons for cascading delays to uncertain travel and service times and develop a systematic strategy to mitigate these

issues. Specifically, to capture the inherent features of travel and service time uncertainties, we construct a compound ambi-

guity set by adopting cross moment and Wasserstein ambiguity sets. Then, we propose a new decision criterion, termed the

CSRI, to gauge delays in terms of their probability and magnitude. We present three approaches to evaluate the CSRI values.

With the proposed risk assessment measure, we develop a set-partitioning model, which utilizes CSRI-based service-level

constraints for each node to curb cascading delays. While similar problems have been investigated in the literature, to the

best of our knowledge, there is no distributionally robust model that reconciles distinct uncertain travel and service times

into a compound ambiguity set for risk assessment of individual nodes. To efficiently solve this problem, we develop an

exact branch-price-and-cut solution framework with acceleration strategies (CSRI-BPC) and a fast-effective metaheuristic

(CSRI-VNS). Finally, numerical experiments on benchmark and real-world datasets demonstrate the computational effi-

ciency and effectiveness of our proposed methods in mitigating cascading delays. For example, our methods reduce the

average delay from 8.59 minutes to 0.16 minutes and almost eliminate the cascading effect through practical tests.
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This paper presents valuable insights for AHH operations in several aspects. For accurate risk assessment, we demon-

strate the imperative and advantages of adopting the compound ambiguity set theoretically and numerically when the

characteristics of uncertainties are distinct. Our numerical results also elucidate the impact of the graph’s topological struc-

ture on the computational efficiency and the cascading effect. This information can help decision-makers allocate patients

and employ caregivers with suitable geographical distributions to achieve better scheduling flexibility. Finally, we con-

duct sensitivity analyses for robustness and time-related parameters to support informed decisions. Overall, we believe that

these insights could effectively aid decision-making scenarios in scheduling and routing management for AHH service

delivery, and help balance scheduling resilience and efficiency against operating costs. In conclusion, this article not only

complements the robust vehicle routing literature with a systematic strategy, but also offers practical guidance for AHH

practitioners to mitigate the cascading effect and achieve operational excellence.

Our study indicates several interesting future research directions that could be explored and advanced, not only in the

AHH sector, but also in other service industries. First, one may find the research of the unified compound ambiguity set

framework, which covers all combinations of different types of ambiguity sets in general for all metrics (risk measures,

satisficing measures, or disutility functions), presents a promising avenue for future research, such as the design of patient

visit itineraries in tandem systems (Liu et al. 2024b), and airline fleet assignment problems with uncertain boarding and

flying times. Moreover, adopting machine learning tools in the preprocessing stage to exploit the uncertainty structure can

help obtain a better sample set with a proper size. This, in turn, can lead to more efficient and robust solutions via the

proposed algorithms (Wang et al. 2023).
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Cappanera, Paola, Maria Grazia Scutellà, Federico Nervi, Laura Galli. 2018. Demand uncertainty in robust home care optimization. Omega, 80

95-110.
Centers for Medicare & Medicaid Services. 2023. NHE Fact Sheet. https://www.cms.gov/

research-statistics-data-and-systems/statistics-trends-and-reports/nationalhealthexpenddata/
nhe-fact-sheet. Accessed March 27, 2023.

Chen, Li, Chenyi Fu, Fan Si, Melvyn Sim, Peng Xiong. 2023. Robust optimization with moment-dispersion ambiguity. SSRN Electronic Journal,
URL https://api.semanticscholar.org/CorpusID:260594845.

Chen, Louis, Will Ma, Karthik Natarajan, David Simchi-Levi, Zhenzhen Yan. 2022. Distributionally robust linear and discrete optimization with
marginals. Operations Research, 70 (3), 1822-1834.

Chen, Zhi, Daniel Kuhn, Wolfram Wiesemann. 2024. Technical note—data-driven chance constrained programs over wasserstein balls. Operations
Research, 72 (1), 410-424.

Cire, Andre A., Adam Diamant. 2022. Dynamic scheduling of home care patients to medical providers. Production and Operations Management,
31 (11), 4038-4056.

https://www.cms.gov/research-statistics-data-and-systems/statistics-trends-and-reports/nationalhealthexpenddata/nhe-fact-sheet
https://www.cms.gov/research-statistics-data-and-systems/statistics-trends-and-reports/nationalhealthexpenddata/nhe-fact-sheet
https://www.cms.gov/research-statistics-data-and-systems/statistics-trends-and-reports/nationalhealthexpenddata/nhe-fact-sheet
https://api.semanticscholar.org/CorpusID:260594845


Article submitted to: Production and Operations Management
32 Liu, Zhao and Xie: Last-Mile Attended Home Healthcare Delivery

Costa, Luciano, Claudio Contardo, Guy Desaulniers. 2019. Exact branch-price-and-cut algorithms for vehicle routing. Transportation Science, 53
(4), 946-985.

Cui, Zheng, Daniel Zhuoyu Long, Jin Qi, Lianmin Zhang. 2023. The inventory routing problem under uncertainty. Operations Research, 71 (1),
378-395.

Drewes, Sarah, Stefan Ulbrich. 2009. Mixed integer second order cone programming. Verlag Dr. Hut Germany.
Esfahani, P Mohajerin, D. Kuhn. 2018. Data-driven distributionally robust optimization using the wasserstein metric: Performance guarantees and

tractable reformulations. Mathematical Programming, 171 (1), 115–166.
Fikar, Christian, Patrick Hirsch. 2017. Home health care routing and scheduling: A review. Computers & Operations Research, 77 86-95.
Gao, Rui, Anton Kleywegt. 2023. Distributionally robust stochastic optimization with wasserstein distance. Mathematics of Operations Research,

48 (2), 603-655.
Ghosal, Shubhechyya, Chin Pang Ho, Wolfram Wiesemann. 2024. A unifying framework for the capacitated vehicle routing problem under risk

and ambiguity. Operations Research, 72 (2), 425-443.
Ghosal, Shubhechyya, Wolfram Wiesemann. 2020. The distributionally robust chance-constrained vehicle routing problem. Operations Research,

68 (3), 716-732.
Green, Linda V. 2012. Om forum—the vital role of operations analysis in improving healthcare delivery. Manufacturing & Service Operations

Management, 14 (4), 488-494.
Hashemi Doulabi, Hossein, Gilles Pesant, Louis-Martin Rousseau. 2020. Vehicle routing problems with synchronized visits and stochastic travel

and service times: Applications in healthcare. Transportation Science, 54 (4), 1053-1072.
Jaillet, Patrick, Jin Qi, Melvyn Sim. 2016. Routing optimization under uncertainty. Operations Research, 64 (1), 186-200.
Jiang, Ruiwei, Siqian Shen, Yiling Zhang. 2017. Integer programming approaches for appointment scheduling with random no-shows and service

durations. Operations Research, 65 (6), 1638-1656.
Julie, Redd. 2022. Top 10 complaints from home care clients. https://activatedinsights.com/articles/

top-10-complaints-from-home-care-clients/. Accessed July 15, 2024.
Kleywegt, Anton J., Alexander Shapiro, Tito Homem-de Mello. 2002. The sample average approximation method for stochastic discrete optimiza-

tion. SIAM Journal on Optimization, 12 (2), 479-502.
Kong, Lu, Kejia Hu, Rohit Verma. 2022. Service chains’ operational strategies: Standardization or customization? evidence from the nursing home

industry. Manufacturing & Service Operations Management, 24 (6), 3099-3116.
Kong, Qingxia, Shan Li, Nan Liu, Chung-Piaw Teo, Zhenzhen Yan. 2020. Appointment scheduling under time-dependent patient no-show behavior.

Management Science, 66 (8), 3480-3500.
Kumar Saha. 2020. The 10 most common complaints about home care and how we deal with them. https://www.myplacehomecare.ca/

2020/09/10/the-10-most-common-complaints-about-home-care-and-how-we-deal-with-them/. Accessed
July 16, 2024.

Laporte, Gilbert, François Louveaux, Hélène Mercure. 1992. The vehicle routing problem with stochastic travel times. Transportation Science, 26
(3), 161-170.

Lee, Hau L, Venkata Padmanabhan, Seungjin Whang. 1997. Information distortion in a supply chain: The bullwhip effect. Management Science,
43 (4), 546-558.

Liu, Mingda, Yanlu Zhao, Xiaolei Xie. 2024a. Continuity-skill-restricted scheduling and routing problem: Formulation, optimization and implica-
tions. IISE Transactions, 56 (2), 201-220.

Liu, Nan, Guohua Wan, Shan Wang. 2024b. Design of patient visit itineraries in tandem systems. Manufacturing & Service Operations Management,
26 (3), 972-991.

Liu, Sheng, Long He, Zuo-Jun Max Shen. 2021. On-time last-mile delivery: Order assignment with travel-time predictors. Management Science,
67 (7), 4095-4119.

Lu, Mengshi, Zuo-Jun Max Shen. 2021. A review of robust operations management under model uncertainty. Production and Operations Manage-
ment, 30 (6), 1927-1943.

Mckinsey. 2022a. From facility to home: How healthcare could shift by 2025. https://
www.mckinsey.com/industries/healthcare-systems-and-services/our-insights/
from-facility-to-home-how-healthcare-could-shift-by-2025. Accessed December 27, 2022.

Mckinsey. 2022b. How ‘care at home’ ecosystems can reshape the way health systems envision patient care.
https://www.mckinsey.com/industries/healthcare-systems-and-services/our-insights/
how-care-at-home-ecosystems-can-reshape-the-way-health-systems-envision-patient-care. Accessed
December 27, 2022.

Mosquera, Federico, Pieter Smet, Greet Vanden Berghe. 2019. Flexible home care scheduling. Omega, 83 80-95.
Munari, Pedro, Alfredo Moreno, Jonathan De La Vega, Douglas Alem, Jacek Gondzio, Reinaldo Morabito. 2019. The robust vehicle routing

problem with time windows: Compact formulation and branch-price-and-cut method. Transportation Science, 53 (4), 1043-1066.
Naderi, Bahman, Mehmet A. Begen, Gregory S. Zaric, Vahid Roshanaei. 2023. A novel and efficient exact technique for integrated staffing,

assignment, routing, and scheduling of home care services under uncertainty. Omega, 116 102805.
NHS. 2020. Coronavirus (covid-19): provision of home care. https://www.gov.uk/government/publications/

coronavirus-covid-19-providing-home-care/coronavirus-covid-19-provision-of-home-care--2.
Accessed December 27, 2022.

NHS. 2022. Help at home from a paid carer. https://www.nhs.uk/conditions/social-care-and-support-guide/
care-services-equipment-and-care-homes/homecare/. Accessed December 27, 2022.

NHS. 2023. Managing heart failure home. https://www.england.nhs.uk/nhs-at-home/
managing-heart-failure-at-home/. Accessed July 15, 2024.

Pahlevani, Delaram, Babak Abbasi, John W. Hearne, Andrew Eberhard. 2022. A cluster-based algorithm for home health care planning: A case
study in australia. Transportation Research Part E: Logistics and Transportation Review, 166 102878.

Parent, Olivier, James P. LeSage. 2010. A spatial dynamic panel model with random effects applied to commuting times. Transportation Research
Part B: Methodological, 44 (5), 633-645.

Prakash, A. Arun, Karthik K. Srinivasan. 2018. Pruning algorithms to determine reliable paths on networks with random and correlated link travel
times. Transportation Science, 52 (1), 80-101.

https://activatedinsights.com/articles/top-10-complaints-from-home-care-clients/
https://activatedinsights.com/articles/top-10-complaints-from-home-care-clients/
https://www.myplacehomecare.ca/2020/09/10/the-10-most-common-complaints-about-home-care-and-how-we-deal-with-them/
https://www.myplacehomecare.ca/2020/09/10/the-10-most-common-complaints-about-home-care-and-how-we-deal-with-them/
https://www.mckinsey.com/industries/healthcare-systems-and-services/our-insights/from-facility-to-home-how-healthcare-could-shift-by-2025
https://www.mckinsey.com/industries/healthcare-systems-and-services/our-insights/from-facility-to-home-how-healthcare-could-shift-by-2025
https://www.mckinsey.com/industries/healthcare-systems-and-services/our-insights/from-facility-to-home-how-healthcare-could-shift-by-2025
https://www.mckinsey.com/industries/healthcare-systems-and-services/our-insights/how-care-at-home-ecosystems-can-reshape-the-way-health-systems-envision-patient-care
https://www.mckinsey.com/industries/healthcare-systems-and-services/our-insights/how-care-at-home-ecosystems-can-reshape-the-way-health-systems-envision-patient-care
https://www.gov.uk/government/publications/coronavirus-covid-19-providing-home-care/coronavirus-covid-19-provision-of-home-care--2
https://www.gov.uk/government/publications/coronavirus-covid-19-providing-home-care/coronavirus-covid-19-provision-of-home-care--2
https://www.nhs.uk/conditions/social-care-and-support-guide/care-services-equipment-and-care-homes/homecare/
https://www.nhs.uk/conditions/social-care-and-support-guide/care-services-equipment-and-care-homes/homecare/
https://www.england.nhs.uk/nhs-at-home/managing-heart-failure-at-home/
https://www.england.nhs.uk/nhs-at-home/managing-heart-failure-at-home/


Article submitted to: Production and Operations Management
Liu, Zhao and Xie: Last-Mile Attended Home Healthcare Delivery 33

Rostami, Borzou, Guy Desaulniers, Fausto Errico, Andrea Lodi. 2021. Branch-price-and-cut algorithms for the vehicle routing problem with
stochastic and correlated travel times. Operations Research, 69 (2), 436-455.

Rowe, John W, Terry Fulmer, Linda Fried. 2016. Preparing for better health and health care for an aging population. Jama, 316 (16), 1643-1644.
Sarykalin, Sergey, Gaia Serraino, Stan Uryasev. 2008. Value-at-risk vs. conditional value-at-risk in risk management and optimization. State-

of-the-Art Decision-Making Tools in the Information-Intensive Age, chap. 13. INFORMS Tutorials in Operations Research (INFORMS,
Catonsville, MD), 270-294.
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