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A B S T R A C T

This paper presents a data-driven methodology for estimating under frequency load shedding (UFLS) in
small power systems. UFLS plays a vital role in maintaining system stability by shedding load when the
frequency drops below a specified threshold following loss of generation. Using a dynamic system frequency
response (SFR) model we generate different values of UFLS (i.e., labels) predicated on a set of carefully
selected operating conditions (i.e., features). Machine learning (ML) algorithms are then applied to learn the
relationship between chosen features and the UFLS labels. A novel regression tree and the Tobit model are
suggested for this purpose and we show how the resulting non-linear model can be directly incorporated into a
mixed integer linear programming (MILP) problem. The trained model can be used to estimate UFLS in security-
constrained operational planning problems, improving frequency response, optimizing reserve allocation, and
reducing costs. The methodology is applied to the La Palma island power system, demonstrating its accuracy
and effectiveness. The results confirm that the amount of UFLS can be estimated with the mean absolute error
(MAE) as small as 0.179 MW for the whole process, with a model that is representable as a MILP for use in
scheduling problems such as unit commitment among others.
1. Introduction

Synchronous generators are being displaced with cleaner, albeit
non-synchronously coupled alternatives (like wind and solar), which
inadvertently has led to a reduction of inertia, hence incorporating
frequency dynamics into the operational planning of power systems
is more important than ever. Island power systems are already suf-
fering from a lack of inertia because of their small size. There has
been extensive research on how to include frequency dynamics in
scheduling optimization problems. Both analytical methods (directly
from the swing equation) and data-driven methods (based on dynamic
simulations) have been proposed to obtain frequency constraints for in-
clusion in the operational planning process. Typical frequency response
metrics after outages are the rate of change of frequency (RoCoF),
quasi-steady-state frequency, and frequency nadir. However, calculat-
ing the frequency nadir is much more complicated than the other
metrics. To derive the frequency nadir from the swing equation, some
simplifying assumptions are needed, and still, the obtained equation
is non-linear and non-convex, which makes it challenging to be used
in MILP problem formulations. A common assumption in analytical
frequency-constrained methods like Trovato et al. (2018), Badesa et al.
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(2019), Paturet et al. (2020), Shahidehpour et al. (2021), Ferrandon-
Cervantes et al. (2022), and many other similar works, is that the
provision of reserve increases linearly in time, and all units will deliver
their available reserve within a given fixed time. Consequently, the en-
suing complicated analytical methods are not necessarily accurate. On
the other hand, more recently, ML-based methods have been proposed
to incorporate frequency dynamics. For instance, optimal classifier tree
is used in Lagos and Hatziargyriou (2021), deep neural network is used
in Zhang et al. (2021), and logistic regression is used in Rajabdorri et al.
(2022), among other approaches. An analytical frequency constrained
unit commitment (UC) is compared with data-driven models with the
help of ML in Rajabdorri et al. (2023) and their pros and cons are
highlighted.

In smaller systems like islands the frequency can easily exceed
the safe threshold after any contingency because usually online units
are providing a considerable percentage of the whole demand. To
maintain the frequency stability of an electrical power system, UFLS
schemes are implemented to shed or disconnect a certain amount of
load in predefined steps when the frequency drops below a specified
https://doi.org/10.1016/j.engappai.2024.109617
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Acronyms

ED economic dispatch
KDE kernel density estimate
MAE mean absolute error
MILP mixed integer linear programming
ML machine learning
RES renewable energy sources
RoCoF rate of change of frequency
SFR system frequency response
UC unit commitment
UFLS under frequency load shedding

threshold following disturbance events. This corrective protection mea-
ure helps to balance the power supply and demand and prevents a
omplete system blackout. Different methods have been introduced to
une and optimize the UFLS scheme for electrical power systems, which
an be categorized into conventional and adaptive methods. Conven-
ional UFLS schemes use fixed load shedding steps (Ketabi and Fini,

2014; Laghari et al., 2014; Wang et al., 2022; Kalajahi et al., 2021),
while adaptive UFLS schemes dynamically adjust the load shedding
mount based on real-time system conditions (Mehrabi et al., 2018;

Li et al., 2019; Tofis et al., 2016; Silva and Assis, 2020). Although
daptive schemes provide a more optimized and flexible response, as

they require more advanced monitoring systems and computational
capabilities for real-time monitoring and optimization, they are still
not used widely in practice. The performance of both conventional and
adaptive methods can be improved by incorporating ML (Hooshmand
nd Moazzami, 2012; Golpîra et al., 2022).

Depending on the size of the system, it is possible to prevent UFLS
ctivation. Many studies, like Zhang et al. (2021), Chang et al. (2012),

Sedighizadeh et al. (2019), Pérez-Illanes et al. (2016), and others set
the frequency dynamic thresholds high enough, so no outage leads to

FLS. This is not possible in a small system, where every online unit is
providing a substantial percentage of the demand and any outage can
be big enough to trigger the UFLS activation (Rajabdorri et al., 2022).
In such systems, co-optimizing UFLS activation and scheduling of the
units can have some benefits like:

• Having an estimate of UFLS in the scheduling optimization prob-
lem will prevent incidents with poor frequency responses.

• The estimated amount of UFLS can be deduced from the required
reserve. There is no need to schedule reserve as much as the
biggest outage if eventually the UFLS will be activated after the
outage.

• UFLS can be monetized easily and added directly to the objec-
tive function of the optimization problem, to reduce the overall
operation costs.

This paper tries to estimate the amount of UFLS, regardless of the
UFLS scheme that is used for the system, through a learning process.
The estimation of the amount of UFLS of conventional schemes is how-
ever very complicated because of its discrete nature and disturbance-
dependent behavior. Given the widespread use of conventional schemes
in real systems, it is the principal focus of this paper. The dataset
used for the learning process is labeled with the UFLS of every sample
generation combination in the dataset. The labels can be obtained by
SFR models or any other power system simulator. The purpose is to
use the estimation of UFLS in the operational planning of small power
systems (such as generation UC, economic dispatch (ED), reserve al-
location, ancillary service scheduling, renewable energy sources (RES)
integration, and so on). The operational planning process is usually
modeled and solved as an MILP problem. Therefore, it is convenient

to limit the hypothesis space of the UFLS estimation models to models

2 
that are representable by MILP. Including UFLS estimation in the
roblem is in a sense equivalent to including frequency dynamics in the
perational planning, because poor frequency response subsequently

triggers the activation of UFLS.
To estimate the amount of UFLS, a dataset generation process is

roposed to acquire a set of operating points (potential hourly gen-
ration schedules) that can properly describe the system under study.
very possible outage in each set of generation schedules is labeled with
ts corresponding UFLS. The obtained dataset is carefully analyzed to
hoose the representative features, and then a learning process is pro-
osed. A regression tree model with a novel partitioning algorithm is
uggested in this paper. As the UFLS is activated in steps and discretely
heds load, a regression tree seems most suitable. Our partitioning
lgorithm exploits the data structure to most effectively represent the
egression tree as a MILP (Maragno et al., 2021). Also, the use of the
obit model to estimate UFLS is proposed and studied. Although the
obit model is typically used to describe censored data (Tobin, 1958),
e found it to be effective to also describe the UFLS, which has a cluster

around zero followed by a linearly increasing trend as a function of the
eatures, very similar to zero censored datasets. Additionally, the Tobit
odel has a simple analytic structure that makes it easy to incorporate

nto a MILP. Both the suggested regression tree and the Tobit model,
longside their MILP representation, are demonstrated in the following.

To the best of the author’s knowledge, there is little careful analysis
n UFLS estimation or an MILP representation of UFLS in the existing
iterature. Teng and Strbac (2017) introduces a model for optimal

stochastic scheduling, integrating energy production with operating
reserve, frequency response, and UFLS. The optimal amount of UFLS
is determined, based on the assumption of a linear increase in gener-
ation over time and a specified outage size. The authors in O’Malley
et al. (2022) introduce a novel constraint based on the swing equation
to manage frequency nadir in low-carbon power grids, incorporating
fast frequency response, dynamically reduced largest loss, and UFLS.
The research demonstrates that incorporating UFLS in frequency secu-
rity planning can significantly reduce operational costs. A corrective
requency-constrained UC model for island power systems is introduced
n Rajabdorri et al. (2024) that incorporates analytical constraints

on UFLS, demonstrating its ability to lower generation costs while
minimizing the expected UFLS.

In contrast to the methods previously presented in the literature,
this paper proposes a model to estimate the real UFLS schemes used
in most island power systems, which are step-wise and contain time
delays, through data-driven methods. Table 1 gives a summary of the
reviewed literature, highlighting the main differences compared to this
paper.

The rest of the paper is organized as follows; in Section 2 the
ethodology of the paper is introduced, including the data generation

(in Section 2.1), labeling the data (in Section 2.2), and the learning
process (in Section 2.3). Then in Section 3 the results for the island
under study (La Palma) are presented, including the data generation
and analysis (in Section 3.1), the applied learning process, and its
accuracy (in Section 3.2). Finally, conclusions are drawn in Section 4.

2. Methodology

2.1. Data generation

To estimate the UFLS, a proper set of data is necessary. The training
ataset comprises features 𝑥 ∈  and labels 𝑦 ∈  . In the case of

implementing the estimation of UFLS in the scheduling problems (like
UC), features are any measurable quantities from the power system
that might help predict the UFLS. These features are extracted from
generation combinations, while the labels are obtained from dynamic
simulations of UFLS after outages. These measurements can be obtained
by solving high-order differential swing equations, or by using SFR
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Table 1
Comparison of the reviewed literature.

Paper UFLS modeled MILP
representation

Real scheme Adaptive scheme

Trovato et al. (2018), Badesa et al. (2019), Paturet et al. (2020),
Shahidehpour et al. (2021), Ferrandon-Cervantes et al. (2022),
Lagos and Hatziargyriou (2021), Zhang et al. (2021), Rajabdorri
et al. (2022, 2023)

✗ ✗ ✗ ✗

Teng and Strbac (2017) ✓ ✗ ✗ ✓

O’Malley et al. (2022) ✓ ✗ ✗ ✓

Rajabdorri et al. (2024) ✓ ✓ ✗ ✓

This paper ✓ ✓ ✓ ✗
O

o

u

s
c
i

o
T
a

models. The features should be carefully chosen to represent a reason-
ble amount of information about their labels. Using an unnecessarily
arge number of features can be detrimental to both computational
nd statistical aspects. Selecting a large feature vector increases the
imensions of the problem, thereby requiring more resources for cal-
ulations. In addition, using a higher number of features makes the
odel more susceptible to overfitting. Therefore, it is beneficial to use

nly the features with the most relevant information to predict the label
(Jung, 2018). In this paper, 𝑦 is the amount of UFLS for each outage.

Several methods have been introduced in the literature to reduce the
size of the feature vector. For this paper, the features must be accessible
hroughout the scheduling process. Therefore, variables that are most
orrelated with the label will be chosen as features. As shown later in
ection 3, the selected features for predicting UFLS are available inertia

(𝑔), weighted gain of turbine–governor model (𝑔), the amount of lost
power (𝑃𝑔), and the amount of available reserve (𝑔), after the outage
of generator 𝑔.

To obtain a complete dataset, every combination of possible gener-
tion outputs of the units can be considered. However, many of these

combinations are infeasible as they do not satisfy the constraints that
are used in the scheduling process (power balance, reserve constraint,
or maximum RoCoF), or are unappealing as the optimization problem
will favor cheaper combinations. In this paper, a data generation
method is used to only generate feasible control points that are cost-
effective, and hence more likely to be scheduled in the real operation.

he process is outlined in Algorithm 1.

2.2. Labeling the data

In labeling the data, the SFR model is used to analyze the frequency
stability of small isolated power systems, such as the La Palma Island
ystem being studied. The SFR model can reflect the short-term fre-
uency response of such systems, but other dynamic power system
odels could also be employed. The power-system model, which is

ypically used to design UFLS schemes for an island power system
onsisting of 𝐼 generating units, is detailed in Fig. 1. A second-order

model approximation is used to represent the turbine–governor system
f each generating unit (𝑖). The dynamic frequency responses are
ainly influenced by the rotor and turbine–governor system dynamics,
hile excitation and generator transients are ignored due to their faster
ynamics. The load-damping factor (𝐷) is used to consider the overall
esponse of the loads, provided that its value is known. The gain (𝑘𝑖),
hich is the inverse of the droop, and the parameters (𝑎𝑖,1, 𝑎𝑖,2, 𝑏𝑖,1, and
𝑖,2) of each generating unit (𝑖) can be determined from more precise
odels or field tests. The gain (𝑘𝑖) is an essential parameter to indicate

he frequency response of unit 𝑖, and will influence the UFLS scheme
activation. To have features that can reflect the amount of UFLS after
he outage, a weighted gain is defined, which will be used as a feature
or the training dataset. The equation,

𝑔 =
∑

𝑖∈,𝑖≠𝑔
𝑘𝑖𝑖𝑢𝑡,𝑖 (1)

represents the weighted gain after the outage of unit 𝑔. Due to the
limited primary spinning reserve, the units’ power output is restricted
3 
Algorithm 1 Synthetic Data Generation

Inputs: 𝐷, 𝐷, 𝑃 𝑖, 𝛥𝑓 , 𝑓0, 𝐻𝑖, 𝑀𝑖
utput:  : set of feasible power level vectors

1:  ← ∅
2: for 𝑝 ∈

⨉𝐼
𝑖=1 𝑖 do ⊳ for all power level vectors

3: for 𝑖 ∈ {1,… , 𝐼} do ⊳ for every generator
4: 𝑢𝑖 ∶= 0 if 𝑝𝑖 = 0 else 1 ⊳ status of unit
5: end for
6: 𝐺 ∶=

∑𝐼
𝑖=1 𝑝𝑖 ⊳ total generation

7: 𝑅𝓁 ∶=
(
∑𝐼

𝑖=1 𝑢𝑖(𝑃 𝑖 − 𝑝𝑖)
)

− 𝑢𝓁(𝑃 𝓁 − 𝑝𝓁) ⊳ reserve after
outage of 𝓁

8: 𝐻 sys
𝓁 ∶= (∑𝐼

𝑖=1 𝐻𝑖𝑀𝑖𝑢𝑖) −𝐻𝓁𝑀𝓁𝑢𝓁⊳ inertia after outage of
𝓁

9: if 𝐷 ≤ 𝐺 ≤ 𝐷 and 𝑅𝓁 ≥ 𝑝𝓁 and 𝐻 sys
𝓁 ≥ 𝑝𝓁𝑓0

2𝛥𝑓 then ⊳ feasible?
10:  ←  ∪ {𝑝} ⊳ add power level vector
11: end if
12: end for
13: Sort  ascending by the quadratic generation cost function
14: Keep a reasonable number of cheaper combinations and remove the

rest

𝐷 and 𝐷 are upper and lower bounds on yearly thermal generation (MW), 𝑖 is
the index of unit ∈ {1,… , 𝐼}, 𝑃 𝑖 is the capacity of unit 𝑖 (MW), 𝛥𝑓 is critical
RoCoF (Hz/s), 𝑓0 is nominal frequency (Hz), 𝑖 is the finite set of power levels
f unit 𝑖 including level 0 for not committed (MW), 𝓁 is the index of the lost

unit (can be any 𝑖), 𝐻𝑖 is the inertia of unit 𝑖, and 𝑀𝑖 is the base power of
nit 𝑖.

by the power output limitations 𝛥𝑝𝑖,𝑚𝑖𝑛 and 𝛥𝑝𝑖,𝑚𝑎𝑥, and the ramp-up
peed of the units should be constrained by the maximum ramping
apacity of each respective unit. The complete model is explained
n Sigrist et al. (2016).

2.3. Learning process

2.3.1. Proposed regression tree
A regression tree is suggested in this paper to estimate the amount

f UFLS since conventional schemes shed load in a discrete manner.
ypical regression trees split the feature space into rectangular cells
nd use a constant value within each cell for prediction. However, if we

want to incorporate the model into a MILP, we prefer to have as few
cells as possible. Therefore, a novel regression tree is proposed here,
which is inspired by Verwer et al. (2017) but deviates from it in several
ways:

• The data shows that using convex regions leads to a far more
efficient representation. Therefore, we use linear functions to
partition cells, rather than single features.

• Within each cell, a linear model is used instead of a constant, as
this further reduces the number of cells.

• For prediction, it is important to estimate incidents with no UFLS
as exactly zero and not a small number. The suggested tree
structure can achieve that.
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Fig. 1. SFR model.

Representing such regression tree as MILP is presented later. MILP-
representability of many ML methods is exploited in Maragno et al.
(2021).

The suggested regression tree is shown in Fig. 2. In this figure, N0
is the root node. N1 and N2 are the nodes of the first layer. A linear
function of the features (for example 𝑓0(𝑥) for the root node) will split
the nodes into two to classify the incidents with a threshold on the
labels. Then on the last layer, there are the leaves L1 to L. Linear
regression is applied to the samples within each of these leaves.

As the labels of the dataset are already accessible after the labeling
process (Section 2.2) different methods can be applied to split each
node. Each splitting function is found by solving a univariate optimiza-
tion problem, as explained next. A grid search is performed to find the
optimal cut-point for each split (𝑐 in Fig. 2). Splitting nodes is continued
until the MAE of the new structure is higher than before splitting. From
the results that are obtained from the grid search, the one with the best
overall MAE will be picked.

Finding the optimal linear function 𝑓 (𝑥) = 𝛽0 +
∑𝑝

𝑖=1 𝛽𝑖𝑥𝑖, where 𝑝
is the number of features, to split each cell requires solving a 𝑝 + 1
dimensional optimization problem, which finds the coefficients 𝛽 that
minimizes the error of the local linear fits in each cell. This is a difficult
optimization problem, and also a reason why typical regression trees
split only on single features, i.e. only on functions of the form 𝑓 (𝑥) =
𝑥𝑖 − 𝑐 for a single feature 𝑥𝑖. To reduce the problem of finding 𝛽 to
a univariate optimization problem, a model inspired by Verwer et al.
(2017) is proposed, but for splitting the nodes logistic regression is used
instead of assigning a threshold to a feature and instead of assigning a
constant at the leaf nodes a linear regression is applied. Considering
that the UFLS from the SFR model is either zero or a positive number,
it is important to estimate the incident with no UFLS as zero and not a
small number. This also can be achieved with this tree structure.

First, a univariate threshold variable 𝑐 (over which optimization will
be performed) is introduced, and a binary variable 𝑧, with 𝑧 = 0 if 𝑦 < 𝑐
(here, 𝑦 is the amount of UFLS, i.e. the value being predicted) and 𝑧 = 1
otherwise. Define the logistic function as follows:

𝑝𝛽 (𝑥) ∶= 1
∑𝑝 (2)
1 + exp(−𝛽0 − 𝑖=1 𝛽𝑖𝑥𝑖)

4 
The key idea now is that a good split for predicting 𝑦 should be able
to predict 𝑧 from 𝑥. Therefore, 𝛽0, . . . , 𝛽𝑝 are found to maximize the
log-likelihood,
∑

𝑗∈𝑁
𝑧(𝑗) log 𝑝𝛽 (𝑥(𝑗)) + (1 − 𝑧(𝑗)) log(1 − 𝑝𝛽 (𝑥(𝑗))) (3)

where 𝑁 is the node (as a subset of sample indices) that is currently
being split. For any given threshold 𝑐, denote the maximum likelihood
estimate of 𝛽 by 𝛽(𝑐). Consequently, for each 𝑐, node 𝑁 can be split into
two sub-nodes 𝑁 ′(𝑐) and 𝑁 ′′(𝑐). Now, by performing a one-dimensional
grid search, 𝑐 that minimizes the overall error of the local linear
models, will be chosen. The splitting can be continued until the tree
can predict the amount of UFLS with an acceptable accuracy. Note that
a simpler tree structure is preferred for two reasons. Firstly, although
the accuracy of the model for the dataset in hand might improve
by adding more layers, the model will be more susceptible to over-
fitting. Secondly, the MILP representation becomes computationally
burdensome for more complicated tree structures.

To predict values of the UFLS on each leaf, standard linear regres-
sion is used. The maximum likelihood estimate of the parameters of
the linear model of leaf L𝓁 can be calculated by finding 𝛼0,… , 𝛼𝑝 that
minimize
∑

𝑗∈L𝓁

(

𝛼0 +
𝑝
∑

𝑖=1
𝛼𝑖𝑥

(𝑗)
𝑖 − 𝑦(𝑗)

)2

(4)

Note that, for this fit, only the samples that are assigned to the leaf L𝓁
of the UFLS data are included, resulting in the summation over indices
𝑗 ∈ L𝓁 .

Putting it all together, �̂� from will be predicted from 𝑥, using the
following piecewise linear function,

�̂�(𝑥) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝛼10 +
∑𝑝

𝑖=1 𝛼
1
𝑖 𝑥𝑖 if 𝑥 ∈ L1

⋮

𝛼𝓁0 +
∑𝑝

𝑖=1 𝛼
𝓁
𝑖 𝑥𝑖 if 𝑥 ∈ L𝓁

⋮

𝛼0 +
∑𝑝

𝑖=1 𝛼

𝑖 𝑥𝑖 if 𝑥 ∈ L

(5)

Encoding the proposed regression tree as MILP: To encode the
regression tree (i.e. Eq. (5)) as an MILP model, first a binary variable
𝑢𝓁 for each leaf L𝓁 needs to be defined, which is equal to 1 if 𝑥 belongs
to leaf L𝓁 . Since 𝑥 can only belong to one leaf (see (5)), the sum of the
binary variables 𝑢 is equal to 1:
∑

𝓁∈
𝑢𝓁 = 1 (6)

Further, the binary variables 𝑢 should be equal to 0 if any of the parent
nodes fails. Finally, the decisions at the non-leaf nodes (N0 to N )
directly influence the values of the binary variables of the downstream
leaves (Verwer et al., 2017). For instance, if the decision at N0 is 𝑓0(𝑥) =
𝛽00 +

∑𝑝
𝑖=1 𝛽

0
𝑖 𝑥𝑖 < 0, then 𝑢𝓁 = 0 for leaves in the upper subtree, and

𝑢𝓁 = 1 for leaves in the lower subtree. The following two constraints
force 𝑢𝓁 to take these values as a function of 𝑥:

𝛽00 +
𝑝
∑

𝑖=1
𝛽0𝑖 𝑥𝑖 +0

∑

𝓁∈′
𝑢𝓁 ≥ 0 (7a)

𝛽00 +
𝑝
∑

𝑖=1
𝛽0𝑖 𝑥𝑖 +0

∑

𝓁∈′′
𝑢𝓁 < 0 (7b)

where 𝛽(0) are the obtained logistic regression coefficients for node
N0. 0 and 0 are lower and upper bounds for the values that
𝛽00+

∑𝑝
𝑖=1 𝛽

0
𝑖 𝑥𝑖 can take for any 𝑥 in N0. ′ and ′′ are the list of leaves in

the upper and lower subtrees of the node N0. A similar set of constraints
must be defined for each node. Now that a binary variable pointing to
the correct leaf is accessible, �̂� in Eq. (5) can be calculated as:

�̂� =
∑

𝑢𝓁 ×

(

𝛼𝓁0 +
𝑝
∑

𝛼𝓁𝑖 𝑥𝑖

)

(8)

𝓁∈ 𝑖=1
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Fig. 2. Proposed regression tree.
Eq. (8) is non-linear due to the product of binary and continuous
variables. To linearize (8), the following sets of constraints need to be
defined for each leaf 𝓁,

𝛼𝓁0 +
𝑝
∑

𝑖=1
𝛼𝓁𝑖 𝑥𝑖 −𝓁(1 − 𝑢𝓁) ≤ 𝑟𝓁 (9a)

𝛼𝓁0 +
𝑝
∑

𝑖=1
𝛼𝓁𝑖 𝑥𝑖 −𝓁(1 − 𝑢𝓁) ≥ 𝑟𝓁 (9b)

𝓁𝑢𝓁 ≥ 𝑟𝓁 (9c)

𝓁𝑢𝓁 ≤ 𝑟𝓁 (9d)

where 𝓁 and 𝓁 are upper and lower bounds of the term 𝛼𝓁0 +
∑𝑝

𝑖=1 𝛼
𝓁
𝑖 𝑥𝑖 for all 𝑥 ∈ L𝓁 , and 𝑟𝓁 is an auxiliary variable. Now the linear

equation for �̂� can be simply written as,

�̂� =
∑

𝓁∈
𝑟𝓁 (10)

Considering the proposed MILP encoding method, after training the
regression tree with  nodes and  leaves with the proposed method,
to estimate a new observation in a MILP model, 2 × constraints are
needed to present the tree structure, one constraint to one-hot encode
the binary variables 𝑢, 4 ×  + 1 constraints to calculate the linearized
̂. Also for each observation,  new continuous variables and  binary
variables are defined.

2.3.2. Tobit model
Instead of making use of a binary tree and linear regression, the

standard Tobit model can be considered (Tobin, 1958). The model
considers 𝑦∗ = 𝛼0 +

∑𝑝
𝑖=1 𝛼𝑖𝑥𝑖 + 𝜖, with 𝜖 ∼ 𝑁(0, 𝜎2), but instead of 𝑦∗

the following is observed,

�̂� =

{

𝑦∗ if 𝑦∗ > 0
0 otherwise

(11)

The MILP representation is straightforward. Same as before, one binary
variable is defined for each side.

𝛼0 +
𝑝
∑

𝑖=1
𝛼𝑖𝑥𝑖 +𝑢𝑅 ≥  (12a)

𝛼0 +
𝑝
∑

𝑖=1
𝛼𝑖𝑥𝑖 +𝑢𝐿 <  (12b)

𝑢 + 𝑢 = 1 (12c)
𝑅 𝐿

5 
�̂� = (𝛼0 +
𝑝
∑

𝑖=1
𝛼𝑖𝑥𝑖) × 𝑢𝑅 + 0 × 𝑢𝐿 (12d)

As seen in Eq. (12d) a variable in binary multiplication appears, which
can be linearized as stated before. After training the dataset with the
Tobit model, to calculate �̂� for each observation in the MILP model,
12 constraints (Eq. (12a), Eq. (12b), Eq. (12c), and 9 constraints to
linearize Eq. (12d) as explained before), 2 binary variables (𝑢𝑅 and 𝑢𝐿),
and 2 continuous variables (auxiliary variables for right and left leaf)
are added.

3. Results

The process of data generation, labeling, data analysis, learning
model, and the obtained accuracy for the process are presented in this
section. The case study is La Palma Island. The data regarding the island
is presented in Rajabdorri et al. (2022).

3.1. Data generation and analysis

The algorithm presented in algorithm 1 is utilized to construct a
training dataset for La Palma Island. The power levels are defined using
increments of 0.5 MW to form a vector, and all possible combinations
of the generators are listed. However, any combinations exceeding the
annual thermal generation peak or falling below the annual thermal
generation minimum are excluded. The historical thermal generation
data for La Palma island indicates that the thermal generation ranges
between 36 MW and 16 MW throughout the year. Therefore, the
training dataset should only include generation combinations between
the maximum and minimum thermal generation limits. Generation
combinations that violate the technical requirements are not feasible
and are excluded.

The remaining operation points are then sorted by the total value
of their quadratic generation cost functions, and the cheaper ones are
retained for every thermal generation level. The reason is that these
operation points are more likely to appear in the optimized solution.
As previously explained, all data points must be labeled with the SFR
model. The SFR model is used to calculate the amount of UFLS for each
respective outage, with over 110,000 possible outages for the training
dataset. The aim is to label all outages with their expected amount of
UFLS. Please note that the synthetic data generation method introduced
here utilizes exhaustive enumeration, which can become computation-
ally intensive if the number of generators is large. However, it is



M. Rajabdorri et al. Engineering Applications of Artiϧcial Intelligence 139 (2025) 109617 
Fig. 3. Pearson correlation between inertia, weighted 𝐾, lost power, power reserve, and the amount of UFLS.
Table 2
The summary of the dataset.

Inertia (MW
s)

Weighted 𝐾
(MW)

Lost power
(MW)

Reserve
(MW)

UFLS
(MW)

count 133,717 133,717 133,717 133,717 133,717
mean 93.02 936.68 4.76 10.02 1.98
Std Dev 17.16 158.53 1.97 2.89 2.35
min 39.26 450.00 2.50 0.50 0.00
25% 81.21 830.00 3.00 8.50 0.00
50% 97.13 960.00 4.00 10.50 1.26
75% 102.78 1031.00 7.00 12.00 4.67
max 133.18 1327.00 10.00 19.00 7.04

important to emphasize that this method is specifically tailored for
small power systems with a limited number of units. In larger systems,
UFLS following single unit outages is generally not a significant issue
and can typically be avoided. In Table 2 a summary of the generated
dataset is presented. The table includes the count of the samples, mean
value, standard deviation, min value, 25th percentile (the value below
which 25% of the data falls), 50th percentile (the value below which
50% of the data falls i.e. median), 75th percentile (the value below
which 75% of the data falls), and the maximum value of each feature
and label in the dataset. The interested reader is referred to Rajabdorri
(2024) to access the full dataset.

First, let’s look at the correlations between the features and the
labels. In Fig. 3 the Pearson correlation between available inertia,
weighted 𝐾, lost power, power reserve, and the amount of UFLS is
shown on a heatmap.

In Fig. 4 the histogram plot of inertia, weighted 𝐾, lost power,
power reserve, and the amount of UFLS is depicted in diagonally. The
KDE for each two combinations is depicted in respective squares in
the bottom left (the carves). In the upper right part of the figure, the
scatter plot of the same quantities is depicted (the dots). The outages
that do not lead to any UFLS are shown in black, and outages with
positive UFLS are shown in red. Fig. 4 gives a good insight into the
distribution of the data and how smooth the data is. This figure clearly
shows the complexity of the problem at hand. As the final purpose is
to use the estimation of UFLS in the operational planning process, it is
important to estimate the black incidents in Fig. 4 as exactly zero, and
6 
not a small number. Although the general relation between the features
shown in Fig. 4 and the amount of UFLS is complex and non-linear,
some trades can be spotted. It seems that the incidents with no UFLS
(in black), and the incidents with some UFLS (in red) cannot be easily
distinguished with only one feature. The combination of all features
will distinguish black and red dots with better accuracy. That is another
reason to use methods like logistic regression for splitting the nodes,
rather than decision trees that rely on one feature to apply the splits. In
Fig. 5 a histogram of UFLS is presented. Both of the methods that were
introduced in the methodology (Tobit model and proposed regression
tree) are applied to the dataset in order to estimate UFLS.

3.2. Learning process

To train and evaluate the models, the dataset from Section 3.1
is divided randomly into a training dataset (80% of the data) and a
test dataset (20% of the data). The learning process is done using the
training dataset, and the evaluation is done using the test dataset.

3.2.1. With regression tree
A grid search is performed to find the optimum tree structure.

Different UFLS thresholds for splitting are tried in a loop, starting from
zero and with 0.1 MW steps, and the one that leads to the overall
minimum MAE is chosen. Looking at the distribution of the amount
of UFLS in Fig. 4 three groups of data can be distinguished: incidents
with zero UFLS, incidents with small UFLS (between 0 to 4 MW),
and incidents with big UFLS (between 4 to 8 MW). Considering this
observation and after performing a grid search to find 𝑐, the tree
structure shown in Fig. 6 achieves small MAE while being simple.

On the node N0 the data is classified into positive UFLS and zero
UFLS. The split containing zeros does not need any further classifica-
tion, as all of them are equal to zero. On the node N1 the remaining
points are classified into UFLS bigger than 3.1 MW and smaller than 3.1
MW. The estimated amount of UFLS is presented by its corresponding
linear regression on each leaf. The obtained data of this tree structure
is presented in Table 3. The scores that are shown in this table are the
result of applying the model trained by the training dataset, on the test
dataset.
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Fig. 4. Histogram plot (diagonally), KDE (curves in the bottom left) and scatter plot (dots in the top right) of the features and the labels.
Fig. 5. Histogram of UFLS amount.
The final MAE of this process will be partly due to the classification
errors on the nodes and the regression error on the leaves. In Fig. 7 the
classification error on different leaves is presented.
7 
The diagonal squares show the percentage of true positive classi-
fications for each class. For example, 96.43% of the whole data has
been classified correctly (sum of the diagonal squares). 0.54% of the



M. Rajabdorri et al. Engineering Applications of Artiϧcial Intelligence 139 (2025) 109617 
Fig. 6. Proposed regression tree with minimum overall MAE.
Table 3
The data of the trained tree.

Intercept ×𝑔 ×𝑔 ×𝑃𝑔 ×𝑔 Score

N0 𝛽00 = 1 𝛽01 = 0.337 𝛽02 = −0.099 𝛽03 = 18.669 𝛽04 = −0.889 acc = 98.9%
N1 𝛽10 = 1 𝛽11 = −0.029 𝛽12 = 0.025 𝛽13 = −3.498 𝛽14 = 0.324 acc = 95.5%
L0 𝛼0

0 = 0 𝛼0
1 = 0 𝛼0

2 = 0 𝛼0
3 = 0 𝛼0

4 = 0 MAE = 0
L1 𝛼1

0 = 0.269 𝛼1
1 = 0.022 𝛼1

2 = −0.0007 𝛼1
3 = 0.132 𝛼1

4 = -0.055 MAE = 0.048 MW
L2 𝛼2

0 = 0.194 𝛼2
1 = 0.013 𝛼2

2 = −0.001 𝛼2
3 = 0.878 𝛼2

4 = −0.168 MAE = 0.256 MW
Fig. 7. The classification confusion matrix for each class.
samples on L1 are incorrectly classified as L0. 0.52% of L0 samples are
incorrectly classified as L1, and so on.

The UFLS for all the samples that are assigned to L0 is estimated
as zero and for L1 and L2 linear regression is applied. The residuals
(predicted value minus observed labels) of the estimation on the test
dataset are shown in Fig. 8.

Considering the complexity of the problem at hand, and being lim-
ited to using linear models, the accuracy is acceptable. The prediction
error for the samples in L is rarely more than 0.2 MW, and for L is
1 2

8 
rarely more than 1 MW. Note that the samples on L2 are bigger than
the samples on L1.

Now, considering all the classifications and regression applied in the
suggested tree structure, it is possible to look at the residuals for the
whole process, shown in Fig. 9.

Other than regression errors, errors due to misclassification are
evident. The bigger residuals are because of the misclassification. That
is why more complicated tree structures would not improve the overall
accuracy in this case. Note that although the estimation error might be
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Fig. 8. The residual for the regression applied on L1 and L2.
Fig. 9. The residual for the suggested regression tree.
high for some incidents, it does not endanger the stability of the system
as the UFLS scheme will ensure the stability of the system. It is expected
that the benefits from correct estimations will outweigh the downsides
of errors. The MAE of the whole process on the test dataset is 0.179
MW. The trained tree can be represented as MILP with the addition of
18 new constraints, 3 continuous variables, and 3 binary variables for
every observation.

3.2.2. With Tobit model
The training dataset is trained with the Tobit model (Section 2.3.2).

Then it is applied to the test dataset. The residuals are shown in
Fig. 10. The model has successfully distinguished most of the zero UFLS
incidents and pushed them to the negative side so they will be equal
to zero in the model. As the model tries to fit all the positive UFLS
incidents with one line, the error is high for some incidents. The overall
MAE of the model on the test dataset is 0.405 MW. The advantage of
this model is being easy to implement as MILP. Here is the trained Tobit
model,

̂UFLS =

⎧

⎪

⎨

⎪

1.003 − 0.077𝑔 − 0.011𝑔

+1.164𝑃𝑔 − 0.172𝑔 if it’s > 0 (13)
⎩

0 otherwise

9 
According to Eq. (12) the term in Eq. (13) can be represented as MILP
with the introduction of 2 new binaries, 2 new continuous variables,
and 12 constraints for each observation.

4. Conclusion

In this paper, a ML-based approach for estimating UFLS in power
systems is presented. By leveraging a carefully generated dataset and
applying two suggested ML algorithms, the proposed regression tree,
and the Tobit model, the relationship between relevant features and
UFLS labels is learned. The trained model demonstrated accurate and
effective UFLS estimation, providing valuable insights for operational
planning, that will lead to frequency response improvement, reserve
allocation optimization, and cost reduction. Applying the methodology
to the La Palma island power system showcased its practicality and
reliability, highlighting the potential for integrating UFLS estimation
into the scheduling optimization problem. While the MILP represen-
tation of the Tobit model is computationally simpler, the accuracy of
the suggested binary tree structure is superior. Future research avenues
may focus on integrating this methodology into the actual operational
planning problems like UC and ED.
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Fig. 10. Residuals of the test dataset. The training dataset is trained with Tobit model.
Exploring additional features, investigating alternative ML algo-
rithms, and considering the impact of varying system configurations
can further enhance the accuracy and applicability of UFLS estimation.
To follow up on the findings of this paper, the proposed models should
be implemented in operational planning problems, like UC, to further
prove its benefits. Also, the proposed regression tree can be used for
various applications, as an alternative to regular regression trees.
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