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Abstract

This work aims to give a detailed analysis of a stochastic epidemic model with a general
incidence rate g(S)I. We introduce the generalized stochastic threshold Rs(g) that will
be used as a threshold condition of extinction, persistence and existence of an ergodic
stationary distribution. We also investigate the critical case when Rs(g) = 1. Numerical
illustrations of the findings are given via different types of function g.
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1 Introduction

Mathematical models, with the aid of computer simulations, are useful for building and test-
ing theories about complex biological systems involving disease, assessing quantitative con-
jectures, determining sensitivities to changes in parameter values, estimating key parameters
from data, and also applying optimal control on some parameters [43, 46, 47, 44]. Modeling is
especially crucial in epidemiology since, in most cases, we not aware of the level of complexity
that leads to the spread of the disease and cannot do experiments. Many authors have recently
proposed and investigated various types of epidemic models to understand disease transmis-
sion mechanisms such as tuberculosis, measles, influenza (see, for instance, [7, 8, 10, 15, 13, 16]
and the references cited therein). A key role in mathematical models of infectious diseases is
played by the so-called incidence rate, namely a function describing the mechanism of trans-
mission of the disease. In many epidemiological models, the corresponding incidence rate is
bilinear with respect to the numbers of susceptible and infective individuals. More specifically,
if S(t) and I(t) are the fractions of susceptible and infective individuals in the population, and
if β is the per capita contact rate, then the principle of mass action implies that the infection
spreads with the rate βSI. A rigorous mathematical model with a bilinear incidence rate was
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first introduced by Kermack and Mckendrick in 1927 [11]. Their model, known as the SIR
model, has been based on all later epidemic models[9, 34, 8, 36]. One of the derived models
is the SIRS epidemic model, where it is assumed that a recovered person does not necessarily
acquire permanent immunity and may become susceptible again. The SIRS model can apply
to many infectious diseases such as polio, tetanus, diphtheria, measles, hepatitis, chickenpox,
influenza, measles, mumps, rubella, AIDS, and others [35, 42, 2]. Since the first deterministic
SIRS model with constant recruitment and disease-induced death was developed by Ander-
son and May [1], there are many applications of such models. For instance, the host-vector
SIRS models have been proposed to study spread of Japanese Encephalitis malaria [41]. The
following differential system describes a simple SIRS epidemic model (see,e.g., [9, 31] and the
references cited therein).

dS(t) = [µ− µS(t)− βS(t)I(t) + γR(t)] dt,
dI(t) = [−(µ+ λ)I(t) + βS(t)I(t)] dt,
dR(t) = [−(µ+ γ)R(t) + λI(t)] dt,

(1)

where R(t) represents the fractions of individuals who have been removed from the possibility
of infection. The constants µ, λ, and γ are positive constants that stand for birth and death
rates, recovery rate of the infective individuals, and losing immunity rate, respectively.

However, the bilinear contact law is more appropriate for communicable diseases such
as influenza, but not for sexually transmitted diseases. There are several reasons why this
standard bilinear incidence rate may require modification. For instance, the underlying as-
sumption of homogeneous mixing and homogeneous environment may be invalid. In this case
the necessary population structure and heterogeneous mixing may be incorporated into a
model with a specific form of nonlinear transmission. For example, Capasso and Serio [27]
proposed a saturated incidence rate g(I)S into epidemic models where g is a nonlinear func-
tion. Ruan and Wang [28] investigated an epidemic model with a nonlinear incidence rate

g(I)S = βI2S

1+ρI2
. Liu et al. [32] introduced a general incidence rate g(S, I) where they treated

special cases like βSpIq and also Sqg(I), their goal was to prove the existence of periodic
solutions when the incidence rate is similar to the previous forms. Lahrouz et al. [31] and
recently Liu and Qingmei [29] proposed a more generalized and more realistic incidence rate
g(I)S = SI

f(I) . Abta et al. [33] also took the number of the susceptible S(t) in the non-

linearity of the incidence rate by considering the bilinear function rate g(S, I) = βIS
1+aI+bS .

Recently, Gan and Wei [49] studied an stochastic epidemic model with delay using a general
incidence rate g(S)f(I). Motivated by the previous works on nonlinear incidence rate and to
make system (1) more realistic and interesting with respect to the number of the susceptible
individuals S(t), we adopt the nonlinear incidence rate βg(S)I, so system (1) becomes

dS(t) = (µ− µS(t)− βg(S(t))I(t) + γR(t)) dt,
dI(t) = (−(µ+ λ)I(t) + βg(S(t))I(t)) dt,
dR(t) = (−(µ+ γ)R(t) + λI(t)) dt,

(2)

where g(S) ≥ 0 is a continuously differentiable function with g(0) = 0. The positive aspect of
this choice is to avoid a constant rate of change for the derivative of g(S). Unlike the bilinear
incidence rate βSI, where the partial derivative with respect to S of g is always equal to
1, the nonlinear incidence rate g(S)I offers more intersting dyanmics. On the other hand,
epidemic models are inevitably affected by environmental white noise which is an important
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component in realism, because it can provide an additional degree of realism compared to their
deterministic counterparts. Many scholars have studied the effect of stochasticity on epidemic
models (see, e.g., [3, 4, 5, 6, 12, 13, 14, 15, 16, 17, 18, 20] and the references cited therein).
Lu [14] introduced stochasticity into the SIRS model (2) via the technique of parameter
perturbation. He replaced the infection coefficient β by β + σ dBdt , where B is a Brownian
motion defined on the complete probability space (Ω,F , {Ft}t≥0,P) with a filtration {Ft}t≥0
satisfying the usual conditions and σ is the intensity of the noise. So, the stochastic SIRS
epidemic model with nonlinear incidence rate takes the following form

dS(t) = [µ− µS(t)− βg(S(t))I(t) + γR(t)] dt− σg(S(t))I(t)dBt,
dI(t) = [−(µ+ λ)I(t) + βg(S(t))I(t)] dt+ σg(S(t))I(t)dBt,
dR(t) = [−(µ+ γ)R(t) + λI(t)] dt,

(3)

where B(t) is a Brownian motion and σ > 0 (small compared with β) is the intensity of the
environmental noise on the infection coefficient β. Recently, Lahrouz and Settati [30] have
considered the stochastic model (3) with g(S) = S. They have proved the conjecture of Tor-
natore et al.[12] and improved all conditions in [12, 14, 16, 17] by extending the deterministic
threshold R0 to the stochastic threshold one

Rs ,
β

µ+ λ+ 1
2σ

2
. (4)

That is, under condition
Rs < 1, β ≥ σ2, (5)

the infection-free equilibrium state E0 is globally asymptotically stable in probability. While,
if condition Rs > 1 is verified, each component of the solutions (S(t), I(t), R(t)) rises to or
above certain positive level infinitely often with probability one. In addition, they have estab-
lished the persistence in mean and the existence of a unique ergodic stationary distribution
under condition Rs > 1. Motivated by the previous works, in this paper, we shall extend
the threshold (4) to our more general one

Rs(g) ,
βg(1)

µ+ λ+ 1
2(g(1))2σ2

. (6)

Our conjecture is that, the threshold (6) is the natural generalization of (4). That is so for its
corresponding conditions. Specifically, the asymptotic stability conditions (5) will become

Rs(g) < 1, β ≥ g(1)σ2,

and if Rs(g) > 1 then system (3) is persistent in mean and admits a unique ergodic stationary
distribution. We also shall investigate the critical case, when Rs(g) = 1, that is to say, if
Rs(g) = 1 and β ≥ σ2(1 ∨ g(1)) then system (3) is extinctive. The rest of this article is
organized as follows: In Section 2, the global stability of the disease-free equilibrium is proven.
In Section 3, we show that the disease persists in mean. Section 4 covers the convergence
of the stochastic model towards an endemic stationary distribution. In Section 5,we provide
some numerical simulations to support our findings. In the last section, Section 6, we provide
a brief discussion and the summary of the main results.
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2 The global stability of the disease-free equilibrium state

In this section, we will discuss the extinction of SDE system (3) in order to provide the
threshold condition for disease control or eradication. We introduce the notation

R3
+ = {(x1, x2, x3)|xi > 0, i = 1, 2, 3} .

To begin the analysis of the model, define the subset

∆ =
{
x ∈ R3

+; x1 + x2 + x3 = 1
}
.

System (3) can be written as the following form:

dX(t) = f(X(t))dt+ h(X(t))dBt, (7)

where X(t) = (S(t), I(t), R(t)), B is a Brownian motion defined on the complete probability
space (Ω,F , {Ft}t≥0,P). The diffusion matrix and the generator L associated with (7) are
defined respectively by

G(X) = h(X)hT (X), LV (X) = fT (X).∇V (X) +
1

2
Tr
(
hT (X).∇2V (X).h(X)

)
, (8)

for any twice continuously differentiable V (.). To ensure that the model is well posed and
thus biologically meaningful, we need to prove that the solution remains in ∆. By the similar
proof of Theorem 2 in [16], we have the following theorem.

Theorem 2.1. The set ∆ is almost surely positively invariant by the system (3), that is,
for any initial values (S0, I0, R0) ∈ ∆, we have P ((S(t), I(t), R(t)) ∈ ∆) = 1 for all t ≥ 0.

Before investigating the critical case Rs(g) = 1, we put forward the following Lemma which
is a special case of Proposition 5.1 in Settati et al. [19].

Lemma 2.2. For any initial values (S0, I0, R0) ∈ ∆, it holds that

λ

µ+ γ
lim inf
t→∞

I(t) ≤ lim inf
t→∞

R(t) ≤ lim sup
t→∞

R(t) ≤ λ

µ+ γ
lim sup
t→∞

I(t).

Theorem 2.3. For any initial values (S0, I0, R0) ∈ ∆, if Rs(g) = 1 and β ≥ σ2(1 ∨ g(1))
then the solution of SDE (3) obeys

lim
t→∞

S(t) = 1, lim
t→∞

I(t) = 0, lim
t→∞

R(t) = 0 a.s.

Proof. Let ε < I0. Define the stopping time

τε = inf {t > 0, I(t) ≤ ε} , τ ′ε = inf {t > τε, I(t) ≥ ε} .

We claim that E(τε) < ∞. For all T > 0 and t ≤ T ∧ τε, we have I(t) ≥ ε. Applying Itô’s
formula on t ∈ (0, T ∧ τε), gives if σ2 ≤ β,

d (log(I)) =

(
−(µ+ λ) + βg(S)− 1

2
σ2(g(S))2

)
dt+ σg(S)dB,

≤
(
−(µ+ λ) + βg(1− I)− 1

2
σ2(g(1− I))2

)
dt+ σg(S)dB,

≤
(
−(µ+ λ) + βg(1− ε)− 1

2
σ2(g(1− ε))2

)
dt+ σg(S)dB. (9)

4



where the last inequality is obtained by studying the function Φ(x) , −1
2σ

2x2 +βx− (µ+λ).
So, Φ(x) is increasing on (0, 1) and then Φ(g(S)) < Φ(g(1 − I)) < Φ(g(1 − ε)). One can see
that there exists l1 ∈ (1− ε, 1) such that

g(1− ε) = g(1)− εg′(l1)

and then (9) implies

d (log(I)) ≤
(
βg(1)

(
1− 1

Rs(g)

)
+ (−β + σ2g(1))

(
εg′(l1)

)
− 1

2
σ2
(
εg′(l1)

)2)
dt

+σg(S)dB. (10)

Integrating the above inequality between 0 and T ∧ τε, and taking expectation in both sides,
we have if Rs(g) = 1(

(β − σ2g(1))
(
εg′(l1)

)
+

1

2
σ2
(
εg′(l1)

)2)
E(T ∧ τε) ≤ −E(log I(T ∧ τε)) + E(log I0). (11)

By letting T →∞ and using Fatou’s lemma, if β ≥ σ2g(1), (11) yields

E(τε) ≤ − log ε

(β − σ2g(1)) (εg′(l1)) + 1
2σ

2 (εg′(l1))
2 .

Thus
P (τε <∞) = 1. (12)

Second, we claim that
P
(
τ ′ε =∞

)
= 1. (13)

Assume that (13) is not true. That is, P (τ ′ε <∞) > 0. Then, define the stopping time

τ
′′
ε = inf

{
t > τ ′ε, I(t) < ε

}
. (14)

For all T ′ > 0 and T ′ ∧ τ ′ε ≤ t ≤ T ∧ τ ′′ε , we have I(t) ≥ ε. Integrating (10) between T ′ ∧ τ ′ε
and T ′ ∧ τ ′′ε and taking expectation, gives

E
[
log I

(
T ′ ∧ τ ′′ε

)
− log I

(
T ′ ∧ τ ′ε

)]
≤ E

(
T ′ ∧ τ ′′ε − T ′ ∧ τ ′ε

)
×
(

(−β + σ2g(1))
(
εg′(l1)

)
− 1

2
σ2
(
εg′(l1)

)2)
.

Since
E
[
log I

(
T ′ ∧ τ ′′ε

)
X(τ ′ε=∞)

]
= E

[
log I

(
T ′ ∧ τ ′ε

)
X(τ ′ε=∞)

]
,

and
E
[
X(τ ′ε=∞)

(
T ′ ∧ τ ′′ε − T ′ ∧ τ ′ε

)]
= 0,

we deduce that

E
[
log I

(
T ′ ∧ τ ′′ε

)
X(τ ′ε<∞)

]
− E

[
log I

(
T ′ ∧ τ ′ε

)
X(τ ′ε<∞)

]
≤ E

[
X(τ ′ε<∞)

(
T ′ ∧ τ ′′ε − T ′ ∧ τ ′ε

)]
×
(

(−β + σ2g(1))
(
εg′(l1)

)
− 1

2
σ2
(
εg′(l1)

)2)
.(15)
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By the monotone convergence theorem, we get

lim
T ′−→∞

E
[
X(τ ′ε<∞)T

′ ∧ τ ′′ε
]

= E
[
X(τ ′ε<∞)τ

′′
ε

]
, lim

T ′−→∞
E
[
X(τ ′ε<∞)T

′ ∧ τ ′ε
]

= E
[
X(τ ′ε<∞)τ

′
ε

]
.(16)

One can easily verify that I is decreasing on the left of τ
′′
ε . Hence, the negative function

F (T ′) , log I
(
T ′ ∧ τ ′′ε

)
X(τ ′ε<∞)

is also decreasing for T ′ sufficiently large and

lim
T ′−→∞

F (T ′) = log ε×X(τ ′ε<∞).

Applying the monotone convergence theorem to the non-negative function −F (T ′), yields

lim
T ′−→∞

E
[
log I

(
T ′ ∧ τ ′′ε

)
X(τ ′ε<∞)

]
= log ε× P

(
τ ′ε <∞

)
. (17)

On the other hand, for T ′ > τε we can easily have

log I
(
T ′ ∧ τ ′ε

)
≤ log ε,

and
lim

T ′−→∞
log I

(
T ′ ∧ τ ′ε

)
X(τ ′ε<∞) = log εX(τ ′ε<∞). (18)

So, by the Fatou’s lemma applying to the non-negative function

G(T ′) ,
(
log ε− log I

(
T ′ ∧ τ ′ε

))
X(τ ′ε<∞),

we get

E
[

lim inf
T ′−→∞

(
log ε− log I

(
T ′ ∧ τ ′ε

))
X(τ ′ε<∞)

]
≤ lim inf

T ′−→∞
E
[(

log ε− log I
(
T ′ ∧ τ ′ε

))
X(τ ′ε<∞)

]
.

(19)
From (18) and (19) we obtain

lim sup
T ′−→∞

E
[
log I

(
T ′ ∧ τ ′ε

)
X(τ ′ε<∞)

]
≤ ε× P

(
τ ′ε <∞

)
. (20)

By (15), (16), (17) and (20) one can easily deduce

0 ≤ −
(

(β − σ2g(1))
(
εg′(l1)

)
+

1

2
σ2
(
εg′(l1)

)2)E
[(
τ
′′
ε − τ ′ε

)
X(τ ′ε<∞)

]
.

By g′(l1) ≥ 0 and (14), if β ≥ σ2g(1)), then

E
[(
τ
′′
ε − τ ′ε

)
X(τ ′ε<∞)

]
= 0.

Consequently
τ
′′
ε − τ ′ε = 0 for almost w ∈

(
τ ′ε <∞

)
.

This contradicts the definition of τ
′
ε and τ

′′
ε . Thus, our claim is true. Now, combining (12)

and (13), one can write that for every ε > 0, and for almost all w ∈ Ω, there exists τε(w) > 0
such that

I(t, w) < ε ∀t ≥ τε(w).

This means that limt→∞ I(t) = 0 as.. Combining it with Lemma 2.2 yields limt→∞R(t) = 0
and then limt→∞ S(t) = 1.
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With reference to Khasminskii et al. [21, 22] and Yuan and Mao [23], we have the following
lemma giving sufficient condition for asymptotical stability in probability in term of Lyapunov
fuctions. We refer to Khasminskii et al. [22] for the precise meaning of asymptotical stability
in probability.

Lemma 2.4. Assume that there are functions V ∈ C2
(
R3;R+

)
and w ∈

(
R3;R+

)
vanishing

only at E0(1, 0, 0) such that V
|x|→∞

(x) =∞ and

LV (X(t)) ≤ −w(X(t)) ∀t > 0, (21)

then the equilibrium E0(1, 0, 0) of the system (3) is globally asymptotically stable in probability.

Thereafter, we suppose that g is a non-negative C1 function with g(0) = 0 and g′(S) ≥ 0
on (0, 1).

Theorem 2.5. For any initial values (S0, I0, R0) ∈ ∆. If β ≥ g(1)σ2 and Rs(g) < 1 then the
disease-free E0 of system (3) is globally asymptotically stable in probability.

Proof. Let (S(0), I(0), R(0)) ∈ ∆. Let us define the Lyapunov functions

V (S, I,R) = θ1(1− S)2 + κI
1
κ + θ2R

2, (22)

where θ1, κ and θ2 are real positive constants to be chosen in the following. We have

LV = −2θ1µ(1− S)2 + 2θ1βg(S)I(1− S)− 2θ1γR(1− S) + θ1σ
2(g(S))2I2 − (µ+ λ)I

1
κ

+βg(S)I
1
κ +

1

2

(
1

κ
− 1

)
σ2(g(S))2I

1
κ − 2θ2(µ+ γ)R2 + 2θ2λIR.

Since S, I ∈ (0, 1) and I ≤ 1− S, we have, for all κ ≥ 1,

LV ≤ −2θ1µ(1− S)2 + 2θ1g(1)βI
1
κ + θ1σ

2(g(1))2I
1
κ − (µ+ λ)I

1
κ + βg(S)I

1
κ

+
1

2

(
1

κ
− 1

)
σ2(g(S))2I

1
κ − 2θ2(µ+ γ)R2 + 2(θ2λ− θ1γ)IR.

Hence, by choosing θ2 <
θ1γ
λ , we get, for κ ≥ 1,

LV ≤ −2θ1µ(1− S)2 − 2θ2(µ+ γ)R2 + I
1
κ

(
θ1g(1)(2β + g(1)σ2) +

1

2κ
σ2(g(1))2

−(µ+ λ) + βg(S)− 1

2
σ2(g(S))2

)
. (23)

By the mean value theorem one can see that there exists c ∈ (0, 1) such that

g(S) = g(1)− (1− S)g′(c)

and then (23) implies

LV ≤ −2θ1µ(1− S)2 − 2θ2(µ+ γ)R2 + I
1
κ

(
θ1g(1)(2β + g(1)σ2) +

1

2κ
σ2(g(1))2

−(µ+ λ) + βg(1)− 1

2
σ2(g(1))2 − β(1− S)g′(c) + σ2(1− S)g(1)g′(c)

−1

2
σ2(1− S)2(g′(c))2

)
.
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From (6) we have

LV ≤ −2θ1µ(1− S)2 − 2θ2(µ+ γ)R2 + I
1
κ

(
θ1g(1)(2β + g(1)σ2) +

1

2κ
σ2(g(1))2

+Γ
(
(1− S)g′(c)

))
, (24)

where

Γ(z) = βg(1)

(
1− 1

Rs(g)

)
+ (−β + σ2g(1))z − 1

2
σ2z2. (25)

One can easily show, that if β ≥ σ2g(1) and g′(S) ≥ 0 on (0, 1) then the function Γ(.) is
decreasing on R+ and Γ ((1− S)g′(c)) ≤ Γ(0). So, (24) implies

LV ≤ −2θ1µ(1− S)2 − 2θ2(µ+ γ)R2 + I
1
κ

(
θ1g(1)(2β + g(1)σ2) +

1

2κ
σ2(g(1))2

+βg(1)

(
1− 1

Rs(g)

))
. (26)

By Rs(g) < 1, we can choose a sufficiently large κ and a sufficiently small θ1 such that

θ1g(1)(2β + g(1)σ2) +
1

2κ
σ2(g(1))2 + βg(1)

(
1− 1

Rs(g)

)
< 0,

which means that the coefficients of (1− S)2, I
1
κ and R2 in (27) are all negatives. According

to Lemma 2.4 the proof is completed.

3 Disease persistence

In the epidemic models, persistence is an important property because it implies that the
disease continues to exist for any initial conditions. To study the persistence of SDE model
(3) we need the following lemma (see Lemma 17 in [25] or Lemma 4 in [26]).

Lemma 3.1. Suppose X ∈ C (R+ × Ω,R+) and Y ∈ C (R+ × Ω,R). If there exist positive
constants ν0 and ν such that for all t ≥ 0

logX(t) ≥ ν0t− ν
∫ t

0
X(u)du+ Y (t) and lim

t→∞

Y (t)

t
= 0 a.s., then

lim inf
t→∞

1

t

∫ t

0
X(u)du ≥ ν0

ν
a.s.

To begin with, let us put

M = sup
S∈(0,1)

g′(S). (27)
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Theorem 3.2. For any initial values (S(0), I(0), R(0)) ∈ ∆, if Rs(g) > 1 then the solution
of the stochastic differential equation (3) obeys

(i) lim inf
t→∞

1

t

∫ t

0
S(u)du ≥ max

{
µ

µ+ βM
,
µ− βg(1)

µ

}
,

(ii) lim inf
t→∞

1

t

∫ t

0
I(u)du ≥ g(1)(µ+ γ)

M(βg(1) + γ)

(
1− 1

Rs(g)

)
,

(iii) lim inf
t→∞

1

t

∫ t

0
R(u)du ≥ λg(1)

M(βg(1) + γ)

(
1− 1

Rs(g)

)
,

and then the solutions of stochastic model system (3) starting from any point in ∆ are strongly
persistent in mean.

Proof. (i) From the first equation of system (3) and the fact that (S, I,R) ∈ ∆ and g(S) ≤
g(1), we have

dS ≥ (µ− βg(1)− µS) dt− σg(S(t))I(t)dB(t).

Integrating and dividing both sides by t, one can easily get

µ

t

∫ t

0
S(u)du ≥ µ− βg(1)− S(t)− S(0)

t
− σ

t

∫ t

0
g(S(t))I(u)dB(u). (28)

On the other hand, by the mean value theorem and (27) one can see that g(S) ≤ MS, then
from the first equation of system (3) we have

dS ≥ (µ− µS − βMS(t)) dt− σg(S(t))I(t)dB(t),

hence
µ+ βM

t

∫ t

0
S(u)du ≥ µ− S(t)− S(0)

t
− σ

t

∫ t

0
g(S(t))I(u)dB(u). (29)

From (28), (29), S(t) ∈ (0, 1) and the large number theorem for martingales, we obtain the
desired result (i).

(ii) By Itô’s formula, we get from the second equation of system (3),

log(I(t)) = log(I(0)) +

∫ t

0

(
−1

2
σ2(g(S(s)))2 + βg(S(s))− (µ+ λ)

)
ds+

∫ t

0
σg(S(s))dB(s),

= log(I(0)) +

(
−1

2
σ2(g(1))2 + βg(1)− (µ+ λ)

)
t

+

∫ t

0

1

2
σ2
(
(g(1))2 − g(S(s))2

)
− β (g(1)− g(S(s))) ds+

∫ t

0
σg(S(s))dB(s).

Using g(S) ≤ g(1), yields

log(I(t)) ≥ log(I(0))+βg(1)

(
1− 1

Rs(g)

)
t−β

∫ t

0
(g(1)− g(S(s))) ds+

∫ t

0
σg(S(s))dB(s). (30)

On the other hand, from the first equation of SDE (3) and R = 1− S − I, we get

dS(t) = (µ+ γ − (µ+ γ)S(t)− βg(S(t))I(t)− γI(t)) dt− σg(S(t))I(t)dB(t)

≥ ((µ+ γ) (1− S(t))− (βg(1) + γ) I(t)) dt− σg(S(t))I(t)dB(t). (31)
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By the mean value theorem one can see that

(1− S) ≥ g(1)− g(S)

M
. (32)

From (31) and (32) we deduce

S(t)−S(0) ≥ µ+ γ

M

∫ t

0
(g(1)− g(S(s))) ds− (βg(1) + γ)

∫ t

0
I(s)ds− σ

∫ t

0
g(S(s))I(s)dB(s).

Combining it with (30) and rearranging to get

log(I(t)) ≥ βg(1)

(
1− 1

Rs(g)

)
t− βM (βg(1) + γ)

(µ+ γ)

∫ t

0
I(s)ds+ Y (t),

where

Y (t) = log(I(0))− βM

µ+ γ
(S(t)− S(0)) +

∫ t

0
σS(s)

(
1− βM

µ+ γ
I(s)

)
dB(s).

Moreover, by the fact that S(t) ∈ (0, 1) and the large number theorem for martingales, we

have lim
t→∞

Y (t)
t = 0 a.s. Applying Lemma 3.1, we get the desired estimation (ii).

(iii) Integrating the third equation of system (3) and dividing both sides by t yields

1

t

∫ t

0
R(u)du =

λ

(µ+ γ) t

∫ t

0
I(u)du+

R(t)−R(0)

t
. (33)

Since lim
t→∞

R(t)−R(0)
t = 0 a.s. Then, the assertion (iii) follows immediately from (33) and

(ii).

4 Stationary distribution

To get more information about the asymptotic behavior of the diseases governed by the
stochastic system (3) in the case when Rs(g) > 1, we show that distribution of process
(S(t), I(t), R(t)) converges weakly to a unique invariant or stationary distribution. Let
X(t) = (X1(t), X2(t), ..., Xn(t)) be a homogeneous Markov process described by the following
stochastic differential equation:

dXj(t) = aj(X)dt+ σj(X)dB, j = 1, 2..., n. (34)

Let Z be an invariant set by system (34), that is if X(0) ∈ Z then P (X(t) ∈ Z) = 1.
Consider the space (Z,B(Z),m) where B(Z) is the σ-algebra of Borel subsets of Z and m is
the Lebesgue measure on (Z,B(Z)). The probability low of the solution X(t) statrting from
X(0) = x0 ∈ Z is defined by the transition probability, i.e.

PX(t, x0, C) = P (X(t) ∈ C|X(0) = x0) , C ∈ B(Z).

or also by

PX(t)f(x0) =

∫
Z
f(y)dPX(t, x0, dy), f ∈ C.

where C is the subset of all positive measurable functions. Let us require some definitions and
results about the stability in distribution. We refer to Rudnicki [37] for the precise meaning
of asymptotical stability in distribution.
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Definition 4.1. The solution process X of system (34) is said to be
(i) absolutely continuous if there exists a measurable function K : [0,∞) × Z × Z → [0,∞)
such that for any f ∈ C and x0 ∈ Z

PX(t)f(x0) =

∫
Z
K(t, x0, y)f(y)m(dy) and

∫
Z
K(t, x0, y)m(dx0) = 1 for any y ∈ Z.

(ii) asymptotically stable in indistribution if there exists a stationary distribution ν such that
for any bounded continuous function f and x0 ∈ Z

PX(t)f(x0) =

∫
Z
f(y)dPX(t, x0, dy) −→

∫
Z
f(y)ν(dy).

With reference to Rudnicki [37], Rudnicki and Pichór [38] and Lin et al. [39, 40], we have
the following lemma giving sufficient condition for asymptotical stability in distribution. To
begin with, consider the Stratonovitch’s version equation of (34)

dXj(t) = Aj(X)dt+ Σj(X) ◦ dB, j = 1, 2..., n, (35)

where

Aj(X) = aj(X)− 1

2

n∑
k=1

(
∂

∂xk
σj(X)

)
σk(X), Σj(X) = σj(X), j = 1, 2..., n.

Define the Lie bracket [A,Σ](x) of the vectors A(x) and Σ(x) by

[A,Σ]j(x) =

n∑
k=1

Ak
∂Σj

∂xk
(x)− Σk

∂Aj
∂xk

(x), j = 1, ..., n.

Lemma 4.2. Assume that
i) The family of vectors generated by the Lie brackets of ξ0(X) , A(X) and ξ1(X) , Σ(X),
that is

ξ1(X), [ξ0(X), ξ1(X)], [ξ1(X), ξ0(X)], [ξi(X), [ξj(X), ξk(X)]]0≤i,j,k≤1.....

span the space Rn for every solution X of (34).
ii) For a fixed point x0 ∈ Z and a function φ ∈ C([0, T ],R), the derivative Dx0,φ of the
function h → Xφ+h(T ) from C ([0, T ],R) to Rn, where Xφ is the solution of the differential
equations

d(Xφ)j(t) = Aj(Xφ)dt+ Σj(Xφ)φ(t), j = 1, 2..., n, Xφ(0) = x0, (36)

has rank 2.
iii) For any x1, x2 ∈ Z there exists a control function φ and T > 0 such that the solution of
system (39) satisfies Xφ(0) = x1, and Xφ(T ) = x2.
iv) There is a bounded open subset D of Rn and a nonnegative function V : Dc → R such that
V is twice continuously differentiable and that for some % > 0,

LV (x) ≤ −%, for any x ∈ Dc.

Then system (34) is absolutely continuous with density K : [0,∞)×Z ×Z → [0,∞), asymp-
totically stable in distribution and admits a unique stationary distribution with density K∗(y),
furthermore,

lim
t→∞

∫
Z
|K(t, x0, y)−K∗(y)|dy = 0 for all x0 ∈ Z.

11



Theorem 4.3. Consider the stochastic system (3) with initial condition in ∆. Assume that
Rs(g) > 1. Then (I(t), S(t), R(t)) is positive recurrent and admits a unique ergodic stationary
distribution.

Proof. Given that S(t) + I(t) + R(t) = 1, it is sufficient to study the SDE for (S(t), I(t)) in
the feasible region

Z =
{
x ∈ (0, 1)2; x1 + x2 < 1

}
.

But for a measurable set C ∈ B(Z), we have

P(S,I)(t, (s(0), i(0)), C) = P(R,I)(t, (1− s(0)− i(0), i(0)), C ′),

where C ′ = {(1 − s − i, i), (s, i) ∈ C}, so, it suffices to verify conditions i)-iii) for (R, I) and
condition iv) for (S, I).
i) Rewrite the Itô SDE (3) as SDE in the Stratonovitch sense:

dI = A1(I,R)dt+ σg(1− I(t)−R(t))I ◦ dB
dR = A2(I,R)dt,

(37)

where

A1(i, r) = βg (1− i− r) i− (µ+ λ)i− 1

2
σ2ig (1− i− r)

(
g (1− i− r)− ig′ (1− i− r)

)
A2(i, r) = λi− (µ+ γ)r.

Let

A(i, r) =

(
A1(i, r)
A2(i, r)

)
and Σ(i, r) =

(
σg (1− i− r) i

0

)
. (38)

By direct calculation we get that

[A,Σ](i, r)=

(
σ(−g′(1− i− r)i+ g(1− i− r))A1(i, r)− σg(1− i− r)i∂A1

∂i (i, r)− σg′(1− i− r)iA2(i, r)
−σλg(1− i− r)i

)
.

Thus, det ([A,Σ](i, r),Σ(i, r)) = λσ2(g(1− i− r))2i2 > 0 for any (i, r) ∈ Z. Consequently, the vectors
[A,Σ](i, r) and Σ(i, r) span the space Rn for any (i, r) ∈ Z.

ii) Let (i0, r0) ∈ Z and φ ∈ C ([0, T ],R). Consider the following system of differential equations: İφ(t) = A1 (Iφ(t), Rφ(t)) + σg (1− Iφ(t)−Rφ(t)) Iφ(t)φ(t),

Ṙφ(t) = A2 (Iφ(t), Rφ(t)) ,

(39)

with the initial condition Iφ(0) = i0, Rφ(0) = r0 and let Di0,r0,φ be the derivative of the function

h →
(

Iφ+h(T )
Rφ+h(T )

)
from C ([0, T ],R) to R2. Using the perturbation method for ordinary differential

equations, the derivative Di0,r0,φ can be calculated as follows. Let

ζ(t) = A′ (Iφ(t), Rφ(t)) + φ(t)Σ′ (Iφ(t), Rφ(t))

where A′ and Σ′ are the Jacobian of A(i, r) and Σ(i, r) defined by (38), respectively. Let Q(t, t0), for
0 ≤ t0 ≤ t ≤ T , be the matrix function such that

Q(t0, t0) = I,
∂Q

∂t
(t, t0) = ζ(t)Q(t, t0).
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Then

Di0,r0,φh =

∫ T

0

Q(T, s)Σ (Iφ(s), Rφ(s))h(s)ds. (40)

Let ε ∈ (0, T ) and

h(t) =
1

σg (1− Iφ(t)−Rφ(t)) Iφ(t)
1[T−ε,T ](t).

By Taylor formula, one can write

Q(T, s) = I − ζ(T )(T − s) + o(T − s) as s→ T.

Then, from (40) we get

Di0,r0,φh = εe1 −
1

2
ε2ζ(T )e1 + o(ε2),

where e1 =

(
1
0

)
. By a direct calculation one can obtain

ζ(T )e1 =

(
∂A1

∂i (Iφ(T ), Rφ(T )) + φ(T )∂Σ1

∂i (Iφ(T ), Rφ(T ))
λ

)
.

Hence, e1 and ζ(T )e1 are linearly independent. Thus Di0,r0,φ has rank 2.

iii) Fixed (i1, r1), (i2, r2) ∈ Γ. Without lose of generality, we suppose that r2 < r1. We need to
prove that there exist a control function φ and T > 0 such that the solution of system (39) satisfies
Iφ(0) = i1, Rφ(0) = r1, Iφ(T ) = i2, Rφ(T ) = r2. From the third equation of system (3), it suffies to
construct a C1 function which will posses the following properties:

Rφ(0) = r1, Rφ(T ) = r2, (41)

Ṙφ(0) = λi1 − (µ+ γ) r1, Ṙφ(T ) = λi2 − (µ+ γ) r2, (42)

− (µ+ γ)Rφ(t) < Ṙφ(t) < λ− (µ+ γ + λ)Rφ(t), (43)

so, the functions Iφ(t), Sφ(t) and φ(t) will be immediately given by system (3) as follows

Iφ(t) =
1

λ

(
Ṙφ(t) + (µ+ γ)Rφ(t)

)
, Sφ(t) = 1− Iφ(t) +Rφ(t), φ(t) =

İφ(t)−A1 (Iφ(t), Rφ(t))

σg (1− Iφ(t)−Rφ(t)) Iφ(t)
.

To this end, first we consider (X1, Y1) and (X2, Y2) the solutions of the following ODEs starting
respectively from (r1, r1) and (r2, r2) Ẋ = λ− (µ+ γ + λ)X,

Ẏ = − (µ+ γ)Y.

(44)

Consider the function R1(t) and Z1(t) defined as follows.

R1(t) = Y1(t) +
i1

1− r1
(X1(t)− Y1(t)) , Z(t) = Y2(t) +

i2
1− r2

(X2(t)− Y2(t)) .

Hence, it is easy to see that

R1(0) = r1, Z(0) = r2, Ṙ1(0) = λi1 − (µ+ γ)r1, Ż(0) = λi2 − (µ+ γ) r2. (45)

Furthermore

Ṙ1(t) = −(µ+ γ)R1(t) +
i1

1− r1
(1−X1(t)) , (46)

= λ− (µ+ γ + λ)R1(t) +
λ(1− i1 − r1)

1− r1
(Y1(t)− 1) , (47)
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and

Ż(t) = −(µ+ γ)Z(t) +
i2

1− r2
(1−X2(t)) , (48)

= λ− (µ+ γ + λ)Z(t) +
λ(1− i2 − r2)

1− r2
(Y2(t)− 1) . (49)

Since X1(t), Y1(t), X2(t), Y2(t) ∈ (0, 1) for all t ≥ 0. Then the equalities (46), (47), (48) and (49)
imply

− (µ+ γ)R1(t) < Ṙ1(t) < λ− (µ+ γ + λ)R1(t) t ≥ 0, (50)

and
− (µ+ γ)Z(t) < Z(t) < λ− (µ+ γ + λ)Z(t) t ≥ 0. (51)

Let T be a sufficiently large number and ε be a sufficiently small positive number and consider the
function R3(t) = Z(t − T ). Therefore, it follows from (45) and (51) that for all t ∈ [T − ε, T ], R3(t)
verifies

− (µ+ γ+)R3(t) < Ṙ3(t) < λ− (µ+ γ + λ)R3(t), (52)

R3(T ) = r2, Ṙ3(T ) = λi2 − (µ+ γ) r2. (53)

Finally, consider a function R2(t) defined on [ε, T − ε] such that Y1(t) ≤ R2(t) ≤ X1(t), which implies
that

− (µ+ γ)R2(t) < Ṙ2(t) < λ− (µ+ γ + λ)R2(t). (54)

In addition, we choose R2(t) such that the function

Rφ(t) =

 R1(t), 0 ≤ t ≤ ε,
R2(t), ε ≤ t ≤ T − ε,
R3(t), T − ε ≤ t ≤ T,

be a C1 function. Thus, in view of (45), (50), (52), (53) and (54), the function Rφ(t) constructed in
this way posses the properties (41), (42) and (43).

iv) Let α be a sufficiently large number and

D =

{
x ∈ Z;

1

α
< x1 < 1− 1

α
and

1

α
< x2 < 1− 1

α

}
.

Consider the positive function defined by

ψ(x1, x2) =
1

η
x
−√η
1 x−η2 ,

where η is a positive number to be chosen later. The differential operator L acting on the Lyapunov
function ψ gives

Lψ(S, I) = S−
√
ηI−η

(
(µ+ λ)− βg(S) +

1

2
(1 + η)σ2(g(S))2

+
1
√
ηS

(
−µ+ µS + βg(S)I − γR+

1

2
(1 +

√
η)
σ2(g(S))2I2

S

)
+
√
ησ2g(S)I

)
. (55)

Let S, I ∈ Dc, which implies by S + I < 1 that either S < 1
α or I < 1

α . Firstly, if S < 1
α then from

I, S ∈ (0, 1), and (55), we have for η < 1

Lψ(S, I) ≤ S−
√
ηI−η

(
µ+ λ+

1

2
σ2(g(S))2 +

1
√
ηS

(
−µ+ µS + βg(S) +

σ2(g(S))2

S

)
+O(

√
η)

)
,
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and by the fact that g(0) = 0 we have g(S)/S ≤M with M = supS∈(0,1) |g′(S)|, so we can easily verify

µ+ λ+
1

2
σ2(g(S))2 = µ+ λ+O

(
1

α

)
, −µ+ µS + βg(S) +

σ2(g(S))2

S
= −µ+O

(
1

α

)
.

Hence, for α sufficiently large and η sufficiently small, we have

Lψ((S, I), j)≤α
√
η

[
µ+ λ+

1

2
σ2(g(1))2 +

α
√
η

(
−µ+O

(
1

α

))
+O

(
1

α

)
+O(

√
η)

]
≤−1. (56)

Secondly, if I < 1
α , then, from I +R+ S = 1, −µ+ µS < 0 and (55), we have

Lψ(S, I) = S−
√
ηI−η

(
(µ+ λ)− βg(S) +

1

2
σ2(g(S))2

+
1
√
ηS

(
βg(S)I − γ(1− S − I) +

1

2
(1 +

√
η)
σ2(g(S))2I2

S

)
+O(

√
η)

)
. (57)

One can easly have that there exists c1 ∈ (0, S), c2 ∈ (1− S − I, 1− I) and c3 ∈ (1− I, 1) such taht

g(S) = Sg′(c1), g(S) = g(1− I)− (1− S − I)g′(c2), g(1− I) = g(1)− Ig′(c3). (58)

Injecting (58) in (57) we get

Lψ(S, I) = S−
√
ηI−η ((µ+ λ)− β(g(1)− Ig′(c3)− (1− S − I)g′(c2))

+
1

2
σ2 (g(1)− Ig′(c3)− (1− S − I)g′(c2))

2

+
βg′(c1)
√
η

I − γ
√
ηS

(1− S − I) +
1

2
√
η

(1 +
√
η)σ2(g′(c1))2I2 +O(

√
η)

)
,

= S−
√
ηI−η

(
µ+ λ− βg(1) +

1

2
σ2g(1) + βIg′(c3) + β(1− S − I)g′(c2)

+
1

2
σ2I2(g′(c3))2 +

1

2
σ2(1− S − I)2(g′(c2))2 − σ2Ig(1)g′(c3)

−σ2(1− S − I)g(1)g′(c2) + σ2I(1− S − I)g′(c3)g′(c2)

+
βg′(c1)
√
η

I − γ
√
ηS

(1− S − I) +
1

2
√
η

(1 +
√
η)σ2(g′(c1))2I2 +O(

√
η)

)
.

Using |g′(ci)| ≤M , i=1,2,3, yields

Lψ(S, I) ≤ S−
√
ηI−η

(
µ+ λ− βg(1) +

1

2
σ2g(1) + I

(
βM + σ2M2I + σ2g(1)M + σ2M2(1− S − I)

)
(1− S − I)

(
βM +

1

2
σ2M2(1− S − I) + σ2g(1)M − γ

√
ηS

)
+

+
1
√
η
I

(
βM +

1

2
σ2M2I

)
+O(

√
η)

)
. (59)

From 1− S − I < 1 and S < 1 we have for η <
(

γ
βM+ 1

2σ
2M2+σ2g(1)M

)2

βM +
1

2
σ2M2(1− S − I) + σ2g(1)M − γ

√
ηS

< 0. (60)

Combining (59) and (60) and using I < 1 gives
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Lψ(S, I) ≤ S−
√
ηI−η

(
µ+ λ− βg(1) +

1

2
σ2g(1) +O

(
1

α
√
η

)
+O

(
1

α

)
+O(

√
η)

)
. (61)

Let us choose α sufficiently large and η sufficiently small such that

µ+ λ− βg(1) +
1

2
σ2g(1) +O

(
1

α
√
η

)
+O

(
1

α

)
+O(

√
η) < 0, (62)

which is allowed by the condition Rs(g) > 1. Hence, From (61) and (62) we have easily that there
exists α sufficiently large and η sufficiently small such that

Lψ(S, I) ≤ α−η
(
µ+ λ− βg(1) +

1

2
σ2g(1) +O

(
1

α
√
η

)
+O

(
1

α

)
+O(

√
η)

)
.

≤ −1. (63)

From (56) and (63), we have for α sufficiently large and η sufficiently small,

Lψ((S, I)) ≤ −1, for all (S, I) ∈ Dc.

The proof is completed according to Lemma 4.2.

5 Numerical simulations

In the framwork of numerical stochastics, the system (3) is equivalent to the following
dSt = F 1(S, I,R)dt+G1(S, I,R)dBt,
dIt = F 2(S, I,R)dt+G2(S, I,R)dBt,
dRt = F 3(S, I,R)dt.

(64)

We approximate the solution of the system above using the first order Itô-Taylor scheme
(also called Milstein scheme). Since the system (64) is driven by one noise dBt, the double
stochastic integrals are used explicitly, for more details see [45]. By discritizing the time
interval into 200 equidistant time steps, we simulate the system (64) under the conditions
of our theoretical results above. The corresponding mean simulations are results of 1000
realizations. We examine two type of tests.

Test 1. We consider the power function g(x) = xp. Consequently, we have g(1) = 1
and Rs(g) = Rs. In this test, we simulate six different cases :

Table 1: List of parameters for test 1.
Test 1.1 Test 1.2 Test 1.3 Test 1.4 Test 1.5 Test 1.6

p 1.5 1.5 0.95 0.95 0.9 1.9
Rs 0.876712 1.03014 1.03014 0.876712 1 1
λ 0.5 0.5 0.5 0.5 0.65 0.65
µ 0.25 0.25 0.25 0.25 0.25 0.25
β 2 2.35 2.35 2 1.56125 1.56125
γ 0.005 0.005 0.005 0.005 0.15 0.15
ρ 0.10 0.10 0.1 0.1 0.25 0.25
σ 1.75 1.75 1.75 1.75 1.15 1.15
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Test 2. In this test, we compare the solution behavior of (3) using two different func-
tions. Namely, the exponential function g1(x) = 1 − e−ax and the rational function

g2(x) =
1

1 + bx
, where the parameters a and b are chosen as follows

a > − ln

(
1− 2(µ+ λ)

σ2

)
and b >

2(µ+ λ)

σ2

which is equivalent respectively to

Rs > Rs(g1) and Rs > Rs(g2).

Hence, we simulate and compare between the following cases respectively.

Rs(g1) < Rs(g2) < 1 < Rs, Rs(g2) < Rs(g1) < 1 < Rs,
Rs(g1) < 1 < Rs(g2) < Rs, Rs(g2) < 1 < Rs(g1) < Rs.

Table 2: List of parameters for Test 2.
Test 2.1 Test 2.2 Test 2.3 Test 2.4

Rs 1.014490 1.014490 1.22415 1.22415
Rs(g1) 0.889431 0.889431 0.98224 1.21295
Rs(g2) 0.992908 0.804598 1.11740 0.87938
a 0.5 0.5 0.5 1
b 1 2 1 2
λ 0.35 0.35 0.35 0.35
µ 0.25 0.25 0.25 0.25
β 1.75 1.75 1.85 1.85
γ 0.005 0.005 0.005 0.005
ρ 0.10 0.10 0.10 0.10
σ 1.5 1.5 1.35 1.35
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Figure 1: Test 1.1 and 1.2: One realization and the corresponding mean of 1000 solutions.
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Figure 2: Test 1.3 and 1.4: One realization and the corresponding mean of 1000 solutions.
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Figure 3: Test 1.5 and 1.6, one realization and the corresponding mean of 1000 solutions.
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Figure 4: Test 2.1, one realization and the mean of 1000 solutions, for g1 left and for g2 right.
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Figure 5: Test 2.2, one realization and the mean of 1000 solutions, for g1 left and for g2 right.
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Figure 6: Test 2.3, one realization and the mean of 1000 solutions, for g1 left and for g2 right.
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Figure 7: Test 2.4, one realization and the mean of 1000 solutions, for g1 left and for g2 right.

6 Concluding remarks

The current paper makes a useful contribution to understanding extinction and persistence of
a stochastic SIRS epidemic model with a general incidence rate. From the analytical results
established in this paper, the introduction of the nonlinearity rate g(S)I modifies the classical
threshold quantityRs giving rise to a new threshold quantityRs(g). This new threshold is the
most natural way to extend the threshold previously established with the bilinear incidence
rate. For example, if we consider the function g(x) = xp , it is clearly a nonlinear one
for p 6= 1. In this particular case, the classical threshold Rs coincides with Rs(g) because
g(1) = 1. However, for p > 1 we get a significant effect on the rate of the extinction and the
persistence of the epidemic as one can see from Figures 1-3 of Test 1.
We have conducted a second test also (See Test 2),where an exponential and ratinal functions

were used : g1(x) = 1 − e−ax and g2(x) =
1

1 + bx
for a ≥ − ln

(
1− 2(µ+ λ)

σ2

)
and b ≥

2(µ+ λ)

σ2
. Which implies an improvement on the stochastic threshold so Rs > Rs(g1) and

Rs > Rs(g2) .The illustrations in Figures 4-7, confirm this improvement. They show that
both models with nonlinearity rate g1(S)I and g2(S)I go towards extinction quicker than
the model with the classical rate SI. It suggests that nonlinearity may radically change the
system’s asymptotic behavior by promoting the extinction of the epidemic.
Thus, we conclude that we can improve the threshold of such a stochastic SIRS system by
including an adequate nonlinear incidence rate. This work has also shown that the stochastic
solutions converge to a stationary distribution as a limit of a homogeneous markovian process.
Finally, we point out that some issues deserve further investigation. For instance, what is
the long-time behavior of the epidemic model (3) in the two cases when Rs(g) < 1, β < σ2

and Rs(g) = 1, β < σ2? Another interesting continuation of this work might be introducing
jump noise into some system parameters (3). We leave these for future investigation.
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