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Abstract

The two-dimensional modelling of shallow water flows over multi-sediment erodible beds is presented.
A novel approach is developed for the treatment of multiple sediment types in morphodynamics. The
governing equations include the two-dimensional shallow water equations for hydrodynamics, an Exner-
type equation for morphodynamics, a two-dimensional transport equation for the suspended sediments,
and a set of empirical equations for entrainment and deposition. Multilayer sedimentary beds are formed
of different erodible soils with sediment properties and new exchange conditions between the bed layers
are developed for the model. The coupled equations yield a hyperbolic system of balance laws with source
terms. As a numerical solver for the system, we implement a fast finite volume characteristics method.
The numerical fluxes are reconstructed using the method of characteristics which employs projection
techniques. The proposed finite volume solver is simple to implement, satisfies the conservation property
and can be used for two-dimensional sediment transport problems in non-homogeneous isotropic beds
without need of complicated three-dimensional equations. To assess the performance of the proposed
models, we present numerical results for a wide variety of shallow water flows over sedimentary layers.
Comparisons to experimental data for dam-break problems over movable beds are also included in this
study.

Keywords. Shallow water flows; Sediment transport; Multilayer beds; Suspended sediments; Finite volume
method; Method of characteristics

1 Introduction

Modeling the phenomena of sediment transport in shallow water flows has become an active area of research
in the past decades. In general, there are three techniques for modelling sediment transport namely, i)
partial differential equations for which hydrodynamics and morphodynamics equations are used to predict
the events, see for example [2, 25], ii) predictions made by analyzing and interpolating empirical data,
either in equilibrium equations or with pure data analysis, see for instance [33, 17] and iii) hybrid models
where elements of both techniques are utilized, see for example the ESTMORPH model [38]. For modelling
morphodynamics in shallow water flows, the three most popular models are the Grass model [14], the
Meyer-Peter & Muller model [22] and the Van-Rijn model [34]. Recently, a lot of work has been done for
the simulation of sediment transport in rivers, for review we refer the reader to [36]. Modeling and numerical
simulation of sediment transport in coastal regions have also been subject of research in [4, 18]. Modeling
sediment transport using the well-established shallow water equations coupled with a conservation equation
for the species concentration and a Exner-type equation for the bed-load have also been investigated in
[25, 30, 20, 16] among others. Prior to these studies, a great deal of research was done to develop uncoupled
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models for which the hydrodynamics were solved first and then the effects on the bed were calculated.
However, coupled approaches are often more accurate for higher energy interactions where
the timescale of morphological changes is similar to that of the flow such as those taken places
in dam-break problems, see the discussions reported in [13] among others.

The main limitation in the models studied in [25, 30, 20, 4] is the number of assump-
tions needed for their validation including the levels of armoring, vegetation, homogeneity,
composition and compaction. These assumptions often lead to a large disconnect between experimen-
tal measurements and numerical simulations when compared with real-world applications. Recently many
corrections have been proposed to improve these assumptions, see for example [11, 23]. However, the as-
sumptions on the homogeneous and isotropic nature of the beds are the most severe limitations in these
models, as naturally deposited soils are mixed and incorporate multiple soil types making them complex
to model with an averaged sediment type only. Accurate modelling of sediment sizes in order to
reflect the constituents of both anthropogenic and natural landscapes has been carried out
for instance in [1, 23], though this is not the most complex problem as natural layers are
generally more homogeneous. Man-made banks, flood and coastal defenses are often layered with fine
graded soils deposited on top of each other (due to mechanical properties, permeability, fertility, cost, and
other considerations). This leads to the complex case where several sediments have different erosion and de-
position rates creating intricate profiles for morphological changes. Although the most modern models
are able to deal with complex water flows, the area of complex sediments remains relatively
unresolved, compare [20, 18, 5, 15] for a diverse set of approaches. In the present study we
propose a new coupled model for two-dimensional shallow water flows over multilayer erodible
beds. Notice that other models accounting for multiple sediments were studied in [15] but
these models yield complex eigenvalues in their formulation. The current work deals with
multiple sediments only in the erosion and deposition terms and keep a register of sediment
fractions enabling the use of averages to avoid complex eigenvalues in the system. We assume
that the bed is heterogeneous and constituted with multiple layers of different sediment properties. The
structure of soil-superposed packed beds and the total number of layers to be considered in the analysis
are fixed a priori. To the best of our knowledge, simulation of two-dimensional shallow water flows over
multilayer erodible beds including superposed heterogeneous beds is presented for the first time.

In the current work, the bed is reformulated as a function of three-dimensional variables and its dis-
cretization is carried out using control volumes. A fill factor is assigned for each control volume, which can
be either fully filled by a single-sediment type or partially filled of multiple sediments of different types.
The top filled control volume is then treated as the bed floor and surpassed when it is overfilled or totally
eroded. At the same time, a margin of empty control volumes are incorporated above the initial active
volume to allow for morphological variation. Sediment types and their concentrations are set in suspension
by storing individual concentrations for each control volume. Modeling multiple sediment types would
normally require reformulating the conventional models of sediment transport to include more equations
for conservation of species. In our study, introducing cumulative functions for the sediment concentration,
sediment density, porosity and other sediment variables mitigates this complication. The resulting system
consists only of five equations for conservation of mass, momentum, species and bed-load. For the entrain-
ment and erosion we consider the empirical equations reported in [8, 26] with modifications to allow for
discretized beds. To improve the accuracy in erosion and deposition terms, each sediment is evaluated sepa-
rately when considering bed-load flux, and the proportions of sedimentary flux in the shallow water system
are back calculated. The procedure leads to an accurate and consistent model for both hydrodynamics and
morphodynamics. Furthermore, the proposed model allows for several further functions to be incorporated
into the system, including tracking the origin and transport of particular types of sediments in the water
flow. This is particularly useful for dam-break problems involving dangerous or contaminated sediments
such as tailings dam failure investigated in [24].

Numerical solutions of the sediment transport models often present difficulties due to a combination
of their nonlinear form, the presence of the source terms, and the coupling between the bed-load equation
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and the equations governing the water flow, see for example [2, 21, 41]. Here, the main difficulty in
the proposed model comes from the coupling terms involving derivatives of the unknown physical variables
for the bed profile and sediment concentration. Because of the presence of these terms in the governing
equations, a numerical method originally designed for solving shallow water flows over movable single-
layer beds will lead to instabilities when it is applied to each bed layer separately. In the current work,
we implement the Finite Volume of Characteristics (FVC) method developed for two-dimensional shallow
water equations in [3]. The FVC method avoids the solution of Riemann problems and it can be viewed
as a predictor-corrector finite volume method. The predictor step employs the method of characteristics
to reconstruct the numerical fluxes whilst, the corrector step recovers the conservation equations in the
finite volume framework. The results presented in [3] confirm that the FVC method is simple, conservative,
non-oscillatory and suitable for shallow water equations over erodible beds for which Riemann problems are
computationally expensive to solve because of the complex nature of the eigenvalues involved
in their mathematical formulation. Several numerical examples are presented to verify the ability of
the proposed model to accurately solve the two-dimensional shallow water flows over multilayer sedimentary
beds. We first compare our simulations to experimental data for a test example of dam-break flows over
single-layer erodible beds. Next we simulate similar flow problems over erodible multilayer beds and examine
the performance of the proposed techniques using different numbers of layers in the sedimentary topography.
Numerical results presented in this study demonstrate high resolution of the FVC method and confirm its
capability to provide accurate and efficient simulations for sediment transport by water flows, including
erosion and deposition effects in heterogeneous beds.

The rest of the paper is organized as follows: In Section 2, we introduce the two-dimensional governing
equations for shallow water flows over multilayer movable sedimentary beds. Modeling mass-exchange
terms between multilayer beds is described in Section 3. In Section 4, we formulate the finite volume of
characteristics method for the numerical solution of developed system. Numerical results and examples
are presented in Section 5. We examine the performance of the proposed model for several examples of
shallow water flows over multilayer movable beds, and the comparison to experiments is also presented in
this section. Conclusions are summarized in Section 6.

2 Modeling shallow water flows over multilayer movable beds

In general, the governing equations of shallow water flows over movable beds are derived by balancing the
net inflow of mass, momentum, and species through the boundaries of a control volume whilst accounting
for shallow water assumptions, see for example [7]. In a conservative form, these equations read

∂H

∂t
+
∂(Hu)

∂x
+
∂(Hv)

∂y
=

E −D
1− p

,

∂(Hu)

∂t
+

∂

∂x

(
Hu2 +

1

2
gH2

)
+

∂

∂y
(Huv) = −gH ∂B

∂x
− (ρs − ρw)gH2

2ρ

∂c

∂x
+ Sx,

∂(Hv)

∂t
+

∂

∂x
(Huv) +

∂

∂y

(
Hv2 +

1

2
gH2

)
= −gH ∂B

∂y
− (ρs − ρw)gH2

2ρ

∂c

∂y
+ Sy, (1)

∂(Hc)

∂t
+
∂(Hcu)

∂x
+
∂(Hcv)

∂y
= E −D,

∂B

∂t
=

D − E
1− p

,

where H(t, x, y) is the water depth, u(t, x, y) the averaged water velocity in the x-direction, v(t, x, y) the
averaged water velocity in the y-direction, B(t, x, y) the bottom topography, c(t, x, y) the averaged concen-
tration of the suspended sediment, g the gravitational acceleration, p the porosity, ρw the water density, and
ρs the sediment density. Here, E and D represent the total entrainment and deposition terms in upward
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Figure 1: Sketch of a two-dimensional system of shallow-water flows over a multilayer bed.

and downward directions, respectively. In (1), the source term Sx and Sy are accounting for friction slopes
and sediment reaction as

Sx = −g
n2bu
√
u2 + v2

H1/3
− (ρ0 − ρ)(E −D)u

ρ(1− p)
, Sy = −gH

n2bv
√
u2 + v2

H1/3
− (ρ0 − ρ)(E −D)v

ρ(1− p)
,

where nb is the Manning roughness coefficient, ρ(t, x, y) the density of the water-sediment mixture, and ρ0
the density of the saturated bed related to the sediment concentration and porosity by

ρ = ρw(1− c) + ρsc, ρ0 = ρwp+ ρs(1− p). (2)

Note that the above relations are designed for the single layer bed and have to be modified
for the multilayer sediment model as discussed below. In this case, the involved sediment
parameters including the Manning roughness coefficient would vary from one layer to another
in the bed. It should also be stressed that the above equations have been widely used in the literature to
model sediment transport by shallow water flows, see for instance [2, 20] and further references therein. It
is easy to verify that the system (1) is hyperbolic with five real and distinct eigenvalues given by [2]

λ1 = 0, λ2 = u, λ3 = u, λ4 = u−
√
gH, λ5 = u+

√
gH,

(3)
µ1 = 0, µ2 = v, µ3 = v, µ4 = v −

√
gH, µ5 = v +

√
gH.

It should be mentioned that, the finite volume method proposed in this study does not
require the calculation of the eigenvalues for the system but the estimation of the eigenvalues
in (3) may be used for controlling the timestep size in the numerical simulations. Note
that the equations (1) assume that the suspended sediments and the bed-load are isotropic
and homogeneous formed with a single layer of soils. However, for many applications in realistic
sediment transport, the topography is formed with multiple soils and often superposed in a set of layers. In
the present work, we are interested in situations of shallow water flows over multilayer beds, as illustrated
in Figure 1. Thus, the bed topography B in equations (1) depends also on the vertical direction z i.e.,
B = B(t, x, z). Here, we consider a system with multiple species of sediments (m = 1, 2, . . . ,M) that can
exist in a number of bed layers (l = 1, 2, . . . , L), with M and L are the total numbers of sediment species
and the total number of layers in the bed, respectively. Notice that two or more layers may contain the
same sediment species and a layer may also contain multiple sediment species.

In order to extend the equations (1) to sediment transport with multilayer beds, we introduce the
cumulative sediment concentration

c =

M∑
m=1

cm,
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Figure 2: Vertical discretization of a single-layer bed with three mixed sediments into control volumes.

Figure 3: Reorganization of the mixed sediment species into discretized control volumes.

and we define the averaged sediment variables

ρs =
M∑
m=1

cm
c
ρs,m, ρ = ρw(1− c) +

M∑
m=1

cm
c
ρs,m, D =

M∑
m=1

cm
c
Dm. (4)

Note that these sediment fractions are held in a register and updated at each time step in
order to stop them being homogenized over successive time steps. Furthermore, the equivalent
averaging procedure (4) does not increase the number of equations in the system (1), but it still allows
for erosion and deposition to be handled separately for each type of sediment. Therefore, the proposed
system efficiently models the different erosion and deposition characteristics of each sediment type, while
not incurring significant additional computational cost.

For the remaining sediment variables ρ0, E and p, we use the similar equivalent averaging but with
respect to the sediment bed, instead of the suspended sediment. To this end, we discretize the vertical
z-direction into a set of control volumes

[
Bk−1/2, Bk+1/2

]
, k = 1, 2, . . . ,K with K is the total

number of control volumes. For simplicity only, we assume that these control volumes have
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a uniform size ∆z, see Figure 2 for an illustration of a single-layer bed with three mixed
sediments. Each control volume may contain different sediment species which need to be reorganized
in a rigorous manner to be compatible with the governing equations. This allows us to contemplate the
individual sediment mix in each control volume. In order to perform this method, a register of bed
volume fractions for each bed and flow control volume is hold during the time integration
process. This enables us to handle the sediment as an average in both the flow calculations
and individuals for interactions between the bed and the flow.

The crucial assumption we make is that the height of the control volume is small enough that all
sediment species in the control volume are able to interact with the water simultaneously and can be
eroded or deposited. In Figure 3 we illustrate the method adopted in this study to reorganize sediment
species in the bed topography. Here, the active top control volume has a height Bk, formed of three
sediments with effective height in the cell of bk,1, bk,2 and bk,3, respectively. Hence, the bed-dependent
variables are calculated using the weighted averaging procedure [32] as

nb =

M∑
m=1

bk,m
Bk

nb,m, p =

M∑
m=1

bk,m
Bk

pm, ρ0 = ρw(1− p) +

M∑
m=1

bk,m
Bk

ρk, E =

M∑
m=1

bk,m
Bk

Em.

Note that each control volume interacts only with its neighboring control volumes, whereas erosion and
deposition only occur in the active top control volume. In the current study, to account for vertical exchanges
in the bed we consider an Exner-type equation which ensures the sediment transfer between bed control
volumes. Hence, the equations we consider for modelling shallow water flows over multilayer beds are

∂H

∂t
+
∂(Hu)

∂x
+
∂(Hv)

∂y
=

E −D
1− p

,

∂(Hu)

∂t
+

∂

∂x

(
Hu2 +

1

2
gH2

)
+

∂

∂y
(Huv) = −gH ∂B

∂x
− ξgH2 ∂c

∂x
+ Sx,

∂(Hv)

∂t
+

∂

∂x
(Huv) +

∂

∂y

(
Hv2 +

1

2
gH2

)
= −gH ∂B

∂y
− ξgH2 ∂c

∂y
+ Sy, (5)

∂(Hc)

∂t
+
∂(Hcu)

∂x
+
∂(Hcv)

∂y
= E −D,

∂B

∂t
+
∂G(B)

∂z
=

D − E
1− p

,

where G(B) is a flux function which depends on the exchange terms between the bed control volumes and
it is formulated below in section 3. Note that, as in the models reported in [2, 20], the proposed
model does not use horizontal bed fluxes in its formulation and all sediment interactions are
represented in the erosion and deposition relations. In (5),

ξ =
(ρs − ρw)

2ρ
, Sx = −g

n2bu
√
u2 + v2

H1/3
−(ρ0 − ρ)(E −D)u

ρ(1− p)
, Sy = −gH

n2bv
√
u2 + v2

H1/3
−(ρ0 − ρ)(E −D)v

ρ(1− p)
.

To determine the entrainment and deposition terms in the above equations we use empirical relations
reported in [8] among others. Thus,

Dm = wm (1− Ca,m)2Ca,m, (6)

where wm is the deposition coefficient experimentally measured in [35, 39, 27], Ca,m = αc,mcm is the near-
bed volumetric sediment concentration and αc,m is a coefficient larger than unity to ensure that the near-bed
concentration does not exceed (1− pm). Here, the coefficient αc,m is defined by [10]

αc,m = min

(
2,

1− pm
cm

)
.
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For the entrainment of sediments, the following empirical relation is used

Em =


ϕm

θm − θc,m
H

√
u2 + v2d−0.2m , if θm ≥ θc,m,

0, otherwise,

where ϕm is a coefficient to control the erosion forces, θc,m is a critical value of the Shields parameter for
the initiation of sediment motion and θ is the Shields coefficient defined by

θm =
υ2∗,m
smgdm

, (7)

where sm is the submerged specific gravity of sediment given by

sm =
ρs,m
ρw
− 1,

and υ∗,m is the friction velocity defined using the Darcy-Weisbach friction law as

υ2∗,m =

√
g n2b,m

H1/3

√
u2 + v2.

Note that most formulae for models of suspended sediments, obtained from experiments and measured data,
are empirical to differing extents, see for example [8, 9, 28]. Other empirical formulae for the erosion and
deposition terms can also be used in the system (5) without major conceptual modifications. The equations
(5) can also be rewritten in a compact vector form as

∂W

∂t
+
∂F(W)

∂x
+
∂G(W)

∂y
= Q(W) + R(W), (8)

where

W =


H

Hu

Hv

Hc

B

 , F(W) =


Hu

Hu2 + 1
2gH

2

Huv

Huc

0

 , G(W) =


Hv

Huv

Hv2 + 1
2gH

2

Hvc

0

 ,

Q(W) =



0

−gH ∂B

∂x
− ξgH2 ∂c

∂x

−gH ∂B

∂y
− ξgH2 ∂c

∂y

0

0


, R(W) =



E −D
1− p

−Sx

−Sy

E −D

−∂G(B)

∂z
− E −D

1− p


.

It should be pointed out that since the flux function G(B) added in the bed-load is only differentiated
with respect to z, the hyperbolic parts in the system (5) have not changed from those appearing in its
conventional counterpart (1). Therefore, the eigenvalues associated with the system (8) are also given by
the expressions (3).

7



Figure 4: Illustration of different alterations in the control volumes for shallow water flows over multilayer
beds considered in the current study.
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3 Formulation of exchange terms for multilayer beds

To formulate the exchange terms G(B) for multilayer beds in (5) we consider the control volumes [zk+1/2, zk−1/2]
shown in Figure 3 and we divide the time interval into subintervals [tn, tn+1] with uniform size ∆t. Here,
tn = n∆t, zk+1/2 = k∆z and zk = (k − 1/2)∆z is the center of the control volume. Following the standard
finite volume formulation, we integrate the bed-load equation in (5) with respect to time and space over
the domain [tn, tn+1]× [zk+1/2, zk−1/2] to obtain the following discrete equation

Bn+1
k = Bn

k +
∆t

∆z

(
Gnk+1/2 − G

n
k−1/2

)
+ ∆tPnk , (9)

where Bn
k is the depth-averaged bed B in the control volume [zk+1/2, zk−1/2] at time tn defined by

Bn
k (x, y) =

1

∆z

∫ zk−1/2

zk+1/2

B(tn, x, y, z) dz,

and Gnk∓1/2 = G(Bn
k∓1/2) are the numerical fluxes at z = zk∓1/2 and time tn. Since the erosion and deposition

takes place only in the top active control volume, the source term in (9) is given by

Pnk =


−E

n
k −D

n
k

1− pk
if zk+1/2 < B ≤ zk−1/2,

0, elsewhere.

As with sediment fractions, the kth active (exposed) cell is stored in a register during the
simulation and k is modified following the steps described in the algorithms below. This
ensures that the correct cell value for k is eroded, maintained or surpassed depending on the
case under study. Note that as 0 ≤ Bn

k ≤ ∆z, only four possible cases may occur for movable beds, as
illustrated in Figure 4. These cases are:

i) Volume growth: Erosion and deposition rates in the control volume do not exceed the cell bounds.

ii) Volume depletion: The control volume is entirely eroded and the control volume below becomes active.

ii) Volume overfill: The control volume is overfilled and the control volume above becomes the active
cell.

iv) Volume armoring: The control volume holds out against total erosion.

To formulate the flux functions Gnk∓1/2 in (9), we apply boundary conditions for the three first cases of

homogeneous sediments. For instance, in the case of volume overfill, Bn+1
k = ∆z and Gnk+1/2 = 0. Thus

∆z = Bn
k +

∆t

∆z

(
−Gnk−1/2

)
+ ∆tPnk ,

which can be rearranged as

Gnk−1/2 =
∆z

∆t

(
Bn
k −∆z −∆t

E
n
k −D

n
k

1− pk

)
. (10)

For the case of volume depletion, Bn+1
k = 0 and Gnk−1/2 = 0. Thus

0 = Bn
k +

∆t

∆z

(
Gnk+1/2

)
+ ∆t Snk ,
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Algorithm 1: Reconstruction of the bed in the homogeneous multilayer models.

if Bn+1
∗,k > ∆z then

Bn+1
k = ∆z

Bn+1
k−1 = Bn

k −∆z −∆t
Enk −Dn

k

1− pk
k ←− k + 1

else if Bn+1
∗,k ≤ 0 then

Bn+1
k = 0

Bn+1
k+1 = Bn

k + ∆z −∆t
Enk −Dn

k

1− pk
k ←− k − 1

else

Bn+1
k = Bn+1

∗,k
end

which can be rearranged as

Gnk−1/2 =
∆z

∆t

(
−Bn

k−1 + ∆t
E
n
k−1 −D

n
k−1

1− pk−1

)
. (11)

For the case of volume growth, both upper and lower fluxes vanish and

Gnk−1/2 =



∆z

∆t

(
Bn
k −∆z −∆t

E
n
k −D

n
k

1− pk

)
, if Bn

k −∆t
E
n
k −D

n
k

1− pk
> ∆z,

∆z

∆t

(
−Bn

k−1 + ∆t
E
n
k−1 −D

n
k−1

1− pk−1

)
, if Bn

k −∆t
E
n
k−1 −D

n
k−1

1− pk−1
< 0,

0 otherwise.

(12)

Note that the reconstruction of the flux functions Gnk∓1/2 requires only the evaluation of bed height in the
three neighboring control volumes and it can be implemented for homogeneous beds using the test bed
height

Bn+1
∗,k = Bn

k + ∆t
E
n
k −D

n
k

1− pk
.

Hence, given the bed topography Bn
k at time tn, the new bed topography Bn+1

k at time tn+1 is updated
using Algorithm 1.

For the volume armoring, the sediment mixes between the bed and the flow and, to handle this, we
assume that the volume height can be expressed as the sum of the heights of the sediments inside it as
shown in Figure 3. For this case, we calculate the bed height b∗,k,m at each time step as

bn+1
∗,k,m = bnk,m + ∆bnk,m = bnk,m + ∆t

(
Enk,m −Dn

k,m

1− pk,m

)
,

where bk,m (m = 1, 2, . . . ,M) are the corresponding heights of sediment contained within the control volume.
We also define ∆b−∗,k and ∆b+∗,k as the sum of all negative and all positive ∆bj,k sediment height changes in

the control volume, respectively. Hence, the procedure to update the bed Bn+1
j for this case is described in

Algorithm 2.

It should be stressed that for the case of volume armoring, inappropriate discretization of the bed
may have a direct effect on the bed-load and suspended sediments. Thus, a lower limit on the vertical
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Algorithm 2: Reconstruction of the bed in the non-homogeneous multilayer models.

if

M∑
m=1

bn+1
∗,k,m ≥ ∆z then

for m = 1 : M do
if b∗,k,m ≥ 0 then

bn+1
k,m = bnk,m + (∆z −Bn

k −∆b−∗,k)
∆bn∗k,m

∆b+∗,k −∆b−∗,k

bn+1
k−1,m = ∆bn+1

∗,k,m − (∆z −Bn
k −∆b−∗,k)

∆bn∗,k,m

∆b+∗,k −∆b−∗,k
else

bn+1
k,m = bn+1

∗,k,m
end

end
k ←− k + 1

else if any m ∈ {1, . . . ,M} bn+1
∗,k,m ≥ 0 and

M∑
m=1

bn+1
∗,k,m ≤ 0 then

for m = 1 : M do
if b∗,k,m > 0 then

bn+1
k,m = bn+1

∗,k,m
else

bn+1
k,m = 0

∆bn∗,k,m = −bnk,m
end

end

else if all bn+1
∗,k,m ≤ 0 then

for m = 1 : M do

if bn+1
∗,k+1,m > 0 then

bn+1
k+1,m = bnk,m + bnk+1,m −∆bn∗,k,m

else
∆bn∗,k,m = −bnk,m

end

bn+1
k,m = 0

end
k ←− k − 1

else
for m = 1 : M do

bn+1
k,m = bn+1

∗,k,m
end

end

discretization is set using the largest particle size d. This is a crucial parameter of the proposed
model which requires tuning and fitting in the same manner as the spacial discretization
of the flow in x and y directions. Therefore, for the multilayer discretization for which the
armoring is possible, ∆z should satisfy the following condition [16]

∆z ≥ 10d. (13)
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Note that, whilst the composition of the layers in the bed topography should be known in advance, the
number of discretized layers in the algorithm can be set by the user, and two or more discretized layers may
be formed with the same soil. In practice, this would require appropriate judgment and possibly
tuning to balance the overall efficiency and accuracy in the model.

4 Numerical solution of shallow water flows over multilayer movable
beds

APM-D-19-03367 In practice, the numerical solution of the equations (8) can be carried out using any finite
volume method designed for solving hyperbolic systems of conservation laws with source terms. In the
present study, we consider the Finite Volume Method of Characteristics (FVC) method studied in [3] for
solving the shallow water equations over fixed beds. The main advantage of the FVC method over other
finite volume methods lies in the absence of Riemann solvers in its reconstruction of numerical fluxes. The
FVC method is also conservative, well balanced, second-order accurate, fast and simple to implement. In
this section, we briefly describe the FVC formulation for solving the equations (8) and further details can
be found in [3]. For the time integration of the system (8), we use the notation Wn to denote the value
of a generic function W at time tn. We also use the splitting operator introduced in [31] to deal with the
differential source terms Q(W) and the non-differential source term R(W) in (8). The splitting procedure
consists of the following two steps:

Step 1: Solve for W∗

W∗ −Wn

∆t
= R(Wn). (14)

Step 2: Solve for Wn+1

Wn+1 −W∗

∆t
+
∂F(W∗)

∂x
+
∂G(W∗)

∂y
= Q(W∗). (15)

For the space discretization of the equation (15) we consider control volumes Vi,j = [xi− 1
2
, xi+ 1

2
]×[yj− 1

2
, yj+ 1

2
]

as shown in Figure 4. Each control volume Vi,j is centered at (xi, yj) with uniform sizes ∆x and ∆y
for simplicity in the presentation only. We also use the notations Wn

i± 1
2
,j

= W(tn, xi± 1
2
, yj), Wn

i,j± 1
2

=

W(tn, xi, yj± 1
2
), and

Wn
i,j =

1

∆x

1

∆y

∫ x
i+1

2

x
i− 1

2

∫ y
i+1

2

y
j− 1

2

W(tn, x, y)dydx,

to denote the point-values and the approximate cell-average of the variable W at the gridpoint (tn, xi± 1
2
, yj),

(tn, xi, yj± 1
2
), and (tn, xi, yj), respectively. Hence, integrating the equation (15) with respect to space over

the control volume Vi,j , one obtains the following discrete equations

Wn+1 −W∗

∆t
+

Fi+1/2,j − Fi−1/2,j

∆x
+

Gi,j+1/2 −Gi,j−1/2

∆y
= Qi,j , (16)

where Fi±1/2,j = F(W∗
i±1/2,j) and Gi,j±1/2 = G(W∗

i,j±1/2) are the numerical fluxes at the cell interfaces
x = xi±1/2 and y = yi±1/2, respectively. Here, Qi,j is a consistent discretization of the source term Q
in (15) such that discretizations of the flux gradients and the source terms are well balanced,
see for instance [2, 3] and further references are therein. The spatial discretization (16) is complete
when the numerical fluxes Fi±1/2,j and Gi,j±1/2 along with the source term Qi,j are reconstructed.

12



Figure 5: Illustration of the control volume Vi,j used for the spatial discretization.

4.1 Finite volume projection procedure

In the current study, to determine the numerical fluxes in (16) we use the projection method proposed in
[3]. Thus, integrating (15) over the control volume Vij using the divergence theorem, we obtain

∂

∂t

∫
Vi,j

H dV +

∮
Si,j

(Hunx +Hvny) dσ = 0,

∂

∂t

∫
Vi,j

Hu dV +

∮
Si,j

((
Hu2 +

1

2
gH2

)
nx +Huvny

)
dσ = −gH

∮
Si,j

Bnx dσ − ξgH2

∮
Si,j

cnx dσ,

∂

∂t

∫
Vi,j

Hv dV +

∮
Si,j

(
Huvnx +

(
Hv2 +

1

2
gH2

)
ny

)
dσ = −gH

∮
Si,j

Bny dσ − ξgH2

∮
Si,j

cny dσ,

∂

∂t

∫
Vi,j

Hc dV +

∮
Si,j

(Hucnx +Hvcny) dσ = 0,

where η = (nx, ny)
T is the unit outward normal to the surface Si,j of the control volume Vij . Using the

local cell outward normal η and tangential τ = η⊥ illustrated in Figure 4.1, the above equations can be
projected as

∂

∂t

∫
Vi,j

H dV +

∮
Si,j

(Huη) dS = 0, (17a)

∂

∂t

∫
Vi,j

Hu dV +

∮
Si,j

(
Huuη +

1

2
gH2nx

)
dS = −gH

∮
Si,j

Bnx dS − ξgH2

∮
Si,j

cnx dS, (17b)

∂

∂t

∫
Vi,j

Hv dV +

∮
Si,j

(
Hvuη +

1

2
gH2ny

)
dS = −gH

∮
Si,j

Bny dS − ξgH2

∮
Si,j

cny dS, (17c)

∂

∂t

∫
Vi,j

Hc dV +

∮
Si,j

(Hucnη) dS = 0, (17d)

where the normal projected velocity uη = unx + vny and the tangential projected velocity uτ = vnx− uny.
In order to simplify the system (17), we first sum the equation (17b) multiplied by nx to the equation (17c)
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Figure 6: The projected velocities on the control volume Vi,j .

multiplied by ny, then we subtract the equation (17b) multiplied by ny from the equation (17c) multiplied
by nx. These operations result in

∂

∂t

∫
Vi,j

H dV +

∮
Si,j

Huη dS = 0,

∂

∂t

∫
Vi,j

Huη dV +

∮
Si,j

(
Huηuη +

1

2
gH2

)
dS = −gH

∮
Si,j

B dS − ξgH2

∮
Si,j

cnη dS,

∂

∂t

∫
Vi,j

Huτ dV +

∮
Si,j

Huτuη dS = 0,

∂

∂t

∫
Vi,j

Hc dV +

∮
Si,j

Hcuη dS = 0,

which can be rewritten in a differential advective form as

∂H

∂t
+ uη

∂H

∂η
+H

∂uη
∂η

= 0,

∂uη
∂t

+ uη
∂uη
∂η

+ g
∂H

∂η
= −g∂B

∂η
− ξgH ∂c

∂η
,

∂uτ
∂t

+ uη
∂uτ
∂η

+H
∂uτ
∂η

= 0, (18)

∂c

∂t
+ uη

∂c

∂η
+H

∂c

∂η
= 0.

Introducing the total material derivative D
Dt defined as

D

Dt
=

∂

∂t
+ uη

∂

∂η
, (19)

the system (18) can also be reformulated in a non-conservative compact vector form as

DU

Dt
= S(U), (20)
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where

U =



H

uη

uτ

c


, S(U) =



−H∂uη
∂η

−g∂(H +B)

∂η
− ξgH ∂c

∂η

−H∂uτ
∂η

−H ∂c

∂η


. (21)

It is worth remarking that the projection techniques reduce the solution of two-dimensional system (15) in
the control volume Vi,j to the solution of a one-dimensional system (18) on each surface Si,j of this control
volume.

4.2 Reconstruction of the numerical fluxes

To approximate the numerical fluxes Fi±1/2,j and Gi,j±1/2 in (16) we consider the modified method of
characteristics applied to the projected system (18). In general, this method consists of imposing a regular
grid at the new time level and backtracking the flow trajectories to the previous time level, see for instance
[3]. The solutions at the old time level are obtained using interpolation from their known values on a regular
grid. Hence, for each gridpoint xi+1/2 we calculate the characteristic curves Xi+1/2(s) associated with the
particle trajectory, (20), by solving the initial-value problems

dXi+1/2(s)

ds
= uη

(
s,Xi+1/2(s), yj

)
, s ∈ [tn, tn+1],

(22)
Xi+1/2(tn+1) = xi+1/2.

with similar initial-value problems for the characteristic curves Yj+1/2(s) related to the gridpoint yj+1/2

dYj+1/2(s)

ds
= uη

(
s, xi, Yj+1/2(s)

)
, s ∈ [tn, tn+1],

(23)
Yj+1/2(tn+1) = yj+1/2,

As shown in Figure 7, Xi+1/2(s) and Yj+1/2(s) are the departure points at time s of a particle that will arrive
in the time tn+1 at the gridpoint xi+1/2 and yj+1/2 respectively. In our simulations we used a second-order
Runge-Kutta method for the solution of the initial-value problems (22) and (23). In general Xi+1/2(tn) and
Yj+1/2(tn) will not coincide with the spatial position of a gridpoint. Hence, once the characteristic curves
Xi+1/2(tn) and Yj+1/2(tn) are accurately calculated, the intermediate solutions Wn

i+1/2,j and Wn
i,j+1/2 of a

function W are reconstructed using

Wn
i+1/2,j = Ŵn

i+1/2,j , Wn
i,j+1/2 = Ŵn

i,j+1/2. (24)

Where Ŵn
i+1/2,j = W

(
tn, Xi+1/2(tn), yj

)
and Ŵn

i,j+1/2 = W
(
tn, xi, Yj+1/2(tn)

)
are the solutions at the

departure points obtained by interpolation from the gridpoints of the control volume where these departure
points belong, see Figure 7. Various methods of interpolation are possible, for example, a Lagrange-based
interpolation polynomial can be used. Assuming that the departure points Xi+1/2(tn) and Yj+1/2(tn) are
accurately approximated, the first stage (predictor step) of the solution of the multilayer shallow water
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Figure 7: Sketch of the method of characteristics, where a water particle at gridpoint xi+1/2 is backtraced
through the time step to Xi+1/2.

system (5) in the Eulerian Lagrangian method is defined as

Hn
i+1/2,j = Ĥn

i+1/2,j −
∆t

∆x
Ĥn
i+1/2,j

(
(uη)

n
i+1,j − (uη)

n
i,j

)
,

(uη)
n
i+1/2,j = (ûη)

n
i+1/2,j − g

∆t

∆x

(
(Hn +B)i+1,j − (Hn +B)i,j + ξ̂ni+1/2,jĤ

n
i+1/2,j

(
cni+1,j − cni,j

))
,

(25)

(uτ )ni+1/2,j = (ûτ )ni+1/2,j −
∆t

∆x
Ĥn
i+1/2,j

(
(uτ )ni+1,j − (uτ )ni,j

)
,

cni+1/2,j = ĉni+1/2,j −
∆t

∆x
ĉni+1/2,j

(
(uη)

n
i+1,j − (uη)

n
i,j

)
,

where
Ĥn
i+1/2,j = H

(
tn, Xi+1/2(tn), yj

)
, (ûη)

n
i+1/2,j = uη

(
tn, Xi+1/2(tn), yj

)
,

(ûτ )ni+1/2,j = uτ
(
tn, Xi+1/2(tn), yj

)
, ĉni+1/2,j = c

(
tn, Xi+1/2(tn), yj

)
.

The intermediate states in the y-direction Hn
i,j+1/2, (uα,η)

n
i,j+1/2 and (uα,τ )ni,j+1/2 are calculated in the same

way. When the projected states calculations are complete, the states Wn
i±1/2,j and Wn

i,j±1/2 are determined

by using vα = (uα,τ , uα,η) · η and uα = (uα,τ , uα,η) · τ .

Using the concept of C-property the discretization of the source terms Qi,j is carried so that the
discretized source terms are well balanced with the discretized flux gradients, for further explanation see
[3]. The source terms are thus reconstructed, such that the condition is preserved after discretization. For
one-dimensional shallow water equations, the terms are discretized as follows(

gH
∂B

∂x

)n
i,j

= g
Hn
i+1/2,j +Hn

i−1/2,j

2

Bn
i+1,j −Bn

i−1,j
2∆x

,

(26)(
gH

∂B

∂y

)n
i,j

= g
Hn
i,j+1/2 +Hn

i,j−1/2

2

Bn
i,j+1 −Bn

i,j−1
2∆y

,

where the averaged solutions are defined by

Hn
i+1/2,j =

Hn
i+1,j +Hn

i−1,j
2

, Hn
i,j+1/2 =

Hn
i,j+1 +Hn

i,j−1
2

.

By projecting the original shallow water model into the local system and using dimension-by-dimension
discretization, the source terms (26) can be discretized as shown.
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Table 1: Sediment parameters reported in [35, 39, 27] for some bed types used in our simulations for the
erosion and deposition formulae.

Bed type d [mm] p ϕ ωs [m/s] ρs [kg/m3]

Sand 1 0.0625 0.5 0.015 0.00014 1650

Sand 2 0.25 0.35 0.015 0.001 1600

Sand 3 1 0.25 0.015 0.002 1520

Sediment 1 0.5 0.42 0.00015 0.2 2630

Sediment 2 1.61 0.42 0.00015 0.2 2630

Sediment 3 2 0.42 0.00015 0.2 2630

Pearls 6.1 0.4 0.000015 0.0001 1048

5 Numerical results and examples

Several test examples for shallow water flows over multilayer movable beds are presented in this section
to ascertain the accuracy and adaptability of the proposed techniques. We also compare numerical results
obtained using our approach to experimental data for two examples. Dam-break flow problems are presented
to illustrate the performance of the proposed numerical solver combined with the discretized bed in resolving
non-homogeneous erodible sediment beds. We present computational results for both single-layer and
three-layer beds using the sediment characteristics listed in Table 1. These sediment parameters have been
recommended in many experimental studies on sediment transport applications, see for instance [35, 39, 27].
In our simulations, ρw = 1000 kg/m3, g = 9.81 m/s2 and ν = 1.2× 10−6 m2/s. In addition, because of
the considered splitting procedure (14)-(15), a consistent Courant number of Cr = 0.8 is used
to adjust the timestep ∆t according to the stability condition

∆t = Cr
min (∆x,∆y)

max
k=1,...,5

(|λnk | , |µnk |)
, (27)

where λk and µk (k = 1, . . . , 5) are the eigenvalues of the sediment transport system given in (3). It should
be pointed out that the stability condition (27) accounts for the rate of vertical changes and thus it also
ensures that the bed-load never travels more than one control volume as long as the vertical discretization
step ∆z ≤ min (∆x,∆y).

5.1 Rectangular dam-break flows over erodible beds

In this class of flow problems, we consider a dam-break problem in a squared channel of length 20 m with
a three-layer bed initially assumed to be flat. At time t = 0, the flow is assumed to be at rest and

H(0, x, y) =


2 m, if x ≤ 0,

0.2 m, if x > 0,

c(0, x, y) = 0.0001, u(0, x, y) = v(0, x, y) = 0.

The depth of the bed is 0.3 m with three layers initially formed by

B(0, x, y, z) =


Sand 1, if − 0.15 m ≤ z < 0 m,

Sand 2, if − 0.3 m ≤ z < −0.15 m,

Sand 3, if − 1.0 m ≤ z < −0.3 m.
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Figure 8: Water height (left) and bed profile (right) obtained for the test example of rectangular dam-break
over a three-layer bed at time t = 2 s using different meshes.

The sediment properties of Sand 1, Sand 2 and Sand 3 are listed in Table 1. This example is considered
to perform mesh convergence in the proposed multilayer model using different numbers of control volumes
in the spatial discretization. Figure 8 depicts the computational results for the water height and the bed-
load obtained at time t = 2 s using ∆z = 0.1 m and different values of (∆x,∆y). It is clear from
these results that refining the horizontal mesh results in a convergence for both water heights
and bed profiles obtained using the FVC method. In order to quantify the errors in these results,
we summarize in Table 2 the errors in the bed-load, errors in the minimum values of the bed profile,
and the computational times for different mesh discretizations of (∆x,∆y,∆z). Here, a reference solution
computed using a fine discretization with ∆x = 0.025 m, ∆y = 0.025 m and ∆z = 0.001 m is used as an
analytical solution. The L1-norm is used to compute the errors, and results are present at the final time
t = 2 s. It is clear from the results presented in Table 2 that increasing the number of control volumes
in the horizontal spatial discretization yields an increase in the accuracy and also in the computational
cost of the FVC method. Using the coarse discretization (∆x = ∆y = 0.8 m,∆z = 0.2 m), the computed
errors for the water height and the bed profile are more pronounced than for the other discretizations.
It should also be noted that, when compared to the lateral discretization, the vertical discretization has
small effects on both the accuracy and the efficiency of the proposed model. For instance, for a simulation
using (∆x = ∆y = 0.4 m,∆z = 0.1 m) the computational time and the errors in the bed profile and the
minimum values of the bed profile are 69.47 s, 6.44 % and 7.19 %, respectively. By contrast, a discretization
of (∆x = ∆y = 0.1 m,∆z = 0.025 m) reduces the errors in the bed profile and the minimum values of
the bed profile respectively to 1.65 % and 0.10 %, which is a substantial improvement in accuracy. For
this later simulation with (∆x = ∆y = 0.1 m,∆z = 0.025 m) the computational times increases to 8384 s.
It is evident that for this test example, a mesh convergence is achieved in our FVC method for both
lateral and vertical discretizations. For the considered flow and sediment conditions, a balance between
accuracy and efficiency in the FVC method favored the vertical discretization using ∆z = 0.025 m. It
should also be pointed out that in this study the speed of bed evolution is about an order
of magnitude slower than that of the water flow, thus the bed has a different vertical and
horizontal discretizations.

5.2 Circular dam-break flows over erodible beds

Next, we consider test examples for circular dam-break flows over erodible beds formed of single-layer and
three-layer sediments. The circular dam-break problem is solved in a squared domain [−10, 10]× [−10, 10]
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Table 2: CPU times, errors in the bed-load, and errors in the minimum values of the bed profile using
different spatial and bed discretization steps (∆x, ∆y) and ∆z for the test example of rectangular dam-
break over three-layer bed.

Lateral discretization

∆x = ∆y =
0.8 m

∆x = ∆y =
0.4 m

∆x = ∆y =
0.2 m

∆x = ∆y =
0.1 m

∆x = ∆y =
0.05 m

V
er

ti
ca

l
d

is
cr

et
iz

at
io

n

∆z = 0.2 m

9.268 s 69.09 s 656.6 s 8381 s 21720 s

7.68 % 6.84 % 7.17 % 7.58 % 7.63 %

5.15 % 7.13 % 6.92 % 6.65 % 6.28 %

∆z = 0.1 m

8.539 s 69.47 s 656.5 s 8387 s 21650 s

7.17 % 6.44 % 6.30 % 6.59 % 6.98 %

5.32 % 7.19 % 6.98 % 6.69 % 6.38 %

∆z = 0.05 m

8.540 s 69.16 s 656.7 s 8388 s 25260 s

2.36 % 1.58 % 1.50 % 1.99 % 2.56 %

1.83 % 3.59 % 3.25 % 3.06 % 2.84 %

∆z = 0.025 m

8.530 s 69.10 s 657.3 s 8384 s 24180 s

1.27 % 2.31 % 2.20 % 1.65 % 1.19 %

0.79 % 0.38 % 0.21 % 0.10 % 0.29 %

∆z = 0.0125 m

10.84 s 74.03 s 664.7 s 8413 s 23110 s

4.07 % 2.61 % 3.48 % 1.98 % 0.92 %

2.50 % 1.08 % 0.54 % 0.26 % 0.08 %

with a flat bed and subject to the following initial conditions

H(0, x, y) = 1 + 2
(

1− tanh
(

10
(√

0.4x2 + 0.4y2 − 1
)))

, u(0, x, y) = v(0, x, y) = 0. (28)

A similar problem has been considered in [19] for the standard circular dam-break problem over a fixed bed.
Hence, as a first run for this class of problems, we solve the same example on fixed bed and compare the
results obtained using the FVC method to other well-established finite volume methods. For comparison
reason, we consider the first-order Riemann-based Roe solver and the Rusanov method. In
Figure 9, we present the radial cross-sections of the water height at y = 0 using the considered methods at
time t = 2 s on two meshes with 50×50 and 100×100 cells. For comparison we also include in this figure a
reference solution obtained on fine mesh with 500× 500 cells. As expected, the numerical diffusion is
very pronounced in the solutions computed using the Rusanov scheme. This excessive numerical
dissipation has been reduced in the water heights using the Roe method, but the results obtained using the
FVC method remain the best. In terms of computational cost, the FVC method is about 86 times faster
than the Roe scheme for the same simulation. For this test example, the FVC method accurately solves
the front propagation without generating nonphysical oscillations or excessive numerical dissipation in the
computed results.

Our next concern with this test example is to simulate circular dam-break flows over erodible beds. To
this end, we run the same simulations as in the previous test example but over a single-layer bed of depth
0.25 m and formed of Sand 2, the sediment properties of which are given in Table 1. The initial conditions
are the same as (28) and the sediment concentration is set to c(0, x, y) = 0.01. Figure 10 depicts the results
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Figure 9: Comparison results for radial cross-sections of the water height obtained using different finite
volume methods for the test example of circular dam-break over a fixed single-layer bed at time t = 2 s
using ∆x = ∆y = 0.4 (left) and ∆x = ∆y = 0.2 (right).

obtained for the water height, bed-load, and sediment concentration obtained on a mesh with 100× 100 at
three different times. Here, only radial cross-sections at y = 0 of the sediment concentration are displayed
in Figure 10. It is clear that allowing for a movable bed the circular dam-break flows result in a radial
erosion of the bed. From the presented results it is also clear that the water flows away from the central
region, as the rarefaction wave propagates outwards. Note that the FVC method has accurately resolved
this dam-break flow and it fully preserves the radial symmetry in all flow and sediment variables.

To emphasis the effects of multilayer bed on this dam-break problem, we perform the same simulations
on a bed 30 cm deep and comprised of three layers as

B(0, x, y, z) =


Sand 1, if − 0.05 m ≤ z < 0 m,

Sand 2, if − 0.1 m ≤ z < −0.05 m,

Sand 3, if z < −0.1 m,

and the initial sediment concentrations are c(0, x, y) = 0.01, c1(0, x, y) = 0.01. The sediment parameters
for Sand 1, Sand 2 and Sand 3 are given in Table 1. Notice that, since the highly erodible Sand 1 is used in
this test example, one expects to see more net erosion in the bed as well as a different concentration profile
compared to the previous test example of single-layer bed. The central bed peak should also be retained in
this case, along with a bed that reflects the differences in erosion profiles of the multiple sedimentary sands.
In Figure 11, we present the water height, bed-load and radial cross-section of the sediment concentrations
obtained a mesh with 100 × 100 gridpoints, using vertical discretization ∆z = 0.005m at three different
instants. Again, a perfect symmetry is obtained using our FVC method for this dam-break problem over
a three-layer sedimentary bed. Compared to the results obtained for the single-layer bed in Figure 10, the
results for the three-layer bed in Figure 11 show roughly the same quantity of scour, though the crucial
difference lies in the erosion rate for each simulation, compare the concentration profiles in Figure 10 and
Figure 11. For instance, it is noticeable that Sand 1, with its higher erosion rate, causes a greater net
scour, whereas between the two simulations, Sand 2 has a roughly constant sediment concentration rate
from t = 0.5 s onwards. This implies that only the initial wave speed was large enough to cause the scour
of sand 2 in the bed. The computed results for this example of circular dam-break flows over erodible
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Figure 10: Results obtained for the free-surface (first column), bed-load (second column) and cross-section
of the sediment concentration at y = 0 m (third column) for the circular dam-break over a single-layer
sediment erodible bed at t = 1 s (first row) and t = 2 s (second row).

beds have demonstrated the ability of the FVC method to handle multiple sediments in the beds. Here,
the proposed model combined with the FVC method is able to accurately resolve the erosion effects in
multilayer sedimentary beds, as well as to capture the multiple sediment concentrations which are vital to
the understanding of sediment transport presented by this class of dam-break problems.

5.3 Partial dam-break flows over erodible beds

The aim of this class of test examples is to investigate the effects of multiple sediment layers on partial
dam-break flows over movable beds. Here, we solve the system (5) in a 200 m long and 200 m wide flat
reservoir with two different constant water levels separated by a dam. At t = 0 part of the dam breaks
instantaneously. The dam is 4 m thick and the breach is assumed to be 75 m wide. In the first run for this
class of test problems we assume the bed is flat and initially, B(0, x, y) = 0,

H(0, x, y) =


5 m, if x ≤ 100 m,

0.5 m, if x > 100 m,

c(0, x, y) = c1(0, x, y) = 0.0001, u(0, x, y) = v(0, x, y) = 0. (29)

In all our simulations for this dam-break problem, the computational domain is discretized into 100× 100
control volumes with a uniform discretization of ∆x = ∆y = 2 m. Note that this test example has
been widely used in the literature for the assessment of numerical methods for dam-break problems on both
fixed beds and single-layer erodible beds, see for example [12, 40, 37, 6, 2]. At time t = 0 the dam breaks
asymmetrically and the water propagates downstream developing a shock wave while spreading laterally.

We first solve this test problem over a single-layer bed 6 m deep formed of Sand 2, see Table 1 for the
sediment parameters associated with this bed. The initial conditions are given in (29) and the sediment
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Figure 11: Same as Figure 10 but for the circular dam-break over a three-layer sediment erodible bed.

Figure 12: Results obtained for the free-surface (first column), bed-load (second column) and cross-section
of the sediment concentration at y = 0 m (third column) for the partial dam-break over a single-layer
sediment erodible bed at t = 3.6 s (first row) and t = 7.2 s (second row).
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Figure 13: Same as Figure 12 but for the partial dam-break over a three-layer sediment erodible bed.

concentration is initially set to c(0, x, y) = 0.0001. The water height, bed-load and cross-sections of the
sediment concentration at y = 100 m are presented in Figure 12 at three different times. Under the consid-
ered flow and sediment conditions, we can observe in these results that the right moving flow propagates to
the downstream whereas, the rarefaction wave propagates to the upstream generating a deep erosion at the
dam breach. It is clear that the water free-surface obtained for the dam-break on the erodible bed shows
different features to those obtained for dam-break on the fixed bed. Notice that the erosion is more pro-
nounced at the breach because of the large velocity field in this area. Our results are similar to other results
presented in [2]. As can be observed from these results, the dam-break flow over the movable bed can build
up a heavily concentrated wavefront which is bounded by the wave forefront and a contact discontinuity of
the sediment transport, and that it depresses in the long run. The bed mobility can strongly modify the
water free-surface profiles and may have considerable implications for flood predictions. As in the previous
simulations, an hydraulic jump in the water free-surface is initially formed around the dam site. It depresses
progressively as it propagates upstream and eventually disappears. It is evident that the movable bed can
be significantly scoured and the dimensions of the scour hole are of a similar order of magnitude to those of
the water flow itself. Therefore the rate of bed deformation is not negligible compared to that of the flow
change, characterizing the need for coupled modelling of the strongly interacting flow-sediment-morphology
system, as considered in the present work. From the presented results, we can conclude that the proposed
FVC method performs very well for this dam-break problem since it does not diffuse the moving water
fronts and no spurious oscillations have been detected when the dam breaks over the sedimentary bed.

Our next concern is to demonstrate the capability of the proposed model in dealing with a multilayer
bed on this partial dam-break problem. Here, we consider the same simulations on a 2 m deep bed formed
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Table 3: Comparison results for the total water discharge and the disturbed area obtained at four different
instants for the partial dam-break over fixed, single-layer and three-layer beds.

t = 1.8 s t = 3.6 s t = 5.4 s t = 7.2 s

Fixed bed
Total discharge [m3] 1788 3204 5012 6493

Disturbed area [m2] 1316 2322 3380 4169

Single-layer bed

Total discharge [m3] 1877 3589 5884 8488

Total suspended sediment [m3] 260 1435 3570 6312

Disturbed area [m2] 2877 5367 8399 11848

Three-layer bed

Total discharge [m3] 2005 3463 5058 6681

Total suspended sediment [m3] 413 1150 2203 3471

Percentage of Sand 1 [%] 66.8 61.3 58.2 56.3

Percentage of Sand 2 [%] 31.7 26.6 22.5 20.4

Percentage of Sand 3 [%] 1.6 12.1 19.3 23.2

Disturbed area [m2] 3126 5910 9170 12840

with three layers as

B(0, x, y, z) =


Sand 1, if − 0.25 m ≤ z < 0 m,

Sand 2, if − 0.5 m ≤ z < −0.25 m,

Sand 3, if − 2.0 m ≤ z < −0.5 m,

and the initial sediment concentrations are c(0, x, y) = 0.001 and c1(0, x, y) = 0.001. The sediment pa-
rameters for Sand 1, Sand 2 and Sand 3 are given in Table 1. A uniform vertical discretization with
∆z = 0.025 m is used in our simulations. The three-layer sediment model provides good results with a
clear difference in bathymetry as shown in Figure 13 compared to Figure 12. This ability to handle multiple
sediments allows analysis of erosion over a greater area highlighting the more easily eroded Sand 1 whereas,
capturing the limitation on net erosion caused by the base layer formed by the less easily eroded Sand 3.
Note that as Sand 2 is an average of Sand 1 and Sand 3, it is possible to compare the results for single
and three-layer beds and note the differences. It is also easy to see in Figure 12 the excess erosion caused
by a single-layer sediment assumptions. It should be noted that over-erosion is a common problem for this
type of simulations. Again, the FVC method performs well for this test example and exhibits the expected
flow structures in the computational domain without requiring finite volume Riemann solvers nor very fine
meshes.

The differences between the three simulation types are further inspected in Table 3. In this table,
we present (i) the total discharge measured as the quantity of water evacuated from the upstream to the
downstream of the dam, (ii) the disturbed area which is the area where the water height varies from the
initial state i.e., the area that has been disturbed by the dam break, and (iii) the total suspended sediment
which is the volume taken up by the suspended sediment in the whole domain. These results are presented
in Table 3 at four different instants. It is interesting to note that the erodible beds have a greater discharge
than the fixed bed although they lose momentum by picking up sediment. This is mainly due to the evolving
bathymetry both in front and behind the dam location as more water is accelerated through the dam. It is
also interesting to note that the perturbation caused by the dam-break spreads over a far larger area than
for the situation with fixed bed. This can also be attributed to the characteristics of the sediment used
in the bed and to the fast water wavefront passing through the dam. Table 3 also shows the evolution of
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Figure 14: Configuration used for the test example of dam-break flows over mobile beds. Dimensions are
given in meters and gauges used for comparison to experiments are also allocated.

sediment proportions for the three-layer erodible bed and it is interesting to see how they change over time
as the various layers are eroded. Under the considered sediment conditions, the erosion of top layer in the
bed decreases and while it increases for the bottom layer as time evolves. For instance at time t = 1.8 s the
composition of the total eroded sediments contains 66.8% of Sand 1, 31.7% of Sand 2 and 1.6% of Sand 3
and at time t = 7.2 s these proportions become 56.3%, 20.4% of Sand 2 and 23.2% of Sand 3, respectively.
It is clear that the proposed techniques are able to model multiple sediments in the bed very well.

5.4 Dam-break flows over mobile beds

Our final test example consists of a dam-break over mobile bed designed for experimental study conducted
at the Université Catholique de Louvain in Belgium, and results of which are reported in [29]. Here, we
solve the problem for a single-layer bed formed of Sediment 2 with its characteristics given in Table 1. A
variety of measurements were taken for the bed and reported in [29] including the final distributions of the
bed-load in two dimensions and also the time evolution of the water heights at three gauges in the flow
domain. The configuration of the domain and its geometry along with the location of gauges are displayed
in Figure 14. Initially the bed is flat and

H(0, x, y) =

H1, if x ≤ 0,

H2, if x > 0.

As in [29], two situations are considered in this section namely, a quasi-dry case (H1 = 0.47 m and
H2 = 0.085 m) and a wet case (H1 = 0.51 m and H2 = 0.15 m). A mesh with 200× 72 elements has been
used in our simulations for both test cases.

The computed bed distributions for the quasi-dry case and the wet case at time t = 20 s are depicted in
Figure 15. As can be seen, smooth results are obtained for the wet case compared to the quasi-dry case. A
deeper erosion is detected for this later case and a wider area in the computational domain is affected by the
erosion than in the wet case. It is expected to observe large erosion in this class of dam-break problems for
high value of the ratio H1/H2. Obviously, the computed results verify the stability and the shock capturing
properties of the FVC method. To further examine the accuracy of the numerical model we present in
Figure 16 time evolution of the water free-surface at the gauges UG1 and UG6 for the quasi-dry conditions.
Time evolution of the water free-surface at the gauges UG1 and UG5 for the wet conditions is shown in
Figure 17. Here, the gauges UG1, UG6 and UG5 are localized at (0.640,−0.500), (1.940,−0.330) and
(2.340,−0.990), respectively. The agreement between the simulations and measurements in these figures
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Figure 15: Bed profile at time t = 20 s for the dam-break over mobile bed using quasi-dry conditions (left
plot) and wet conditions (right plot).

Figure 16: Time evolution of the water free-surface at the gauge UG1 (left plot) and the gauge UG6 (right
plot) for the dam-break over mobile bed using quasi-dry conditions.

is fairly good. The free-surface amplitude and the erosion magnitude are well predicted by the numerical
model. As expected, a hydraulic jump is formed near the initial dam location and it propagates upstream.
The location of the hydraulic jump is accurately predicted by the numerical model for both wet and quasi-
dry situations. However, for the quasi-dry case the numerical model slightly overpredicts the scour caused
by the dam-break at the gauge UG6, compare the right plot in Figure 17. To overcome the zero speeds
in the FVC method, we perturb these speeds by 10−7 far from zero. Overall, the FVC method
appears to perform very well for this example and it captures the correct predictions for both
water free-surface and sediment transport. It is worth remarking that as stated in [30], numerical
models appear to either have good flow or scour predictions but the presented results are encouraging as
we have obtained reasonable results for the bed-load and very good flow predictions.

We now turn our attention to simulations using a bed with mixed sediments. Note that although
not explicitly in the mathematical formulation, armoring and hiding are accounted for in this
example by the discretization of the bed and the multimode handling of sediments. First we
consider a bed with mixed sediments to check the effects of differing sediments on the flow and bed-load
features. Recall that the bed composition used in the laboratory experiment consisted of a well-graded
sediment of average diameter 1.61 × 10−3 m (Sediment 2 in Table 1). In this simulation, we add two
variants to the sediment mixture by varying the sediment diameter d while keeping all other variables the
same. We create a sand-bed using one third of Sediment 1 with d = 0.5× 10−3 m, one third of Sediment 2
with d = 2× 10−3 m, and one third of Sediment 3 with d = 1.61× 10−3 m i.e.,

B(0, x, y, z) =
1

3
Sediment 1 +

1

3
Sediment 2 +

1

3
Sediment 3, if 0 m ≤ z < 0.085 m.

The remaining parameters for these sediments are the same as listed in Table 1. We run the simulation
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Figure 17: Time evolution of the water free-surface at the gauge UG1 (left plot) and the gauge UG5 (right
plot) for the dam-break over mobile bed using wet conditions.

Figure 18: Results obtained for the free-surface (first row), bed-load (second row) and cross-section of the
sediment concentration at y = 0 m (third row) for the dam-break over a three-layer sediment mobile bed
at t = 5 s (first column), t = 10 s (second column) and t = 20 s (third column).

with the same initial conditions as in the previous case with the bed formed with a single sediment. The
obtained results for the water free-surface, the bed-load and the cross-section of the sediment concentration
at y = 0 m are presented in Figure 18 at t = 5 s, 10 s and 20 s. These results are very interesting as
more net erosion is obtained due to the small diameter of the sediment fraction than in the simulation
using homogeneous beds as in the previous situation. Compared to simulations using the single-layer
sediment, more net deposition has also been predicted in this test example. It is also interesting to note
that the suspended sediment fractions are very dependent on the sediment mixtures. As the sediment is
well distributed and the erosion rates are comparable, we do not observe ripple formation or any other effect
of armoring, as the experimental results would demonstrate. The results obtained for this example show
that using a detailed description of sediments, it is possible to accurately represent the fractions by the size
of sediments constituting the bed. The proposed models perform very well for this example and capture
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Figure 19: Same as Figure 18 but for the dam-break over a three-layer sediment mobile bed.

the correct flow and sediments structures without requiring complicated techniques or three-dimensional
representations for the free-surface flows over heterogeneous beds.

Next, we solve the same problem but using a three-layer bed formed with the sediments as in the
previous case. The previous two runs for this test example have shown how a small change in the sediment
composition of the bed can cause a large difference in the final bed profile. The objective of this run is
to demonstrate the effects of armoring and the creation of ripples, by modifying the bed so that erosion
and deposition are no longer uniform and bed variation takes place. This simulation is of interest because
it not only has high levels of erosion but also an appreciable level of deposition which makes it difficult
in simulations, especially with experimental data. Using the same sediments as in the last simulation, we
arrange the initial bed into three layers as

B(0, x, y, z) =


Sediment 1, if 0.065 m ≤ z < 0.085 m,

Sediment 2, if 0.035 m ≤ z < 0.065 m,

Sediment 3, if 0.0 m ≤ z < 0.035 m.

The associated parameters for these sediments are summarized in Table 1. The obtained results for water
free-surface, bed-load and sediment concentration at three different instants are illustrated in Figure 19. As
expected, due to the nonuniform rates of erosion and deposition in the three sediment types and the finely
tuned parameters of this simulation, armoring occurs. It is also interesting to note that the total rate of
erosion in this case is higher than in the previous simulations. This is because of the high initial rate of
erosion in Sediment 1 and the increased near-bed velocity in the flow system from the changing morphology.
This simulation shows how, unlike other models tested, the considered model will only induce armoring and
ripples with altered bed conditions. These results demonstrate the ability of the FVC method to capture
these morphodynamics without generating nonphysical oscillations.
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6 Concluding remarks

A class of fast and accurate numerical models has been proposed for the modelling and simulation of two-
dimensional shallow water flows over multi-sediment erodible beds. An hyperbolic system of five equations
for balance laws with source terms is presented for coupled hydrodynamics, morphodynamics, and sus-
pended sediments. To close the system, a set of empirical formulae for entrainment and deposition terms is
considered, along with flux terms for the mass exchange between the multiple layers in sedimentary beds.
Although we have used averaged variables in the equations of suspended sediments for the proposed model,
each sediment is still handled separately for erosion and deposition. For the numerical solution we con-
sider the finite volume characteristics method, which combines the advantages of the finite volume methods
and the method of characteristics. The method consists of a predictor-corrector procedure for which the
numerical fluxes are reconstructed in the predictor stage, using the method of characteristics applied to
the projected system in the local normal and tangential coordinates. The presented solver satisfies the
conservation property and achieves excellent numerical balance between the gradient fluxes and the source
terms for the coupled system. No Riemann problem solvers are needed in the proposed method to compute
the numerical fluxes. We also consider a consistent vertical discretization of the finite volume type for the
multilayer bed to allow for different sediment properties forming the bed. To examine the performance of
the proposed models we simulate a wide variety of two-dimensional shallow water flows over multi-sediment
movable beds. We have compared numerical results to experimental data and we also performed simulation
on single-layer and multilayer sedimentary beds. The results obtained have exhibited accurate predictions
of both the hydrodynamics and morphodynamics, with correct conservation properties and stable repre-
sentations of the water free-surface response to the multilayer erodible beds. Future work will focus on
the implementation of these techniques on unstructured meshes accounting for the effects of vegetation,
sediment grading, and other morphodynamics features by changing the sediment cell characteristics in the
sedimentary bed.
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