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Abstract

We present an efficient and conservative Eulerian-Lagrangian method for solving two-dimensional
hydrostatic multilayer shallow water flows with mass exchange between the vertical layers. The method
consists of a projection finite volume method for the Eulerian stage and a method of characteristics
to approximate the numerical fluxes for the Lagrangian stage. The proposed method is simple to
implement, satisfies the conservation property and it can be used for multilayer shallow water equations
on non-flat bathymetry including eddy viscosity and Coriolis forces. It offers a novel method of
calculating stratified vertical velocities without the use of the Navier-Stokes equations. Numerical
results are presented for several examples and the obtained results for a free-surface flow problem are
in close agreement with the analytical solutions. We also test the performance of the proposed method
for a test example of wind-driven flows with recirculation.

Keywords. Multilayer shallow water equations; incompressible hydrostatic flows; Eulerian-Lagrangian
scheme; finite volume solver; projection method.

1 Introduction

Incompressible Navier-Stokes equations have been widely used in the literature to simulate water flows
including eddy diffusion and Coriolis forces, see for example [13, 31, 26]. Further references on a general
overview of shallow water wave modelling include [19, 21, 18, 20] among others. However, for free-surface
flows these models frequently become complicated due to the presence of moving boundaries within the
flow domain and also due to the inclusion of hydrostatic pressure. Under certain assumptions these models
can be replaced by the well-established shallow water equations. Indeed, the shallow water equations can
be derived by depth-averaging the three-dimensional Navier-Stokes equations assuming that the pressure
is hydrostatic and the vertical scale is far smaller than the horizontal scale, see [1] among others. In
their depth-averaged form, shallow water equations have been used to model many engineering problems
in hydraulics and free-surface flows including tides in coastal regions, rivers, reservoir and open channel
flows among others, see for instance [23, 12, 14]. However, since these models are depth averaged, the
vertical distribution of velocity field is not resolved and the bed friction is expressed only in terms of
the mean velocity rather than the velocity near the bottom. Hence, the three-dimensional modeling
of the hydrodynamic equations is needed for a better representation of the flow features, especially
for recirculation flows and for solution of near-field problems involving sediment transport and thermal
discharges in rivers and coastal waters.

Since standard shallow water models have been well developed, attention has been shifted to the
shortcomings of this type of modeling namely, the use of single velocity profile for the entire depth of
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the fluid. This has been overcame with the recent introduction of multilayer shallow water equations for
geophysical flows. Two-layer shallow water equations have been used to model immiscible fluids, see for
example [2, 11, 17]. Multilayer shallow water equations with exchange terms have also been investigated
in [3, 5, 15, 4] among others. These multilayer models can be derived by using a semi-discretization in the
vertical direction of P0 finite element types for the water velocity in the three-dimensional Navier-Stokes
equations. The attractive points of this class of multilayer models include the fact that they avoid the
computationally demanding methods required to solve the three-dimensional Navier-Stokes equations
and at the same time providing stratified flow velocities as the pressure distribution is hydrostatic. Here,
the flow problem can be approximated as a layered system made of multiple shallow fluids of distinct
heights but with exchange terms between these layers. These fluids can also differ in terms of density,
compressibility, viscosity and potential for mixing among others. During the last decades, multilayer
shallow water models have attracted more attention and have been used for numerical simulation of a
variety of hydrodynamical flows such as estuaries, bays and other nearshore regions where water flows
interact with the bed geometry and wind shear stresses. However, most of these models consider only
the one-dimensional version of the multilayer shallow water equations. To the best of our knowledge,
simulation of two-dimensional multilayer shallow water equations with exchange terms is presented for
the first time.

Developing highly accurate numerical solvers for multilayer shallow water equations presents a chal-
lenge due to the nonlinear aspect of these equations and their coupling through the source terms. More
precisely, the difficulty in these multilayer models lies from the coupling terms involving some derivatives
of the unknown physical variables that make the system nonconservative and eventually non-hyperbolic,
see for example [2, 5]. In the case of one-dimensional multilayer models, a class of kinetic schemes have
been used in [3, 5] among others. However, the numerical dissipation and the semi-implicit treatment of
source terms may limit the performance of these methods. The lattice Boltzmann method has also been
applied to the multilayer shallow water equations in [30] but the complexity of this method is significant.
A class of Eulerian-Lagrangian methods have also used in [4] to solve the one-dimensional multilayer
shallow water equations. This method avoids the solution of Riemann problems and belongs to the finite
volume predictor-corrector type methods. The predictor stage uses the method of characteristics to re-
construct the numerical fluxes whereas the corrector stage recovers the conservation equations in the finite
volume framework. The proposed method is simple, fast, conservative, well-balanced, non-oscillatory and
suitable for multilayer shallow water equations for which Riemann solvers are no available. Numerical
comparisons reported in [4] for one-dimensional multilayer shallow water equations demonstrate that this
method is robust and more accurate than the kinetic schemes. In the current study, our main objective
is to develop a class of numerical methods that are simple, easy to implement, and accurately solves the
multilayer shallow water equations in two space dimensions without relying on Riemann solvers. This
objective is reached by a projection of the multilayer shallow water system in the local coordinates and
a second-order splitting operator for the time integration. To solve the projected system we extend the
Eulerian-Lagrangian method studied in [4] to two-dimensional problems. Several numerical examples are
presented to verify the performance of the proposed Eulerian-Lagrangian method to accurately solve the
two-dimensional multilayer shallow water equations. We demonstrate the model capability of calculating
lateral and vertical distributions of velocities for the multilayer shallow water flows over both flat and
no-flat beds. The method is also verified against results obtained using the Navier-Stokes equations
for a dam-break problem. Numerical results are also presented for a two-dimensional test problem of
wind-driven circulation flows.

The outline of the paper is as follows. In section 2, we recall the two-dimensional multilayer shallow
water equations. The Eulerian-Lagrangian method for the multilayer shallow water equations is described
in section 3. This includes the reconstruction of the numerical fluxes and the discretization of source
terms. Numerical results are presented in section 4. We examine the performance of the proposed method
for several free-surface flows and comparison to hydrostatic Navier-Stokes simulations is also presented.
Conclusions are summarized in section 5.
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Figure 2.1: Illustration of a two-dimensional multilayer shallow water system on a non-flat topography.

2 Two-dimensional multilayer shallow water equations

Multilayer shallow water equations have been derived from the three-dimensional hydrostatic incompress-
ible Navier-Stokes equations with unknown free-surface by considering the vertical P0-type discretization
of the horizontal velocity. This vertical discretization defines a series of layers in the flow domain and the
equations are vertically integrated on each layer separately, compare [6, 3, 5, 15] for more details on the
steps used to derive these models. Here, we consider the two-dimensional version of the model written
in a conservative form as

∂H

∂t
+

M∑
α=1

∂

∂x
(lαHuα) +

M∑
α=1

∂

∂y
(lαHvα) = 0,

∂

∂t
(lαHuα) +

∂

∂x

(
lαHu

2
α +

1

2
glαH

2

)
+

∂

∂y
(Huαvα) = −glαH

∂B

∂x
+ ωclαHvα + Fα, (2.1)

∂

∂t
(lαHvα) +

∂

∂x
(Huαvα) +

∂

∂y

(
lαHv

2
α +

1

2
glαH

2

)
= −glαH

∂B

∂y
− ωclαHuα +Gα,

where uα = (uα, vα)T is the local water velocity for the αth layer, B(x, y) the topography of the basin, g
the gravitational acceleration, ωc is the Coriolis parameter resulting from rotation of the earth, H(t, x, y)
denotes the water height of the whole flow system and lα denotes the relative size of the αth layer with

lα > 0,
M∑
α=1

lα = 1.

The water height hα(t, x, y) of the αth layer is defined as

hα = lαH, α = 1, 2, . . . ,M,

where M is the total number of layers in the flow domain, see Figure 2.1 for a simplified illustration of
a multilayer shallow water flow system. In (2.1), the source term Fα is the external force in x-direction
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acting on the αth layer and accounting for the friction and momentum exchange effects. Thus,

Fα = F (u)
α + F (ν)

α + F (b)
α + F (w)

α + F (µ)
α , α = 1, 2, . . . ,M, (2.2)

where the first term F (u)
α is related to the x-momentum exchange between the layers that are defined

through the vertical P0 discretization of the flow domain. The forcing term F (ν)
α is due to the horizontal

diffusion and the three last terms F (b)
α , F (w)

α and F (µ)
α are related to friction effects. Here, following the

techniques presented in [6] the advection term F (u)
α is given by

F (u)
α = uα+1/2Exα+1/2 − uα−1/2E

x
α−1/2, (2.3)

where the mass exchange terms Exα+1/2 are computed as

Exζ+1/2 =



0, if ζ = 0,

ζ∑
β=1

∂ (hβuβ)

∂x
− lβ

M∑
γ=1

∂ (hγuγ)

∂x

 , if ζ = 1, 2, . . . ,M − 1,

0, if ζ = M,

(2.4)

and the interface velocity uα+1/2 in (2.3) is computed by a simple upwind method using the sign of the
mass exchange term i.e.

uα+1/2 =

 uα, if Exα+1/2 ≥ 0,

uα+1, if Exα+1/2 < 0.
(2.5)

The vertical kinematic eddy viscosity term F (µ)
α takes into account the friction between neighbouring

layers and it is defined as

F (µ)
α =



2ν
u2 − u1

(l2 + l1)H
, if α = 1,

2ν
uα+1 − uα

(lα+1 + lα)H
− 2ν

uα − uα−1
(lα + lα−1)H

, if α = 2, 3, . . . ,M − 1,

−2ν
uM − uM−1

(lM + lM−1)H
, if α = M,

(2.6)

where ν is the eddy viscosity. Note that a generalized derivation of the viscous tensor in multilayer
shallow water equations has also been reported in [15]. Furthermore, the interface velocity in (2.5) has
been approximated as in [15] using the average between the two velocities uα+1 and uα. The external
friction terms in (2.2) are given by

F (b)
α =

 −
τxb
ρ
, if α = 1,

0, if α = 2, 3, . . . ,M,

F (w)
α =


0, if α = 1, 2, . . . ,M − 1,

τxw
ρ
, if α = M,

(2.7)

with ρ is the water density, τxb and τxw are respectively, the bed shear stress and the shear of the blowing
wind defined by the water velocity (u1, v1) and the wind velocity w = (wx, wy)

T as

τxb = ρCbu1

√
u21 + v21, τxw = ρCwwx

√
w2
x + w2

y, (2.8)

where Cb is the bed friction coefficient, which may be either constant or estimated using the Manning
equation as

Cb =
gn2b
H1/3

,
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where nb is the Manning roughness coefficient of the bed and the wind friction coefficient Cw is defined
as [27]

Cw =
σ2ρa
H

,

where σ is the wind stress coefficient and ρa is the air density. The horizontal diffusion terms F (ν)
α in

(2.2) are defined as

F (ν)
α = νH

∂

∂x

(
lαH

∂uα
∂x

)
+ νH

∂

∂y

(
lαH

∂uα
∂y

)
, α = 1, 2, . . . ,M, (2.9)

where νH is the horizontal viscosity coefficient.
Similarly, the source term Gα is the external force in y-direction acting on the layer α and accounting

for the friction and momentum exchange effects. Thus,

Gα = G(u)α + G(ν)α + G(b)α + G(w)α + G(µ)α , α = 1, 2, . . . ,M, (2.10)

where the first term G(u)α is related to the y-momentum exchanges between the layers, G(b)α , G(w)α and G(µ)α

are related to friction effects. Hence, the advection term G(u)α is given by

G(u)α = vα+1/2E
y
α+1/2 − vα−1/2E

y
α−1/2, (2.11)

where the mass exchange terms Eyα+1/2 can be computed as

Eyζ+1/2 =



0, if ζ = 0,

ζ∑
β=1

∂ (hβvβ)

∂y
− lβ

M∑
γ=1

∂ (hγvγ)

∂y

 , if ζ = 1, 2, . . . ,M − 1,

0, if ζ = M,

(2.12)

and the interface velocity vα+1/2 is computed by

vα+1/2 =

 vα, if Eyα+1/2 ≥ 0,

vα+1, if Eyα+1/2 < 0.
(2.13)

The vertical kinematic eddy viscosity term G(µ)α takes into account the friction between neighboring layers
and it is defined as

G(µ)α =



2ν
v2 − v1

(l2 + l1)H
, if α = 1,

2ν
vα+1 − vα

(lα+1 + lα)H
− 2ν

vα − vα−1
(lα + lα−1)H

, if α = 2, 3, . . . ,M − 1,

−2ν
vM − vM−1

(lM + lM−1)H
, if α = M.

(2.14)

The external friction terms are given by

G(b)α =

 −
τyb
ρ
, if α = 1,

0, if α = 2, 3, . . . ,M,

G(w)α =


0, if α = 1, 2, . . . ,M − 1,

τyw
ρ
, if α = M,

(2.15)
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with

τyb = ρCbv1

√
u21 + v21, τyw = ρCwwy

√
w2
x + w2

y. (2.16)

The horizontal diffusion term Fyν is defined as

F (ν)
α = νH

∂

∂x

(
lαH

∂vα
∂x

)
+ νH

∂

∂y

(
lαH

∂vα
∂y

)
, α = 1, 2, . . . ,M. (2.17)

Note that the bed friction forcing terms F (b)
α and G(b)α are acting only on the lower layer, whereas the

wind-driven forcing terms F (w)
α and G(w)α are acting only on the upper layer. It should also be stressed

that the internal friction terms F (µ)
α and G(µ)α model the friction between neighboring layers, see [3] for

further details. The equations (2.1) can also be displayed in compact vector form as

∂W

∂t
+
∂F(W)

∂x
+
∂G(W)

∂y
= Q(W) + R(W), (2.18)

where W is the vector of conserved variables, F and G the vectors of flux functions, Q and R are the
vector of source terms defined by

W =



H

l1Hu1

l2Hu2

...

lMHuM

l1Hv1

l2Hv2

...

lMHvM



, F(W) =



M∑
α=1

lαHuα

l1Hu
2
1 +

1

2
gl1H

2

l2Hu
2
2 +

1

2
gl2H

2

...

lMHu
2
M +

1

2
glMH

2

l1Hu1v1

l2Hu2v2

...

lMHuMvM



, G(W) =



M∑
α=1

lαHvα

l1Hu1v1

l2Hu2v2

...

lMHuMvM

l1Hv
2
1 +

1

2
gl1H

2

l2Hv
2
2 +

1

2
gl2H

2

...

lMHv
2
M +

1

2
glMH

2



,
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Q(W) =



0

−gl1H
∂B

∂x
+ ωcl1Hv1

−gl2H
∂B

∂x
+ ωcl2Hv2

...

−glMH
∂B

∂x
+ ωclMHvM

−gl1H
∂B

∂y
− ωcl1Hu1

−gl2H
∂B

∂y
− ωcl2Hu2

...

−glMH
∂B

∂y
− ωclMHuM



, R(W) =



0

F (u)
1 + F (b)

1 + F (w)
1 + F (µ)

1 + F (ν)
1

F (u)
2 + F (b)

2 + F (w)
2 + F (µ)

2 + F (ν)
2

...

F (u)
M + F (b)

M + F (w)
M + F (µ)

M + F (ν)
M

G(u)1 + G(b)1 + G(w)1 + G(µ)1 + G(ν)1

G(u)2 + G(b)2 + G(w)2 + G(µ)2 + G(ν)2

...

G(u)M + G(b)M + G(w)M + G(µ)M + G(ν)M



.

Notice that for a well posed problem the system (2.18) has to be solved in a time interval [0, T ], in
a two-dimensional space domain Ω with boundary Γ, and equipped with given boundary and initial
conditions.

3 The Eulerian-Lagrangian method

The time integration of the system (2.18) can be carried out using splitting methods, compare [25, 29] for
a first-order splitting method. In the present work we consider a second-order splitting method studied
in [32]. Thus, to integrate the equations (2.18) in time we divide the time interval into N sub-intervals
[tn, tn+1] with length ∆t = tn+1 − tn for n = 0, 1, . . . , N . We also use the notation Wn to denote the
value of a generic function W at time tn. The considered operator splitting method consists of three
stages given by:

Stage 1:

∂W∗

∂t
= R(W∗), t ∈ (tn, tn+1/2],

(3.1)
W∗(tn) = W(tn).

Stage 2:

∂W∗∗

∂t
+
∂F(W∗∗)

∂x
+
∂G(W∗∗)

∂y
= Q(W∗∗), t ∈ (tn, tn+1],

(3.2)
W∗∗(tn) = W∗(tn+1/2).

Stage 3:

∂W∗∗∗

∂t
= R(W∗∗∗), t ∈ (tn+1/2, tn+1],

(3.3)
W∗∗∗(tn+1/2) = W∗∗(tn+1).
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The time integration of the system is complete once a time stepping scheme is applied to the above three
stages. It is evident that the nonlinear terms and the vertical diffusion are dealt with in the first and third
stages whereas, only linear terms are accounted for in the second stage of the splitting. To avoid solution
of linear systems of algebraic equations associated with implicit time stepping, we consider only explicit
time integration methods for the stages (3.1)-(3.3). Here, we use the explicit third-order Runge-Kutta
method studied in [28]. Hence, the procedure to advance the solution of an ordinary differential equation
of the structure (3.1) from the time tn to the next time tn+1 can be carried out as

W(1) = Wn + ∆tR(Wn),

W(2) =
3

4
Wn +

1

4
W(1) +

1

4
∆tR(W(1)), (3.4)

Wn+1 =
1

3
Wn +

2

3
W(2) +

2

3
∆tR(W(2)),

where we have dropped the asterisk of the variables for ease of notation. It should be pointed out
that the Runge-Kutta method (3.4) has been widely used for time integration of hyperbolic systems
of conservation laws mainly because it can be interpreted as a convex combination of first-order Euler
steps which exhibits strong stability properties. As a consequence, the Runge-Kutta method (3.4) is
TVD, third-order accurate in time, and stable under the usual Courant-Friedrichs-Lewy (CFL) condition
involving eigenvalues of the system under study. However, the calculation of the eigenvalues for the
system (2.18) is not trivial and in many flow cases these eigenvalues become complex. Under these flow
conditions, the system (2.18) is not hyperbolic and yields to the so-called Kelvin-Helmholtz instability
at the interface separating the layers for which most of finite volume methods based on Riemann solvers
would fail to resolve. In the present work, the proposed Eulerian-Lagrangian method does not require
the calculation of the eigenvalues for the multi-layer system and the selection of time steps can be carried
out using the eigenvalues associated with the single-layer shallow water counterparts defined as

λ±α = uα ±
√
gH, µ±α = vα ±

√
gH, α = 1, 2 . . . ,M. (3.5)

Note that the time step can also be adjusted using the maximum wave speed for the multi-layer shallow
water system. This selection guarantees the stability of the method but for a fixed simulation time, it
may require more steps than using the selection based on the eigenvalues (3.5).

3.1 The Eulerian step

For the spatial discretization of the stage (3.2) we cover the spatial domain Ω with control volumes
Cij = [xi− 1

2
, xi+ 1

2
] × [yj− 1

2
, yj+ 1

2
] shown in Figure 3.1. The control volumes Cij are centered at (xi, yj)

with uniform sizes ∆x and ∆y for simplicity in the presentation only. For the space discretization of the
equations (2.18), we use the notations Wi± 1

2
,j(t) = W(t, xi± 1

2
, yj), Wi,j± 1

2
(t) = W(t, xi, yj± 1

2
), and

Wi,j(t) =
1

∆x

1

∆y

∫ x
i+1

2

x
i− 1

2

∫ y
i+1

2

y
j− 1

2

W(t, x, y)dydx,

to denote the point-values and the approximate cell-average of the variable W at the gridpoint (t, xi± 1
2
, yj),

(t, xi, yj± 1
2
), and (t, xi, yj), respectively. Integrating the equation (3.2) with respect to space over the

control volume Ci,j shown in Figure 3.1, we obtain the following semi-discrete equation

dWi,j

dt
+

Fi+1/2,j − Fi−1/2,j

∆x
+

Gi,j+1/2 −Gi,j−1/2

∆y
= Qi,j , (3.6)

where Fi±1/2,j = F(Wi±1/2,j) and Gi,j±1/2 = G(Wi,j±1/2) are the numerical fluxes at the cell interfaces
x = xi±1/2 and y = yi±1/2, respectively. In (3.6), Qi,j is a consistent discretization of the source term
Q in (2.18). To resume the spatial discretization of problem (3.6) one needs to reconstruct the fluxes
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Figure 3.1: The control volume Ci,j used for the spatial discretization.

Fi±1/2,j and Gi,j±1/2. In most finite volume method, this reconstruction involves a solution of Riemann
problems at the interfaces xi±1/2 and yi±1/2. However, this procedure is computationally demanding and
it may restrict the application of the finite volume method to shallow water equations for which Riemann
solutions are available. Note that the discretization of equations (3.1) and (3.3) is straightforward and it
can be carried out using standard methods.

Integrating (3.2) over the control volume Cij , the basic equations of the finite volume method obtained
using the divergence theorem are given by

∂

∂t

∫
Ci,j

H dV +
M∑
α=1

∮
Si,j

(lαHuαnx + lαHvαny) dS = 0,

∂

∂t

∫
Ci,j

lαHuα dV +

∮
Si,j

((
lαHu

2
α +

1

2
glαH

2

)
nx +Huαvαny

)
dS =

−glαH
∮
Si,j

Bnx dS +

∫
Ci,j

ωclαHvα dV,

∂

∂t

∫
Ci,j

lαHvα dV +

∮
Si,j

(
Huαvαnx +

(
lαHv

2
α +

1

2
glαH

2

)
ny

)
dS =

−glαH
∮
Si

Bny dS −
∫
Ci,j

ωclαHuα dV,

where η = (nx, ny)
T denotes the unit outward normal to the surface Si,j of the control volume Cij . Using

the local cell outward normal η and tangential τ = η⊥ depicted in Figure 3.2, the above equations can
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Figure 3.2: The projected velocities on the control volume Ci,j .

be projected as

∂

∂t

∫
Ci,j

H dV +
M∑
α=1

∮
Si,j

lαHuα,η dS = 0, (3.7a)

∂

∂t

∫
Ci,j

lαHuα dV +

∮
Si,j

(
lαHuαuα,η +

1

2
glαH

2nx

)
dS =

−glαH
∮
Si

Bnx dS +

∫
Ci,j

ωclαHvα dV, (3.7b)

∂

∂t

∫
Ci,j

lαHvα dV +

∮
Si,j

(
lαHvαuα,η +

1

2
glαH

2ny

)
dS =

−glαH
∮
Si

Bny dS −
∫
Ci,j

ωclαHuα dV, (3.7c)

where the normal projected velocity uα,η = uαnx + vαny and the tangential projected velocity uα,τ =
vαnx − uαny. In order to simplify the system (3.7), we first sum the equation (3.7b) multiplied by nx
to the equation (3.7c) multiplied by ny, then we subtract the equation (3.7b) multiplied by ny from the
equation (3.7c) multiplied by nx. These operations result in

∂

∂t

∫
Ci,j

H dV +

M∑
α=1

∮
Si,j

lαHuα,η dS = 0,

∂

∂t

∫
Ci,j

lαHuα,η dV +

∮
Si,j

(
lαHuα,ηuα,η +

1

2
glαH

2

)
dS = −glαH

∮
Si

B dS +

∫
Ci,j

ωclαHuα,τ dV,

∂

∂t

∫
Ci,j

lαHuα,τ dV +

∮
Si,j

lαHuα,τuα,η dS = −
∫
Ci,j

ωclαHuα,η dV,

which can be rewritten in a differential form as

∂H

∂t
+

M∑
α=1

∂

∂η
(lαHuα,η) = 0,

∂

∂t
(lαHuα,η) +

∂

∂η

(
lαHu

2
α,η +

1

2
glαH

2

)
= −glαH

∂B

∂η
− ωclαHuα,τ , (3.8)

∂

∂t
(lαHuα,τ ) +

∂

∂η
(lαHuα,ηuα,τ ) = ωclαHuα,η.

10



Figure 3.3: Illustration of the method of characteristics: An Eulerian gridpoint xi+1/2 is traced back in

time to Xi+1/2 where the intermediate solution Ûni+1/2,j is interpolated.

The system (3.8) can also be reformulated in a non-conservative form as

D0H

Dt
+

M∑
α=1

lαH
∂uα,η
∂η

= 0,

Dαuα,η
Dt

+ g
∂H

∂η
= −g∂B

∂η
− ωcuα,τ , (3.9)

Dαuα,τ
Dt

+H
∂uα,τ
∂η

= ωcuα,η,

where
Dζ
Dt is the total material derivative defined as

Dζ

Dt
=

∂

∂t
+ Uζ

∂

∂η
, ζ = 0, 1, . . . ,M, (3.10)

with

Uζ =


M∑
α=1

lαuα,η, if ζ = 0,

uζ,η, if ζ = 1, 2, . . . ,M.

(3.11)

Notice that the above projection techniques simplify the solution of two-dimensional shallow water equa-
tions (3.2) in the control volume Ci,j to the solution of one-dimensional system (3.9) on each surface Si,j
of this control volume. A similar projection procedure on general meshes has been proposed in [7] among
others. It should be stressed that the projected system (3.9) is used in our approach only to reconstruct
the numerical fluxes in the finite volume method solution of the conservative system (3.2).

3.2 The Lagrangian step

To approximate the numerical fluxes Fi±1/2,j and Gi,j±1/2 in (3.6) we consider the modified method
of characteristics applied to the projected system (3.9). In general, this method consists of imposing a
regular grid at the new time level and backtracking the flow trajectories to the previous time level, see
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for instance [24, 8]. The solutions at the old time level are obtained using interpolation from their known
values on a regular grid. Hence, for each layer ζ and gridpoint xi+1/2 we calculate the characteristic
curves Xζ,i+1/2(s) associated with the equations (3.9) by solving the initial-value problems

dXζ,i+1/2(s)

ds
= Uζ,

(
s,Xζ,i+1/2(s), yj

)
, s ∈ [tn, tn+1],

(3.12)
Xζ,i+1/2(tn+1) = xi+1/2,

with similar initial-value problems for the characteristic curves Yζ,j+1/2(s) related to the gridpoint yj+1/2

dYζ,j+1/2(s)

ds
= Uζ,

(
s, xi, Yζ,j+1/2(s)

)
, s ∈ [tn, tn+1],

(3.13)
Yζ,j+1/2(tn+1) = yj+1/2,

As shown in Figure 3.3, Xζ,i+1/2(s) and Yζ,j+1/2(s) are the departure points at time s of a particle that
will arrive in the time tn+1 at the gridpoint xi+1/2 and yj+1/2 respectively. In our simulations we used
the third-order Runge-Kutta method (3.4) for the solution of the initial-value problems (3.12) and (3.13).
In general Xζ,i+1/2(tn) and Yζ,j+1/2(tn) will not coincide with the spatial position of a gridpoint. Hence,
once the characteristic curves Xζ,i+1/2(tn) and Yζ,j+1/2(tn) are accurately calculated, the intermediate
solutions Wn

i+1/2,j and Wn
i,j+1/2 of a function W are reconstructed using

Wn
i+1/2,j = Ŵn

i+1/2,j , Wn
i,j+1/2 = Ŵn

i,j+1/2, (3.14)

where Ŵn
i+1/2,j = W

(
tn, Xζ,i+1/2(tn), yj

)
and Ŵn

i,j+1/2 = W
(
tn, xi, Yζ,j+1/2(tn)

)
are the solutions at

the departure points obtained by interpolation from the gridpoints of the control volume where these
departure points belong, see Figure 3.3. For example, a Lagrange-based interpolation polynomial can be
formulated as

Ŵn
i+1/2,j =

∑
k,l

Lk,l
(
Xζ,i+1/2, yj

)
Wn
k,l, Ŵn

i,j+1/2 =
∑
k,l

Lk,l
(
xi, Yζ,j+1/2

)
Wn
k,l, (3.15)

with Lk,l are the Lagrange polynomials defined as

Lk,l(x, y) =
∏
p=0
p6=k

∏
q=0
q 6=l

x− xp
xk − xp

y − yq
yl − yq

.

Notice that other high-order interpolation methods can also be used in (3.15). In the present work, the
Lagrange interpolation (3.15) guarantees a second-order accuracy for the proposed Eulerian-Lagrangian
finite volume method. Assume that the departure points Xζ,i+1/2(tn) and Yζ,j+1/2(tn) are accurately
approximated, the first stage (predictor step) of the solution of the multilayer shallow water system (3.9)
in the Eulerian Lagrangian method is defined as

Hn
i+1/2,j = Ĥn

i+1/2,j −
∆t

∆x
ĥni+1/2,j

(
(uα,η)

n
i+1,j − (uα,η)

n
i,j

)
,

(uα,η)
n
i+1/2,j = (ûα,η)

n
i+1/2,j − g

∆t

∆x

(
(hn + Z)i+1,j − (hn + Z)i,j

)
−∆tωc (ûα,τ )ni+1/2,j , (3.16)

(uα,τ )ni+1/2,j = (ûα,τ )ni+1/2,j −
∆t

∆x
ĥni+1/2,j

(
(uα,τ )ni+1,j − (uα,τ )ni,j

)
+ ∆tωc (ûα,η)

n
i+1/2,j ,

where

Ĥn
i+1/2,j = H

(
tn, Xα,i+1/2(tn), yj

)
, (ûα,η)

n
i+1/2,j = uα,η

(
tn, Xα,i+1/2(tn), yj

)
,
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(ûα,τ )ni+1/2,j = uα,τ
(
tn, Xα,i+1/2(tn), yj

)
.

The intermediate states in the y-direction Hn
i,j+1/2, (uα,η)

n
i,j+1/2 and (uα,τ )ni,j+1/2 are calculated in the

same way. When the projected states are calculations are complete, the states Wn
i±1/2,j and Wn

i,j±1/2
are determined by using vα = (uα,τ , uα,η) · η and uα = (uα,τ , uα,η) · τ .

Using the concept of C-property the discretization of the source terms Qi,j is carried so that the
discretized source terms are well balanced with the discretized flux gradients, for further explanation see
[9, 8]. Recall that a numerical scheme is said to satisfy the C-property for the equations (3.2) if the
condition

Hn +B = C = constant, unα = vnα = 0, α = 1, 2, . . . ,M, (3.17)

this is correct for flows at rest. The source terms are thus reconstructed such that the condition (3.17) is
preserved after discretization. Using the same method as reported in [9, 4], for one-dimensional shallow
water equations, the terms are discretized as follows(

gH
∂B

∂x

)n
i,j

= g
Hn
i+1/2,j +Hn

i−1/2,j

2

Bn
i+1,j −Bn

i−1,j
2∆x

,

(3.18)(
gh
∂B

∂y

)n
i,j

= g
Hn
i,j+1/2 +Hn

i,j−1/2

2

Bn
i,j+1 −Bn

i,j−1
2∆y

,

where the averaged solutions are defined by

Hn
i+1/2,j =

Hn
i+1,j +Hn

i−1,j
2

, Hn
i,j+1/2 =

Hn
i,j+1 +Hhni,j−1

2
.

By projecting the original shallow water model into the local system and using dimension-by-dimension
discretization, the source terms (3.18) can be discretized in the same manner as [9]. For further detail
on this method please see [9].

4 Numerical Results

The numerical results for four two-dimensional multilayer shallow water flow test cases are presented in
this section. The aim is to demonstrate the accuracy and adaptability of the scheme detailed above. In
the first test case we examine the conservation property of the scheme, using a free-surface flow at rest
on a bed of non-flat topography. In the second, a simple dam-break problem is posed and the results are
compared to those of a three-dimensional Navier-Stokes equations. We also examine a circular dam-break
over flat and non-flat topography. Finally we simulate wind driven flow in two dimensions. In all our
computations the total water height H is given by the initial conditions, and the water heights hα of each
layer is defined (using equal factions) as

hα = lαH with lα =
1

M
, α = 1, . . . ,M.

In addition, a fixed courant number CFL = 0.8 is used whereas the time step ∆t varies according to the
stability condition

∆t = CFL
min (∆x,∆y)

max
α

(
|unα|+

√
gH, |vnα|+

√
gH
) .

The implementation of boundary conditions is performed using techniques similar to those described
in [7]. For the computational examples considered in this section, boundary conditions are enforced
on the corrector solution by computing fluxes at cell boundaries. On the predictor solution, boundary
conditions are enforced in boundary cells by setting the required variables to the corresponding values of
the adjacent inner cells.
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Figure 4.1: Water free-surface and interfaces for the multilayer flow problem at rest at time t = 10800 s
using single-layer and 10-layer models.

In all results presented in this section the linear interpolation procedure is used in the predictor
stage. Along with the water heights hα, water free-surface H and the water velocities (uα, vα) we also
present results for the vertical velocity w. The three-dimensional velocity fields are calculated using two-
dimensional results, by implementing a similar post-processing method as in [6, 4]. Hence, the vertical
velocity w is computed from the divergence-free condition

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0. (4.1)

Integrating the equation (4.1) in a control volume yields

wnα+1,i,j = wnα,i,j + ∆z

(
unα,i+1/2,j − u

n
α,i−1/2,j

∆x
+
unα,i+1/2,j+1/2 − u

n
α,i+1/2,j+1/2

∆y

)

where ∆z = hα+1+hα
2 is the spatial in the vertical direction between two layers. On the bottom boundary

we use non-penetration boundary conditions. A similar procedure has also been used in [15] for one-
dimensional multilayer shallow water equations.

4.1 Lake at multilayer rest flow

Lake at rest flow has been introduced in [10] to check the well-balance property of a finite volume method
for single-layer one-dimensional shallow water equations. In this example we reconstruct a similar test
problem but for two-dimensional shallow water flows. The idea lies on using Kronecker tensor product
of the one-dimensional bed proposed in [10] in x- and y-direction. Hence, we solve the shallow water
equations (2.1) with source term associated with the bed only i.e., ωc = 0 and Fα = Gα = 0 and the bed
is defined as

B(x, y) =
2

7
B(x)⊗ B(y),

where B is the one-dimensional bed defined in [10]. The problem is solved in a squared domain with
length of 1500 m and the results are presented at time t = 10800 s as in [10]. In practice, the total water
free-surface must remain constant and the water velocity should be zero at all times. However, many
numerical methods fail to preserve these conditions at the discrete level. In Figure 4.1 we present the
results obtained for water free-surface and interfaces using a mesh with 100×100 gridpoints and a 20-layer
model. We also include results obtained using the conventional single-layer shallow water equations. As
expected, the water free-surface remains constant along the simulation times for all considered models
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Figure 4.2: Cross-section of the water free-surface and interfaces for the 20-layer flow problem at rest at
time t = 10800 s (left) and the associated error in the water free-surface (right).

Figure 4.3: Water free-surface and interfaces for the multilayer dam-break problem on a flat bottom at
time t = 14 s using 5-layer model (left) and 20-layer model (right).

and no disturbances have been detected over the irregular two-dimensional bed. In addition, increasing
the number of layers in the model has not deteriorated the response of the water free-surface in the lake.

In Figure 4.2 we present the cross-section along the main diagonal (y = x) of the results obtained
for the 20-layer model and also the error in the water free-surface as a difference between the numer-
ical and analytical free-surface solutions. It is clear from the results presented in Figure 4.2 that our
Eulerian-Lagrangian method preserves constant water free-surface and the errors are practically zero to
the machine precision. Similar results not reported here were obtained for 5-layer and 10-layer models.
This confirms that the proposed method is well balanced and able to accurately resolve two-dimensional
multilayer shallow water flows over an non-flat bottom without relying on complex techniques to balance
the discretizations of source terms and flux gradients.

4.2 Multilayer dam-break problem on a flat bottom

Dam-break problems have been mainly modeled using single-layer shallow water equations but recently
in [3, 4] one-dimensional multi-layer shallow water equations have been used to simulate a dam-break
problem over a flat bottom. In this example we consider the two-dimensional version of this problem in
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Figure 4.4: Horizontal cross-sections of the water free-surface (top) and water velocity (bottom) for the
multilayer dam-break problem on a flat bottom at time t = 14 s using different layers in the model.

order to compare our results to those obtained using its one-dimensional counterpart. Thus, we solve the
multilayer shallow water equations (2.1) in a flat rectangular channel of length 100 and width 10 subject
to the following initial conditions

H(0, x, y) =


2, if x ≤ 0,

1, if x > 0,

u(0, x, y) = v(0, x, y) = 0.

Wind effects and Coriolis forces are neglected in this test example and we use the same parameters as
those used in [6, 4] for the one-dimensional case, the viscosity coefficient ν = 0.01, the gravity g = 2,
the friction coefficient κ = 0.1 and the results are presented at time t = 14 s. The results obtained for
this problem, using our Eulerian-Lagrangian method, are also compared to those calculated using the
three-dimensional Navier-Stokes equations with free-surface conditions as published in [16].

Figure 4.3 presents the water free-surface and interfaces for the 5-layer and 20-layer models at time
t = 14 using a mesh with 100×20 gridpoints. As in all dam-break problems, at t = 0 the dam breaks and
the flow problem consists of a shock wave propagating downstream and a rarefaction wave propagating
upstream. The proposed Eulerian-Lagrangian method captures these flow patterns without generating
spurious oscillations in the shock area. Under the considered dam-break conditions, it seems that the
number of layers in the model has little effects on the flow features, compare the water free-surface profiles
obtained for 5-layer and 20-layer models in Figure 4.3. To further emphasis these effects we display in
Figure 4.4 horizontal cross-sections of the water free-surface and water velocity at y = 5 for the 5-layer
and 20-layer models. For comparison reasons we also include in Figure 4.4 the results obtained using the
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Figure 4.5: Water velocities at the location (x = 8, y = 5) for the multilayer dam-break problem on a
flat bottom at time t = 14 s using different layers in the model.

Figure 4.6: Water heights (left) and velocity fields (right) obtained for the multilayer circular dam-break
on a flat bottom using 10 layers. From top to bottom t = 0.1 and 1.
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Figure 4.7: Lateral cross-section of the velocity field in the xy-plane at h = 1 (left) and vertical cross-
section of the velocity field in the xz-plane at y = 0 for the multilayer circular dam-break on a flat bottom
using 10 layers at t = 1.

one-dimensional multi-layer model. As can be seen from these results there is a difference between two-
dimensional results and their one-dimensional counterparts. It seems that the two-dimensional results
are more diffusive than the one-dimensional results at the rarefaction zone but that at the shock zone
the two-dimensional results look sharper than their one-dimensional counterparts. We observe some
fluctuations at the hydraulic jump in the results presented in Figure 4.4 which has also been detected in
the three-dimensional results obtained using the full Navier-Stokes simulations in [4].

Following the same ideas reported in [4] we compare in Figure 4.5 the results obtained using our
two-dimensional multilayer shallow water model to those obtained using the three-dimensional Navier-
Stokes equations. In this figure we present the velocity profiles in the location (x = 8, y = 5) at time
t = 14 for the 5-layer and 20-layer on a mesh with 100 × 20 gridpoints. For comparison reason, we also
include the results obtained using the one-dimensional multilayer shallow water model in this figure. It
is clear from the results presented in Figure 4.5 that an increase in the number of layers in both one-
and two-dimensional models results in an increase in the accuracy of the obtained results as compared
to the full three-dimensional results. Under the considered flow conditions, the two-dimensional results
are slightly more accurate than the one-dimensional results. Note that, in terms of the computational
cost, solving the two-dimensional multilayer shallow water equations is more efficient than solving the
three-dimensional Navier-Stokes equations for dam-break flow problems.

4.3 Multilayer circular dam-break problem

We consider a multilayer circular dam-break problem in a squared domain [−10, 10] × [−10, 10]. The
domain is assumed to be flat, the viscosity of water is set to ν = 0.05 m2/s, the water density ρ =
1025 kg/m3, the gravity g = 9.81 m/s2, the Coriolis coefficient ωc = 1, and the bed friction coefficient is
set to κ = 0.001 m/s. Initially,

h(0, x, y) = 1 +
1

2

(
1− tanh

(√
ax2 + by2 − 1

c

))
, u(0, x, y) = v(0, x, y) = 0,

where a = 5
2 , b = 5

2 and c = 0.1. A similar problem has been considered in [22] for the standard
single-layer circular dam-break problem. Here, the computational domain is discretized into 100 × 100
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Figure 4.8: Vertical cross-sections at y = 0 of water heights (left) and velocity plots (right) for the
multilayer circular dam-break on a flat bottom using 10 layers at t = 1

gridpoints and obtained results for water heights and velocity fields are presented for different instants.
In Figure 4.6 we display the water heights and the velocity fields obtained using 10 layers at time t = 0.1
and 1. It is clear from the presented results that the water flows away from deep central region as the
rarefaction wave progresses outwards. The Coriolis effect adds an extra rotational effects to the results,
though they remain symmetric, as well as retaining a strongly distinguishable wavefront which is to be
expected. To emphasis the Coriolis effects on this dam-break problem, we present in Figure 4.7 the
lateral and vertical cross-sections of the velocity fields at h = 1 and y = 0, respectively. The results
are presented at the final simulation time t = 1. The proposed method is able to accurately resolve the
Coriolis effects and to capture the vertical velocities which are vital to the understanding of complex flows
presented by this class of dam-break problems. Figure 4.8 further demonstrates the effects of Coriolis
term on this multilayer circular dam-break problem. Here, we display the vertical cross-sections at y = 0
of water heights and velocity profiles at time t = 1. As can be seen, the symmetry is well preserved in the
obtained water heights and mixing vertical velocities are also detected in the presented velocity profiles.
Note that the velocity profiles in Figure 4.8 are not symmetric because of the Coriolis terms included in
the multilayer model. Again the obtained results demonstrate the ability of the considered multilayer
models to capture the vertical flow features without relying on the three-dimensional free-surface flow
equations.

Next we turn our attention to multilayer circular dam-break problems on non-flat beds. To this end
we solve the previous problem over a non-flat bottom defined by

B(x, y) =
1

2
Bx(x)⊗ By(y),

where

Bx(x) =


sin
(π

4
x
)
, if − 4 ≤ x < 4,

0, elsewhere,

By(y) =


− cos

(π
4
y
)
, if − 2 ≤ y < 2,

0, elsewhere.

The initial conditions and the flow parameters are the same as in the previous simulations. The main
issues we wish to address in this test problem are concerned with the capabilities of the proposed Eulerian-
Lagrangian method to solve multilayer circular dam-break problems on non-flat beds. Figure 4.9 exhibits
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Figure 4.9: Water heights (left) and velocity fields (right) obtained for the multilayer circular dam-break
on a non-flat bottom using 10 layers. From top to bottom t = 0.1 and 1.

Figure 4.10: Lateral cross-section of the velocity field in the xy-plane at h = 1 (left) and vertical cross-
section of the velocity field in the xz-plane at y = 0 for the multilayer circular dam-break on a non-flat
bottom using 10 layers at t = 1.
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Figure 4.11: Vertical cross-sections at y = 0 of water heights (left) and velocity plots (right) for the
multilayer circular dam-break on a non-flat bottom using 10 layers at t = 1.

the water heights and the velocity fields obtained using 10 layers at time t = 0.1 and 1. In Figure 4.10 we
display the lateral and vertical cross-sections of the velocity fields at h = 1 and y = 0, respectively. The
vertical cross-sections at y = 0 of water heights and velocity profiles at time t = 1 are presented in Figure
4.11. Under the actual flow conditions, it is clear from the presented results that the non-flat bathymetry
has direct effects on the flow structure. As the dam breaks over the bump the rarefaction wave progresses
and both Coriolis and bathymetric terms change its behavior. For example when results in Figure 4.11
are compared to those in Figure 4.8 obtained for flat bottom, it is easy to see the effect the bathymetry
has on the vertical velocity and the high water level of variation caused. In addition, Figure 4.10 shows
the asymmetry in the flow caused by the varying topography, though it is interesting to note that the
rarefaction still progresses at same speed over the non-flat bottom. It is worth noting that the multilayer
shallow water equations handle this complex flow problem well for both the flat and non-flat beds and
delivering new insights into vertical velocity for a shallow water flows. The proposed Eulerian-Lagrangian
method performs very satisfactorily for this flow problem since it does not diffuse the moving fronts and
no spurious oscillations have been detected near steep gradients of the water heights in the computational
domain.

4.4 Wind-driven circulation flow

In this last test example we consider a water flow problem for wind-driven circulations originally proposed
in [27] and widely used to verify the multilayer shallow water models, see for instance [6, 30, 4]. Using
the same flow parameters as in these references, we solve the multilayer shallow water equations (2.18)
in a squared two-dimensional domain 16 m long filled at 2 m water under a two-dimensional wind force
blowing with and angle of 45◦ and a speed of w = 20 m/s. In our simulations, the Coriolis coefficient
ωc = 0, the viscosity coefficient ν = 0.05 m2/s, the friction coefficient κ = 0.00001 m/s, the wind stress
coefficient σ = 0.0015 N/m2, the water density ρ = 1025 kg/m3, the air density ρa = 1.2 kg/m3 and
the gravity g = 9.81 m/s2. The bed is assumed to be flat, no-slip boundary conditions are used and
we present results for water heights, streamlines and velocity fields at time t = 50 s using a mesh with
100 × 100 gridpoints. Figure 4.12 presents the results obtained using 5-layer and 20-layer models. The
vorticity plots show that the steady cavity flow within closed streamlines consists of a central inviscid core
of nearly constant vorticity with viscous effects confined to thin shear layers near the walls. These plots
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Figure 4.12: Water heights (left) and velocity fields (right) obtained for the wind circulation flow at time
t = 50 s using 5-layer model (top) and 20-layer model (bottom).

also give a clear view of the overall flow pattern and the effect of the number of layers on the structure of
the recirculating eddy in the cavity. As expected a recirculation flow is generated in the computational
domain and the proposed Eulerian-Lagrangian method resolves the flow features for this test example
without relying on the computationally demanding three-dimensional flow models.

Figure 4.13: Projection of the velocity field in the xz-plane for the wind circulation flow using 20-layer
model with viscous terms (left plot) and without viscous terms (right plot) at time t = 50 s.

Next we examine the effect of the coupling terms in the multilayer model (2.1) on the flow structures
for this test example. To this end we first solve the equations (2.1) without kinematic eddy viscous terms

(i.e. F (u)
α = F (ν)

α = G(u)α = G(ν)α = 0) and with the viscous terms (i.e. F (ν)
α , F (u)

α and G(u)α , G(ν)α are given
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Figure 4.14: Water velocities at the location (x, y) = (8, 8) for the wind circulation flow with and without
viscous terms using 10-layer model (left plot) and 20-layer model (right plot) at time t = 50 s.

Table 4.1: Values of the x-velocity u at (x, y) = (8, 8) for the wind circulation flow with and without
viscous terms using 10-layer model at time t = 50 s.

Layer

1 2 3 4 5 6 7 8 9 10

With -0.0006 -0.0022 -0.0030 -0.0033 -0.0029 -0.0020 -0.0003 0.0019 0.0048 0.0083

Without -0.0003 -0.0116 -0.0116 -0.0116 -0.0116 -0.0116 -0.0116 -0.0116 -0.0116 0.0920

by (2.6) and (2.14), respectively). The obtained velocity fields in the xz-plane at fixed lateral location
y = 8 for both cases are shown in Figure 4.13. The effects of the kinematic eddy viscous terms in the
multilayer shallow water equations can be clearly seen in these results. Observe the flow patterns at the
domain walls and at the bed bottom in the results with and without kinematic eddy viscous terms in
Figure 4.13. Accounting for kinematic eddy viscosity in the multilayer model intensifies the recirculation
in the flow domain and reproduces a well-developed eddy vortex in the center of the flow domain which is
not visible in case of multilayer model without kinematic eddy viscous terms. The center vortex counter-
rotating eddies of a much weaker strength develop in the cavity for the simulation without viscous terms

F (u)
α = F (ν)

α = G(u)α = G(ν)α = 0. For a better insight, we present in Figure 4.14 the water velocities
at the location (x = 8, y = 8) for 10-layer and 20-layer models with and without viscous terms. The
associated values for the velocity in this figures are summarized in Table 4.1. It is clear from these values
that simulations without including the viscous terms overestimate the flow velocity whereas, accounting
for viscous terms in the simulations predict the corrected flow velocities. The inclusion of these viscous
terms is very important for simulation of wind-driven recirculation using the multilayer shallow water
equations.
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5 Concluding Remarks

A fast and conservative Eulerian-Lagrangian method is proposed for the numerical solution of three-
dimensional free-surface flows using two-dimensional multilayer shallow water equations. The governing
system consists of a set of two-dimensional hydrostatic multilayer shallow water equations, with mass
exchange including eddy viscosity and Coriolis forces on both flat and non-flat beds. Two stages are
considered in the procedure to update the solution in time. In the first stage a projection finite volume
of the system in local normal and tangential coordinates is used, whereas a method of characteristics is
used in the second stage to approximate the numerical fluxes. A second-order splitting operator is also
used to deal with the gradient and source terms in the system, and a third-order explicit Runge-Kutta
scheme is implemented for the time integration process. This Eulerian-Lagrangian solver employs the
modified method of characteristics in a finite volume discretization of the multilayer two-dimensional
shallow water system. The method offers the advantage of solving steady three-dimensional free-surface
flows over uneven bathymetry while only incurring errors of negligible magnitude. Thus the presented
scheme achieves excellent numerical balance between the gradient fluxes and the source terms for this
multilayer system. On the other hand, no Riemann problem solvers are needed in the proposed method to
compute the numerical fluxes. To examine the performance of the proposed Eulerian-Lagrangian method
we solved a wide application of two-dimensional multilayer shallow water equations under contrasting
flow conditions. The well-balanced nature of the scheme is presented in the free-surface flow at rest over
uneven bathymetry problem. Comparisons to three-dimensional results for incompressible hydrostatic
Navier-Stokes equations have also been presented. The results obtained show detailed shock capture with
high accuracy in smooth regions. There are also no nonphysical oscillations at the bounds of the shock
which often plague high order schemes of this nature. In this study we have used only structured meshes
though there is no impediment to the Eulerian-Lagrangian solver being extended to unstructured grids.
This and other issues will be the subject of future investigations.
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