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Abstract

Slope limiters have been widely used to eliminate non-physical oscillations near discontinuities gen-
erated by finite volume methods for hyperbolic systems of conservation laws. In the current study,
we investigate the performance of these limiters as applied to three-dimensional modified method of
characteristics on unstructured tetrahedral meshes. The focus is on the construction of monotonicity-
preserving modified method of characteristics for three-dimensional transport problems with discon-
tinuities and steep gradients in their solutions. The proposed method is based on combining the
modified method of characteristics with a finite element discretization of the convection equations us-
ing unstructured grids. Slope limiters are incorporated in the method to reconstruct a monotone and
essentially non-oscillatory solver for three-dimensional problems at minor additional cost. The main
idea consists in combining linear and quadratic interpolation procedures using nodes of the element
where departure points are localized. We examine the performance of the proposed method for a class
of three-dimensional transport equations with known analytical solutions. We also present numeri-
cal results for a transport problem in three-dimensional pipeline flows. In considered test problems,
the proposed method demonstrates its ability to accurately capture the three-dimensional transport
features without non-physical oscillations.

Keywords. Monotonicity-preserving schemes; Slope limiters; Finite element methods; Modified method
of characteristics; Transport problems; Unstructured tetrahedral meshes

1 Introduction

Transport problems have been widely used in the literature to model many industrial, environmental
and biomedical applications involving advection of scalar quantities such as density, temperature or
concentration, among others. For example, transport problems have been used to describe water transfer
in soils [22], heat transfer in a draining film [24, 39], and the transport of scalars in ferrofluids under
rotating magnetic fields [5, 42]. On the other hand, several numerical schemes have been developed
in the literature to solve the transport equations. Most of these techniques can be classified into three
main categories (i) Eulerian methods, (ii) Lagrangian methods and (iii) semi-Lagrangian methods. In the
finite element context, the most popular Eulerian methods include the streamline upwind Petrov-Galerkin
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methods [6, 11, 4], Galerkin/least-squares methods [23, 4, 9] and Taylor-Galerkin methods [14, 8, 12].
However, it is well known that these schemes do not perform very satisfactory for transport problems with
non-smooth solutions unless small time steps and highly refined grids are used in simulations. In case of
three-dimensional problems as those considered in this study, these requirements are usually not feasible
and may limit the performance of these Eulerian methods. The Lagrangian techniques are theoretically
well suited for the numerical solution of transport problems due to the possibility for using large time
steps in the simulations. In practice, the computational mesh for the Lagrangian methods moves along
the fluid particle trajectory which may yield to mesh distortion after a few time steps. Thus, because
of this drawback, the Lagrangian methods are not recommended for the numerical solution of complex
transport problems. In the semi-Lagrangian methods known also by modified method of characteristics,
the computational mesh is taken to be fixed to overcome the drawback of the Lagrangian approach while
keeping the advantage of the Lagrangian tracking algorithm along the characteristic curves. The main
advantage of the modified method of characteristics lies on the fact that the Courant-Friedrichs-Lewy
(CFL) condition is highly relaxed compared to the its Eulerian counterparts, see for example [17, 16]. In
addition, the Lagrangian treatment in the modified method of characteristics greatly reduces the time
truncation errors in the Eulerian methods, see [31, 38, 37, 16, 34] among others. Thus, the modified
method of characteristics has the potential to be more suitable than Eulerian and Lagrangian methods
for three-dimensional transport problems on unstructured tetrahedral meshes.

For two-dimensional problems, the modified method of characteristics appears in the literature in
several forms, see for instance [32, 10, 25, 3]. The method has also been studied for three-dimensional
transport problems in [25, 3]. In finite element framework, analysis of convergence and stability of
the modified method of characteristics have been carried out in many studies, see for example [15,
30, 16]. It should be stressed that the central idea in the modified method of characteristics is to
rewrite the governing equations in terms of Lagrangian coordinates as defined by the characteristics
associated with the transport problem under consideration. The time derivative and the advection terms
are combined as a directional derivative along the characteristic curves leading to a characteristic time-
stepping procedure. This type of numerical methods allows for time steps that exceed those permitted by
the CFL stability condition in the Eulerian-based methods for convection-dominated problems. A class
of modified methods of characteristics has been investigated in [15, 30, 19, 18, 17] for two-dimensional
problems and in [13, 26, 29, 41, 21] for transport problem in three space dimensions. However, the results
reported in these references either consider linear three-dimensional problems with constant velocity
fields or employ structured meshes for the spatial discretization. It should be noted that tetrahedral
finite elements are very attractive in numerical simulations because of their flexibility for representing
irregular boundaries and for local mesh refinements. In addition, solving transport problems subject
to sharp gradients in three space dimensions is still a challenge for many finite element discretizations
including the semi-Lagrangian methods. Applied to these problems, the numerical solution obtained using
the conventional modified method of characteristics either develops spurious oscillations or it is affected
by a large artificial viscosity. Spurious oscillations and artificial viscosity often deteriorate the accuracy
of the solution, so the numerical solution may become physically unacceptable, see [20, 28] for examples
in two space dimensions. For two-dimensional problems in structured grids, a class of conservative
quasi-monotone semi-Lagrangian methods has been proposed in [2, 20, 33] to overcome these difficulties.
In the current work, a procedure using three-dimensional slope limiters is developed to eliminate the
principal drawback of the conventional modified method of characteristics, which is the failure to preserve
monotonicity. In a semi-Lagrangian framework, the key idea of the slope-limiting procedure consists in
writing the local solution as a convex combination of lower and higher order interpolations. This allows
to convert the method to non-oscillatory and monotonicity-preserving at minor additional computational
cost. Here, the higher and lower interpolation solutions use two different basis functions of higher and
lower order, respectively. Similar techniques but based on flux-corrector procedures have been used for
solving advection problems using the Eulerian methods in [27, 35].

This paper proposes a class of slope limiters for the numerical solution of three-dimensional transport
problems using the modified method of characteristics on unstructured finite element meshes. The
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presented results show that the proposed method is monotone for transport problems with steep gradients.
Moreover, it requires significantly less time steps than classical explicit Eulerian finite element methods.
This can be a major advantage when modelling transport problems for industrial applications where steep
discontinuities and steep gradients may pose a significant challenge in terms of required CFL conditions.
To our knowledge, this is the first time that three-dimensional transport problems are numerically solved
using a monotonicity-preserving modified method of characteristics on unstructured tetrahedral meshes.
To demonstrate the basic algorithms and show that it can adapt to three-dimensional features of a
solution, we have implemented a slope limiter procedure to solve passive transport problems in three-
dimensional flow fields. The rest of the paper is organized as follows. Formulation of slope limiters in
the modified method of characteristics for three-dimensional transport problems is presented in section
2. This section includes the calculation of departures points and the implementation of slopes limiters on
unstructured tetrahedral meshes. In section 3, we examine the numerical performance of the proposed
method using several test examples of convection problems in three-dimensional domains. The proposed
method is shown to enjoy the expected accuracy as well as the monotonicity. Concluding remarks are
given in section 4.

2 Slope limiters for modified method of characteristics

To describe the formulation of the modified method of characteristics in tetrahedral finite element frame-
work, we consider the following three-dimensional transport problem

Dc

Dt
:=

∂c

∂t
+ v(x, t) · ∇c = 0, (x, t) ∈ Ω× (0, T ],

(1)
c(x, 0) = c0(x), x ∈ Ω,

where x = (x, y, z)T is the position variable, ∇ =
(
∂
∂x ,

∂
∂y ,

∂
∂z

)T
the gradient vector, Ω a spacial bounded

domain in R3 with boundary ∂Ω, and (0, T ] a time interval. Here, c(x, t) denotes the concentration
of some transported species, u0(x) the initial concentration, and v(x, t) = (v1(x, t), v2(x, t), v3(x, t))T

the velocity field assumed to be given either by measurements or by solving a flow problem such as
Navier-Stokes or shallow water equations. In (1), the transport equation has to be solved for the time
interval (0, T ] in the spatial domain Ω equipped with given boundary and initial conditions. In practice,
the boundary conditions are problem-dependent and their discussion is postponed for section 3 where
numerical examples are discussed in details. Note that the total derivative in (1) measures the rate of
change of the function c following the trajectories of the flow particles.

To discretize the three-dimensional spatial domain Ω, we generate a quasi-uniform partition Ωh ⊂ Ω
of small finite elements Tj that satisfy the following conditions:

(i) Ωh =

Ne⋃
j=1

Tj , where Ne is the number of elements in Ωh.

(ii) If Ti and Tj are two different elements of Ωh, then

Ti ∩ Tj =


Pij , a mesh point, or

Γij , a common face, or

∂Γij , a common edge, or

∅, empty set.
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(iii) There exists a positive constant k such that for all j ∈ {1, · · · , Ne}, Rj

hj
> k (hj ≤ h), where Rj is

the radius of the sphere inscribed in Tj and hj is the largest edge of Tj .

The conforming finite element space for the solution that we use is defined as

Vh =
{
ch ∈ C0(Ω) : ch

∣∣
Tj
∈ P (Tj), ∀ Tj ∈ Ωh

}
, (2)

with
P (Tj) =

{
p(x) : p(x) = p̂ ◦ F−1

j (x), p̂ ∈ Pm(T̂ )
}
,

where p̂(x) is a polynomial of degree ≤ m defined on the element T̂j and Pm(T̂ ) is the set of polynomials
of degree ≤ m defined on the reference element T̂ . Here Fj : T̂ −→ Tj is an invertible one-to-one mapping
between physical and reference elements.

For the time discretization, we divide the time interval into N subintervals [tn, tn+1] with length
∆t = tn+1− tn for n = 0, 1, . . . , N . We also use the notation wn to denote the value of a generic function
w at time tn. Hence, we formulate the finite element solution to wn(x) as

wnh(x) =
M∑
j=1

Wn
j φj(x), (3)

where M is the number of solution mesh points in the partition Ωh. The functions Wn
j are the corre-

sponding nodal values of wnh(x) defined as Wn
j = wnh(xj) where {xj}Mj=1 are the set of solution mesh

points in the partition Ωh. In (3), {φj}Mj=1 are the set of global nodal basis functions of Vh characterized
by the property φi(xj) = δij with δij denoting the Kronecker symbol. We introduce {x1, . . . ,xNd} the
set of Nd node points in the element Tj . Hereafter, unless otherwise stated, the subscripts h and j are
used to refer to coefficients associated with the whole mesh Ωh and a mesh element Tj , respectively.

2.1 Calculation of departure points

Let us denote by Xh(t) the discrete characteristic curves associated with the material derivative (1) which
solve the following initial-value problem

dXh(t)

dt
= vh (Xh(t), t) , ∀ (xh, t) ∈ Ωh × [tn, tn+1],

(4)
Xh(tn+1) = xh,

with Xh(t) = (Xh(t), Yh(t), Zh(t))T is the departure point representing the location at time t of a particle
that reaches the point xh = (xh, yh, zh)T at time tn+1. Thus, for all xh ∈ Ωh and t ∈ [tn, tn+1] the
solution of (4) can be expressed as

Xh(tn) = xh −
∫ tn+1

tn

v (Xh(t), t) dt. (5)

In order to approximate the integral in (5), we use a second-order extrapolation based on the mid-point
rule as proposed in [37] in the context of semi-Lagrangian schemes to integrate the weather prediction
equations. Hence, we use dh to denote the displacement between a mesh point on the new level, xh, and
the departure point of the trajectory to this point on the previous time level Xh(tn), i.e.

dh = xh −Xh(tn).
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Applying the mid-point rule to approximate the integral in (5) yields

dh = ∆tvh

(
Xh(tn+ 1

2
), tn+ 1

2

)
. (6)

Using the second-order extrapolation

vh(xh, tn+ 1
2
) =

3

2
vh(xh, tn)− 1

2
vh(xh, tn−1), (7)

and the second-order approximation

Xh(tn+ 1
2
) = xh −

1

2
dh,

we obtain the following implicit formula for dh

dh = ∆t

(
3

2
vh

(
xh −

1

2
dh, tn

)
− 1

2
vh

(
xh −

1

2
dh, tn−1

))
.

To compute dh we consider the following successive iteration procedure:

d
(0)
h = ∆t

(
3

2
vh (xh, tn)− 1

2
vh (xh, tn−1)

)
,

(8)

d
(k)
h = ∆t

(
3

2
vh

(
xh −

1

2
d

(k−1)
h , tn

)
− 1

2
vh

(
xh −

1

2
d

(k−1)
h , tn−1

))
, k = 1, 2, . . . .

The iterations (8) are terminated when the following criteria∥∥d(k) − d(k−1)
∥∥∥∥d(k−1)

∥∥ < ε, (9)

is satisfied for the Euclidean norm ‖ · ‖ and a given tolerance ε. In all our simulations, the iterations
in (8) were continued until the trajectory changed by less than ε = 10−7. However, in practice it is not
recommended to repeat the iteration process more than a few times due to efficiency considerations.

Note that, since the departure point Xh(t) would not lie on a mesh point in Ωh, the concentration
at the characteristic feet must be obtained by interpolation from known values at the gridpoints of the
element where Xh(t) belongs. Here, the Lagrangian interpolation is performed in the host element of
departure points using the finite element basis functions. Therefore, an advantage of the finite element
method is that it can employ a high-order basis functions and there is no need for constructing explicitly
interpolation polynomials as usually carried out in the finite difference discretizations, compare the
references [37, 33, 34] among others. Thus, the finite element solution c̃nh = c (Xh(t), tn) is approximated
by

c̃nh =

M∑
j=1

C̃nj φj , (10)

where C̃nj are nodal solutions evaluated by finite element interpolation of cnh(x) at the feet of characteristic
curves Xh(t). This procedure needs less computational work than using a piecewise exact method for
projecting the information from the background Eulerian grid onto the Lagrangian grid as reported in
[15, 30] among others. Note that other interpolation procedures such as bi-cubic spline [1] can also be
used in (10).
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Figure 1: An example of low-order (left) and high-order (right) finite elements used in our simulations.

2.2 Formulation of slope limiters

The most common interpolation procedures in practical applications are the Lagrangian interpolations
of high degrees. However, most of interpolation procedures of degree ≥ 2 are not monotone and do note
conserve the positivity of the computed solutions. In order to overcome this drawback, we incorporate
slope limiters to our modified method of characteristics. This implies that a solution, obtained by
interpolating in a tetrahedral element, lies between the maximum and minimum values in the vertices of
this grid element. In this way we obtain a non-oscillatory algorithm at minor additional computational
cost that possesses good shape preserving of the transported fields in the vicinity of strong gradients and
preserves the order of convergence in regions where the solution is sufficiently smooth. An example of
low-order and high-order solution elements used in our computations is shown in Figure 1. Here, the
linear P1 elements and the quadratic P2 elements are used as low-order and high-order interpolations,
respectively.

Next, we formulate the resulting slope limiters for the convection problem (1) using the finite elements
shown in Figure 1. Thus, the numerical procedure to approximate the solution c̃n is carried out in the
following steps:

1. Compute the departure point Xj(tn) using the procedure (5)-(8).

2. Search-locate the tetrahedral element T̃j where the departure point Xj(tn) belongs.

3. Calculate the high-order nodal approximation

c̃nHj =

NH∑
k=1

C̃jkφjk (Xj(tn)) , (11)

where {φj1, . . . , φjNH
} are the quadratic local basis functions of the element T̃j . As stated before,

Lagrange interpolations of degree ≥ 2 lead to numerical results that exhibit an oscillatory behavior
and do not satisfy the discrete maximum principle.

4. Calculate the low-order nodal approximation

c̃nLj =

NL∑
k=1

C̃jkϕjk (Xj(tn)) , (12)
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where {ϕj1, . . . , ϕjNL
} are the linear local basis functions on the element T̃j . It is well-known that

the linear interpolation is monotone and the numerical solutions obtained by this linear interpolation
are free of oscillations and artificial extrema.

5. Evaluate the solution c̃nj using the combination

c̃nj = Ψn
j c̃
n
Hj +

(
1−Ψn

j

)
c̃nLj , (13)

where Ψn
j ∈ [0, 1] is a limiting function used to control the amount of correction in the low-order

approximation (12) in order to obtain a non-oscillatory solution. Note that for Ψn
j = 0, the obtained

solution in (13) reduces to the linear approximation, whereas a quadratic approximation is achieved
for Ψn

j = 1. In the current study, to improve the accuracy and reduce the numerical diffusion for
the low order interpolation, we consider a limiter function Ψn

j based on the slope of the solution

σnj = max
(
c+
j − c̃

n
j , c̃

n
j − c−j

)
where c+

j and c−j are respectively, the maximum and minimum of the nodal solutions cnji (with

i = 1, . . . , NH) at the host element T̃j defined as

c−j = min
(
cnj1, . . . , c

n
jNH

)
, c+

j = max
(
cnj1, . . . , c

n
jNH

)
.

Here, the limiter function Ψn
j should be selected to guaranty the monotonicity of the proposed

modified method of characteristics i.e. the obtained solution c̃nj remains bounded in [c−j , c
+
j ] at

each time step. In this study, we consider the following limiter function

Ψn
j =


min

(
1,max

(
c+
j − c̃nLj

c̃nHj − c̃nLj
,
c−j − c̃nLj
c̃nHj − c̃nLj

))
, if c̃nHj − c̃nLj 6= 0,

1, if c̃nHj − c̃nLj = 0,

(14)

Note that this technique consists of computing the nodal values of the numerical solution by adding to
the values of a low-order solution, which is monotone, a correction term that contains the contribution of
a high-order solution and does not violate the monotonicity properties of the low-order solution. Indeed,
using the limiting procedure (11)-(14), the computed solution remains within the largest and the smallest
values of the solution in a set of mesh points surrounding the departure point. Therefore, the interpolation
procedure does not generate any extrema which is not possessed by the solution in a neighborhood of the
foot of characteristics. Note that other limiter functions can also be used in (13) without major conceptual
modifications. For the mesh elements shown in Figure 1, the numbers of low-order and high-order local
basis functions are NL = 4 and NH = 10, respectively.

3 Numerical results

To assess the performance of the proposed slope limiter procedure we present numerical results for several
examples of transport problems in three space dimensions. For the first class of examples, analytical
solutions are readily available which makes it ideal for a quantitative as well as qualitative validation of
the proposed method. Thus, we can evaluate the total error as

ETot =

∫
Ω

(c− cexact)
2 dx,
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Figure 2: Finite element meshes with spatial steps h = 1
32 (left), 1

64 (middle) and 1
128 (right) used in our

simulations for transport problems in the circular and elliptical flow fields.

where c and cexact are numerical solution and the analytical solution, respectively. We also compute the
dissipation error EDiss and the dispersion error EDisp defined in [36] by

EDiss = (σ (c)− σ (cexact))
2 + (c− cexact)

2 , EDisp = 2 (1− ρ)σ (c)σ (cexact) , (15)

where σ (c) and c are the canonical deviation and the mean of the solution c, respectively. In (15), ρ
denotes the correlation coefficient between c and cexact. It is also shown in [36] that

ETot = EDiss + EDisp.

In this section, we compare numerical results obtained using the linear P1 elements, the quadratic P2

elements and the proposed slope limiter procedure for the considered examples. We also present numerical
results for a passive transport problem in a deformed pipeline with a well-defined flow field. It should be
noted that we consider only problems with non-smooth solutions as for the case with smooth solutions,
the limiting procedure introduces some peak clipping which is expected and it does not harm the overall
accuracy of the method. For all simulations, the CFL number associated to the equation (1) is defined
as

CFL =
√

CFL2
x + CFL2

y + CFL2
z, (16)

where

CFLx = max
x,y,z
|v1|

∆t

h
, CFLy = max

x,y,z
|v2|

∆t

h
, CFLz = max

x,y,z
|v3|

∆t

h
,

with h is the spatial step in the finite element discretization. Here, the CFL number is fixed and values
of the time step ∆t are obtained form (16). Note that to reduce the computational cost, the CFL
numbers are chosen as large as possible which yield explicit Eulerian-based schemes noncompetitive. All
the computations were performed on a Pentium PC with Intel Core i7-7700HQ of 8 GB of RAM and 8
GHz using serial Fortran compiler.

3.1 Rotating slotted sphere in a circular flow

To assess the performance of the proposed slope limiters we consider the problem of slotted sphere in a
circular flow field. Here, we solve the transport equation (1) in the unit cube Ω = [−0.5, 0.5]×[−0.5, 0.5]×
[−0.5, 0.5] subject to the flow field v = (−ωy, ωx, 0)T , with an angular velocity ω = 4. The sphere is
centered at (−0.25, 0, 0) of radius 0.15 and height of 1 along with a slot in the xy-plane of width 0.06 and
a length of 0.22. For this case, the total time required for one complete revolution is π

2 . Note that this
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CFL = 2.5 CFL = 5 CFL = 10

Figure 3: Contourlines of the solution at z = 0 for rotating slotted sphere in a circular flow after one
revolution (first row) and after two revolutions (second row) using h = 1

128 and different CFL numbers.

problem can be considered as an extension to three space dimensions of the well known two-dimensional
Zalezak’s slotted disk [40]. This class of test examples has been widely used to examine the non-oscillatory
and monotonicity-preserving properties for numerical methods solving transport problems with sharp
discontinuities. We present numerical results using three different structured meshes with 33× 33× 33,
65×65×65 and 129×129×129 nodes as shown in Figure 2. Three different values for CFL are considered
in this study namely CFL = 2.5, 5 and 10.

In Figure 3 we present contourlines in the xy-plane at z = 0 of the exact solution and the solutions
obtained using the linear P1 elements, the quadratic P2 elements and the proposed slope limiter procedure
after one and two revolutions on the mesh with 129 × 129 × 129 nodes. For better insight, only part of
the domain Ω, [−0.5, 0]× [−0.25, 0.25], is shown in these plots. Figure 4 illustrates the one-dimensional
cross-sections at y = z = 0 of the results presented in Figure 3 using different number of elements
and different values of CFL. Those one-dimensional cross-sections at y = z = 0 obtained after two
revolutions are presented in Figure 5. A visual comparison of the computed results shows excessive
numerical dissipation, severe overshoots, deformation and phase errors in the solutions computed using
the linear P1 elements and quadratic P2 elements. After one complete revolution, the quadratic P2

elements exhibit non-physical oscillations and substantially greater distortions localized specially at the
feet and the upper face of the slotted sphere where discontinuities are more sharper than elsewhere in
the computed solutions. The magnitude and frequency of these non-physical oscillations increase as
the number of revolutions increases. On the other hand, numerical dissipation can be clearly seen in
the results obtained using the linear P1 elements. It is also noticeable that this numerical dissipation
is more pronounced for small values of CFL and it reduces as the finite element mesh is refined. For
example, in a mesh with 65 × 65 × 65 nodes and after two revolutions, the solutions obtained using
P1 elements exhibit substantially large numerical diffusion at the feet of the slotted sphere where the
gradient is sharp, see the results displayed in Figure 5. From the same figures we observe a full absence of
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CFL = 2.5 CFL = 5 CFL = 10

Figure 4: Cross-sections of the solution at y = z = 0 for rotating slotted sphere in a circular flow after 1
revolution using different values of CFL and meshes with h = 1

64 (first row) and h = 1
128 (second row).

CFL = 2.5 CFL = 5 CFL = 10

Figure 5: Same as Figure 4 but after two rotations.
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these numerical dissipation and non-physical oscillations in the results obtained using our slope limiting
procedure. Note that the accuracy in the proposed slope limiting procedure improves as the value of
CFL increases, compare the results obtained using the low CFL = 2.5 and the high CFL = 10 in both
Figure 4 and Figure 5. It is clear that the proposed finite element modified method of characteristics
using slope limiters performs best for this test example.

A quantitative comparison study of the results obtained using the linear P1 elements, the quadratic
P2 elements and the slope limiting approach for different values of CFL and mesh densities after one
and two revolutions is summarized in Table 1. We report the minimum (Min) and the maximum (Max)
values of the computed solutions, the errors EDiss, EDisp and ETot and the computational (CPU) times
given in seconds. In terms of the considered errors in Table 1, the results obtained using the P2 elements
are more accurate than those obtained using the P1 elements for all the considered values of CFL. It is
also clear that the slope limiters do not deteriorate the accuracy of the proposed modified method of
characteristics. Furthermore, increasing the values of CFL results in a decrease of the total error in all
considered methods. Only results obtained using slope limiters exhibit a reduction of EDisp errors as
CFL increases. In addition, results obtained for EDiss, EDisp and ETot errors using the slope limiters
in Table 1 demonstrate that these results are free from any spurious oscillations and monotone during
the time integration process. In fact, the limited solutions reveal the physics well in this test example.
From the values of Max and Min in Table 1 we observe very low values of Max for the results obtained
using the P1 elements and high and negative values for the results obtained using the P2 elements which
are avoided in the results obtained using the slope limiters. It is also evident that the CPU times in the
modified method of characteristics using the P2 elements are larger than the CPU times using the P1

elements. For the considered transport conditions, the CPU time of the quadratic P2 elements is about
seven times larger than the CPU time of the linear P1 elements. However, the difference between the
CPU times for the quadratic P2 elements and the slope limiters it minimal and it is about 1% for all the
simulations.

3.2 Transport of a unit sphere in elliptical flows

In this example we consider a fully three-dimensional transport problem of rotating a pulse in oblique
flow fields proposed in [7]. The governing equations are given by (1) where the velocity is defined as
v = (−ωy, ωx, (x + y)/2)T with ω = 4. Initial and boundary conditions are derived from the analytical
solution

u(x, y, z, t) =


1, if r(t) < R,

0, if r(t) ≥ R,

where R = 0.1 and r(t) =
√

(x̄(t)− x0)2 + (ȳ(t)− y0)2 + (z̄(t)− z0)2 with x0 = −0.25, y0 = 0, z0 = 0.25,
x̄(t) = x cos(ωt) + y sin(ωt), ȳ(t) = −x sin(ωt) + y cos(ωt) and z̄ = z − (x̄ − x + ȳ − y)/2. As in the
previous test example, the computational domain is the unit cube Ω = [−0.5, 0.5]3 covered by different
uniform meshes with 33× 33× 33, 65× 65× 65 and 129× 129× 129 nodes as shown in Figure 2. We also
present numerical results using three different values for CFL = 2.5, 5 and 10. The time period required
for one complete oblique rotation is π

2 and the time steps used in the simulations are calculated using
the definition (16).

In Figure 6 we display the plots for iso-surface of the computed solutions after one rotation using two
meshes with 65 × 65 × 65 and 129 × 129 × 129 nodes and CFL = 10. It is clear that the slope limiting
procedure preserves the shape of the computed solutions with a little numerical diffusion compared to the
solutions computed using the P2 elements and the P1 elements where oscillations are very remarkable.
It is clear that the numerical results obtained using P1 elements are more diffusive than those computed
using the slope limiting procedure. To further visualize this effects, we display in Figure 7 and Figure

11
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P2 Elements P1 Elements Limiting

Figure 6: Iso-surfaces for rotating a sphere in the elliptical flow using CFL =10 and h = 1
64 (first row)

and h = 1
128 (second row).

8 the one-dimensional cross-sections along the horizontal line at y = z = 0 for the results using three
different values of CFL = 2.5, 5 and 10. As can be seen, the resolution and location of the transport
in this example are deteriorated with the excessive numerical dissipation included by the P1 elements.
The solution obtained using the slope limiters eliminates the non-oscillatory oscillations near the feet of
the sphere where discontinuities are steep. Note that, using slope limiters in the modified method of
characteristics, the obtained solver is free of excessive numerical diffusion and non-physical oscillations.
Thus, the transport is well resolved without requiring fine meshes or small time steps.

Now we turn our attention to a quantitative comparison of the results using the P1 elements, P2

elements and slope limiters for different values of CFL and mesh densities. In Table 2 we list the errors
EDiss, EDisp and ETot, the maximum (Max) and the minimum (Min) values of the computed solutions
and the CPU times for obtained using the considered methods after one and two revolutions. For this
fully three-dimensional transport, the errors obtained using the proposed slope limiting and P2 elements
are more accurate than those results obtained using the P1 elements for both one and two revolutions.
Note that large errors and low values of Max in Table 2 for the results obtained using the P1 elements.
The unrealistic large values of Max in the results obtained using the P2 elements are also noticeable in
this table. Refining the mesh or increasing the value of CFL yield improvements in the results obtained

13



CFL = 2.5 CFL = 5 CFL = 10

Figure 7: Cross-sections of the solution at y = z = 0 for rotating a sphere in the elliptical flow after one
revolution using different CFL numbers and meshes with h = 1

64 (first row) and h = 1
128 (second row).

CFL = 2.5 CFL = 5 CFL = 10

Figure 8: Same as Figure 7 but after two revolutions.
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Figure 9: Geometry of the deformed pipe used in our simulations.

Figure 10: Computational mesh used for passive transport in a deformed pipe.

for the errors and the maximum values of the computed solutions in all methods but the results obtained
using the proposed slope limiting are more accurate than those obtained using the P1 and P2 elements.
Needless to mention that, as in the previous test example, the additional computational work required
for the slope limiting procedure has been kept minimal compared to the its counterpart using the P2

elements, see the differences in CPU times in Table 2. Therefore, the performance of our modified method
of characteristics is very attractive since the computed solutions remain monotone and highly accurate
without requiring highly refined meshes or small time steps to be accounted for in the simulations.

3.3 Passive transport in a deformed pipe

Our final concern is to ascertain the performance of the proposed modified method of characteristics for
solving transport problems in pipeline flows. To this end we consider a test example for the transport of
a concentration in a deformed pipe subject to three-dimensional incompressible flow. The geometry of
the pipe is illustrated in Figure 9 and a well developed velocity field is assumed to be given by solving
the incompressible Navier-Stokes equations. Initially,

c(x, y, z, 0) =


1, if r < R0

0, if r ≥ R0,

where r =

√(
x−2

4

)2
+ y2 + z2 and R0 = 0.2. In our computations, we set CFL = 10 and consider

two unstructured meshes with tetrahedral finite elements as depicted in Figure 10. The corresponding

Table 3: Mesh statistics and CPU times (in seconds) for the problem of a passive transport in a deformed
pipe using the P1 elements, the P2 elements and the slope limiters.

CPU

Mesh # elements # P2 nodes # P1 nodes P1 elements P2 elements Limiting

Mesh A 207729 304211 40591 3.314 12.541 13.453

Mesh B 472112 666689 85692 7.152 19.461 20.578
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P2 Elements Limiting

Figure 11: Numerical results obtained for passive transport in a deformed pipe using the P2 elements
(left column) and the slope limiters (right column) on Mesh A at five different instants. From top to
bottom t = 0.4 s, 1.5 s, 2 s, 3 s and 4 s.

statistics of elements and nodes in P1 and P2 elements are listed in Table 3. Note that Mesh B is not
included in Figure 10 because of its density which results in a heavily black plot.

Figure 11 illustrates the concentration patterns obtained at five different times, namely t = 0.4 s,
1.5 s, 2 s, 3 s and 4 s using the P2 elements and the proposed slope limiters. For better insight, only
a lateral section of the pipe is used to display the results. For comparison purposes, Figure 12 depicts
the one-dimensional cross-sections of the concentration at y = z = 0. It is easy to see from both figures,
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Mesh A Mesh B

Figure 12: Cross-sections of the solution at y = z = 0 obtained for passive transport in a deformed pipe
using the P1 elements, the P2 elements and the slope limiters on Mesh A (left column) and Mesh B (right
column). Here, t = 2 s (first row) and t = 4 s (second row).

that solutions obtained using the Mesh B are more accurate than those obtained using the coarse Mesh
A. The results obtained using the slope limiters exhibit a good shock resolution with a high accuracy
in the smooth regions and without any non-physical oscillations near the shock areas. The comparison
between the results obtained using P2 and P1 elements in Figure 12 illustrates large numerical dissipation
in the results obtained using the P1 elements and spurious oscillations in the results obtained using the
P2 elements. However, the results presented in the same figure for the slope limiters are free from non-
physical oscillations and excessive numerical diffusion. From the results computed using the slope limiters
we can observe that the complicated transport features in the deformed pipeline being well captured by
the modified method of characteristics on unstructured finite elements. It is worth remarking that all
these structures have been achieved using time steps larger than those required for Eulerian-based finite
element methods solving convection-dominated problems. For the sake of completeness, we summarize
in Table 3 the computational times in the considered methods. The clear indication from this table is
that the CPU time employed by the P2 elements and the slope limiters is approximately four times larger
than in the P1 elements for the same mesh. As can be observed, there is little differences between the
CPU times in the P2 elements and in the slope limiters.
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4 Concluding remarks

A monotonicity-preserving modified method of characteristics on unstructured tetrahedral meshes is
presented in this study for solving three-dimensional transport problems. This method exploits the inter-
esting features offered by slope limiters to eliminate non-physical oscillations in the computed solutions
near discontinuities and steep gradients. The proposed method combines the modified method of char-
acteristics with a finite element discretization of the transport problems using unstructured grids. The
main advantage of the proposed method is that, the advection terms which need special treatment in
most Eulerian-based methods has been dealt with using the modified method of characteristics to inter-
pret the transport nature of the equation under consideration. Slope limiters are accounted for in the
method to reconstruct a monotone and essentially non-oscillatory solver for three-dimensional problems
at minor additional cost. Here, a class of limiter functions is proposed based on linear and quadratic
interpolation procedures using nodes of the finite element where departure points are localized. The
favorable performance of the modified method of characteristics has been demonstrated using a series
of numerical examples including a passive transport in three-dimensional pipeline flows. A compari-
son between the proposed method and the conventional modified method of characteristics using linear
and quadratic finite elements were also performed in the current work. The obtained results using the
proposed method show good solution resolution and less numerical dissipation compared to the results
computed using the quadratic and linear elements, respectively. The computational results for trans-
port in pipelines showed that it is possible to efficiently estimate the concentration transport with a
computational cost significantly lower than solving the equations using the conventional finite element
method. The proposed modified method of characteristics is promising and can be applied to different
real world applications involving transport models where predicting the concentration can substantially
benefit from the efficiency and accuracy of the proposed solver. Future work will concentrate on de-
veloping monotonicity-preserving modified method of characteristics for nonlinear convection-diffusion
problems including the incompressible Navier-Stokes equations in three space dimensions.
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