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Abstract
Together, a digital twin and its physical counterpart can be seen

as a self-adaptive system: the digital twin monitors the physical

system, updates its own internal model of the physical system,

and adjusts the physical system by means of controllers in order

to maintain given requirements. As the physical system shifts be-

tween different stages in its lifecycle, these requirements, as well as

the associated analyzers and controllers, may need to change. The

exact triggers for such shifts in a physical system are often hard

to predict, as they may be difficult to describe or even unknown;

however, they can generally be observed once they have occurred,

in terms of changes in the system behavior. This paper proposes an

automated method for self-adaptation in digital twins to address

shifts between lifecycle stages in a physical system. Our method

is based on declarative descriptions of lifecycle stages for differ-

ent physical assets and their associated digital twin components.

Declarative lifecycle management provides a high-level, flexible

method for self-adaptation of the digital twin to reflect disruptive

shifts between stages in a physical system.

CCS Concepts
• Software and its engineering → Abstraction, modeling and
modularity; Software architectures.
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1 INTRODUCTION
Digital twins are typically used in cyber-physical systems (CPS),

where the physical part, the so-called physical twin, consists of
different physical assets, and the digital part, the digital twin itself,

consists of components that monitor, analyze and control the be-

havior of these physical assets [11]. The digital and physical twins

interact: observations flow from the physical to the digital twin

and control decisions flow back from the digital to the physical
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twin. Digital twins are model-centric: they maintain a live replica

of the physical twin by continuously reflecting on observations of

the physical system in a model that can be used for analysis and

decision-making. Following an external approach to self-adaptive

systems [38], the digital twin appears as a managing system and the

physical twin as the managed subsystem; the managing subsystem

may be realized by a MAPE-K feedback loop [7, 23].

As the digital twin needs to adapt to reflect changes in the physi-

cal twin, then digital twins need to be kept in sync with the twinned

physical system to avoid model drift [24, 39, 36]. The feedback loop

of the digital twin enables adjustments to fine-tune the controllers,

thereby realizing behavioral self-adaptation [6]. However, disruptive
shifts in the behavior of the physical system or in the associated re-

quirements may invalidate the DT components used by the feedback
loop of the digital twin to manage the physical system, including

the different requirement analyzers and controllers. Whereas be-
havioral self-adaptation amounts to adjusting the behavior of the

physical twin, architectural self-adaptation corresponds to reconfig-

uring the digital twin itself to reflect changes in the structure and

requirements of the physical system. The goal of architectural self-

adaptation in a digital twin is to maintain architectural coherence
with the physical twin; that is, the different assets of the physi-

cal system should be matched correctly in the digital twin by the

corresponding DT components.

We can often understand disruptive shifts in a physical system,

which require architectural self-adaptation in the digital twin, in

terms of transitions between different stages in the lifecycle of

the physical system. As such, physical assets in engineering pass

through stages, from design or commissioning to decommissioning

(via construction and operation). For example, (i) a production line

in a factory might be well-functioning until some part suddenly

breaks down, potentially requiring a completely different manage-

ment strategy for the entire factory; (ii) a plant in a greenhouse,

which used to be healthy, might get infected, and suddenly require

pesticide and a different watering regime than a healthy plant.

The physical system shifts through different stages that influence

which DT components the digital twin should use. The correct

configuration of the digital twin depends on the current stages of

different assets in the physical system. The triggers of transitions

between different stages of a physical asset might be unknown.

Therefore, the transitions between the lifecycle stages of physical

assets may be hard or even impossible to predict accurately by the

digital twin at runtime.

This paper proposes a two-layered self-adaptive architecture

(depicted in Fig. 1) that enables a digital twin to adapt to the life-

cycle stages of the assets it manages. The novel notion of stage
management is used for architectural self-adaptation of the digital
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twin to reconfigure the behavioral self-adaptation layer, thereby re-

flecting lifecycle changes in the twinned physical system. Thus, our

work separates behavioral (e.g., adjusting an existing controller to

better maintain a desired policy) and architectural self-adaptation

(e.g., adding a new controller to the configuration in Layer 1), as

advocated in, e.g., the MORPH reference architecture [6].

Our focus in this paper is on how stage management can ad-

dress architectural self-adaptation and the corresponding notion

of architectural coherence between the digital and physical twin.

Together, architectural self-adaptation and architectural coherence

provide the means to answer relevant questions about the digital

twin; e.g., is the digital twin’s behavioral feedback loop currently

using the correct DT components? Does the twin’s analyzer com-

ponent correctly evaluate the current requirements? How well do

the controllers that manipulate the actuators of the physical assets

(in the executor component) reflect the current control policy?

In addition to the behavioral self-adaptation previously discussed,

the proposed architectural self-adaptation will be realized by a sec-

ond MAPE-K feedback loop (depicted in blue in Fig. 1). In this

additional feedback loop, the analyzer is concerned with the co-

herence of the digital twin concerning the physical twin, while

the execute component is concerned with repair functions over

DT components; i.e., architectural self-adaptation consists of re-

configuring or replacing the DT components of the first feedback

loop. We need to express the relation between the asset and the DT

components at any point in its lifecycle, detect the stage of an asset

in its lifecycle and adapt to stage changes by reconfiguring the DT

components. To provide the reasoning and querying capabilities

for stage management, we consider the use of knowledge graphs.

Our approach to stage management is based on so-called declar-
ative stages. Crucially, it is not required that the conditions that

trigger transitions between stages are known. Instead, conditions

are specified that express when an asset in a system should be con-

sidered to be in a certain stage, stage analyzers are used to detect

these conditions, and compatibility conditions between stages are

identified to ensure that self-adaptation does not fail. We illustrate

our self-adaptation framework for architectural reconfiguration

with a case study of an automated greenhouse. We also discuss how

to apply the framework to other systems.

Contributions. The main contributions of this paper are

Knowledge Base

Layer 1
Planner

Layer 1
Analyzer

Layer 1
Executor

Layer 2
Planner

Layer 2
Analyzer

Layer 2
Executor

Physical
AssetsSensors Actuators

Monitor

Architectural self-
adaptation (blue)

Behavioral self-
adaptation (gray)

Physical system

Figure 1: A two-layered self-adaptive digital twin architec-
ture with MAPE-K feedback loops for behavioral (gray) and
architectural (blue) self-adaptation.

Figure 2: A mini-greenhouse with basils and sensors.

(1) A two-layered self-adaptive architecture for digital twins, inwhich
a feedback loop for architectural self-adaptation is used to re-

configure the twin’s behavioral feedback loop;

(2) Declarative stages: a design method for modeling change in

terms of the lifecycle stages of physical assets, and its formaliza-

tion as a semantic model that can be used in knowledge bases;

and

(3) Stage management: an automated method for architectural self-

adaptation that selects the appropriate configuration of a digital

twin, based on the modeled declarative stages.

We also provide a prototype implementation of the self-adaptive

architecture, based on the GreenhouseDT exemplar [21], and an

evaluation to assess the overheadwhen using semantic technologies

to implement declarative stages over a time-consuming manual

implementation.

2 MOTIVATING EXAMPLE
To illustrate self-adaptation with declarative stages, consider a

digital twin for “smart mini-greenhouse” with a basil plant (see

Fig. 2). The physical twin consists of the basil plant, NVDI
1
and

soil moisture sensors, two pumps (one for pesticide, one for water)

and a camera. The digital twin consists of a model of the basil, the

pumps and the camera, together with requirement analyzers for

the moisture and NVDI sensors, and requirement analyzers and

controllers for each pump.

Observe that multiple lifecycles, each with different stages, can

be needed to describe the assets of this physical system. We here

consider the following lifecycles, and the sensors used to detect

their stages:

(1) The basil is either healthy or sick, which can be detected

using the NVDI measurement,

(2) the basil is either a seed or a plant, which can be detected

using image classification,

(3) the pumps are either unreliable or reliable, which can be

detected by the pump’s requirement analyzer.

The basil requires a different target moisture level 𝑚 depending

on its stage, say𝑚 ≤ 0.5 for sick plants and𝑚 ≤ 0.7 for healthy

plants, and thus a different controller. Similarly the pumps will need

1
Normalized difference vegetation index (NVDI) is a measure that can be used for the

health analysis of vegetation [26].
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different controllers with varying degrees of precision, depending

on their stages. The example shows how multiple lifecycles can be

useful to describe a physical system, and may even involve the same

physical component (e.g., the basil in our example). As these may

evolve independently, the digital twin’s self-adaptive behavior will

need to adapt to combinations of stages from the different lifecycles.

3 BACKGROUND
3.1 Self-Adaptive Layers in Digital Twins
We here briefly explain the idea of behavioral self-adaptation in the

context of digital twins. Although the literature does not provide

a uniform definition of a digital twin, some definitions have been

proposed [9]. Meanwhile, the MAPE-K feedback loop [7, 23, 38]

has been used to underpin properties of digital twins [13, 19, 35,

30, 10, 29]. For example, Flammini [13] considers a digital twin

framework using run-time predictive models for self-healing and

trustworthy autonomy of cyber-physical systems (CPS), Kamburjan

et al. [19] propose twinning-by-construction to ensure correctness

for self-adaptive digital twins, Splettstößer et al. [35] propose a

self-adaptive digital twin reference architecture to improve process

quality and Pfeiffer et al. [29] use MAPE-K to support digital twin

product line architectures.

Our work presented here also uses the MAPE-K loop for digital

twins.We assume that a physical twin consists of a number of assets,

and sensors and actuators associated to these assets. Behavioral self-

adaptation is concerned with adjusting the behavior of the assets in

the physical twin, based on the analysis of a model of these assets.

Behavioral self-adaptation is realized in terms of a MAPE-K feed-

back loop with the following DT components:monitor components

that collect streams of observations from the assets of the physical

twin and updates the digital twin’s knowledge model of these as-

sets (sometimes called the digital shadow), analyzer components

that analyze these streams with respect to a set of requirements

and triggers the need of behavioral self-adaptation when these re-

quirements are not longer met, planner components that determine

which adaptation actions are needed to meet the requirements, and

executor components that execute the changes in the behavior of

the controller that control the physical twin via given actuators.

Digital twins are model-centric, as these components interact with

a knowledge base that maintains a model of the physical system.

Behavioral self-adaptation corresponds to the Layer 1 feedback loop

depicted in gray in Fig. 1.

3.2 Semantic Technologies
We introduce knowledge graphs and ontologies by example, with

a focus on the underlying technologies and their capabilities. In

particular, we focus on theWeb Ontology Language (OWL) [15] and

its Manchester syntax [18], which we use for modeling and queries.

Knowledge Graphs. A knowledge graph consists of a set of triples

and an ontology (discussed below). In a triple (𝑠, 𝑝, 𝑜), the subject 𝑠 is
an individual or class name, 𝑝 a predicate and object 𝑜 an individual,

class name or data value.

Example 1. We can express that an asset ast is a basil and has
the nvdi value 4 with the two triples

(ast1,nvdi,4) (ast1, 𝑎, Basil).

Here, ast1 is an individual, nvdi a property, 4 a data value, Basil a class
name and 𝑎 a property for class membership.

Ontologies. Ontologies have been proposed for knowledge repre-

sentation in numerous digital twins applications [22]. An ontology
is a set of axioms over classes C and properties P, describing condi-

tions that must hold for all triples in a knowledge graph. We briefly

introduce OWL classes and properties, using the standard OWL

2.0.
2
OWL also has data types, for now we will only need the type

int for integers. OWL distinguishes between object properties, that

are relations between individuals, and data properties, which are

relations between individuals and data values. Below, the notation

( · )? denotes optional elements.

A class is a named set of individuals. For our needs, a class C has

the following form, where D, D𝑖 are other class names:

Class: C SubClassOf: D
(DisjointWith: D1,. . . ,D𝑛 )? (EquivalentTo: Ax)?
(DisjointUnionOf: D1,. . . ,D𝑛 )?

The SubClassOf: D clause expresses that the class C is a subclass

of D, while DisjointWith: expresses disjointness. The EquivalentTo:
clause describes how to derive the membership of an individual to

C and DisjointUnionOf: describes that class C is a union of certain

other classes, which are all pairwise disjoint. The symbol Ax is a
conjunction (using the symbol and) of class names and restrictions,

which take the following forms: P some T[> n], P some T[≤ n] or P
some C (where P is a property name). Each restriction expresses

that an individual 𝑖 has at least one triple with predicate P and an

object described by C or T, possibly with a numeric restriction.

An object property is a named relation between two classes; for

example, an object property P with a domain C1 and a range C2 can
be expressed by

ObjectProperty: P (SubPropertyOf: S)?
Domain: C1 Range:C2.

where the optional clause SubPropertyOf: S expresses that it is
a subset of another object property S. Similarly, a data property is

a named relation between a class and a data type; for example, a

data property P with a domain C and a range T can be expressed by

DataProperty: P Domain: C Range: T
(Characteristics: functional)?

The optional clause Characteristics: functional additionally ex-

presses that the relation P is a function.

Queries. Queries are answered by logical deduction over the

defined structure. Given a knowledge graph, a membership query
member(C) returns all individuals that are members of the class C.
Given an ontology, a disjointness query disjoint(C1, . . . , C𝑛 ) decides
whether the classes C1, . . . , C𝑛 share individuals.

4 DECLARATIVE STAGES
A declarative stage provides a description of how a lifecycle stage of

a physical system can be recognized and how the digital twin needs

to adapt when the physical system transitions into this lifecycle

stage, but not why the transition into the stage occurs. For our

2
For details on OWL 2.0, see https://www.w3.org/TR/owl2-overview/.

https://www.w3.org/TR/owl2-overview/
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work presented in this paper, it is key that this design realizes a

clear separation of concerns between describing lifecycle stages

and describing temporal aspects such as the triggering conditions

for changes between these stages.

Self-Adaptation. During the life of the system, different assets

may change between different stages in their respective lifecycles,

and the digital twin will need to adapt its architectural configuration
accordingly. This adaptationmay involve removing DT components

that are no longer valid and starting up new DT components that

may be needed. For simplicity, we will focus the discussion on

requirement analyzers and controllers.

A digital twin that uses declarative stages must make them oper-

ationally; i.e., the declarative stages steps need to be incorporated in

an algorithm for self-adaptation. To this end, we consider aMAPE-K

feedback loop associated with declarative stages as follows.

• Monitor: The digital twin collects streams of observations

concerning the physical twin’s assets and updates the digital

twin’s knowledge model of these assets.

• Analyzer: For a given declarative stage, all assets at that

stage are analyzed for architectural coherence; for example,

the digital twin checks that a plant in a sick stage has the

correct requirement analyzer and controller for that stage.

• Planner: For each inconsistent asset, the digital twin iden-

tifies adaptation actions for the detected inconsistencies;

for example, a sick plant might have an associated require-

ment analyzer for𝑚 ≤ 7 when it should have a requirement

analyzer for𝑚 ≤ 5. Other DT components are handled anal-

ogously (e.g., controllers).

• Executor: The digital twin executes the required changes,

including the initialization and removal of requirement ana-

lyzers and controllers.

Already at this point, we can elicit some requirements.

(1) The knowledge base will need to not only include infor-

mation about the asset, but also about the DT components.

Additionally, the digital twin needs to provide reasoning and

query capabilities to deduce the declarative stage to which

an asset belongs.

(2) We will need to ensure some basic properties about the

declarative stages; in particular, different stages in a life-

cycle should not overlap, and an asset that is part of multiple

lifecycles cannot be inconsistent.

An asset is considered inconsistent if it can be in two stages of the

same lifecycle at the same time.

Observe that declarative stages apply to assets that can be iden-

tified independently of the current stage in their lifecycle, in terms

of their asset class. For example, a plant has a different asset class

than, let us say, a pump.

Definition 1 (Asset classes). An asset classA is a set of assets.
We assume that the assets in different asset classes are disjoint, i.e.,
A1 ∩ A2 = ∅.

For example, the class of all plants in our example is APlant and

each asset has a distinct identifier, e.g., plant1 ∈ APlant.

Declarative stages. A declarative stage in a lifecycle describes

the conditions that determine that an asset is in the stage, which

requirement analyzer and controller the digital twin needs for the

asset in this stage, and how to generate the requirement analyzer

and the controller when the asset enters this stage in the lifecycle.

The central notion we use is a consistent twin: a digital twin is

consistent if the set of DT components for each asset is correct

according to its current stage in the lifecycle.

We now provide definitions to make this notion precise, where

we impose no restrictions on the exact nature of a DT component

for our purposes:

Definition 2 (Component class). A component class C is a set
of assets. We assume that components in different classes are disjoint,
i.e., C1 ∩ C2 = ∅.

In our examples, we focus on two kinds of DT components:

requirement analyzers and controllers. Let us denote by I the

observational inputs to the digital twin, such as the streams of

sensor data. To access the current status of an asset a with respect

to an input stream i, we write i(a).
Example 2 (Reqirement analyzers and controllers). A re-

quirement analyzer ranl : I → B is a function from input streams to
Booleans, modeling the verdict. A controller ctrl : I → R is a function
from input streams to a real number modeling the control decision.

We define declarative stages formally as follows.

Definition 3 (Declarative stages). Let A be an asset class,
C = {C1, . . . , C𝑛} a set of component classes and C =

⋃
𝑖 C𝑖 their

union. A declarative stage DA,C is a pair

DA,C = ⟨member, consistent⟩,
where

• member ⊆ A is a set of assets;
• the relation consistent ⊆ member × 2

C describes for a given
asset all sets of DT components with which it is consistent.

We let 𝑋 range over sets of DT components and say that a

declarative stage DA,C is C𝑖 -requiring for some C𝑖 ∈ C if

∀𝑎 ∈ A, 𝑋 ∈ 2
C . (𝑎,𝑋 ) ∈ consistent → ∃𝑐 ∈ C𝑖 . 𝑐 ∈ 𝑋 .

This means that a member of C𝑖 is required for consistency. Sim-

ilarly, a declarative stage DA,C is C𝑖 -invariant for some C𝑖 ∈ C if

∀𝑎 ∈ A, 𝑋 ∈ 2
C . (𝑎,𝑋 ) ∈ consistent → ∀𝑐 ∈ C𝑖 . 𝑐 ∈ 𝑋 .

For a C𝑖 -invariant declarative stage, consistency does not depend
on members of C𝑖 .

In the sequel, we assume membership in the sets memberDA
and consistentDA to be decidable. We only use additional subscripts

to disambiguate declarative stages and their elements if these are

unclear from the context.

Example 3. We illustrate the specification of declarative stages by
considering sick and healthy plants. The corresponding declarative
stagesDSick andDHealthy are shown in Fig. 3. The NVDI measurement
is used to determine whether a plant 𝑎 is sick of healthy. The two
stages use different moisture settings in the corresponding requirement
analyzers. Here, we use invdi (𝑎) to denote the value of the NVDI
signal from plant 𝑎, im (𝑎) to denote the value of the moisture signal
from plant 𝑎, and ranl≤𝑥𝑚 (𝑎) to denote the requirement analyzer for
im (𝑎) ≤ 𝑥 . As before, 𝑋 ranges over sets of DT components.



Declarative Lifecycle Management in Digital Twins MODELS Companion ’24, September 22–27, 2024, Linz, Austria

DSick = {memberSick, consistentSick}
memberSick = {𝑎 | invdi (𝑎) ≤ 0.5}

consistentSick = {(𝑎,𝑋 ) | 𝑎 ∈ memberSick,
ranl≤5𝑚 (𝑎) ∈ 𝑋 }

DHealthy = {memberHealthy, consistentHealthy}
memberHealthy = {𝑎 | invdi (𝑎) > 0.5}

consistentHealthy = {(𝑎,𝑋 ) | 𝑎 ∈ memberHealthy,
ranl≤10𝑚 (𝑎) ∈ 𝑋 }

Figure 3: Declarative stages for Example 3.

We can easily see that the two stages of Example 3 are disjoint,

yet the two stages cover all plants. This illustrates the concept of

a lifecycle as a set of disjoint stages that cover a particular kind of

asset, formally defined as follows:

Definition 4 (Lifecycle). Let A be an asset class and 𝐼 an in-
dex set. A lifecycle LA for A consists of a set of declarative stages(
DA,C,𝑖

)
𝑖∈𝐼 such that the following conditions hold:

• A =
⋃

𝑖∈𝐼 memberDA,C,𝑖
• ∀𝑖, 𝑗 ∈ 𝐼 . 𝑖 ≠ 𝑗 ⇒ memberDA,C,𝑖

∩memberDA,C, 𝑗
= ∅

A lifecycle is C𝑖 -ensuring if all its stages are C𝑖 -requiring.

Observe that an asset can be part of multiple lifecycles, in which

case basic compatibility must be ensured. For example, if the plant

is additionally part of a lifecycle for commissioning, operations,

maintenance and decommissioning, it must be possible to config-

ure the digital twin for all 8 combinations of declarative staged

from these lifecycles. Ensuring lifecycles are especially critical for

controllers: For a single lifecycle, it is easy to check that there is

always exactly one controller. However, when multiple lifecycles

apply to the same asset, two stages that can occur at the same time

cannot require different controllers. From the perspective of self-

adaptation, even if an asset is in two different declarative stages, a

plan to reconfigure the twin must exist.

Definition 5 (Compatible stages and lifecycles). Let D1 and
D2 be declarative stages of some asset class A and component classes
C = {C1, . . . , C𝑛}.

• The stagesD1 andD2 are compatible if, for all𝑎 ∈ memberD1
∩

memberD2
there is some𝑋 ⊆ C such that (𝑎,𝑋 ) ∈ consistentD1

and (𝑎,𝑋 ) ∈ consistentD2
.

• Two lifecycles are compatible if all their declarative stages are
pair-wise compatible.

Using declarative stages, the transitions between the stages in a

lifecycle need not be modeled; it suffices to describe architectural

coherence for each stage. A complete model of the lifecycles is

not needed, it suffices to provide a declarative characterization of

aspects relevant for architectural coherence of the digital twin.

Remark that declarative stages describe how to deduce whether
an asset is at a certain stage, not how to remove and create DT

components once a stage change has been detected. If the asset is

inconsistent, then deduction is not enough — instead, the system

must abduce which DT components could explain the assumption

that the asset is consistent, under the assumption that it is indeed

at the given stage. For example, if 𝑎 ∈ memberSick is given, then

it is easy to see that there must be some ranl≤5𝑚 (𝑎) ∈ 𝑋 to explain

(𝑎,𝑋 ) ∈ consistentSick.
To track an asset through its lifecycle and establish architectural

coherence at the current stage, the MAPE-K loop of the digital twin

needs the following deductive capabilities:

(1) the digital twin needs a knowledge model that can be queried

for the current declarative stages of the assets;

(2) the digital twin must be able to determine its architectural
coherence (i.e., that the digital twin’s DT components such as

the requirement analyzers and controllers correctly reflect

the declarative stages of the assets);

(3) the digital twin must be able to decide on stage membership
for the assets based on observational inputs; and

(4) the digital twin must be able to explain inconsistencies and
derive plans to reestablish consistency.

In short, we need a uniform representation of asset information and

of the digital twin’s architectural configuration. The next sections

show that these capabilities can be realized by means of semantic

technologies.

5 A SEMANTIC REPRESENTATION
OF DECLARATIVE STAGES

The formalization of declarative stages in Sect. 4 defines a general

and abstract framework that forms the basis of our self-adaptive

architecture. As discussed above, this framework relies on being

able to (a) model stage membership, (b) efficiently reason about

stage membership and consistency between stages in terms of this

model, and (c) update the stage membership model when changes

to the lifecycle stages of assets are detected. In this section, we

discuss how a knowledge base with these deductive and abductive

capabilities can be realized in terms of knowledge graphs [17], using
ontologies and associated semantic technologies.

A knowledge graph enables a uniform representation of declar-

ative stages and provides a technological platform for queries and

reasoning tasks. We now introduce basic terminology to express

properties of assets, DT components, and their relations. For our

greenhouse example, we will consider an ontology with classes for

requirement analyzers and controllers.

Definition 6 (Stage Ontology). The stage ontology expresses
the existence of assets and DT components, as well as their disjointness
and relation.

Class: Asset DisjointWith: Component
ObjectProperty: assignedTo

Domain: Asset Range: Component

In the sequel, we assume that every ontology we consider con-

tains the axioms from Def. 6. Simple extensions of this ontology can

provide the context of a specific system or environment. We further

assume that for a set of component classes C = {C1, . . . , C𝑛}, the
axiom Class: Component DisjointUnionOf: C1, . . . , C𝑛 is added.

Example 4. For the running example of a greenhouse, we need
information about plants, the NVDI value, and the two requirement
analyzers that we consider.
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Class: Component DisjointUnionOf: RAnalyzer, Controller
ObjectProperty: analyzedBy SubPropertyOf: assignedTo

Domain: Asset Range: RAnalyzer
ObjectProperty: controlledBy SubPropertyOf: assignedTo

Domain: Asset Range: Controller
Class: RAnalyzerMoistUnder5 SubClassOf: RAnalyzer
Class: RAnalyzerMoistUnder10 SubClassOf: RAnalyzer
Class: Basil SubClassOf: Asset and nvdi some int
DataProperty: nvdi Domain: Basil Range: xsd::int

Characteristics: functional
Here, we model the requirement analyzer classes as disjoint; using
semantic technologies, we can also express subtype relations on re-
quirement analyzer classes using subclass axioms.

A semantic stage is a representation of a declarative stageDA,C =

⟨member, consistent⟩, where all conditions and properties of mem-

bership and consistency are expressed in terms of OWL axioms.

Definition 7 (Semantic Stages). Let A be an asset class, C𝑖 be
subclasses of Component. A semantic stage SA,C = ⟨Smember, Scons⟩
is a pair of two OWL class names Smember and Scons. The following
axioms must hold for Smember and Scons:

Class: Smember SubClassOf: A
Class: Scons EquivalentTo: Smember and SC

The symbol SC is a concept that needs to be defined through the classes
M𝑖 and optionally over C. The definition has the following form, where
[ · ] denotes an optional element.

SC EquivalentTo:
analyzedBy some RA1 and . . . and analyzedBy some RA𝑛

[ and controlledBy some C]

Additionally, we demand that Smember is independent of RAnalyzer
and Controller, i.e, neither RAnalyzer, Controller nor their subclasses
occur in any axiom for Smember.3

In a semantic stage S, we say that Smember is the membership
class and Scons the consistency class of the stage S.

Example 5. We consider semantic stages corresponding to the
declarative stages from Fig. 3. First the healthy stage

SHealthy = ⟨Healthy, HealthyCons⟩

can be formalized as follows:

Class: Healthy SubClassOf: Basil and nvdi some int [> 5]
Class: HealthyCons EquivalentTo: Healthy

and analyzedBy some RAnalyzerMoistUnder10

Next, the sick stage SSick = ⟨Sick, SickCons⟩ is formalized by

Class: Sick SubClassOf: Basil and nvdi some int[≤5]
Class: SickCons EquivalentTo: Sick

and analyzedBy some RAnalyzerMoistUnder5

A lifecycle consists of semantic stages that have disjoint members.

To define semantic lifecycles, we first formalize compatibility and

disjointness of semantic stages as follows:

3
This condition can be made more precise with ontology modules [32]: None of these

classes should be in the module of Smember .

Definition 8. Let S1 = ⟨S1member, S
1

cons⟩, S2 = ⟨S2member, S
2

cons⟩
be semantic stages. Then

• S1 and S2 are disjoint if their membership classes are disjoint,
i.e., disjoint(S1member, S

2

member), and that
• S1 and S2 are compatible if their consistency classes are not
disjoint, i.e., ¬disjoint(S1cons, S2cons).

Definition 9 (Semantic Lifecycle). A semantic lifecycle for
an asset class A is a set of stages S𝑖 = ⟨S𝑖member, S

𝑖
cons⟩ for A such

all consistency classes are disjoint:

disjoint(S1cons, . . . , S𝑛cons).

Remark that patterns that capture the relations between two

classes and the axioms required for them, as used above, are not

directly expressible in OWL. Instead, they are formalized using

another semantic technology, namely ontology templates [34]. The
templates for our system are given in the auxiliary online material.

4

The conditions for entailment and satisfiability are standard tasks

for OWL and DL reasoners, and supported by efficient implemen-

tations.

To use equivalence axioms together with an open-world as-

sumption, the knowledge graph may not store membership to any

Smember. Otherwise, the reasoner could deduce the existence of

requirement analyzers, even if they are not explicitly present. This

issue can be solved in several ways. One can require that member-

ship to stages is not stored (which is our solution), one could add

additional axioms that essentially enforce a closed-world semantics,

or one could use a different formalization for stages that does not

require open-world reasoning, such as SHACL shapes [37].

Note that repair of the digital twin configuration corresponds

to so-called ABox abduction [25] in the knowledge graph: it is

sufficient to abduce the presence of individuals, and these must be

members of a fixed set of possible classes.

6 A SELF-ADAPTIVE ARCHITECTURE
FOR LIFECYCLE MANAGEMENT

The overall aim of the self-adaptive architecture is to maintain

the architectural coherence of the digital twin while assets transi-

tion between the declarative stages in their lifecycles; i.e., every

asset must have the correct associated DT components, reflecting

the current declarative stages of the asset. The architecture of the

self-adaptive digital twin is depicted in Fig. 4 for two generic DT

components, such as requirement analyzers and controllers. It has

the following architectural components; the first four constitute

the managing system, while the DT components, together with the

physical system, constitute the managed system of the second layer

self-adaptive feedback loop. We introduce the architectural com-

ponents and position them with respect to the MAPE-K feedback

loops of Fig. 1:

• Knowledge Base: The knowledge base (KB) keeps track of

information about DT components, assets and stages. The

KB offers operations for the other components to manipulate

and query this information.

• Monitor: The monitor component includes a semantic tag-

ger that acts as the entry point for information about the

4https://github.com/Edkamb/StageAdapt

https://github.com/Edkamb/StageAdapt


Declarative Lifecycle Management in Digital Twins MODELS Companion ’24, September 22–27, 2024, Linz, Austria

KBMonitor

Stage
Planner

Stage
Analyzer

Layer 2
Executor

DT Components
tagging

operations

inconsistent

assets

repair

plan

c
o
n
siste

n
c
y

q
u
e
rie
s

reconfigurationu
p
d
a
te

o
p
e
r
a
ti
o
n
s

Figure 4: A self-adaptive architecture for stage-based lifecycle
management.

assets of the twinned system, translates this information into

semantic data and adds it to the KB. Although the Monitor

component is used for both the behavioral and architectural

feedback loop of Fig. 1, we here focus on its use for architec-

tural self-adaptation.

• Stage Analyzer: The stage analyzer identifies changes to
the lifecycle stages of the different assets by querying the KB

for inconsistencies. This component is the Layer 2 Analyzer

of Fig. 1.

• Stage Planner: The stage planner determines how to adapt

the DT components of Layer 1 to resolve the inconsistencies

in the KB. It identifies DT components that need to be added

and removed. This component is the Layer 2 Planner of Fig. 1.

• DT components: The DT components address behavioral

self-adaptation in the digital twins, including requirement

analysis, planning and control for the different physical as-

sets. These are the Layer 1 components of Fig. 1.

We now consider each component by itself and illustrate how

declarative stages are used for self-adaptation in the architecture.

We omit the DT components, which were discussed in Sect. 4, and

the Layer 2 Executor component, which is straightforward given

the output from the stage planner. In the sequel, we assume that the

declarative stages are given a semantic representation (cf. Sect. 5).

Knowledge Base. The task of the KB is to manage knowledge

about the assets, their states, as well as the architectural config-

uration of the digital twin; i.e., the KB tracks information about

declarative stages, requirement analyzers and controllers. This re-

quires a knowledge store for the information, operations to add

and remove information, and a query interface that utilizes the

managed knowledge to enable the stage analyzer to detect lifecycle

changes and the stage planner to plan changes to the digital twin

architecture.

For declarative stages that are given a semantic representation,

the KB is exactly a knowledge graph with a set of predefined opera-

tions to manage information: while arbitrary reads can be allowed,

the addition of new information must adhere to the patterns de-

scribed by the ontology. A more subtle point is that OWL reasoning

has an open-world semantics: it can deduce the existence of indi-

viduals that are not explicitly named in the knowledge graph. To

circumvent such reasoning, we need to manually add axioms that

list all individuals that belong to the class Asset or subclasses of
Component. These closing axioms take the following form for a class

C and individuals 𝑖1, . . . , 𝑖𝑛 :

C EquivalentTo {𝑖1, . . . , 𝑖𝑛}

JK ⊔ {A EquivalentTo: {a 1, . . . , a𝑛}}, ADD(ast, A)K
= K∪ {A EquivalentTo: {a 1, . . . , a𝑛 , ast}} ∪ {(ast, 𝑎, A)}

JK ⊔ {C EquivalentTo: {c 1, . . . , c𝑛}},CLEAN(ast,C)K
=
(
K\neighborK(ast)

)
∪ {C EquivalentTo:

(
{c 1, . . . , c𝑛}\CK(ast)

)
JK ⊔ {(ast,a,A), A EquivalentTo: {a1, . . . , a𝑛 , ast}},

REMOVE(ast)K =
⋂

Component class CJK ,CLEAN(ast,C)K
∪{A EquivalentTo: {a 1, . . . , a𝑛}}

JK , UPDATE(ast, p, v)K
=
(
K\{(ast, p, X) | X∈dom(p)

)
∪ {(ast, p, v)}

JK ⊔ {C EquivalentTo: {c 1, . . . , c𝑛}}, ADD(ast, c, C)K
= K ∪ {C EquivalentTo: {c,c 1, . . . , c𝑛}}

∪ {(ast, assignedTo, c), (c, a, C)}

Figure 5: Semantics of knowledge store operations.

Closing axioms are only added for the aforementioned classes — in

contrast, for the classes describing the stages, we explicitly want to

deduce membership and not store this information.

Example 6. Consider the following knowledge graph K that mod-
els the semantic stages from the previous section, as well as one asset
with one requirement analyzer and one controller.

The set of stored triples Kstore is as follows:

(ast1, 𝑎, Basil), (ast1, nvdi, 4)
(ast1, analyzedBy, rq1), (ast1, controlledBy, ctrl1)
(rq1, 𝑎, RAnalyzerMoistUnder5), (ctrl1, 𝑎, BasilController)

Note that the water level is not stored in the KB. It is handled by
the requirement analyzer and is not relevant for stage membership or
consistency. In addition to the axioms of Def. 6 and Examples 4 and 5,
the ontology Kontology contains the following axioms:

Asset EquivalentTo { ast1 }
RAnalyzer EquivalentTo { rq1}
Controller EquivalentTo { ctrl1 }

To manipulate the KB, we need to add and remove information.

We implement a generic operation interface that supports these

operations for assets, stages and DT components. The set of known

declarative stages, however, remains static.

Definition 10 (Operations). Let ⊔ denote disjoint union, A an
OWL asset class, C an OWL controller class, and RA an OWL require-
ment analyzer class. Given a knowledge graph K and an asset node
ast, we let neighborK (ast) denote the set of triples of the form (ast,
analyzedBy, ra), (ast, controlledBy, c) inK , and ranalyzersK (ast) denote
the set of requirements analyzers 𝑟𝑎 with triples of the form (ast,
analyzedBy, ra). Furthermore, let controlK (ast) be the set

{(ast, controlledBy, ctrl), (ctrl, 𝑎, C)}

if such a ctrl exists, or ∅ if not. The set of operations on knowledge
graphs, and their effects, is defined in Fig. 5.

Operation ADD(ast, A) adds a new asset to the KB. This requires

to add it to both the closing axiom and to add a new triple that

connects the asset ast with its asset kind A. Operation CLEAN(ast
, C) removes all DT components of class C assigned to an asset

ast. Operation REMOVE(ast) removes an asset, as well as all its DT

components. Operation UPDATE(ast, p, v) updates the information
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• ADD(ast,A) maps to

INSERT DATA { uri(ast) rdf : type uri(A) }
• ADD(ast,c,C) maps to

INSERT DATA { uri(c) rdf : type uri(C).
uri(ast) assignedTo uri(c) }

• UPDATE(ast,p,v) maps to

DELETE WHERE { uri(ast) uri(p) ?a}
INSERT DATA { uri(ast) uri(p) v}

• REMOVE(ast) maps to

DELETE WHERE { uri(ast) rdf : type ?a }
Followed by CLEAN(ast,C)

• CLEAN(ast,C) maps to

DELETE WHERE { uri(ast) ?x ?y.}
DELETE WHERE { ?a ?b uri(ast) .}
DELETE DATA { uri(C) rdf : type Component}

Figure 6: Mapping operations to SPARQL queries. Operation
uri( · ) retrieves the URI of an asset, components, asset kind
or other parameter.

modeled by property p for asset ast to value v. Finally, operation
ADD(ast, C, M) adds a DT component to the KB, again updating the

relevant closing axioms as well as adding a triple that connects

the nodes and classes. The definition of these operations in terms

of SPARQL queries is given in Fig. 6. Note that the interface is

generic for declarative stages, while the implementation is specific

for semantic stages.

Not every architectural component is supposed to use every

operation. The operations on DT components are used only to

reflect the changes during reconfiguration, while the operations on

asset and state are updated based on incoming data.

Example 7. We continue with Example 6. We update the NVDI
value of the asset by the UPDATE(ast1, nvdi, 4) operation and add a
new asset by the ADD(ast2, Basil) operation. After these operations, the
updated knowledge graph K1

store contains the following triples:

(ast1, 𝑎, Basil), (ast1, nvdi, 6)
(ast2, 𝑎, Basil)
(ast1, analyzedBy, rq1), (ast1, controlledBy, ctrl1)
(rq1, 𝑎, RAnalyzerMoistUnder5), (ctrl1, 𝑎, BasilController)

Its ontology K1

ontology contains, in addition to the axioms of Def. 6
and Examples 4 and 5, the following axioms:

Asset EquivalentTo {ast1, ast2}
RAnalyzer EquivalentTo rq1}
Controller EquivalentTo {ctrl1}

For queries, we allow OWL membership queries on Boolean

combinations of OWL classes.

Definition 11 (Queries). A composed class is the closure of
OWL class names under conjunction (and) and negation (not). Let C

1 while(true)
2 toGenerate := ∅, toAdd := ∅, toRemove := ∅
3 foreach stage S = ⟨Smember, Scons ⟩
4 // Analyzer: are there inconsistencies?
5 V := JK, Smember and not SconsK
6

7 // With which stage should the asset be consistent?
8 foreach 𝑎 ∈ V
9 toGenerate := toGenerate ∪{𝑎, S}
10 end
11

12 // Planner: How to make the asset consistent?
13 K′

:= copy(K)
14 foreach asset 𝑎 with class𝐶
15 K′

:= JK′,CLEAN(𝑎,𝐶 )K
16 end
17 K′

:= abduce(K′, C)
18

19 // What needs to be added or removed?
20 toAdd := K′ \ K
21 toRemove := K \ K′

22 end
23 end

Figure 7: A self-adaptation algorithm combining stage ana-
lyzer and planner.

be a composed OWL class and K a knowledge graph. We denote with
JK,CK the set of individuals described by 𝐶 according to the OWL
semantics. Additionally, we let CK (a) denote the query that returns
all the DT components of class C that are assigned to a in knowledge
graph K .

Example 8. Retrieving all inconsistent, healthy basil plants re-
quires querying for the class Healthy and not HealthyCons.

For the running example, this query returns both assets: first, ast1
has the wrong requirement analyzer (recall that the update performed
in Example 6 moved it from its sick to its healthy stage), and second,
ast2 has no requirement analyzer:

JK1,Healthy and not HealthyConsK = {ast1, st2}

Monitor. Themonitor component takes asset observation streams

as input and performs the following tasks:

• the monitor uses a semantic tagger as a mapper that trans-
lates the streams of asset observations into semantic informa-

tion that are added to the knowledge graph, using predefined

operations;

• the monitor acts as a filter: not all information is added to

the KB, but only information needed for self-adaptation; and

• the monitor directly issues operations to remove an asset,

its requirement analyzers and its eventual controller from

the KB and system, if the asset observation stream notifies

of its removal from the physical system.

Concretely, the monitor issues an UPDATE operation whenever

information about an asset needs to be updated in the KB, an ADD
operationwhenever an asset is added to the system, and an REMOVE
operation whenever an asset is removed.
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Stage Analyzer. The stage analyzer is responsible for detecting
inconsistencies between the current stage of an asset and its asso-

ciated DT components in the digital twin. To this aim, the stage

analyzer queries the KB for the assets that satisfy stage membership

of different stages and checks whether the DT components of these

assets comply with the consistency relation of the stage. The stage

analyzer is realized by the first part of the algorithm in Fig. 7, which

implements the MAPE-K loop for architectural self-adaptation. The

algorithm iterates through all stages and finds the inconsistent as-

sets (l. 5). It then collects all such assets in a set (l. 8) that records

the stage with which the assets need to be consistent (l. 9).

Stage Planner. The stage planner is responsible for repairing

the digital twin once an inconsistency is detected between the

DT components and the stage associated with an asset. The stage

planner requires a set of compatible lifecycles, and is realized by

the second part of the algorithm in Fig. 7.

Repair is based on abducing an explanation for the required

consistency. This explanation may add or remove DT components.

Thus, abduction is performed on all inconsistencies at once. We

formalize this procedure as follows. First, copy the KB (l. 13), then re-

move all DT components (l. 14). The abduction then derives the DT

components that are needed to explain the consistency of this KB

(l. 17). Finally, abduced components that are not already present,
5

are added to the digital twin and to the original KB (l. 20). DT com-

ponents that are no longer needed, are similarly removed (l. 21).

7 Evaluation
We evaluate declarative stages and their realization as semantic

stages to answer the following research questions:

RQ1 Can declarative stages be used to model an existing digital

twin system?

RQ2 How does using semantic stages over non-semantic declara-

tive stages effect performance?

RQ1 is qualitative and indicates the general applicability of declar-

ative stages, while RQ2 is quantitative and estimates the overhead

caused by using semantic technologies to implement the declarative

stages, compared to a direct (ad hoc) implementation.We performed

two experiments, available in the auxiliary online material.

Experimental Design and Setup. Experiment EX1 addresses RQ1
and uses the example from Sect. 2, based on GreenhouseDT [21],

a digital twin exemplar specifically designed for structural self-

adaptation. We have implemented both semantic stages, as well as

non-semantic declarative stages. Non-semantic stages were imple-

mented using suitable data structures for the knowledge base, while

semantic stages were implemented with an RDF knowledge graph

based on Apache Jena
6
and its built-in reasoner. Thus, adding, e.g.,

a new stage requires to define it in the ontology and implement the

corresponding class in the architecture, respectively.

EX2 consists of a series of configurations, based on the running

example. The experiments consider 𝑛 different stages in one life-

cycle and 𝑚 assets. Each stage defines one interval for the nvdi

5
This straightforward task ofmatching newwith existing components has been omitted

from the algorithm.

6https://jena.apache.org/

property, and is validated using the OTTR templates. For each con-

figuration (𝑛,𝑚), we measure the time needed for the non-semantic

and semantic stages to adapt from a random starting state, respec-

tively. This experiment addresses RQ2.

Results. We can answer RQ1 positively: we are able to model

the stages and lifecycles needed for the GreenhouseDT, a digital

twin exemplar for a smart greenhouse, and adapt this digital twin

to changes in the NVDI values. We did not need to model the transi-

tions between the stages and interactions between the lifecycles, as

the checks for compatibility and the conditions for stages to form

a lifecycles are sufficient.

Figure 8 shows results for EX2. The left figure shows the time (in

𝑠) needed for semantic stages (blue) and non-semantic stages (red)

need for one self-adaptation cycle for stages𝑛 ∈ {1, 10, 20, 30, 40, 50}
and assets𝑚 ∈ {1, 2000, 4000, 6000, 8000, 10000, 12000} (intermedi-

ate values interpolated for better visibility). The results show that

the solution using semantic technologies scales better, both in the

number of assets and in the number of stages. The plots to the right

show the behavior for a fixed number of stages (𝑛 = 10); we can

see that the overhead is only relevant for a low number of assets

(𝑚 < 5000). The lower plot shows that for a fixed number of assets

(𝑚 = 14000), semantic stages scale strictly better. To answer RQ2,
the overhead of using semantic stages improves performance as

the number of stages and assets rises.

Threats to Validity. A threat to internal validity is that our imple-

mentation of non-semantic stages is an ad-hoc implementation us-

ing the specific structure of stages in the KB, but it is not specifically

optimized for performance. Nevertheless, we consider the compari-

son to be a realistic, as a highly specialized systemwould not be able

to be reused and would amount to implementing a highly restricted

knowledge graph and reasoner. A threat to external validity is that

EX1 is performed on a single case study and EX2 on a synthetic

benchmark. Tomitigate this thread, we performed both experiments

on the basis of a publicly available exemplar for self-adaptation,

where reproduction studies and comparisons are possible.

8 DISCUSSION AND RELATEDWORK
8.1 Discussion
We briefly discuss how declarative and semantic stages relate to

a two-layered self-adaptive robotics architecture using ontologies,

and to ontological asset information models.

Metacontrol. Metacontrol is a two-layered self-adaptive frame-

work, which has been used for, e.g., autonomous underwater robots

[33] and builds on the TOMASys [8] ontology for autonomous

systems [16]. Metacontrol adds a second self-adaptive feedback

loop that manipulates and combines controllers to fulfill different

combinations of requirements and adapt to unforseen changes in

the underlying system. In contrast to our framework, it does not

consider lifecycles, but focuses on exchanging the controller ac-

cording to application-specific KPIs, not arbitrary components of

the inner self-adaptive system.

Integration with Asset Information Models. Declarative stages

need access to the requirements of assets and data streams. This

is the information provided by industrial information models such

https://jena.apache.org/
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Figure 8: Evaluation Results for 𝑛 stages and𝑚 assets, with time 𝑡 measured in seconds 𝑠.

as the industrial data ontology (ISO 23726) or the integrated asset

planning lifecycle ontology (ISO 15926-13), or wrappers on exist-

ing standards, such as the asset administration shell [2]. With the

increasing use of such ontologies, an additional advantage of seman-

tic stages becomes apparent: they do not require to start modeling

lifecycles from scratch, but can build on data and concepts from

these semantic frameworks.

8.2 Related Work
We position our work with respect to related work on self-adaptive

systems and on digital twin architectures.

Goldsby et al. [14] organize self-adaptive systems as collections

of steady-state systems. Only one steady-state system can be ac-

tive at any time and adaptations are dynamic transitions from one

steady-state system to another. This way, steady-state systems have

similarities to our work on stages of physical systems, and the

levels of RE (requirements engineering) identified in [14], includ-

ing requirements for the runtime monitoring infrastructure and

decision-making mechanism, complements our work on lifecycle

stages. Whereas prior work on structural self-adaptation in digital

twins [20] targets the relation between assets, our focus on lifecycle

management and declarative stages is novel. In contrast to prior

approaches, we represent asset information by modeling the digital

twin’s architectural configuration directly in the knowledge base,

in a form of runtime models [3, 4, 5] to support runtime analysis.

MAPE-K loops have previously been used in a digital twin con-

text. Feng et al. [12] integrated a MAPE-K loop in a digital twin for

to provide self-adaptive decisions in a CPS case study. Flammini et
al. [13], used a MAPE-K loop to perform digital twin functionali-

ties such as behavior modeling and real-time data monitoring to

support anomaly detection, using Conformance Checking (CC) and

supervised Machine Learning using CC diagnoses. Other MAPE-K

loop-based digital twin architectures exist [10, 30, 35, 19], but do

not tackle the problem of architectural self-adaptation of the digital

twins for lifecycle management addressed in our work.

Semantic technologies, including ontologies and knowledge

graphs, have been recognized as crucial for information and data

integration in digital twins [22, 40]. Sahlab et al. [31] use knowledge
graphs to configure digital twins at design time, Li et al. [27] use
ontologies to detect errors in simulator configurations, and Kiritsis

et al. [28] use ontologies for data exchange and component con-

figuration in digital twin platforms. Compared to our work, these

approaches do not consider self-adaptation or (re)configuration at

runtime and do not use semantic technology to model lifecycles.

The digital twins of Abburu et al. [1] use knowledge graphs to adapt
to unforeseen situations on the level of behavioral self-adaptation,

i.e., the structure remains unchanged and is not relative to lifecycles.

9 CONCLUSION
It is highly challenging for digital twins to reflect the lifecycle

evolution of physical assets, especially if an asset has multiple life-

cycles for different aspects or parts. This paper provides a system

to manage such lifecycle evolution by means of architectural self-
adaptation, using declarative stages that do not require explicit

modeling of the transitions between stages in the lifecycles. We

further propose an implementation of declarative stages using se-

mantic technologies and evaluate our approach in the context of a

smart greenhouse digital twin.

In future work, we plan to consider dynamically changing declar-

ative groups, i.e., allowing groups and requirements to evolve in

response to, e.g., changing regulations, as well as hierarchical as-

sets and groups that describe requirements for sets of assets by the

further exploitation of runtime models.
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