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Passive acoustic devices are increasingly being used to monitor biodiversity. However,
few studies have compared the accuracy of acoustic surveys and traditional surveys
against ground-truthed data. Here, we assess whether acoustic recorders used in conjunc-
tion with an artificial intelligence (AI) classifier can predict the relative breeding density
of four wader species better than traditional fieldworker transect surveys. In a 27-km2

upland study site, acoustic data were collected at 83 sampling points and analysed using
the BirdNet bird-sound classifier to estimate vocal detection rate at each location; we
also carried out concurrent transect bird surveys. To ground-truth these approaches,
intensive field surveys were undertaken to identify each breeding territory of our focal
species. With both the acoustic dataset and the transect dataset, we used similar analyti-
cal approaches (random forest regression trees) to predict relative territory density across
the study site, and then compared these predictions with the territory density obtained
from the intensive field surveys. The classifier performed well at identifying the presence
of target species’ vocalizations within 3-s periods for Lapwing (accuracy = 0.911), Cur-
lew (0.826) and Oystercatcher (0.841), but less well for Golden Plover (0.699). For
Curlew and Oystercatcher, the predictions obtained from the acoustic approach were a
better fit to actual territory density than the transect approach. In contrast, for Lapwing
and Golden Plover, the transect predictions outperformed the acoustic predictions, with
the acoustic model particularly poor for Golden Plover. We attributed these differences
to the performance of the classifier, species’ ecology and vocal behaviour. Data gathering
for the acoustic approach was more time-efficient than the transect surveys, requiring
less than a quarter of the fieldworker days. We conclude that there is high potential for
acoustic approaches to augment traditional methods, although species’ ecological charac-
teristics should be considered: species that vocalize more frequently, at higher ampli-
tudes and hold larger territories will be better-suited to sampling-based acoustic
methods.
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Passive acoustic devices are increasingly being used
to monitor biodiversity (Sugai et al. 2019), with
methods developed to monitor sounds of cetaceans
(Kowarski & Moors-Murphy 2021), fish (Popper &
Hawkins 2019), bats (Newson et al. 2017), insects
(Zilli et al. 2014), amphibians (Dutilleux &
Cur�e 2020), canids (Graf & Hatlauf 2021) and

birds (P�erez-Granados & Traba 2021). Increased
availability of programmable open-source devices
based on single-board computers and micro-
controllers (Whytock & Christie 2017, Hill
et al. 2019) allow classification models to run in
real-time on devices (Katsis et al. 2022). Addition-
ally, developments in machine learning mean that
it is feasible to rapidly extract vocalizations of
interest from large datasets, drastically reducing
the time needed for analysis (Morales et al. 2022).
For example, the BirdNet sound classifier tool
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(Kahl et al. 2021) can identify more than 3000
species of European and American birds, and has
been used for many ecology and conservation pro-
jects (P�erez-Granados 2023).

Acoustic recording units (ARUs) are increas-
ingly being used in long-term monitoring (Lewis
et al. 2021), although the integration of acoustic
methods with existing monitoring approaches may
not be straightforward (Doser et al. 2021). Many
countries have existing long-term monitoring
schemes for breeding birds that are carried out by
fieldworkers using methods such as transect sur-
veys (Heywood et al. 2023) and timed point
counts (Sauer et al. 2013). Many sources of bias
arise from human observers carrying out survey
visits, for example the variation in bird behaviour
associated with different weather conditions
(Hoodless et al. 2006), the diel and seasonal timing
of survey visits (Thirgood et al. 1995), and the skill
of the individual observer (Lindenmayer
et al. 2009). These biases can be mitigated to some
extent by the gathering of large datasets and
appropriate analytical techniques. Methods that
involve standardized ARU deployments are also
likely to be subject to biases, particularly related to
the performance of ARUs in different habitats and
environmental conditions, and the vocal behaviour
of target species (Digby et al. 2013, Doser
et al. 2021). However, as the current generation of
acoustic recorders can gather very large datasets
from one deployment and can be programmed
with any temporal sampling regime, some of these
biases can be mitigated.

One of the key challenges for the long-term
monitoring of biodiversity with ARUs is being able
to estimate densities of target species. At present,
because most ARUs only have one microphone,
assessing directionality or the origin of a sound is
very difficult, making it challenging to know how
many sound-producing individuals are present at a
recording location. Furthermore, using calibrated
equipment that is capable of localizing sounds is
labour-intensive in terms of analysing data (Rhine-
hart et al. 2020). As such, a range of related
approaches to estimating territory density have
been developed that use the frequency of calls or
detections per recording period at a single record-
ing point as a proxy for territory or species density
(P�erez-Granados & Traba 2021, Hutschenreiter
et al. 2024). The most frequently used is Vocal
Activity Rate, which uses the number of calls per
time period (P�erez-Granados & Traba 2021); a

related approach is detection rate, the rate at
which a species vocalization is detected (typically
using some kind of automatic classifier that clas-
sifies specific time chunks) in specific time periods
irrespective of how many individual calls there are
(Hutschenreiter et al. 2024).

The relationship between a vocal activity index
and territory density is likely to vary between sites
and species with various factors affecting song
rates (P�erez-Granados & Traba 2021). For exam-
ple, where songbirds breed at higher territory den-
sity, higher per-capita song rates and song lengths
can occur (Goretskaia 2004). Similarly, unpaired
males can sometimes be more vocal than paired
males, skewing territory density estimates
(Greig-Smith 1982, Amrhein et al. 2002). More-
over, the size of a breeding territory and vocaliza-
tion amplitude will also influence the relationship
between vocal activity and territory density, and
low breeding productivity may be associated with
an earlier cessation of vocal activity in the breeding
season (Nebel & McCaffery 2003). For vocal activ-
ity indices to be incorporated into long-term moni-
toring, it is necessary to test not only the
relationship between vocal activity derived from
ARUs and results from existing survey methods
(Vold et al. 2017, P�erez-Granados et al. 2019),
but also to compare both with independent,
ground-truthed territory density data. However,
few studies include comparisons to ground-truthed
data, and where acoustic data are only compared
to traditional survey methods, the inferences
drawn may be of less value because of the biases
in the data obtained from the traditional survey
methods.

Whilst acoustic recorders used alongside auto-
matic classifiers are likely to have significant utility
across many taxa and habitats, here we explore
their potential in open upland landscapes. In such
areas, access can be challenging, species diversity
and density are typically low, and disturbance can
impact the breeding success of some species at
critical times of the season. Hence, these land-
scapes and their species could be well-suited to
acoustic monitoring. The UK uplands support
important breeding populations of several
ground-nesting wading birds, and such species
could be particularly suited to acoustic monitoring
because they vocalize frequently and at high
amplitudes. There were four species of wader suf-
ficiently abundant at the study site to model rela-
tive density of territories: Eurasian Oystercatcher
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Haematopus ostralegus (hereafter Oystercatcher),
Northern Lapwing Vanellus vanellus (hereafter
Lapwing), European Golden Plover Pluvialis apri-
caria (hereafter Golden Plover) and Eurasian Cur-
lew Numenius arquata (hereafter Curlew). There
were also Dunlin Calidris alpina, Common Snipe
Gallinago gallinago and Common Sandpiper Actitis
hypoleucos present in lower densities for which
data were not analysed. The four target species
(Oystercatcher, Lapwing, Golden Plover and Cur-
lew) have long calls, for example 30 s or longer
per call for Oystercatcher or Curlew (see Figs. S1–
S4 for example calls).

We hypothesize that using detection rate (posi-
tive detections per time period) may be a suitable
means of estimating territory density for wader
species that vocalize regularly across large areas
and have large overlapping territories, such as Cur-
lew and Oystercatcher. We consider it likely that
detection rate may outperform transect surveys for
these species in terms of the accuracy of the pre-
dictive modelling. However, we hypothesize that
it will work less well for species – Golden Plover
and Lapwing – that vocalize less frequently or
across smaller territories. Using detection rate
means that some individual data points will be
non-independent because each individual call will
produce multiple detections; however, because we
will generate a very large dataset we do not expect
this to unduly bias the data. We also hypothesize
that the acoustic approach may require fewer
resources than the transect-based approach, as a
consequence of the time requirements of transect
surveys (particularly in challenging terrain). The
objectives of this study are thus to (i) investigate
whether detection rate can be used to predict rela-
tive territory density for a suite of common upland
wading bird species using a predictive modelling
approach with environmental covariates (e.g. habi-
tat, elevation); (ii) assess the extent to which
detection rate varies in its effectiveness for differ-
ent wader species; (iii) compare densities derived
from detection rate and a traditional transect sur-
vey approach to a ground-truthed dataset of
breeding wader territories; and (iv) compare
the relative resource requirements of the two
approaches.

It should be noted that in this paper, we fre-
quently use terms such as ‘territory’ and ‘territory
density’. Such terms have many meanings in ecol-
ogy, yet herein, we use territory to refer to an area
where an individual or pair exhibit territorial

behaviours during the breeding season associated
with a breeding attempt. The study species all
have different behaviours during the pre-nesting,
nesting and brood-rearing phase: Lapwing nest
semi-colonially, Curlew and Oystercatcher have
large overlapping territories, and Golden Plover
have clearly delineated, non-overlapping territories
(Cramp & Simmons 1983).

METHODS

Study site

Delnadamph Estate (Fig. 1) is a traditional upland
estate managed primarily for grouse shooting in
upper Donside, Aberdeenshire, in the Cairngorms
National Park in Scotland. It covers approximately
27 km2, spanning altitudes from approximately
400 to 830 m asl. On the higher ground
(> 700 m) there is a mix of dry lichen heath, blan-
ket bog and some areas of degraded peatland. At
intermediate elevations (450–700 m) the primary
habitat is heather moorland, managed with rota-
tional burning. On the lower ground, flat expanses
of wet grassland and blanket bog fringe the upper
reaches of the River Don. There are small areas of
plantation woodland and young native woodland,

Figure 1. Map of Delnadamph Estate with (inset) the site
locality in the UK marked (black circle). Grey contours indicate
elevation, blue lines signify rivers and dashed lines indicate
access tracks. The 22 surveyed transects are shown divided
into the 200-m segments. The segments in grey (n = 83) also
had an Audiomoth deployment.
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and extensive patches of Juniper Juniperus commu-
nis with scattered trees alongside smaller streams.
The bird communities and ecology of the study
site are described in more detail in Jarrett and
Bennett (2023).

Data gathering

Transect surveys. Transect surveys for breeding
birds, following the survey methods of Heywood
et al. (2024), were conducted across the study site
(Fig. 1) with all bird species encountered
recorded. Surveys began shortly after dawn and
were completed by approximately 10:30 AM. They
were carried out in dry, relatively calm and clear
weather conditions. Most transects were 3–4 km
in length. Two visits were carried out to each
transect apart from one that only had one visit
owing to poor weather. Early visits were carried
out between 21 April and 13 May, and late visits
between 7 June and 22 June.

All bird species were recorded, although here
we only consider data on the most abundant
wader species: Oystercatcher, Lapwing, Golden
Plover and Curlew. All individuals were recorded
whether seen or heard, and activity or sex was not
recorded. Birds were allocated to a distance band
(0–25 m; 25–50 m; 50–100 m) perpendicular to
the transect line (records further than 100 m
either side of the transect line were excluded) and
to a 200-m segment of the transect based on the
location of the first observation. There were 287
segments surveyed in total. No attempt was made
to separate records into breeding territories while
carrying out transect surveys.

Breeding wader territory mapping. To produce
territory maps with which to ground-truth the
breeding wader data, all areas with breeding
waders present were visited at least three times
across the breeding season, and the estimated
centre of each wader territory was recorded by
watching from vantage points or walking through
suitable habitat and recording territorial birds or
nest locations and estimating the centre of the
breeding territory from records across all visits.
The territory mapping was carried out
independently of the transect surveys. We consider
this dataset to be close to the actual number of
territories across the study site, although for all
these species over- or under-counting is possible.
Across all four species, only four additional

territories were discovered on third visits (or
later), with third and later visits mostly spent
determining the (approximate) centre of
territories.

Acoustic recorders. Thirty-four Audiomoth
Acoustic recorders (v.1.1.0 and v.1.2.0, Open
Acoustic Devices, Oxford, UK) were used in the
study site. With data gathered from 83 different
randomly selected locations, each recorder location
was on a randomly selected perimeter of a
randomly selected 200-m 9 200-m segment
which was also covered by the transect surveys.
The acoustic recorders were placed to face the
centre of the segment. All audio recorders were
deployed in a location for a minimum of 10 days,
but some were in situ for longer as a result of the
practicalities of retrieving them from remote
locations. Following data retrieval, recorders were
re-deployed in new locations. The earliest
recording date was 17 April, and the last recording
date was 12 June. The audio recorders were
deployed fixed to small wooden stakes
approximately 30 cm above ground, or higher if
the vegetation was higher than 30 cm.

Recorders were programmed to record for
5 min in every 30 min between the times of
3:00 AM and 9:00 AM on each day that they were
active (initial testing had found that this was
approximately the period of highest vocal activity
for the target species). Recordings were made at
16 kHz frequency. The recorders were housed in
standard Audiomoth IPX7 waterproof cases (Open
Acoustic Devices).

Data analysis

Explanatory variables
The study area was divided into 825 segments
measuring 200 m 9 200 m (subsets of these seg-
ments were covered by the transect surveys and
acoustic recorders as described above). For habitat
cover (Fig. 2), satellite images (Google Earth,
accessed 05/07/2023) were used in QGIS (QGIS.
org 2024) to classify habitats within the study area
as either blanket bog, rotationally burnt heather
moorland, unburnt heath, degraded peat, grass-
land, juniper scrub, woodland or open water, by
drawing polygons around areas of each habitat
type. For each 200-m 9 200-m segment, the
extent of each habitat type was allocated to one of
four classes (< 1% = class 0; 1–10% = class 1;
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10–50% = class 2; > 50% = class 3). For each seg-
ment, mean elevation (Fig. 3a) and mean slope
(Fig. 3b) were extracted from the NASADEM dig-
ital elevation model. Easting and Northing were
also extracted for each segment for use as explana-
tory variables in models to account for spatial
autocorrelation.

Acoustic data
Recordings were first analysed using the BirdNet
analyser tool v.2.2 (Kahl et al. 2021). BirdNet

divides recordings into 3-s clips and classifies the
recordings using a Deep Artificial Neural Network,
previously trained on a large dataset of acoustic
samples, with overlap set to 0.0, sensitivity to 1.0
and minimum confidence to 0.1 (Birdnet default
values (Kahl et al. 2021); initial tests found that
altering these values did not significantly improve
the dataset). The species list was initially set to
include all species for which breeding was known
or considered possible, though the only four spe-
cies for which data were analysed were Golden
Plover, Lapwing, Oystercatcher and Curlew.

The accuracy of the BirdNet classifier was vali-
dated by manually labelling a subset of 200 ran-
domly selected 5-min recordings. We viewed the
acoustic data in Raven Pro v.1.6.5 (Cornell Lab of
Ornithology 2024), using a 1722-point Hamming
window spectrogram for visualization. All vocaliza-
tions by wader species were labelled by drawing a
bounding box around the smallest area possible
surrounding each vocalization. Only vocalizations
that were audible and produced a clear spectro-
gram were labelled. In cases where vocalizations of
either the same species or different target species
overlapped, a separate bounding box was drawn
for each separable vocalization. One bounding box
was drawn for bursts of calls with consistent inter-
mediate periods. For complex, extended vocaliza-
tions, such as a bubbling Curlew display call, the
bounding box was drawn around the whole of the
vocalization.

The approach was assessed using two comple-
mentary approaches. First, for each 3-s period a
confusion matrix was used to assess the precision

Figure 2. Habitat map of the 27-km2 study site. The eight dif-
ferent habitat classes identified from satellite images are
coloured as described in the key.

Figure 3. (a) Mean elevation and (b) mean slope in each 200-m 9 200-m segment of the study site with a 1-km 9 1-km grid
overlay.
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and accuracy of the BirdNet classifier against the
manually labelled dataset. Second, for each species
a linear regression was used to assess the accuracy
of BirdNet at estimating vocalization frequency for
the 200 manually labelled 5-min recordings. The
response variable was the total time (within the
5-min recording) of positive manual labels, and
the explanatory variable was the total time of posi-
tive BirdNet labels (applying the 0.1 confidence
threshold). R-squared (R2) values were used to
compare the accuracy of BirdNet-predicted vocali-
zation frequency for 5-min periods for each
species.

Territory density maps
To assess the performance of the acoustic and
transect models against empirical data, we pro-
duced territory density maps for each species
based on the independent territory mapping exer-
cise. Breeding waders typically vocalize and per-
form display flights across a larger area than the
immediate nest-site, but with variation in territory
size in different habitats (Ewing et al. 2017, Bow-
gen et al. 2022). Because limited information exists
on territory size for each species, territory density
maps were produced using quartic kernel densities
with radii 250 m, 500 m, 750 m, 1000 m and
1250 m around the centre-point of each territory
(see below).

Predictive modelling
For both the acoustic data and the transect data
we used random forest regression trees to make
predictions of territory density across the study
area from the sampled data. The predictive out-
puts of these two modelling approaches were then
compared to the wader territory maps. Random
forests were used for the predictive modelling
because they have good predictive power (Evans
et al. 2011, Mi et al. 2017), are robust to over-
fitting and rely on few assumptions about the dis-
tribution of explanatory variables, and collinearity
of explanatory variables is less problematic than
with linear modelling approaches (Howard
et al. 2014). Data analysis was carried out in R
v.3.6.1 (R Core Team 2022) using the packages
randomForest, rgdal, sf and dplyr.

For the transect data, random forest regression
trees (with default settings) were used to predict
the relative abundance of each of the four target
species of breeding wader across the study site in
the 200-m 9 200-m segments. We used the count

of individuals up to 100 m from the transect line
on each segment as the response variable (we
ignored distance bands as there were too few
records for some species to produce distance func-
tions) and the environmental covariates (see
above) as explanatory variables (including Easting
and Northing).

With the acoustic dataset, for each of the 83
deployment sites 100 9 5-min samples were ran-
domly selected from between 3:00 AM and
9:00 AM during the period of deployment, exclud-
ing those samples significantly affected by wind or
rain. The number of samples analysed was
restricted to 100 because there was wide variation
in the number of samples obtained from each
recorder owing both to the challenge of recovering
recorders from remote locations and variable bat-
tery life (rechargeable batteries were used which
hold less charge than non-rechargeable lithium
batteries). These samples were analysed with the
Birdnet classifier to identify all segments with a
positive classification for a target species to pro-
duce a binomial variable (presence or absence of
the target species in each 3-s segment), which was
the response variable in the random forest model.
Each recorder location was assigned to the
200-m 9 200-m segment in which it was posi-
tioned, and the environmental explanatory vari-
ables for each segment were then used in the
model. Time and date were also included as
explanatory variables, time being the mid-point of
the 5-min period and date as the number of days
since 1 April. The models then predicted the like-
lihood of positive classifications in each
200-m 9 200-m segment of the study site.

For both the acoustic and transect approaches,
the number of random forest regression trees
(RFRTs) in each random forest was 500, and the
number of variables sampled as candidates for each
tree was three. In both cases, all explanatory vari-
ables were retained in all models, as the main pur-
pose of the modelling was to compare the
predictive power of the acoustic data versus the
transect data, rather than to assess the effect of
environmental variables on wader density. Model
performance was assessed using ‘out-of-the-bag’
predictions, meaning that estimates of predictive
power are based on independent data. For both
models, the proportion of variation in the response
variable (positive 3-s classifications in the acoustic
data or count data from transects) explained by
the environmental variables was assessed using R2.
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The predictive power of the acoustic and tran-
sect models were assessed against the indepen-
dently assessed territory density maps. We ran
linear models with actual territory density in each
segment as the response variable, and the random
forest predictions from the acoustic and transect
approaches as the explanatory variable. A 2nd

order polynomial term was included in the models
to account for the possibility of non-linearity. For
each species, separate models were run for the
acoustic and transect models and for each of the
five territory size categories to identify: (i) whether
the acoustic or transect random forest was the best
fit to territory density, and (ii) which assumed ter-
ritory size was the best fit for each species.

RESULTS

The independent territory mapping identified 28
territories for Oystercatcher, as well as Lapwing
(51), Golden Plover (27) and Curlew (47) terri-
tories in the study site. On the fieldworker transect
surveys, there were 27 encounters with Oyster-
catcher, 59 with Lapwing, 57 with Golden Plover
and 73 with Curlew. The 100 9 5-min samples
from each of the 83 acoustic recorder deployments
generated 830 000 9 3-s segments for classifica-
tion using the BirdNet classification tool. The clas-
sifier identified 17 421 9 3-s segments with
Curlew vocalizations, 6916 with Oystercatcher,
6205 with Lapwing and 531 with Golden Plover.
An approximate estimate of vocalization frequency
per territory across the site was produced by divid-
ing the number of classifications by the total num-
ber of territories identified in the independent
territory mapping. This resulted in 1112 s of
vocalization per territory for Curlew, 741 s per
Oystercatcher territory, 365 s per Lapwing terri-
tory and 59 s per Golden Plover territory.

Using the manually labelled 3-s segments as a
validation dataset, BirdNet Analyser was better at
classifying Oystercatcher (accuracy = 0.84, preci-
sion = 0.84, recall 0.19), Lapwing (accu-
racy = 0.91, precision = 0.86, recall = 0.17) and
Curlew (accuracy = 0.83, precision = 0.93,
recall = 0.18) than for Golden Plover (accu-
racy = 0.70, precision = 0.55, recall = 0.01).
Across the 200 manually labelled 5-min periods
(Fig. 4), BirdNet Analyser produced values of
summed vocalization that were highly correlated
to the manually labelled datasets for three of the
four species. For Oystercatcher, the coefficient of

the linear model (where 1 would be perfect align-
ment and the intercept is fixed at 0) was 0.840
and R2 = 0.900, for Curlew the coefficient was
0.782 and R2 = 0.899, for Lapwing the coefficient
was 1.083 and R2 = 0.893, but for Golden Plover
the coefficient was 0.036 and R2 = 0.238.

For Oystercatcher (R2 = 0.594) and Curlew
(R2 = 0.599) the acoustic models performed well
in explaining variance of detection rate between
recorder locations, more so than the equivalent
test of the transect models (R2 = 0.448 and 0.301,
respectively). For Golden Plover and Lapwing,
both the acoustic models (R2 = 0.165 and 0.205,
respectively) and transect models (R2 = 0.270 and
0.196, respectively) performed relatively poorly.

For each species, we used the independent
ground-truthed territory maps to produce kernel
density maps for five assumed territory sizes
(250–1250 m). We used linear models, with a
polynomial term to account for non-linearity, to
assess how accurately the acoustic and transect
random forest models predicted actual territory
density (for the five different assumed territory
sizes (Table 1)). The best-fitting territory size was
larger for the acoustic models than for the transect
models for Curlew (acoustic: 1000 m, transect:
750 m), Oystercatcher (acoustic: 1250 m, tran-
sect: 500 m) and Golden Plover (acoustic:
1000 m, transect: 500 m), while for Lapwing
there was no difference (acoustic: 750 m, transect
750 m). The best acoustic model outperformed
the best transect model for Oystercatcher and
Curlew, while for Golden Plover and Lapwing, the
transect models performed better (Table 1). The
relative density predictions obtained from the
acoustic modelling are a good approximation of
the distribution of territories across the study site
(Figs. S1–S4). We found evidence of a saturation
effect (Oppel et al. 2014), where, at higher terri-
tory densities, increases in territory density did not
result in equivalent increases in the frequency of
detected vocalizations (Figs. S5–S8).

In terms of resource requirements, to program,
deploy and collect recorders from the 83 locations
(in a study site relatively well covered by off-road
tracks, see Fig. 1) was approximately four field-
work days. Had there been no need to move the
recorders between sites (e.g. if 83 recorders had
been used) then it is likely that the deployment
and collection could have been completed in half
this time. Carrying out the transect surveys took
18 fieldwork days with good weather. Creating the

© 2024 The Author(s). IBIS published by John Wiley & Sons Ltd on behalf of British Ornithologists' Union.
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Figure 4. Linear models assessing the accuracy of BirdNet at estimating vocal activity in a 5-min period. For 200 manually labelled
5-min periods, the total amount of labels (in s) for each species are plotted against BirdNet classifications (in s). A linear regression
(grey line) with 95% confidence intervals (light grey shading) is plotted.

Table 1. Comparison of the performance of acoustic and transect models in predicting territory density across the study site with dif-
ferent assumed territory sizes applied to the ground-truthed territory maps for each species.

Model
Acoustic Transect

Territory size (radius) 250 m 500 m 750 m 1000 m 1250 m 250 m 500 m 750 m 1000 m 1250 m

Oystercatcher 0.420 0.502 0.527 0.535 0.537 0.434 0.471 0.492 0.478 0.459
Golden Plover 0.0954 0.179 0.225 0.242 0.231 0.285 0.414 0.412 0.387 0.311
Lapwing 0.243 0.379 0.429 0.422 0.356 0.313 0.444 0.466 0.458 0.366
Curlew 0.373 0.595 0.669 0.684 0.676 0.340 0.538 0.594 0.587 0.558

R2 values are shown for acoustic and transect models for territory density grids calculated using 250 m, 500 m, 750 m, 1000 m and
1250 m kernels. The R2 for the best-fitting model for each species across all of the territory sizes and the acoustic and transect
models is shown in bold and italics.

© 2024 The Author(s). IBIS published by John Wiley & Sons Ltd on behalf of British Ornithologists' Union.
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manually labelled dataset and then running ana-
lyses to validate the acoustic approach took
approximately 10 days. Subsequent analyses took
similar amounts of time for each approach.

DISCUSSION

This study demonstrates that, for some species of
breeding waders, using acoustic recorders and an
automatic classifier can predict relative density of
breeding territories more accurately than a tradi-
tional transect survey-based approach. Consistent
with our hypotheses, for Oystercatcher and Cur-
lew the acoustic-based approach clearly outper-
formed the transect-based approach, whereas for
Golden Plover and Lapwing the transect-based
approach performed better, although for these two
species both approaches were poor at predicting
relative territory density. Additionally, our hypoth-
esis that the resource requirement to gather and
analyse the acoustic data would be less than for
the transect surveys was confirmed. These findings
demonstrate the potential for acoustic methods to
augment traditional monitoring approaches, but
also show that closely related species can vary in
the extent to which they are suited to acoustic
methods.

Predictive modelling approach

We used a predictive modelling approach to com-
pare the effectiveness of acoustic recorders with
transect surveys at predicting the relative density
of breeding territories across the study site. We
used this approach because the breeding territories
of our study species are much larger than the
200-m segments (Bowgen et al. 2022) and the
vocal activity or movement of the target species
associated with a breeding territory will not be
limited to the 200-m segments, and territorial
vocalization behaviour can overlap across multiple
territories. This meant that an assumption that the
acoustic data would correlate to the presence or
absence of territories at the 200-m 9 200-m seg-
ment size would not be justified, and so we used a
range of territory buffers around each estimated
territory centre to create a territory density map.
Moreover, there is strong evidence that the distri-
bution of breeding waders in open upland habitats
is highly associated with slope, habitat and eleva-
tion (e.g. see Stillman & Brown 1994) – environ-
mental variables for which we had good data, so

we assumed that a predictive modelling approach
would be an effective way to compare the acoustic
and transect datasets.

Ecological characteristics of target
species

The vocal behaviour of the target species influ-
enced the effectiveness of the acoustic approach –
the total number of Curlew positive classifications
per territory was approximately 19 times higher
than for Golden Plover – meaning that the Curlew
acoustic model predictions were based on far more
positive data points than the Golden Plover acous-
tic model. Golden Plover nests were at higher ele-
vations and in more exposed areas than Curlew so
some of this difference may be driven by the diffi-
culty in getting clear recordings in higher altitude,
exposed areas, and consequently the classifier
accuracy was low for Golden Plover. Golden Plo-
ver are specifically known to have low detectability
during the incubation period, but peaks of detect-
ability occur during the territory-establishment and
brood-rearing periods (Byrkjedal & Thomp-
son 1998, Pearce-Higgins & Yalden 2005). On the
transect surveys, Curlew were recorded only
slightly more frequently than Golden Plover (73
times vs 57 times, respectively). For Golden Plo-
ver, vocal activity is very limited around the nest-
site after the incubation period starts, except in
response to intruders/predators, and there were
instances of non-incubating birds calling frequently
on lower ground (some distance from breeding ter-
ritories), confounding the assumption of the acous-
tic modelling approach that more vocal activity is
recorded around breeding territories. In contrast to
Golden Plover, the other three wader species
vocalized throughout the breeding season, breed in
less exposed areas and are less likely to vocalize
away from the breeding territory. As a result, the
acoustic recorder and automatic classifier approach
was more effective. For Lapwing, the lower fre-
quency of vocalization per territory and the fact
that they nest in close proximity – often in
high-density clusters – may limit the effectiveness
of both the acoustic and transect models, although
the greater spatial coverage of the transect surveys
may be better suited to this species.

We did not have a priori knowledge of how
large the acoustic footprint of each breeding terri-
tory would be for each target species: it is likely to
be influenced by the amplitude of vocalizations,

© 2024 The Author(s). IBIS published by John Wiley & Sons Ltd on behalf of British Ornithologists' Union.
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how far from territory centres birds vocalize, the
topography of the study site, weather conditions
and also the effective detection range of the sen-
sors (Thomas et al. 2020). To account for these
effects, we produced ground-truthing maps with
five different assumed territory sizes to see which
would fit the predictive acoustic models best. The
acoustic models were a better fit for larger
assumed territory sizes for three of the four spe-
cies: acoustic sensors may effectively survey a
larger area than fieldworker transects and so regis-
ter detections from birds further away from terri-
tory centres. Curlew and Oystercatcher were a
better fit for larger territory sizes – presumably
because these species make large display flights
vocalizing far beyond the immediate nest-site,
meaning the acoustic footprint of a territory is
large. In contrast, Lapwing and Golden Plover had
smaller acoustic territories as vocalizations do not
carry as far. Lapwing also nest in very close prox-
imity to one another in colonies of (at this study
site) up to eight pairs in one field (approximately
2 ha). Species distribution models may work much
less well for colonial species (Engler et al. 2017)
because effective sample size is reduced (Wisz
et al. 2008). We did not adjust the model to
account for Lapwing semi-coloniality to ensure
that the approach used for each species was the
same, and because our aim was to compare the
extent to which modelled acoustic data predict
territory density given different species traits.

As territory density increased for each species,
vocal activity did not increase equivalently (see
Figs. S1–S4) and reasons for this may be two-fold:
there may be genuine decreases in vocal activity
per pair at higher densities and it may also be the
case that birds become more likely to vocalize
simultaneously (Oppel et al. 2014). Particularly
for Curlew, the recorders in the highest density
areas often had two or three birds vocalizing
simultaneously.

Classifier performance

Evaluated at the 5-min period scale (Fig. 4), the
automatic classifier performed well compared to
manually labelled data. For all species precision
was relatively high (few false positives) but recall
was relatively low (meaning a high number of false
negatives) evaluated at the 3-s period scale. This is
likely to be partly because, for the manual labels,
bounding boxes were drawn precisely around the

area of vocalization on the spectrogram, so there
were occasions where a small portion of a label
overlapped into a 3-s BirdNet classification period,
resulting in a positive record in the manual dataset
and a negative record in the BirdNet dataset
(because the classifier was unable to make a posi-
tive ID from a small portion of a vocalization).
Indeed, while the random forest model predicts
relative territory density best for Curlew, the bal-
anced accuracy of the BirdNet classifier for Curlew
is lower than for Lapwing and Oystercatcher; this
reiterates that the suitability of a species to acous-
tic monitoring is not solely a function of the per-
formance of an automatic classifier.

Spatial and temporal sampling

In the acoustic dataset, for each recorder location,
100 9 5-min samples were randomly selected
from between 3:00 AM and 9:00 AM, excluding
those samples significantly affected by wind or
rain. To maximize use of recorders, recorders were
moved to different locations and so data were
gathered from different locations at different times
during the breeding period. While vocal activity
will vary across the wader breeding period (Nebel
& McCaffery 2003), we considered that sampling
different locations at different times during the
season would not unduly influence the dataset,
providing that there was no spatial or altitudinal
bias in the locations surveyed earlier or later in the
breeding season. Having more recorders and not
needing to move them would have improved cov-
erage and reduced deployment/retrieval time. This
may be an additional factor in the poor perfor-
mance of the Golden Plover acoustic model,
because Golden Plover are typically less vocally
active than the other species, and vocal activity
can vary substantially with stage of breeding
(Pearce-Higgins & Yalden 2005). We limited each
recorder location to 100 9 5-min samples because
for some recorders the batteries failed quite soon
after deployment (within 7 days) but we were still
able to extract 100 samples from these recorders.
For all four target species, the estimated detection
rate at individual sampling points would not have
been significantly different with more samples. In
contrast to the acoustic dataset, in the transect
dataset there are effectively only two temporal
sampling points (from each of the two survey
visits). Because the transect surveys started soon
after dawn and ended at around 10:00 AM,

© 2024 The Author(s). IBIS published by John Wiley & Sons Ltd on behalf of British Ornithologists' Union.
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different areas were surveyed at times with signifi-
cantly different levels of bird activity, although this
effect is partly mitigated by reversing the order in
which the transects are surveyed on first and sec-
ond visits. In terms of spatial sampling, the tran-
sect approach had approximately 3.5-fold greater
coverage with 287 segments covered by transects
compared to 83 acoustic sampling segments.

Relative resource requirements

When selecting to use an acoustic or transect-based
approach, practical and financial concerns will be
important. The cost of an individual Audiomoth is
currently US$97 (October 2023). The recorders
used in this project had been used in two field sea-
sons already: four of the 35 original recorders no
longer functioned owing to various problems, and
two more failed during the current project breeding
season. This level of attrition, in a project with a rel-
atively large number of recorders, is not likely to
have had a material effect on the final dataset. The
temporal requirements of the acoustic approach
were 14 days while the transect approach required
18 days. The subsequent time requirements in
terms of analysis for the acoustic and transect data
were similar, meaning that, in total, the acoustic
approach was less time-consuming than the transect
approach, although there were also additional data
storage costs associated with the acoustic approach.
If this site were to be re-surveyed in future years
using an acoustic approach with the same automatic
classifier and the same target species (and confusion
species) then redoing the manually labelled dataset
would be unnecessary, so the time requirements
would be very low. There are also possibilities for
using citizen science to create validation datasets for
bioacoustics projects (J€ackel et al. 2021).

Future directions and implications

There is significant potential for passive acoustic
methods to augment traditional survey methods.
However, this study demonstrates that closely
related species with relatively similar ecologies can
vary significantly in the extent to which they are
suited to acoustic monitoring. Researchers should
thus proceed with a degree of caution, and must
consider factors such as breeding ecology and the
vocal behaviour of a species when considering an
acoustic approach. An important next step, partic-
ularly for breeding waders, will be to understand

the extent to which site-specific variables signifi-
cantly influence vocalization rates – it is likely that
factors such as the frequency of anthropogenic dis-
turbance (Diepstraten & Willie 2021) or noise
(Cretois et al. 2024), predator densities (Lourenc�o
et al. 2013), habitat type or food availability will
influence vocal activity. Acoustic methods may
also be capable of providing information not just
on breeding density, but also on wader breeding
productivity, which is very important for conserva-
tion decision-making (Jarrett et al. 2024). More
broadly, using acoustic monitoring to estimate
absolute territory density across different sites,
contexts and management regimes will only be
possible with a robust understanding of the rela-
tive importance of site-specific factors. More stud-
ies such as this, which ground-truth approaches to
empirical data, will be valuable in assessing the
wider efficacy of acoustic monitoring approaches.
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SUPPORTING INFORMATION

Additional supporting information may be found
online in the Supporting Information section at
the end of the article.

Figure S1. Example Oystercatcher vocalization.
Figure S2. Example Lapwing vocalization.
Figure S3. Example Golden Plover vocalization.
Figure S4. Example Curlew vocalization.
Figure S5. Comparison of the outcomes of the

acoustic and field surveys for Oystercatchers.
Figure S6. Comparison of the outcomes of the

acoustic and field surveys for Lapwings.
Figure S7. Comparison of the outcomes of the

acoustic and field surveys for Golden Plovers.
Figure S8. Comparison of the outcomes of the

acoustic and field surveys for Curlews.
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