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Abstract

Human drivers take instant decisions about their speed, acceleration and distance from other
vehicles based on different factors including their estimate of the road roughness. Having an
accurate algorithm for real-time evaluation of road roughness can be critical for autonomous vehicles
in order to achieve safe driving and passengers comfort. In this paper, we investigate the problem
of interactive road roughness identification. We propose a novel inverse algorithm based on the
knowledge of a vehicle dynamic characteristics and dynamic responses. The algorithm construct the
road profile in time using one-iteration to update the wheels forces which are then used to identify
the road roughness. The relation between the forces and the road profile is defined by a system of
ordinary differential equations that are solved using the composite Gaussian quadrature. To reduce
the error accumulation in time when noisy data is used for the vehicle response, a bidirectional filter
is also implemented. We assume a simple model that is based on four degrees-of-freedom system
and vibration acceleration measurements to evaluate the road roughness in real-time. Although
we present the results for this specific model but the algorithm can also be utilised with models of
any number of degrees of freedom and can deal with models where the dynamic response is only
available at some of the degrees of freedom. This is achieved by introducing a matrix reduction
technique that is discussed in details. Furthermore, we evaluate the impact of uncertainty in the
vehicle parameters on the algorithm estimation accuracy. The proposed algorithm is evaluated
for different types of road roughness. The simulation results show that the proposed method is
robust and can achieve high accuracy. The algorithm offers excellent potential for road roughness
estimation not only for autonomous vehicle but also for vehicles and roads designing purposes.

Keywords. road roughness; vibration acceleration; vehicle trajectory; autonomous vehicle; inverse
problem; bidirectional filter; noisy data.

1 Introduction

Autonomous, driverless or self-driving vehicles are going through intensive testing to be released in
the near future for public transport in different major cities in Europe and all over the world [1].
Although they provide many advantages such as reduced parking spaces, lower emissions and fewer
congestions but they may also pose a risk to the public safety if unsuccessful in collecting or processing
key input from their surroundings [2]. To go fully independent of human interaction it is important to
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consider all the inputs usually considered by a human driver. An important factor in this regards is
related to the road roughness. This factor often helps a human driver to decide on the vehicle distance
from other road users, its speed, acceleration and its trajectory. However, for an autonomous vehicle
processing such data in real-time can be a challenge [3, 4].

Determining the most feasible trajectory is an important level of a vehicle autonomy not only for
safety but also for passengers comfort [4]. Several methods can be found in the literature for trajectory
optimization based on driving scenarios on highways or country roads [5, 6]. Based on longitudinal
and lateral accelerations of an autonomous vehicle a dynamic controller is proposed to follow a desired
path and to describe the driving and handling limits of the vehicle [7]. The vehicle velocity was
also studied for travelling time and road curvature constraints [8, 9]. A model predictive control was
developed for an autonomous vehicle based on the feasible road region and the vehicle shape [3]. A
path planning algorithm for autonomous driving that avoids in real-time static and dynamic obstacles
was developed in [10]. To optimise the trajectory for urban driving it was proposed to decompose the
problem into a spatial path and a velocity profile so that they can be studied separately [11].

Accurately detecting the road surface condition can be crucial for a safe vehicle trajectory [12]. In this
context we are interested in identifying the road roughness which refers to the disturbances induced by
an uneven road on a moving vehicle [13]. The road roughness is an essential vertical input that plays
an important role not only for trajectory but also in the entire vehicle dynamic design and fatigue
life [14–16]. International Organization for Standardization (ISO) specifies a method for reporting
measured vertical profile of a road in ISO8608:2016 [17]. International Roughness Index (IRI) is
specified as a standard practice to evaluate road roughness from longitudinal profile measurements.
The IRI was first introduced in 1986 by American Society of Testing and Materials (ASTM) [18].

Different models of road roughness have been widely studied in the literature [19–26]. These models can
be classified into two main categories. The first category relies on simulations of roads with parameters
that can be adjusted to change the simulated road roughness while the second relies on measurement
taken from actual roads. The first category is in general based on empirical statistics and mathematical
models that are an approximation of actual roads. The inverse fast Fourier transform was used to
simulate road roughness and the results were compared to the trigonometric series method [21]. The
road and vehicle spectral functions were combined with a trip schedule to estimate road roughness
and the corresponding vehicle speed and segment duration [22]. An ISO profile was used in stochastic
modelling to identify IRI roughness coefficient [27] where the proposed Laplace model was validated
for eight road profiles. The spectral factorization approach was used for full-car models in [28] where
two different formulations were presented and validated for different road profiles.

The second category of methods that rely on measurements of actual roads, can be further subdivided
into two classes based on the used equipments if they contact or do not contact the road. Examples
of the contact class methods are: The level and ruler, the beam, the three-meter ruler, the multi-
round instrument and in-pavement strain sensors among others [29–31]. Examples of the non-contact
methods include: The general motors road profilometers, vehicular bump-integrator, laser profiler,
schematic diagram of sensors and mobile laser scanning data [32–34]. Generally speaking, contact
methods are more accurate but less efficient than non-contact methods [29, 35]. The reduced accu-
racy of the non-contact methods can be attributed to the vibrations of the vehicle that carries the
measurement equipments.

It should also be mentioned that several algorithms were developed to estimate the road roughness
based on measured data. Coherence functions method [23], Kalman filter [36, 37], artificial neural
network [38] and machine learning technology [39] are some examples. However, a major issue for
these algorithms is related to the noise in the measured data which can significantly impact the
accuracy. Also the computations required in these relatively complex models makes it difficult to
achieve real-time road roughness estimation which is an essential issue for autonomous vehicles.

In this study we aim to estimate the road roughness by measuring the vibrations of a vehicle. We
propose an inverse algorithm to estimate the profile of a road using only the knowledge of the vehicle
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and its dynamic response. The algorithm is designed to be integrated into the navigation and the
control system of an autonomous vehicles. The aim is to obtain road roughness in real time with
minimum computational resources and output the roughness into the control system. Constructing
the input from the dynamic system response belongs to the second inverse problem as specified in [40].
Solving such problem can be achieved either in the time domain or the frequency domain [41–43].
Although the frequency domain methods are easier to implement but they are not suitable for non-
stationary vibrations. On the other hand time domain methods can deal with non-stationary vibrations
but can suffer from the temporal error accumulation. The proposed algorithm is a time domain method
and is coupled to a four degrees of freedom (DoF) model that is solved in real-time. It should also
be noted that the presented work is among the first to use an inverse solution for estimating road
roughness not only for autonomous vehicles but also in the context of designing vehicles.

Next, the simplified model of the vehicle and the equation of motion are presented in section 2. The
inverse method is explained in section 3 while in section 4 numerical experiments are run to evaluate
the accuracy and the efficiency of the proposed method. We finish with some concluding remarks in
section 5.

2 Half-vehicle model and equation of motion

The dynamic model used in this paper is the ‘bicycle model’ or ‘4 DoF half-car model’ which is a
standard representation for a car suspension system. The main advantage of the half-vehicle model
compared to quarter-vehicle is the ability to include the vehicle pitching motion in the calculation. It
also allows considering the effect of the centre of gravity location and accounts for different damping
an stiffness for the front and rear wheels. Such properties can significantly differ between different
vehicles. The model involves one rotational and three translational degrees of freedom that are shown

Figure 2.1: Schematic diagram of the considered half car model.

in Figure 2.1. The vehicle body is represented by a rigid beam in the figure and has a pitching moment
of inertia Ic and a mass mc. The body has a translational and a rotational degrees of freedom. The
translational DoF is noted with x in the figure, located at the centre of gravity C and has a vertical
direction. The rotational DoF is noted with θ in the figure and represents the pitching angle of the
mass around the centre C. The remaining two degrees of freedom are the vertical translation of
the unsprung front and rear masses which are denoted by mtf ,mtr, respectively. These masses are
connected to the body through the springs and dampers shown in Figure 2.1. The front and rear
wheels are simplified as linear springs and dampers that are connected to the unsprung masses. The
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parameters ktf , ktr and ctf , ctr represent the stiffness and damping coefficients of the front and rear
wheels where the subscript f denotes fornt and r rear. The road disturbances denoted by zf and zr
are assumed to be the only vertical inputs on the vehicle. The types of transient disturbances we
consider in this paper are sinusoidal or random fluctuations or it can be a combination of these two
types. We also assume micro-amplitude vibrations so that sin θ = θ and cos θ = 1. All displacements
are considered to be zero at the static equilibrium conditions.

Starting from Newton’s second low the equation of motion can be obtained

Mü + Cu̇ + Ku = f (2.1)

where M,C and K are, respectively, the mass, the damping and the stiffness matrices of a considered
system while f represents any external forces applied to it. The variable u, u̇ and ü represent the
displacement, the velocity and the acceleration vectors, respectively. The matrices are explicitly
defined for our considered model as

M =


mc 0 0 0
0 Ic 0 0
0 0 mtf 0
0 0 0 mtr

 ,C =


cf + cr acf − bcr −cf −cr
acf − bcr a2cf + b2cr −acf bcr
−cf −acf cf + ctf 0
−cr bcr 0 cr + ctr

 ,

K =


kf + kr akf − bkr −kf −kr
akf − bkr a2kf + b2kr −akf bkr
−kf −akf kf + ktf 0
−kr bkr 0 kr + ktr

 ,u =


x
θ
yf
yr

 , f =


0
0

ctf żf + ktfzf
ctrżr + ktrzr

 ,
where all the parameters are summarised in Table 2.1.

Table 2.1: Half-car model parameters specification

Parameters Specification

mc Body mass and sprung mass of the vehicle
Ic Pitching moment of inertia
mtf Front unspung mass
mtr Rear unspung mass
cf Front primary suspension linear damping coefficient
cr Rear primary suspension linear damping coefficient
kf Front suspension spring stiffness
kr Rear suspension spring stiffness
a Distance between the front wheel and the center of gravity
b Distance between the rear wheel and the center of gravity
ctf Front wheel damping coefficient
ctr Rear wheel damping coefficient
ktf Front wheel spring stiffness
ktr Rear wheel spring stiffness
zf Road uneven disturbances on the front wheel
zr Road uneven disturbances on the rear wheel

3 Estimating the road roughness

The relation between the road disturbances zf (t) and zr(t) and the vehicle response can be defined
using equation (2.1) where the external forces f are resulting from these disturbances. We aim to
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identify zf (t) and zr(t) based on the vehicle acceleration response ü. Therefore, we need to find the
inverse solution of equation (2.1) by first identifying f . Next, and based on the external force vector
f we can reconstruct zf (t) and zr(t) using the composite Gaussian quadrature. The proposed inverse
solution and the procedure to reconstruct the road disturbances are described next.

3.1 Inverse method for estimating the force vector

Evaluating the forces based on the dynamic response of a structure is a typical inverse problem [41,42].
In this regards, the Newmark method is a stable recursive algorithm and is widely used for recovering
the structural dynamic response in time domain applications when solving the forward problem [44].
It is an efficient and accurate method for multi-degrees of freedom system such as the one considered
here. Because in this paper we look into time domain applications, we base our iterative inverse
algorithm on the Newmark method. Here, it should be noted that the proposed algorithm could also
be implemented with other time integration schemes but with minor changes. The algorithm uses the
acceleration response and the dynamic characteristics of the vehicle to recover the forces f . Basing the
proposed procedure on acceleration is a key for implementation in autonomous vehicles as acceleration
is relatively easy to collect in real-time.

Using the Newmark method based on Richardson’s extrapolation [44] it is possible to write the fol-
lowing pseudo static recursive equation at time (t)

K∗u(t) = f∗(t) (3.1)

where the equivalent stiffness matrix K∗ and the equivalent force vector f∗(t) are given as

K∗ = K +
1

β∆t2
M +

γ

β∆t
C (3.2)

f∗(t) = f(t) + f̂(t−∆t) (3.3)

with ∆t being the time sampling interval, while β and γ are the Newmark parameters and f̂(t−∆t)
is a virtual force vector that is given as

f̂(t−∆t) =M

(
1

β∆t2
u(t−∆t) +

1

β∆t
u̇(t−∆t) + (

1

2β
− 1)ü(t−∆t)

)
+

C

(
γ

β∆t
u(t−∆t) + (

γ

β
− 1)u̇(t−∆t) + (

γ

2β
− 1)∆tü(t−∆t)

) (3.4)

The displacement u(t) at the current time step results from the force vector f(t) at the current time
step as well as the virtual force vector at the previous time step f̂(t − ∆t). Therefore, we split the
displacements u(t) into two parts: û(t) and ũ(t) where the former results from f(t) and the latter
from f̂(t−∆t). The total displacement vector at the current time step (t) can now be written as the
summation of these two parts

u(t) = û(t) + ũ(t) (3.5)

Thus, equation (3.1) can be split in terms of these two displacements such that

K∗û(t) =f̂(t−∆t) (3.6)

K∗ũ(t) =f(t) (3.7)

For the forward Newmark problem if the force vector f(t − ∆t) is known, it is possible to obtain
u(t−∆t), u̇(t−∆t) and ü(t−∆t). These can then be used to get f̂(t−∆t) and û(t) from equations
(3.4) and (3.6), respectively. Furthermore, starting from the displacement, velocity and acceleration
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vectors at the previous time step (t−∆t) and using Newmark method the acceleration vector at the
current time step (t) can be written as

ü(t) =
1

β∆t2
(u(t)− u(t−∆t))− 1

β∆t
u̇(t−∆t)− (

1

2β
− 1)ü(t−∆t) (3.8)

By rearranging equation (3.8) it is possible to get the displacement vector in the current time step
u (t) in terms of the displacement u(t−∆t) and u̇(t−∆t) velocity vectors at the previous time step
and the acceleration at both the current ü (t) and previous time steps ü (t−∆t)

u(t) = u(t−∆t) + u̇(t−∆t)∆t+

(
(
1

2
− β)ü(t−∆t) + βü(t)

)
∆t2 (3.9)

If the acceleration vector at the current time step is known at all degrees of freedom, we can also
calculate the displacement vector u(t) using equation (3.9). Then since we already have û(t) we can
also evaluate ũ(t) at all degrees of freedom. Finally, the external forces f(t) can be evaluated using
equation (3.7).

In this paper we consider a model with four degrees of freedom. The relatively small number of
degrees of freedom helps to achieve road roughness estimation in real-time which is important for
autonomous vehicles. Nevertheless, the same algorithm can also be applied to a system of any number
of degrees of freedom. However, if considering a system of thousands or even millions of degrees of
freedom as for example a full vehicle model, it is in general not possible to measure acceleration at
all degrees of freedom. Processing the input from several accelerometers in real-time can be efficiently
achieved using the proposed algorithm. Hence, it can be used to estimate road roughness in real-time
for autonomous vehicles. However, considering the input of hundreds or thousands of accelerometers
can not be achieved within the real-time constraint. Although it can still be processed in the same
way. Therefore, such models need to be modified to work with only the degrees of freedom where
accelerations are measured. According to equation (3.9), it is only possible to obtain the displacement
vector entries at these degrees of freedom and, hence, ũ(t) is also obtained from (3.5) for the same
degrees of freedom. To find the unknown forces based on incomplete acceleration response, we define
a selection matrix D that consists of 0 and 1 to determine the positions of the collected acceleration.
Because K∗ is positive definite we can write

ũ(t) = (K∗)+f(t) (3.10)

where (K∗)+ is the Moore-inverse of K∗. Multiplying with D from left on both sides of the equation
we get

Dũ(t) = D(K∗)+f(t) (3.11)

For simplicity we denote Dũ(t) as P(t) and D(K∗)+ as Q thus we can rewrite equation (3.11) as

P(t) = Qf(t) (3.12)

The number of the columns in the matrix P(t) is equal to the number of degrees of freedom, m, used
for measuring the acceleration. The length of the force vector f(t) to be evaluated is k. If we have
k ≤ m the following equation could be used to evaluate the unknown force vector at the current time
step

f(t) = Q+P(t) (3.13)

where Q+ is the Moore-inverse of Q. Thus, we propose employing equation (3.13) to reconstruct the
forces over the whole time domain. After establishing the recurrence relationship from f(t − ∆t) to
f(t), the next step is to determine f(0).

At time t= 0, given that the initial displacement, velocity and acceleration vectors are known at all
degrees of freedom, it is relatively simple to calculate the initial force vector based on the vibration
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Algorithm 1 Proposed inverse algorithm.

1: Evaluate M,C,K.
2: Set the values of β, γ and ∆t.
3: Identify the initial conditions u(0) and u̇(0).
4: Measure the acceleration vector ü(0) at m degrees of freedom.
5: if (m = the total number of degrees of freedom) then
6: Calculate f(0) using equation (2.1).
7: else if (m < the total number of degrees of freedom) then
8: Calculate f(0) using equation (3.16).
9: end if

10: for (t = ∆t, 2∆t, ... to tfinal) do
11: Measure ü(t) at m degrees of freedom.
12: Calculate u(t) using equation (3.9).
13: Calculate f̂(t−∆t) using equation (3.4).
14: Calculate û(t) using equation (3.10).
15: Calculate ũ(t) using equation (3.14).

ũ(t) = u(t)− û(t) (3.14)

16: Calculate f(t) using equation (3.13).
17: end for
18: Calculate zf (t) and zr(t) using equations (3.19) and (3.19).

differential equation with constant coefficients [45] . However, when some accelerations are known at
m degrees of freedom and the condition k ≤ m is still satisfied we can use

P(0) = Qf(0) (3.15)

or
f(0) = Q+P(0) (3.16)

Starting from the initial force vector it is possible to identify all subsequent force vectors following the
inverse Newmark recurrence relations described above. For convenience steps 1 to 17 in Algorithm 1
summarize the proposed inverse procedure. Following the procedure described in the algorithm, the
force vector f(t) can be identified. This vector will then be used to evaluate the road roughness using
composite Gaussian quadrature which is explained next.

3.2 Identification of the road profile

As it can be seen in Figure 2.1 the road disturbances zf (t), zr(t) affect the third and fourth degrees
of freedom in the model. The relation between the forces and the disturbances can be given as

f3 = ctf żf (t) + ktfzf (t) (3.17)

f4 = ctrżr(t) + ktrzr(t) (3.18)

Thus, the force vector can also be written as f(t) = {0 0 f3 f4}. The values of zf (t) and
zr(t) can be obtained by solving the two first order differential equations (3.17) and (3.18). The two
equations have constant coefficients and can be integrated over the time domain to obtain these values

zf (t) =zf (0)e
−

ktf
ctf

t
+

1

ctf

∫ tfinal

0
f3(τ) · e

−
ktf
ctf

(t−τ)
dτ (3.19)

zr(t) =zr(0)e−
ktr
ctr

t +
1

ctr

∫ tfinal

0
f4(τ) · e−

ktr
ctr

(t−τ)dτ (3.20)
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Table 4.1: Consider input for the numerical tests.

Vehicle parameters value unit

mc 706 kg
Ic 718 kg.m2

mtf 59 kg
mtr 89 kg
cf 4170 N/(m/s)
cr 8200 N/(m/s)
kf 460630 N/m
kr 538620 N/m
a 1.6182 m
b 1.1718 m
ctf 1817 N/(m/s)
ctr 1726 N/(m/s)
ktf 761800 N/m
ktr 740000 N/m

Table 4.2: Natural frequencies of the model compared to the experimental results in [47].

Vibration mode
Natural frequency Damped natural frequency

Simulation Experiment Error Simulation Experiment Error
(Hz) (Hz) (%) (Hz) (Hz) (%)

Heave Mode(x) 4.7405 4.94 4.0385 0.1591 0.192 17.13
Pitch Mode(θ) 6.7355 7.27 7.3252 0.2019 0.199 -1.45
Fr.Wheel Hop Mode(yf ) 20.3248 22.33 8.9798 0.7215 0.702 -2.77
Rr.Wheel Hop Mode(yr) 25.559 – – 0.7091 1 29.09

The initial conditions zf (0), zr(0) can be zero or alternatively evaluated at the initial time step. To
evaluate the integrals in (3.19) and (3.20) it is possible to use Gaussian quadrature. However, because
the integration domain size increases with each extra step in time we can either retain the same
integration points and add more at each time step or re-evaluate the entire time domain with a new
set of integration points. The former can lead to high integration errors while the latter can be
computationally demanding. Therefore, we instead use the composite Gaussian quadrature [46].

The composite Gaussian quadrature sets a threshold i.e. τ0. The time domain is then divided into
intervals of the same size τ0 so that the number of the intervals is the quotient of t over τ0. We
evaluate the integrated function over each interval so that the integral is only evaluated over one
interval at a time. Any new intervals are then added to the already evaluated intervals. Thus, the
computational costs of integrating over the entire time domain is not repeated. Step 18 in Algorithm
1 shows that the time integration procedure is evaluated at the end of the proposed procedure and
only after completing the solution of the inverse problem.

4 Numerical results

In this section we first introduce the numerical parameters used for the model. Then the efficiency
and accuracy of the model and the proposed algorithm are tested for different road roughness profiles.
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4.1 Model parameters

The half-vehicle model parameters considered for the numerical simulation are given in Table 4.1.
These values are based on the parameters published in [47]. Using the considered values we calculate
both the natural frequencies and the damped natural frequencies of the model. These are then
compared in Table 4.2 to the experimental data obtained from [47]. In all the following numerical
tests, the considered values of the time integration variables are taken as β = 0.25 and γ = 0.50 while
the considered time step size is ∆t = 0.002s.

4.2 Test cases

Table 4.3: Considered road profiles.

Case Road profile name zf zr(t) = zf (t+ T )

1 Sinusoidal zf (t) = 0.01 sin(50πt) T=0.5s
2 Random Normal random signal, RMS=0.002 T=0.5s
3 Sinusoidal +random Case 1+Case 2 T=0.5s

The three different road roughness profiles in Table 4.3 are studied to test the proposed algorithm. The
random profile is generated with a normal random signal with the root mean square (RMS=0.002).
The relation between zf (t) and zr(t) is assumed to be zr(t) = zf (t+ T ) where T represents the time
needed by the vehicle to pass the distance (a + b) in Figure 2.1. In all the cases we take zero initial

conditions i.e. u(0) =
{
x θ yf yr

}>
= 0.

For simplicity we assume that the velocity does not change within the distance where we aim to
identify the roughness. This assumption results in the roughness being only a function of time. Thus,
in all the cases considered here we are looking to identify the time-dependent road roughness for the
considered vehicle model.

4.2.1 Case 1: sinusoidal

First we assume a sinusoidal road roughness as defined in Table 4.3. The acceleration response of all
four degrees of freedom in the vehicle model are plotted in Figure 4.1. Using the proposed inverse
algorithm we then identify the road roughness over a two seconds time span. The road profile recovered
numerically is then plotted against the actual road profile in Figure 4.2 (a). The absolute difference
between the actual and the identified road profiles, is considered as the error and is plotted below
the profile. The plot shows that the inverse algorithm recovers the road elevation with high accuracy
where the difference is of the order 10−10. However, the error plot shows that the difference grows with
time. This is expected as the time integration scheme introduces temporal errors which accumulate
in time.

Next, we add a Gaussian noise into the measured acceleration. The signal to noise ratio (SNR) is 20
dB. Figure 4.2 (b) displays the identified profile plotted against the actual profile. Again the error is
plotted below the road profile. The results show that the algorithm recovers the road profile with good
accuracy but the error increase in time, becomes a lot more significant in this case. Adding the noise
causes the identification error to become multiple times larger than the amplitude of the variation in
the road elevation while without the noise the error was several orders of magnitude smaller than this
amplitude. This shows the impact of the noise on the results. To improve the algorithm accuracy we
investigate filtering the inverse algorithm output. Using a regular filtering scheme may lead to a phase
shift problem [48]. Therefore, we chose here to apply the bi-directional filtering method which does not
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(a) Heave. (b) Pitch.

(c) Front wheel hop (yf ). (d) Rear wheel hop (yr).

Figure 4.1: Case 1: Acceleration response of the vehicle under a sinusoidal road profile.
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suffer from the phase shift issue [49]. a preliminary study was performed in order to chose a suitable
noise filter. For brevity purpose we only show the results obtained with the 4th order Butterworth
filter which outperformed other filters.

Figure 4.2 (c) shows the recovered road profile plotted against the actual one using the same polluted
data as before (with SNR=20dB) but after applying the 4th order Butterworth high pass bi-directional
filter where the considered cutt-off frequency is 2Hz [49]. Again the error is plotted next to the road
profile. The figure shows a significant improvement in the accuracy of the road profile and that the
error increase is again stable.

The results in this case confirm that the proposed inverse algorithm can recover a sinusoidal road
profile with good accuracy unless the collected data include noise. In such situation it is necessary to
apply a noise filter which seems to efficiently limit the effect of noise.

4.2.2 Case 2: Random

A random profile as in Table 4.3, is considered next. The acceleration responses of the vehicle heave,
pitch and hop of front and rear wheels are plotted in Figure 4.3. In order to test the algorithm with
a reduced system in this case we do not take all the available accelerations. Only the accelerations of
the heave and the wheels, namely, yf and yr are taken as the input for the inverse solution.

Again in Figure 4.4 we plot the identified road profile for clean acceleration data (a), data polluted
with noise (b) and polluted data with filtering (c). The identified road profiles are plotted against the
actual road profile. The difference between the actual and the identified profiles, are also included
below each plot. For the polluted data Gaussian noise is added with the SNR = 20dB. The same
filter as bfore is again considered i.e. the 4th order Butterworth high pass bi-directional filter with
the cutt-off frequency being 0.5Hz. The results are consistent with the previous case where the clean
data can be used to achieve high accuracy road roughness identification. The noisy data leads to a
significant deviation in time between the identified and the actual profiles. However, applying the
filter significantly reduces the impact of the noise and again the identified profile matches the actual
one with good accuracy.

Although the accelerations of only three degrees of freedom are considered in this case but the proposed
algorithm has successfully recovered the road profile as it did in the first test case where all degrees
of freedom were utilised. The results also shows that the algorithm can successfully identify random
road profiles.

4.2.3 Case 3: Sinusoidal plus random

Finally a summation of sinusoidal and random profiles are studied where the cases 1 and 2 are added
together. The acceleration responses for the four degrees of freedom are plotted in Figure 4.5. Again
only the three degrees of freedom considered in Case 2, are taken as an input for the inverse algorithm
here.

Similar to before we start by evaluating the algorithm performance with the actual accelerations
then with the accelerations polluted with a Gaussian noise (SNR=20dB) and finally with the noisy
data but after filtering. We use the same filter considered in the previous cases. In Figure 4.6 we
show the recovered road profiles with the three data sets plotted against the actual profile as well
as the differences between the actual and identified. The algorithm performance is consistent with
the previous two cases. It can recover the road profile with high accuracy for the set with the clean
data and show sensitivity to the noisy data. Again applying the Butterworth filter with the cutt-off
frequency being 0.5Hz eliminate the sensitivity to noisy data.

The maximum absolute errors of the cases 1,2 and 3 are summarised in Table 5. When clean data
is used the maximum absolute error in all cases is 4.8173E-10. Using noisy data causes a significant
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(a) Heave. (b) Pitch.

(c) Front wheel hop (yf ). (d) Rear wheel hop (yr).

Figure 4.3: Case 2: Acceleration response of the vehicle under a random road profile.
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(a) Heave. (b) Pitch.

(c) Front wheel hop (yf ). (d) Rear wheel hop (yr).

Figure 4.5: Case 3: Acceleration response of the vehicle under a sinusoidal plus a random road profile.

increase in the accumulation of error over time. Hence, the maximum error in any case increases
to 0.0585, which is many orders of magnitude larger than the clean case. This can be controlled by
applying a noise filter as can be seen in the table where the maximum error reduces to 0.0019.

The considered road profiles, especially, cases 2 and 3 are relatively complicated and difficult to recover.
However, the proposed algorithm shows high accuracy and efficiency in dealing with such transient
input. Therefore, we may conclude that the algorithm is expected to recover other road profiles with
a similar accuracy and efficiency. It should also be noted that the three test cases were run on an
Intel Core(TM) i7 Windows PC with 32 GB of RAM and 3.6 GHz CPU. As the consider model is
relatively small evaluating each time step in the road profile was achieved on average in 0.004s after
reading the acceleration input. This CPU time was achieved with the unoptimized prototype code
used in this research. By optimizing the code and the hardware it will be possible to further speed
the computations. Therefore, evaluating the road profile over short time spans can be achieved in
real-time and significantly faster than a human driver.

It is important to take into account sudden changes in the profile. Hence, it is possible to evaluate the
roughness in snapshots over short time spans can be achieved in few tenths of a second which is well
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Table 4.4: Summary of the maximum identification errors found in all considered cases.

Input type Max absolute error

Case 1
Clean data 1.3804E-10
SNR=20 0.0585
SNR=20,with filter 0.0019

Case 2
Clean data 4.1854E-10
SNR=20 0.0134
SNR=20,with filter 5.0862E-04

Case 3
Clean data 4.8173E-10
SNR=20 0.0546
SNR=20,with filter 9.6665E-04

Table 4.5: Comparison of NMSE values for deviated and actual vehicle parameters.

Case Actual 5% Deviation

Case 1 8.6814E-16% 0.35%

Case 2 8.0576E-15% 0.19%

Case 3 8.0753E-16% 0.34%

faster than average human drivers, which gives the autonomous vehicle driving system more time to
react to any changes in the road roughness.

4.3 Uncertainty analysis

Our final aim is to evaluate the impact of uncertainty in the vehicle parameters on the performance
of the proposed algorithm. To this end we set all the parameters identified in Table 4.1 to have a
deviation of 5% decrease from the real values. The effect of this deviation on the identification results
is measured using the normalized mean square error (NMSE) given by

NMSE =
n∑
i=1

[X(i)− Y (i)]2/
n∑
i=1

X(i)2 (4.1)

where X(i) is the value obtained from the actual road profile, Y (i) the value obtained from the
identified road profile while n is the total number of points considered on the road profile. Table 4.5
shows the NMSE comparison under the actual and the deviated parameters where the road input data
is clean from noise. The table shows that the value of NMSE is very small without the deviation,
while it is less than 0.35% with deviation. The results suggests that the proposed algorithm can be
robust even when the vehicle model parameters deviate from the actual parameters.

5 Conclusions

In this paper, we present a novel inverse algorithm to evaluate road roughness in real-time for au-
tonomous vehicles. The proposed algorithm consists of two steps. Starting from vibration acceleration
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measurements at few degrees of freedom the first step is to identify the forces of the wheels using the
inverse Newmark method. The second is to reconstruct the road roughness by solving a system of
ordinary differential equations that links the forces and the displacements. The equations are solved
using the composite Gaussian quadrature. The algorithm is coupled with a 4 degrees of freedom
half-vehicle model and can evaluate road roughness in real-time. We also show it is easy to extend
to any number of degrees of freedom even when the acceleration measurements are only available at
some of these degrees of freedom.

We investigate the robustness and the stability of the proposed algorithm using three different road
profiles, namely, sinusoidal, random and sinusoidal plus random. With clean data the algorithm can
predict these road profiles with high accuracy. However, with noisy data the accuracy deteriorates
quickly in time. To overcome this we propose using the 4th order Butterworth high pass bi-directional
filter. We show a significant improvement in the error accumulation when the filter is applied. The
presented results show that the algorithm can be highly accurate identifying random as well as de-
terministic road profiles. The robustness of the proposed method with respect to uncertainties in the
vehicle parameters has also been assessed. The influence of the model parameters deviation by 5%
from the actual values is measured using the normalized mean square error. The results show that
the value of the error remains small even when using deviated parameters.

The work presents a first attempt to utilise an inverse method for real-time road roughness estimation.
In the future we want to test higher order time integration schemes to increase stability of the algorithm
even with polluted data . However, this may prove computationally demanding as it requires processing
several time steps. Furthermore, we plan next to build a physical prototype of Half-vehicle model and
proceed to conduct experimental validation on standard vehicles and then on autonomous vehicles.
Finally, it should be noted that the proposed algorithm is limited in term of application to nonlinear
problems. Furthermore, the algorithm assumes that the vehicle parameters do not change in time.
Hence, it may provide wrong information if the vehicle gets damaged in an accident for example.
Therefore, for future work we plan to include nonlinearity and time dependent properties. Obviously
extending the algorithm in these directions may significantly increase the required computational
efforts and, hence, challenge the real-time aspect of this work.
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