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Abstract

Nonlinear transient heat transfer in functionally graded materials is being studied more popular in
present. In preliminary design, this problem can be simplified as a composite, and a three-dimensional
transient heat transfer analysis is used to adjust dimensions of the considered materials. This paper
is concerned with the numerical modeling of transient heat transfer in composite materials where the
thermal conductivity is also dependent on the temperature; hence the problem is nonlinear. We are
interested in solutions with steep boundary layers where highly refined meshes are commonly needed.
Such problems can be challenging to solve with the conventional finite element method. To deal with
this challenge we propose an enriched finite element formulation where the basis functions are augmented
with a summation of exponential functions. First, the initial-value problem is integrated in time using a
semi-implicit scheme and the semi-discrete problem is then integrated in space using the enriched finite
elements. We demonstrate through several numerical examples that the proposed approach can recover
the heat transfer on coarse meshes and with much fewer degrees of freedom compared to the standard
finite element method. Thus, a significant reduction in the computational requirements is achieved
without compromising on the solution accuracy. The results also show the stability of the scheme when
using tetrahedral unstructured grids.

Keywords. Nonlinear heat transfer; Functionally graded material; Heterogeneous problems; Partition of
unity method; Finite element discretization; Enrichment procedures

1 Introduction

Numerical modeling of nonlinear heat transfer in composite materials becomes very demanding if dealing
with strong discontinuity in the material properties. This can be the case when considering functionally
graded materials where often a highly conductive alloy is integrated with a low conductive ceramic. Thus,
the numerical modeling is a serious challenge not only because of the problem nonlinearity but also due
to the formation of steep boundary layers on the ceramic surface in the composites. To computationally
deal with this class of problems, several finite element methods are developed where often high order basis
functions are used for approximating the solution, see for example [27, 30]. In this regards, designing
problem-specific basis functions have several advantages over the generic finite element basis. For instance,
Trefftz-type finite elements have shown significant improvement over the standard finite elements in terms
of the required number of degrees of freedom [25]. Hybrid Trefftz finite elements have also been created to
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recover the solution in composite materials [7]. In this case, the numerical solution is approximated on two
different levels such that high-order basis functions are used inside an element while standard polynomial
functions are used on its boundary [4]. Note that these two independent approximation fields help to
capture local effects such as discontinuities, singularities and inclusions [25].

Another closely related approach to the Trefftz finite elements is the well-known Partition of Unity Method
(PUM) [16]. This method has been widely used in the literature and has found many applications in recent
years. For example, a summation of exponential functions was used in the PUM to capture steep boundary
layers inherited from heat transfer in homogeneous media [19, 15] and later in heterogeneous materials
[2, 14] for two-dimensional applications. The presented numerical experiments in these references show
clear advantages of enriching the approximation space when dealing with multiscale heat transfer problems
involving local irregularities as well as steep boundary layers [19, 3, 29]. To analyze geothermal applications
in large computational domains, the finite element method was also enriched with time-dependent functions
that is designed to replicate the analytical solutions [29]. Thus, coarse meshes can be utilized to recover the
solution with good accuracy without relying on simulations on very fine meshes. In addition, a global-local
approach was developed to deal with problems involving heat transfer with a heat source localized in an area
much smaller than the considered domain [22, 10]. In this case, the problem is first solved over local domains
only in the vicinity of the heat source then, the numerical solution is used as a discrete function to enrich the
global domain. The approach enables much coarser meshes compared to otherwise the highly refined meshes
necessary to consider the localized heat sources [23, 11]. A partition of unity approach was also developed
for conduction-radiation heat transfer in grey media [20] as well as in glass [21]. This approach employed a
combination of time-independent hyperbolic and Gaussian functions for the enrichment to resolve the steep
gradients in the numerical solution as it evolves in time. It should be stressed that for linear problems, the
same matrix is retained for all time steps in the linear system inherited by PUM whereas only the right
hand side of the resulting system is updated. Hence, the reduction in the computational requirements is
achieved not only by using coarse elements but also by building and decomposing small size matrices which
can be solved using direct solvers [19, 14, 6]. The solution of the linear system using iterative solvers was
also investigated in the literature, see for instance [9, 18].

In the present study, a three-dimensional enriched finite element method is developed for solving nonlinear
transient heat transfer in composites with steep boundary layers. The proposed method considers a class
of exponential enrichment functions to solve the problem on coarse meshes. A semi-implicit time stepping
scheme of Gear-type is used for the time integration for which only linear systems of algebraic equations are
solved to update the numerical solution. Here, the enrichment functions are chosen to be time-independent
so that the global matrix in the linear systems does not depend on time. To assess the numerical performance
of the proposed approach, we solve a problem with known analytical solution so that the results obtained
using the PUM are compared to those obtained using the standard FEM. This quantitative comparison is
carried out in terms of errors and total numbers of degrees of freedom in each approach. The method is also
used to recover the heat transfer in a functionally graded materials relevant to two industrial applications.
Results presented in this paper show high resolution of the proposed enriched finite element method and
permit the straightforward application of the method to more complex, physically based nonlinear transient
heat transfer problems. The current work represents a step towards the implementation of three-dimensional
enriched finite element method for the numerical solution of heat and mass transfer.

This paper is organized as follows. In section 2 the nonlinear initial value problem in composite materials is
presented and the finite element weak formulation is derived. The partition of unity approximation of the
solution along with the considered enrichment functions are discussed in section 3. In section 4, we examine
the numerical performance of the proposed method using various test examples of heat transfer problems.
The obtained results demonstrate that our enriched finite element method preserves the expected efficiency
as well as the accuracy. Concluding remarks are summarized in section 5.
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2 Governing equations for nonlinear transient heat transfer

The transient heat transfer in a composite material in three space dimensions satisfies the nonlinear heat
conduction equation

ρ(u, t,x)c(u, t,x)
∂u(t,x)

∂t
−∇ ·

(
κ(u, t,x)∇u(t,x)

)
= f(u, t,x), (t,x) ∈ (0, T ]× Ω, (1)

where Ω ⊂ R3 is the considered computational domain, u(t,x) is the temperature at point x ∈ Ω in time
t ∈ (0, T ]. The function f(u, t,x) describes the nonlinear reaction term accounting for sources or/and
sinks. The material properties κ, ρ and c are the thermal conductivity, the density and the specific heat,
respectively. The boundary and the initial conditions for equation (1) are given as

κ(u, t,x)
∂u(t,x)

∂n
+ u(t,x) = g(u, t,x), (t,x) ∈ [0, T )× Γ, (2)

u(0,x) = u0(x), x ∈ Ω, (3)

with Γ being the domain boundary and n the outward unit normal on Γ while u0(x) is a prescribed
initial temperature and g(u, t,x) expresses any boundary heat sources or/and sinks. As mentioned earlier,
numerical solutions of the nonlinear initial value problem described by (1)-(3) can be computationally
demanding especially with the presence of boundary layers and moving fronts, see for example [28].

To solve the problem we use finite elements for the spatial discretization and a semi-implicit scheme for
the time integration. Thus, we multiply equation (1) with a test function φ(x) before we integrate over the
domain Ω. After applying the divergence theorem and substituting the boundary conditions we obtain the
following weak form ∫

Ω
ρc
∂u

∂t
φ dΩ +

∫
Ω
κ∇u · ∇φ dΩ =

∫
Ω
fφ dΩ +

∮
Γ

(g − u)φ dΓ. (4)

Next, the domain is discretized into a set of conforming finite elements Ti, with i = 1, 2, . . . Ne where Ne is
the total number of elements. The computational domain Ωh ⊆ Ω is the combination of all these elements.
The solution u(t,x) of the weak formulation (4) can then be approximated as

u(t,x) ≈ uh(t,x) =

Nd∑
j=1

uj(t)Nj(x), (5)

with Nd being the total number of nodes in the computational domain Ωh and uj the nodal values of the

approximate solution uh(xj), while {Nj}Nd
j=1 are the standard polynomial basis functions.

Next, the time domain is also discretized into uniform timesteps [tn, tn+1] of the duration ∆t = tn+1 − tn
with n = 0, 1, . . . Nt and Nt = T

∆t . We denote a generic function w with wn at the time tn = n∆t. The
integral over the time domain is then performed using a semi-implicit scheme of Gear type also known in
the literature by backward differentiation formula (BDF2). Hence, the discrete formulation can be written
as ∫

Ω
ρncn

3un+1
h − 4unh + un−1

h

2∆t
φ dΩ +

∫
Ω
κn∇φ∇un+1

h dΩ +

∫
Γ
(un+1

h − gn+1)φ dΓ =

∫
Ω
fn+1φ dΩ. (6)

Obviously, to advance the solution un+1 in time, the two solutions un−1 and un are required. At time t = 0
only one initial condition is provided and to obtain the second condition we use the implicit Euler scheme.
If the finite element basis functions i.e. Nj are also used as a test function in (6) then the resulting linear
system can be written as

Nd∑
j=1

(∫
Ω

(
ρncnNiNj + 2∆tκn∇Ni · ∇Nj

)
dΩ +

∫
Γ

2∆t
(
Nj − gn+1

)
Ni dΓ

)
un+1
j =

∫
Ω

(
2∆tfn+1 + ρncn

(
4unh − un−1

h

))
Ni dΩ, i = 1, 2, . . . Nd. (7)
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It should be noted that in the considered semi-implicit scheme, the nonlinear terms at the current time
tn and therefore only linear systems of algebraic equations are required to update the solution at the next
time tn+1. Thus, the set of equations (7) can be written in a compact form as a linear system of equations

Nd∑
j=1

ai,ju
n+1
j = bi, i = 1, 2, . . . Nd, (8)

where

ai,j =

∫
Ω

(
ρncnNiNj + 2∆tκn∇Ni · ∇Nj

)
dΩ +

∫
Γ

2∆t
(
Nj − gn+1

)
Ni dΓ,

bi =

∫
Ω

(
2∆tfn+1 + ρncn

(
4unh − un−1

h

))
Ni dΩ,

or simply in matrix form as
Aun+1 = b, (9)

where A = A (tn+1,u
n) is Nd × Nd-valued matrix with entries ai,j , u and b = b

(
tn+1,u

n−1,un
)

are Nd-
valued vectors with entries un+1

i and bi, respectively. Note that, the linear system must be evaluated and
solved at every timestep. Therefore the solution process can be highly demanding computationally if the
system involves a large number of equations. Often low-order polynomial basis functions are used for the
standard finite element approximations which requires a large number of degrees of freedom. This yields
the solution prohibitively expensive in terms of computations. Alternatively we propose using high-order
basis functions which can significantly reduce the number of required unknowns, hence, much smaller linear
systems to be solved during the time integration procedure.

3 Enriched finite element approximations

In the current study, the conventional Lagrangian basis functions are considered for the standard finite
element approximation. Both 4-noded tetrahedra and 8-noded hexahedra elements are used. Hence, the
polynomial shape function Ni(xj) in the expression (5) are linear on each face of a tetrahedra while they
are bilinear for each face of a hexahedra element. Notice that the basis functions are characterized by the
usual Lagrangian condition of Ni(xj) = δij where δij is the Kronecker delta.

For the partition of unity enrichment [19, 20], the nodal values of the temperature solution uj in equation
(5) are expanded into a combination of exponential functions as

uj(t) =

Q∑
q=1

ϕj,q(t)Gq(x), (10)

where

Gq(x) =

exp

(
−
(
‖x− xc‖

γ

)q)
− exp

(
−
(
β

γ

)q)
1− exp

(
−
(
β

γ

)q) , q = 1, 2, . . . , Q, (11)

where β and γ are constants while ‖x− xc‖ =
√

(x− xc)2 + (y − yc)2 + (z − zc)2 is the distance between
the two points xc = (xc, yc, zc)

> and x = (x, y, z)>. The point xc is fixed at the center of the Gaussian
function while x is a given point in the computational domain. Usually, a set of homogeneous solutions of the
considered partial differential equation is chosen for the enrichment [27, 17]. This is often referred to as a set
of T-complete functions in the context of Trefftz methods [24]. It is also possible to choose the enrichment
functions because they provide improved approximation properties compared to the standard polynomial
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Figure 1: Illustration of the enrichment functions Gq(x) defined in (11) for different values of q plotted for
varying x and keeping y = z = 1 fixed.

basis functions [2]. The enrichment functions (11) are chosen because they represent the temporal variation
of the solution at different phases. The partition of unity approximation is then a linear combination of all
these functions which at any time instant can be written as

uh(t,x) =

Nd∑
j=1

Q∑
q=1

ϕj,q(t)Nj(x)Gq(x), (12)

The unknown ϕj,q represents the amplitude of the qth enrichment function at the jth node and replaces the
unknown nodal value of the temperature uj at this node. Increasing the number of enrichment Q in (12)
would add functions with steeper gradients into the approximation. For illustration purposes, we show in
Figure 1 the one-dimensional cross-sections at y = z = 1 of the enrichment functions Gq for q = 1, 2, . . . , 8
using xc = (0.5, 0.5, 0.5)> and the following parameters

β =

√
14

1.195
, γ =

1

1.195
.

As it can be seen in Figure 1 the enrichment functions with low values of q have sharper gradients than
those with high values of q. Note that similar enrichment functions have been considered in [5] using a-
posteriori error estimate for the partition unity finite element method. In addition, the usual stability and
conditioning features discussed in [26] are also inherited in this class of enrichment functions.

It should be stressed that the number of degrees of freedom at each mesh node is expanded by the number of
enrichment functions Q in the partition of unity approximation compared to the conventional finite element
methods. However, the total number of degrees of freedom and therefore the size of the linear system (9)
in the partition of unity method, remains much smaller thanks to the coarse mesh grids used in this case.
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FE-F FE-C PUM

(27000 elements, 29791 nodes) (8000 elements, 9261 nodes) (216 elements, 343 nodes)

Figure 2: Structured fine mesh used in FEM (left), coarse mesh used in FEM (middle) and coarse mesh
used in PUM (right) for the accuracy test.

For the computational results presented in this study, the resulting linear systems are solved using an LU
decomposition. It is also worth to mention that a comparison between the structures of matrices associated
with linear systems in the FEM and PUM can be found in [18].

4 Numerical results

To evaluate the performance of the partition of unity method we consider four different numerical tests.
First a manufactured problem with a known exact solution is considered where the heat conductivity is
dependent on the temperature. This example is useful for evaluating the performance of the method in
terms of errors compared to the standard FEM. In the second example, a problem of heat transfer in ceramic
materials is considered where all the material properties such that the thermal conductivity, the density
and the specific heat are temperature dependent. In the third problem we consider a functionally graded
material composed of a ceramic and a Titanium-Aluminium alloy for which solutions obtained using the
PUM on coarse meshes are investigated. In the final example, an industrial application of heat transfer
is simulated in a pump part made of a composite materials. Notice that to reduce the computational
cost, the timesteps ∆t are chosen as large as possible. This makes most explicit time steeping methods
noncompetitive, since they are subject to stability restriction conditions. Therefore, the criteria of choosing
time steps in our algorithm was mainly based on accuracy considerations. All the computations were
performed on an Intel i7-2600 Quad Core at 2.7Ghz and 16GB RAM using Fortran 95 in sequential codes.

4.1 Accuracy example with known analytical solution

The PUM is used to solve the nonlinear diffusion problem (1) in the unit cubic domain Ω = [0, 1]×[0, 1]×[0, 1]
with the density and the specific heat coefficients set to unity while the heat conductivity is assumed to
nonlinear defined as

κ(u) = 0.005u2 + 1.
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Figure 3: PUM solution on a coarse mesh (left) and exact solution (right) in the xy-plane at z = 0.5 for
the accuracy test example at t = 0.1 using ∆t = 0.05.

The following exact solution is imposed on this test problem

U(t, x, y, z) = exp

(
1

0.1 + (1− x)(1− y)(1− z)

)(
2− exp(−t)

)
, (13)

and we define the source functions g(u, t,x) and f(u, t,x) as well as the initial condition u0(x) based on
this analytical solution. The problem is also solved with the standard FEM and numerical approximations
and both methods are compared using the relative L2-error norm defined as

ε2 =
‖u− U‖L2(Ω)

‖U‖L2(Ω)

, (14)

where ‖·‖L2(Ω) is the L2-norm, u and U are the computed and the exact solutions, respectively.

In Figure 2 we illustrate the structured meshes used for this test example. Here, a fine mesh (FE-F)
composed of 27000 elements and 29791 nodes and a coarse mesh (FE-C) of 8000 elements and 9261 nodes
are used for the FEM solution while the coarse mesh with 216 elements and 343 nodes is used for the PUM
solution. The aim of this test example is to compare the obtained results using the PUM on a coarse mesh
to those obtained using the FEM on a fine mesh. To this end we use the enrichment functions (11) with
xc = (0.5, 0.5, 0.5)> and

β =

√
14

1.195
, γ =

1

1.195
.

It is evident that this test example exhibits boundary layers at x = 1, y = 1 and z = 1. To illustrate these
features, we present in Figure 3 cross-sections in the xy-plane at z = 0.5 of the exact solution and the
PUM solution on a coarse mesh using Q = 5. As can be seen, the boundary layers are accurately resolved
using the PUM on the coarse mesh and no noticeable differences are visible in Figure 3 between the exact
solution and the solution obtained using PUM.

Table 1 shows the errors of the solution obtained using the FEM at the two selected instants t = 0.05 and
0.1 and using the time step ∆t = 0.001. The time step was chosen based on a convergence study where
using a smaller time step does not reduce the error for the considered spatial discretization. In this table
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Table 1: Relative errors obtained using the PUM and FEM methods on the considered meshes for the
accuracy test problem using different numbers of enrichments Q and ∆t = 0.001.

t = 0.05 t = 0.1

Q PUM FE-C FE-F PUM FE-C FE-F

3 1.2656E-01 1.8327E-01 1.1426E-02 1.2876E-01 1.9142E-01 1.2131E-02

4 3.3654E-02 1.8327E-01 1.1426E-02 3.3923E-02 1.9142E-01 1.2131E-02

5 7.0536E-03 1.8327E-01 1.1426E-02 7.2638E-03 1.9142E-01 1.2131E-02

6 6.3232E-03 1.8327E-01 1.1426E-02 6.7554E-03 1.9142E-01 1.2131E-02

Table 2: Computational costs in seconds and condition numbers obtained using the PUM and FEM on the
considered meshes for the accuracy test problem using different numbers of enrichments Q and ∆t = 0.001.

CPU time

build/rebuild solve/resolve total Condition number

FE-F 32570.51 79.79 39213.11 8.2426

FE-C 9641.20 23.64 11615.84 8.3249

PUM Q = 3 236.40 0.068 342.67 2.9258E+05

PUM Q = 4 237.66 0.16 373.94 4.0543E+08

PUM Q = 5 239.54 0.31 403.76 4.1527E+12

PUM Q = 6 241.53 0.54 440.86 2.3675E+13

we also show the relative errors obtained using the PUM for an increased number of enrichment functions.
Using the PUM and for the total number of degrees of freedom 343 × 5 = 1715 the error at t = 0.05 is
ε2 = 7.0536× 10−3 compared to ε2 = 1.1426× 10−2 with the FEM using 29791 degrees of freedom. For a
much smaller total number of degrees of freedom, the PUM yields an order of magnitude improvement in
the error compared to the FEM. Increasing the number of enrichment functions to Q = 6 it leads to another
order of magnitude improvement in the error. In this case, the error is reduced to ε2 = 6.3232 × 10−3 for
the total number of degrees of 2058 which is still much smaller than those obtained using the conventional
FEM. Similar conclusions can be drawn form the results obtained at later time t = 0.1.

In Table 2 we summarize the computational costs in terms of CPU times (given in seconds) for the simu-
lations listed in Table 1. Due to the significantly high number of elements, the computational time needed
to build the FEM system matrix is two orders of magnitude higher than that for the PUM. The same is
also observed for updating the right hand side at later time steps. The resulting linear systems of equations
is solved using the LU decomposition. Again because the dimension of system matrix is much smaller
when using the PUM, the time needed to perform the decomposition is much shorter than the FEM case.
It should be noted that, increasing the number of enrichment functions leads to marginal change in the
computational time for building the linear system. It should also be pointed out that Gauss quadratures are
used to evaluate the entries of the elementary matrices and in our simulations, the number of integration
points used is 20 per direction. This large number of integration points dominates the time needed to
evaluate the system matrix. Increasing the number of enrichment functions leads to a clear increase in the
time needed to perform building and solving the associated linear systems. This is expected because of the
larger linear systems resulting at higher number of enrichment functions. However, for all the considered
number of enrichment functions, the computational time remains smaller than the FEM case. Finally, we
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Problem configuration (45375 elements, 9512 nodes) (759 elements, 212 nodes)

Figure 4: Configuration (left), the considered mesh in the FEM (middle) and for in PUM (right) for the
nonlinear transient heat transfer in a homogeneous material.

t = 60 s t = 90 s 180 s

Figure 5: Distributions of the temperature obtained using the FEM on a fine mesh (first row) and the
PUM on a coarse mesh (second row) at three different instants for the nonlinear transient heat transfer in
a homogeneous material.

also show in Table 2 the total computational time needed to recover the full time span of the problem up to
t = 0.1. It is evident that using the PUM yields a major reduction in the computational time and a signifi-
cant improvement in the accuracy compared to the standard FEM. The high condition numbers associated
with linear system for the PUM in Table 2 should also be noted. The ill-conditioning and the growth of
condition numbers in the PUM is well known and have been covered in may studies, see for instance [12, 1].
It should be pointed out that the performance of the proposed PUM is very attractive since the computed
solutions remain stable and accurate even when coarse meshes are used without requiring nonlinear solvers
or complicated techniques to reconstruct time-dependent enrichment functions.

4.2 Nonlinear transient heat transfer in a homogeneous material

In the second example we consider a cube with a cylindrical hole in the center. The cube side length is
20 cm while the cylinder axis is parallel to the z-axis and has a 4 cm radius. The initial temperature in
the domain is u0(x) = 300 K. The surrounding ambient temperature is fixed at g(u, t,x) = 300 K. A heat
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Figure 6: Configuration of the problem (left), the mesh used in the simulations (middle) and side view of
the mesh (right) for the nonlinear transient heat transfer in a functionally graded material.

source is introduced into the model defined by f(u, t,x)

f(x, y, z) = 5× 106
(
z + y cos (10πx)

)
[W/kg] . (15)

The cube is made of the Zirconium dioxide (ZrO2) ceramic where the material properties of ZrO2 are given
as

κ(u, t,x) = 1.71 + 2.1× 10−4u+ 1.16× 10−7u2 [W/(mK)] ,
c(u, t,x) = 2.74× 102 + 7.95× 10−1u− 6.19× 10−4u2 + 1.71× 10−7u3 [J/(kgK)] ,
α(u, t,x) = 1.331× 10−5 − 1.89× 10−8u+ 1.27× 10−11u2 [1/K] ,

ρ(u, t,x) =
3657(

1 + α(u− 300)
)3

[
kg/m3

]
.

Note that the problem is symmetric with respect to the xz-plane. Therefore only half of the domain needs
to be considered. Figure 4 illustrates the geometry used in our simulations for this problem. It should be
noted that a similar example but in two space dimensions was first introduced in [8]. The problem is solved
using the PUM on a coarse mesh grid using the enrichment functions (11) with Q = 4, xc = (0, 0.05, 0.1)>

and

β =

√
14

1.195
, γ =

1

1.195
.

Because no analytical solution is available, the PUM solution is compared to a reference FEM solution
evaluated on a fine mesh grid. Figure 4 shows the considered mesh grids and their corresponding number
of nodes and elements. The timestep size is fixed at ∆t = 5 s and simulations are carried out in the time
domain [0, 180 s]. The numerical solutions of the PUM as well as the FEM are displayed in Figure 5. The
results are displayed at the time instants t = 60 s, 90 s and 180 s. The heat transfer patterns obtained with
the PUM at these time instants are displayed in Figure 5 below those corresponding to FEM. The computed
results clearly demonstrate the accuracy of the proposed PUM as the patterns obtained with both PUM
and FEM methods are very similar although the PUM uses less than 10 % of the total number of degrees
of freedom used in the FEM. Moreover, it can be seen in the figure that the FEM solution displays some
spurious oscillations as can be seen for example on the front face of the cube at t = 60 s and 90 s while the
PUM solutions do not show such oscillations.

4.3 Nonlinear transient heat transfer in a functionally graded material

In the third example we study the heat transfer in a functionally graded material composed of the Zirconium
dioxide ceramic and a Titanium alloy (Ti 6Al-4V). The material properties considered for ZrO2 are similar
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Figure 7: Time evolution of the temperature at points A, B and C for the nonlinear transient heat transfer
in a functionally graded material.

to the previous example while for Ti 6Al-4V they are given by

κ(u, t,x) = 1.1 + 1.7× 10−2u [W/(mK)] ,
c(u, t,x) = 3.5× 102 + 8.78× 10−1u− 9.74× 10−4u2 + 4.43× 10−7u3 [J/(kgK)] ,
α(u, t,x) = 7.43× 10−6 + 5.56× 10−9u− 2.69× 10−12u2 [1/K] ,

ρ(u, t,x) =
4420(

1 + α(u− 300)
)3

[
kg/m3

]
.

The heat source is defined as

f(x, y, z) = 1.5× 105

(
y + (x2 + y2 + z2) exp

(
−xπ

2

))
[W/kg] . (16)

The considered computational domain is a quarter of a cylinder with an axial hole. Figure 6 shows the
geometrical configuration of the domain. The material properties of the composite are evaluated at each
point using the mixture rule

p = p1ξ1 + p2ξ2, (17)

where the volume fractions of the ceramic and the alloy are respectively ξ1 and ξ2, whereas p1 and p2 are
the corresponding material properties. The percentage of the alloy volume fraction starts at a 100% on
the inner surface of the cylinder and decreases to 0 on the outer surface while the ceramic volume fraction
increases at the same rate so that

ξ1 = 2r − 1, ξ2 = 1− ξ1,

with r being the radial coordinate where the origin is located on the cylinder axis at the top face and is
depicted in Figure 6. It should be noted that a similar problem was also studied in [8, 13].

It is worth to mention that the aim in this example is to evaluate the convergence of the PUM solution
using a fixed mesh and an increased number of enrichment functions. For this test problem the time step
is ∆t = 5 s and the considered computational mesh is shown in Figure 6. For better insight, views of both
side and elevation are displayed in this figure next to the configuration. The mesh is composed of 3123
tetrahedral elements and 809 nodes and the enrichment functions (11) are used with xc = (0.5, 0.1, 0)> and

β =

√
0.525

0.111
, γ =

1

0.111
.

The problem is solved first using Q = 3 enrichment functions and subsequently this number is increased to
4, 5 and finally 6. The results of each increment is then compared to the previous one. Using five or six
enrichment functions lead to very similar results. Hence, we can conclude that the solution has converged
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Figure 8: Distributions of the temperature obtained using the PUM at t = 2000 s (left), 3000 s (middle)
and 5000 s (right) for the nonlinear transient heat transfer in a functionally graded material.

Table 3: Comparison of number of DoFs, condition numbers and the maximum temperature (Max) obtained
using the PUM at t = 2000 s for the nonlinear transient heat transfer in a functionally graded material.

DoFs Condition number Max

PUM Q = 4 3236 2.1093E+14 533.62

PUM Q = 5 4045 8.8437E+16 533.40

PUM Q = 6 4854 1.0709E+18 533.46

at five enrichment functions. Figure 7 shows the time evolution in the temperature at the points A, B and
C located at (0,−1, 0), (1, 0, 1) and (0, 0, 1), respectively. These points are also highlighted on the domain
configuration in Figure 6. The time evolution shows that the temperature obtained using Q = 5 or Q = 6
are similar for the full time domain and at all the considered points. Figure 8 shows the converged solution
with five enrichment functions at the instants t = 2000 s, 3000 s, and 5000 s. Again the PUM performs very
well for this test example of nonlinear transient heat transfer in a functionally graded material. Needless
to say that for this heat transfer situation, the PUM does not introduce excessive numerical dissipation
or exhibits spurious oscillations near the steep thermal gradients. In table 3 we summarize the number of
DoFs, condition numbers and the maximum temperature (Max) obtained using the PUM with Q = 4, 5
and 6 at t = 2000 s. It is evident that, increasing the number of enrichments in the PUM yields an increase
in the number of DoFs along with a substantial increase in the condition numbers of the matrix associated
with linear systems to be solved in the PUM. In terms of values of the maximum temperature, there is little
differences between the results obtained using Q = 4, 5 and 6.

4.4 Nonlinear transient heat transfer in a pump part

Our last test example consists of a problem of transient heat transfer in an industrial geometry. We consider
a pump part that is formed using a composite of Zirconium dioxide ceramic (ZrO2) and a Titanium alloy (Ti
6Al-4V). The geometry of the part is displayed in Figure 9 and is based on the file pump carter sup.stp

kindly provided by INRIA and available on the shape repository AIM@SHAPE1. The thermal properties
considered for (ZrO2) and (Ti 6Al-4V) are similar to the previous example. The same mixture rules from the
previous example are also considered here. An internal heat source is imposed on the entire computational
domain at the rate f = 135 W/kg. Initially, the domain is set at initial temperature of u0 = 200 K. Heat

1http://visionair.ge.imati.cnr.it/ontologies/shapes/
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Figure 9: Domain configuration (left) and the mesh (right) used in the PUM for the nonlinear transient
heat transfer in a pump part.

isolation is assumed on all surfaces of the pump part except for the inner upper section of the cylindrical
surfaces which are highlighted with blue in Figure 9. On these surfaces high heat gradient is imposed so
that the heat energy is released at a significant rate on these surfaces. On the rest of boundaries the heat
is isolated, hence, no heat transfer is permitted. The corresponding boundary conditions are κ ∂u

∂n = 0 and

κ ∂u
∂n = 293 K/m on the isolated and non-isolated boundary surfaces, respectively.

The aim now is to test the PUM on a complex geometry that is relevant to an industrial application. To
this end the domain is discretized into 4-noded tetrahedral elements composed of 6602 elements and 1882
nodes. The mesh is displayed in Figure 9 along side the geometry. We present numerical results at three
different instants using the time step ∆t = 0.1 s. Here, the enrichment functions (11) are considered with
c = 1, 2 and 3 for each q such that the control points xc coincide with the center of each hole in the pump
part i.e. x1 = (−118.16, 0, 18)>, x2 = (0, 0, 18)> and x3 = (55.44, 63.11, 18)> and

β =

√
14

1.195
, γ =

1

1.195
.

To test the convergence of the PUM the number of enrichment functions is increased in steps of one from
Q = 2 to Q = 5. For each value of Q, three center points xc are used so that one point is located at the
center of each cylindrical hole. This choice is made as the heat exchange is expected to be high on the
inner surfaces of these holes due to the imposed high heat gradients. The obtained results show that the
method converges for Q = 3 and adding more enrichment functions would not lead to further changes in the
resolution of the computed solutions. Figure 10 shows the converged solution at the instants t = 2.5 s, 5 s,
7.5 s and 10 s. As expected the temperature builds up at the domain parts further away from the holes and
drops rapidly in the area near the holes. Steep gradients forms in the domain due to the difference between
the heat isolation boundary conditions and the high heat release rates near the cylindrical holes. These
steep gradients and their change in time are efficiently captured using the enrichment functions despite
using a coarse mesh grid. From the computed results we can observe that the complicated heat structures
in the pump part captured by the enriched finite element method. It is worth remarking that all these
features have been achieved using tetrahedral meshes coarser than those required for conventional finite
element methods.

5 Conclusions

This paper investigates the nonlinear transient heat transfer in functionally graded materials where par-
ticular attention is paid to steep heat gradients. The considered nonlinearity is caused by the material
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t = 2.5 s t = 5 s

t = 7.5 s t = 10 s

Figure 10: Distributions of the temperature obtained using the PUM for the nonlinear transient heat
transfer in a pump part at four different times t = 2.5 s, 5 s, 7.5 s and 10 s.

properties and/or the behavior of the source/sink terms inside the computational domain. When solving
such problems and in order to achieve high engineering accuracy with standard numerical methods it is
important to use heavily refined meshes. The resulting high number of degrees of freedom can be com-
putationally demanding especially in time-dependent applications. To deal with this difficulty we propose
incorporating time-independent exponential enrichment functions to the finite element approximation using
the partition of unity method. Furthermore, to avoid solving a nonlinear system of equations a semi-implicit
time integration scheme is used. The proposed approach exploits the advantage of adapting the enrichment
locally to capture various features of the solution on a coarse mesh instead of using highly refined meshes.
Other enrichment functions accounting for properties of the functionally graded material under study can
also be implemented in the proposed formulation without major conceptual modifications. Several numeri-
cal experiments are carried out to validate the presented approach. The results show an order of magnitude
improvement in the accuracy compared to the standard finite element method. This significant reduction in
the error is achieved using an order of magnitude less degrees of freedom. The presented comparisons also
show a corresponding reduction in the computational time compared to the standard finite element method.
Moreover, we present an enrichment refinement approach to test the convergence of the method where the
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number of enrichment functions is increased on a fixed mesh. We show that this approach is more efficient
than the standard approach of refining the mesh. The partition of unity method is implemented to recover
the heat transfer in a functionally graded material composed of a ceramic and a Titanium alloy in simple
and complex geometries for industrial applications. The results confirm the suitability of the proposed
method for this type of geometries. Thus, the method can be an attractive approach to replace standard
numerical methods such as the finite element method for nonlinear transient heat transfer in functionally
graded materials. It should also be stressed that the performance of the partition of unity method is limited
with the choice of enrichment functions which depend on the problem under study. Developing a unified
strategy to build optimal enrichment functions is still an open question in many applications in science and
engineering.

Finally, although the method enables approximating complicated local features of the solution using coarse
meshes but in order to have an accurate description of the geometry it may become necessary to use
refined meshes. Such an accurate description of the geometry may become a major burden in nonlinear
applications. Therefore, in order to have an accurate description of the geometry on coarse meshes it may
become necessary in the future to use non-uniform rational B-splines to mesh the domain instead of the
Lagrangian polynomials commonly used in the standard finite element methods.
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